
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lpde20

Communications in Partial Differential Equations

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/lpde20

The Yang-Mills heat flow with random
distributional initial data

Sky Cao & Sourav Chatterjee

To cite this article: Sky Cao & Sourav Chatterjee (2023) The Yang-Mills heat flow with random
distributional initial data, Communications in Partial Differential Equations, 48:2, 209-251, DOI:
10.1080/03605302.2023.2169937

To link to this article:  https://doi.org/10.1080/03605302.2023.2169937

Published online: 10 Mar 2023.

Submit your article to this journal 

Article views: 59

View related articles 

View Crossmark data



The Yang-Mills heat flow with random distributional initial
data

Sky Caoa and Sourav Chatterjeeb

aSchool of Mathematics, Institute for Advanced Study, Princeton, NJ, USA; bDepartment of Statistics,
Stanford University, Stanford, CA, USA

ABSTRACT

We construct local solutions to the Yang–Mills heat flow (in the
DeTurck gauge) for a certain class of random distributional initial
data, which includes the 3D Gaussian free field. The main idea,
which goes back to work of Bourgain as well as work of Da Prato–
Debussche, is to decompose the solution into a rougher linear part
and a smoother nonlinear part, and to control the latter by probabil-
istic arguments. In a companion work, we use the main results of
this paper to propose a way toward the construction of 3D Yang–
Mills measures.
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1. Introduction

Take any dimension d � 2: Let G be a compact Lie group and let g denote the Lie

algebra of G. We assume that G � UðNÞ for some N � 1: A connection on the trivial

principal G-bundle T
d � G is a function A : Td ! g

d, that is, a d-tuple of functions

A ¼ ðA1, :::,AdÞ, with Ai : T
d ! g for 1 � i � d: Note that A can also be viewed as a

g-valued 1-form on T
d: Thus, in this paper, we will use “connection” and “1-form”

interchangeably.

The main object of this paper is to prove local existence of solutions to the Yang–

Mills heat flow with random distributional initial data. The Yang–Mills heat flow

(also often called the Yang–Mills gradient flow, or Yang–Mills heat equation) is the

following PDE on time-dependent connections A(t) (in the following, we omit the

time parameter t):

@tAi ¼ DAi þ
Xd

j¼1

ð�@jiAj þ Aj, 2@jAi � @iAj þ Aj,Ai½ �
� �

þ @jAj,Ai

� �
Þ, 1 � i � d:

(YM)

This equation can be obtained as the gradient flow of a certain action on the space of

connections, analogous to how the heat equation can be obtained as the gradient flow
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of the Dirichlet energy. The Yang–Mills heat flow has played a central role in various

areas of mathematics, starting with the paper by Atiyah and Bott [1]. See [2, Section 1]

for a historical overview of this equation and its many applications in mathematics and

physics, as well as for an encyclopedic account of existing results. See also [3–9] for

some newer results.

Actually, in this paper, we will not directly work with (YM), but rather a certain

well-known variant which is often treated as equivalent to (YM). This variant is the fol-

lowing PDE:

@tAi ¼ DAi þ
Xd

j¼1

Aj, 2@jAi � @iAj þ Aj,Ai½ �
� �

, 1 � i � d: (ZDDS)

We will refer to this as the ZDDS equation, named after the authors associated with

this equation — Zwanziger [10], DeTurck [11], Donaldson [12], Sadun [13]. For a dis-

cussion as to why (ZDDS) is equivalent to (YM), see, e.g., [14, Section 1]. The advan-

tage of (ZDDS) is that it is a parabolic equation, and thus local existence is often easier

to establish for (ZDDS) than (YM). Indeed, one of the main methods for showing local

existence of (YM) for various types of initial data is to first show it for (ZDDS), and

then use a well-known procedure to obtain solutions to (YM) out of solutions to

(ZDDS) (see, e.g., [3, Section 1.3]).

By now, local existence of solutions to (ZDDS) has been established for various

classes of initial data — again, see the survey [2], as well as [3, 6]. However, as far as

we can tell, there are no results for distributional initial data. In particular, there are no

results which consider random distributional initial data that is too rough to be handled

purely by deterministic methods. The present paper seeks to address this case. Our

motivation is twofold. For one, we think that this case is of intrinsic interest — random

initial data has been studied for a variety of PDEs, such as the nonlinear Schr€odinger

equation [15–19], the nonlinear wave equation [20, 21], and the Navier–Stokes equa-

tions [22]. (This list of references is woefully incomplete. See, e.g., [17, 19] for more.)

Second, we originally came upon this problem through the companion work [23]. In

that paper, we give a proposal for constructing 3D Euclidean Yang–Mills theories (fol-

lowing a suggestion of Charalambous and Gross [3]), and in particular, we construct

and study a state space that may potentially support 3D Yang–Mills measures. As evi-

dence of this possibility, in [23] we apply the results of the present paper to give nontri-

vial elements of the state space, and additionally to give a road map for completing the

program and actually constructing 3D Yang–Mills measures. See [23] for more back-

ground and discussion.

1.1. The main result

We begin to build toward the statement of the main result, Theorem 1.19. In this paper,

we will often deal with functions A(t, x) of both t 2 ½0,1Þ and x 2 T
d: In an abuse of

notation, for t 2 ½0,1Þ, we will write A(t) to denote the function on T
d given

by x 7!Aðt, xÞ:
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Definition 1.1. Let 0 < T � 1: We say that A is a solution to (ZDDS) on ½0,TÞ if

A 2 C1ð½0,TÞ � T
d, gdÞ and A satisfies (ZDDS) on ð0,TÞ � T

d: Similarly, we say that A

is a solution to (ZDDS) on ð0,TÞ if A 2 C1ðð0,TÞ � T
d, gdÞ and A satisfies (ZDDS)

on ð0,TÞ � T
d:

We next state the following classical theorem and lemma, which give local existence

and uniqueness for solutions to (ZDDS) with smooth initial data. Since these results

concern smooth initial data, they are not new and quite classical. For instance, the local

existence and regularity results stated below can be obtained by combining the various

general results of [2, Sections 17.4, 17.5, and 20.1]. Thus, the proofs will be omitted.

Theorem 1.2. Let A0 be a smooth 1-form. There exists T> 0 and a solution A 2
C1ð½0,TÞ � T

d, gdÞ to (ZDDS) on ½0,TÞ with initial data Að0Þ ¼ A0:

Lemma 1.3. Let T> 0. Suppose that A, ~A 2 C1ð½0,TÞ � T
d, gdÞ are solutions to (ZDDS)

on ½0,TÞ such that Að0Þ ¼ ~Að0Þ. Then A ¼ ~A:

Because of Lemma 1.3, in circumstances where the smooth initial data has been

specified, we will usually say “the solution to (ZDDS)” rather than “a solution to

(ZDDS)”.

Before we proceed, we need some notation. For integers n � 1, let ½n� :¼ 1, :::, nf g:
For vectors v 2 R

n for some n, we write jvj for the Euclidean norm of v, and we write

jvj1 :¼ max1� i� njvij for the ‘1 norm of v. Next, since we assumed that G � UðNÞ,
the Lie algebra g is a real finite-dimensional Hilbert space, with inner product given by

hS1, S2i ¼ TrðS�1S2Þ ¼ �TrðS1S2Þ (note that S� ¼ �S for all S 2 g, because G � UðNÞ).
Definition 1.4. Let dg be the dimension of g: Throughout this paper, fix an orthonor-

mal basis ðSa, a 2 ½dg�Þ of g:

We may thus equivalently view a (g-valued) 1-form A : Td ! g
d as a collection

ðAa
j , a 2 ½dg�, j 2 ½d�Þ of functions Aa

j : T
d ! R, satisfying the relation

Aj ¼
X

a2 dg½ �
Aa
j S

a, j 2 d½ �: (1.1)

Next, we recall the notation for Fourier coefficients. Let enf gn2Zd be the Fourier basis

on T
d: Explicitly, if we identify functions on T

d with 1-periodic functions on R
d, then

enðxÞ ¼ ei2pn	x: Given f 2 L1ðTd,RÞ, define the Fourier coefficient

bf ðnÞ :¼
ð

T
d
f ðxÞenðxÞdx 2 C, n 2 Z

d:

Note (since f is R-valued) that bf ð�nÞ ¼ bf ðnÞ for all n 2 Z
d: We note that this all gener-

alizes to the case where f takes values in some finite-dimensional normed linear space

ðV , j 	 jÞ, in which case bf ðnÞ 2 VC, where VC :¼ v1 þ iv2 : v1, v2 2 Vf g is the

“complexified” version of V, with norm jv1 þ iv2j :¼ ðjv1j2 þ jv2j2Þ1=2: Moreover, defin-

ing v1 þ iv2 :¼ v1 � iv2, we have that bf ð�nÞ ¼ bf ðnÞ for all n 2 Z
d:
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Throughout this paper, given a normed linear space ðV , j 	 jVÞ, we will abuse notation

and write jvj instead of jvjV for the norm of v 2 V: Similarly, when ðV , h	, 	iVÞ is an

inner product space, we will write hv1, v2i instead of hv1, v2iV : The main examples of

this are when V is one of g, gC, gd, ðgdÞC (note that the inner product that we defined

on g induces inner products on the latter three spaces).

Definition 1.5. For N � 0, define the Fourier truncation operator FN on distributions

as follows. Given a distribution / on T
d, define FN/ 2 C1ðTdÞ by

FN/ :¼
X

n2Zd

jnj1 �N

b/ðnÞen,

where jnj1 is the ‘1 norm of n. (Here b/ðnÞ :¼ ð/, e�nÞ for n 2 Z
d:)

Definition 1.6 (Quadratic forms). Let A0 be a smooth 1-form. Let I :¼ ½dg� � ½d� � T
d:

Let k be the measure on I defined by taking the product of counting measure on ½dg�,
counting measure on ½d�, and Lebesgue measure on T

d: We say that K : I2 ! R is a

smooth function if for any a1, a2 2 ½dg�, j1, j2 2 ½d�, the function on ðTdÞ2 defined by

ðx, yÞ 7!Kðða1, j1, xÞ, ða2, j2, yÞÞ is smooth. In this case, we write K 2 C1ðI2,RÞ: Given a

smooth function K 2 C1ðI2,RÞ, define

ðA0,KA0Þ :¼
ð

I

ð

I

A0,a1
j1

ðxÞKði1, i2ÞA0,a2
j2

ðyÞdkði1Þdkði2Þ 2 R, (1.2)

where i1 ¼ ða1, j1, xÞ, i2 ¼ ða2, j2, yÞ:
We next begin to state the assumptions that are involved in the statement of our

main result, Theorem 1.19. First, we make some definitions.

Definition 1.7. By a random g
d-valued distribution A

0, we mean a stochastic process

ððA0,/Þ,/ 2 C
1ðTd,RÞÞ of g

d-valued random variables such that for all /1,/2 2
C1ðTd,RÞ, c1, c2 2 R, we have that

ðA0, c1/1 þ c2/2Þ ¼a:s: c1ðA0,/1Þ þ c2ðA0,/2Þ: (1.3)

Remark 1.8. There are several different ways one can view A
0: By linearity, we may

also view A
0 as a ðgdÞC-valued stochastic process ððA0,/Þ,/ 2 C1ðTd,CÞÞ indexed by

C-valued test functions, which satisfy (1.3) for /1,/2 2 C1ðTd,CÞ and c1, c2 2 C, and

which also satisfy ðA0,/Þ ¼ ðA0, �/Þ for all / 2 C1ðTd,CÞ:
Also, as is the case with 1-forms, we may equivalently view A

0 as a R-valued process

ððA0,a
j ,/Þ,/ 2 C1ðTd,RÞ, a 2 ½dg�, j 2 ½d�Þ: Then again by linearity, we may view A

0 as

a C-valued process ððA0,a
j ,/Þ,/ 2 C1ðTd,CÞ, a 2 ½dg�, j 2 ½d�Þ:

We will use these different viewpoints (i.e., gd-valued, ðgdÞC-valued, R-valued, C-val-
ued) interchangeably. As much as possible, we will try to take the vector-valued (i.e. gd
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-valued or ðgdÞC-valued) viewpoint, but we will find it convenient later on (in particular

in Section 4.2) to take the scalar-valued viewpoint for certain arguments.

In what follows, let A0 be a random g
d-valued distribution.

Definition 1.9 (Fourier truncations). Let N � 0 be a finite integer. Define the Fourier

truncation A
0
N :¼ FNA

0, which is a g
d-valued stochastic process with smooth sample

paths.

Remark 1.10. Since A
0
N is a random smooth 1-form, we may (recalling (1.1)) equiva-

lently view A
0
N as a R-valued stochastic process with smooth sample

paths A0
N ¼ ðA0,a

N,jðxÞ, a 2 ½dg�, j 2 ½d�, x 2 T
dÞ:

Definition 1.11 (Fourier coefficients). Define the Fourier coefficients of A0 by

bA0ðnÞ :¼ ðA0, e�nÞ, a 2 dg
� �

, j 2 d½ �, n 2 Z
d:

Note that bA0ðnÞ ¼ bA0ð�nÞ for all n 2 Z
d:

Definition 1.12. For / 2 C1ðTd,RÞ, define r/ :¼ ðE½jðA0,/Þj2�Þ1=2: For K 2
C1ðI2,RÞ, let rN,K :¼ ðE½ðA0

N ,KA
0
NÞ

2�Þ1=2 (recall Definition 1.6).

Definition 1.13. Let a 2 ð0, dÞ, and define the bivariate distribution

Gaðx, yÞ :¼
X

n2Zd

n 6¼0

1

jnja enðx � yÞ:

Define Ga
0ðxÞ :¼ Gað0, xÞ:

Remark 1.14. Note that Ga is the Green’s function for the fractional negative Laplacian

ð�DÞa=2 on T
d: In particular, G2 is the Green’s function for � D (which is the covari-

ance function of the GFF, to be introduced a bit later).

We quote the following lemma giving properties of Ga: See [24, Theorem 2.17] for a

proof.

Lemma 1.15. Let a 2 ð0, dÞ. The distribution Ga
0 is smooth on T

d � 0f g, with the follow-

ing properties.

(1) Ga
0 is bounded from below.

(2) As x ! 0, we have that Ga
0ðxÞ 
 d

T
dð0, xÞ�ðd�aÞ. Here “
” means that the ratio

tends to a positive constant.

We now make the following assumptions on A
0: One should think of these assump-

tions as saying that A0 qualitatively behaves like a Gaussian field. Indeed, the assump-

tions were all abstracted from properties of the Gaussian free field, which will be

introduced later.
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(A) (L2 regularity). For all / 2 C1ðTd,RÞ, we have E½jðA0,/Þj2� < 1: Moreover,

we have that as N ! 1, E½jðA0,/Þ � ðA0
N ,/Þj

2� ! 0:
(B) (Tail bounds). There exist constants CB > 0 and bB > 0 such that the following

hold. For any / 2 C1ðTd,RÞ, we have that

PðjðA0,/Þj > uÞ � CB exp ð�ðu=r/ÞbB=CBÞ, u � 0:

Additionally, for any N � 0, and for any smooth function K 2 C1ðI2,RÞ such
that Kðða, j1, xÞ, ða, j2, yÞÞ ¼ 0 for all a 2 ½dg�, j1, j2 2 ½d�, x, y 2 T

d, we have that

PðjðA0
N ,KA

0
NÞj > uÞ � CB exp ð�ðu=rN,KÞbB=CBÞ, u � 0:

(C) (Translation invariance of covariance function) There is an integrable function

q : ðTdÞ2 ! Lðgd, gdÞ (here Lðgd, gdÞ is the space of linear maps gd ! g
d) such

that for any test functions /1,/2 2 C1ðTd,RÞ, and any linear map

K : gd ! g
d,

E hðA0,/1Þ,KðA0,/2Þi
� �

¼
ð

T
d

ð

T
d
/1ðxÞ/2ðyÞTrðKqðx, yÞtÞdxdy:

Moreover, we assume that q is translation invariant, i.e. qðx, yÞ ¼ qðx� y, 0Þ ¼
qð0, y � xÞ for x, y 2 T

d: Here, TrðKqðx, yÞtÞ is (for instance) computed by rep-

resenting M, qðx, yÞ as matrices with respect to the basis of gd induced by the

orthonormal basis ðSa, a 2 ½dg�Þ of g: Similarly, “integrable” in this context can

be taken to mean that all matrix entry functions of q are integrable.

(D) (Covariance is only as singular as Ga). For some a 2 ð0, dÞ, there is some con-

stant CD such that for any x, y 2 T
d, x 6¼ y,

jTrðqðx, yÞÞj � CDðGaðx, yÞ þ CDÞ:
We assume without loss of generality that Ga þ CD � 1 (this is possible since

Ga
0 is bounded from below, by Lemma 1.15).

(E) (Four product assumption). There is some constant CE � 0 such that the fol-

lowing holds. Let a1, a2 2 ½dg�, j1, j2 2 ½d�, /1,/2,/3,/4 2 C1ðTd,CÞ: Assume

that a1 6¼ a2: Let Z1 ¼ ðA0,a1
j1

,/1Þ, Z2 ¼ ðA0,a2
j2

,/2Þ, Z3 ¼ ðA0,a1
j1

,/3Þ, Z4 ¼
ðA0,a2

j2
,/4Þ: Then
jE Z1Z2Z3Z4

� �
j � CEðjE Z1Z3

� �
E Z2Z4

� �
j þ jE Z1Z4

� �
E Z2Z3

� �
jÞ:

Remark 1.16. Assumption (C) is motivated by the following fact. Let X, Y be random

vectors in R
n, and let R :¼ E½XY t� (so R is an n� n matrix). Then for any n� n matrix

M, we have that E½XtMY� ¼ TrðMR
tÞ:

Also, to be more concrete, instead of working with the function q in Assumption

(C), one may work with scalar functions qa1a2j1j2
: ðTdÞ2 ! R for a1, a2 2 ½dg�, j1, j2 2 ½d�,

which are defined by requiring that

E ðA0,a1
j1

,/1ÞðA0,a2
j2

,/2Þ
h i

¼
ð

T
d

ð

T
d
/1ðxÞqa1a2j1j2

ðx, yÞ/2ðyÞdxdy:

The function qa1a2j1j2
is then interpreted as the ðða1, j1Þ, ða2, j2ÞÞ matrix entry of q.
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Remark 1.17. In fact, we don’t really need to assume that a < d; Ga
0 can be defined for

a � d as well. However, we will just assume that a 2 ð0, dÞ, because this will simplify

our proofs later on. In any case, the regime a 2 ð0, dÞ is the more nontrivial setting,

since Ga
0 becomes less singular as a increases (see, e.g., [24, Section 6.1]).

Remark 1.18. In assumption (E), it is important that we don’t have the term

E½Z1Z2�E½�Z3
�Z4�, because this term will lead to divergences in Section 4.2.

We now state the main result of this paper.

Theorem 1.19. Let A
0 be a random g

d-valued distribution that satisfies Assumptions

(A)–(E). Moreover, suppose that Assumption (D) is satisfied with a 2 ðmax d�f
4=3, d=2g, dÞ. Then there exists a g

d-valued stochastic process A ¼ ðAðt, xÞ, t 2 ð0, 1Þ, x 2
T
dÞ, and a random variable T 2 ð0, 1�, such that the following hold. The function

ðt, xÞ 7!Aðt, xÞ is in C1ðð0,TÞ � T
d, gdÞ, and moreover, it is a solution to (ZDDS) on

ð0,TÞ. Also, E½T�p� < 1 for all p � 1:

The process A relates to A
0 in the following way. There exists a sequence TNf gN� 0 of

ð0, 1�-valued random variables such that the following hold. First, for any p � 1, we have

that supN� 0E½T
�p
N � < 1, and that E½jT�1

N � T�1jp� ! 0. Also, let A
0
N

� �
N� 0

be the

sequence of Fourier truncations of A
0 (defined in Definition 1.11). Then there is a

sequence ANf gN� 0 of g
d-valued stochastic processes AN ¼ ðANðt, xÞ, t 2 ½0, 1Þ, x 2 T

dÞ
such that for each N � 0, the function ðt, xÞ 7!ANðt, xÞ is in C1ð½0,TnÞ � T

d, gdÞ and is

the solution to (ZDDS) on ½0,TnÞ with initial data ANð0Þ ¼ A
0
N :

Finally, for any k 2 0, 1f g, p � 1, d 2 ð0, 1Þ, e > 0, we have that

lim
N!1

E sup
t2ð0,ð1�dÞTÞ

tpððk=2Þþð1=4Þðd�aÞþeÞjjANðtÞ � AðtÞjjp
Ck

� �
¼ 0:

Remark 1.20. A closely related result was obtained by Chandra et al. as part of their

recent work [25] – see Section 1.2 and Remarks 2.8 and 3.15 in their paper for some

similarities and differences. While there is some variation in the ways the results and

the proofs are phrased, ultimately we are both (as far as we can tell) exploiting the

same phenomenon, which is probabilistic smoothing, which we describe next.

Remark 1.21. The assumption that a > max d � 4=3, d=2f g ensures that A0 is not too

singular, so that there is no need for renormalization when defining the solution to

(ZDDS) with initial data A
0:

We now give a quick overview of the proof of the local existence part of Theorem

1.19. The proof of the other part of the theorem has a similar main idea. As usual with

local existence for parabolic PDEs, we would like to try to realize the solution A as the

fixed point of some contraction map W. Then, we could for instance obtain A by taking

the limit of WðnÞðA1Þ, where WðnÞ is the n-fold composition of W, and A
1 is the linear

part of A, i.e., A1 is the solution to the heat equation with initial data A
0: However, the

problem is that the initial data A
0 is too rough, so that deterministic arguments break
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down already in the first step of the Picard iteration — that is, when trying to obtain

estimates on WðA1Þ by deterministic (worst-case) methods, we get divergent integrals.

The saving grace is that WðA1Þ behaves better than the worst-case. So instead of

bounding WðA1Þ deterministically, we bound it probabilistically, which allows us to

take advantage of probabilistic cancelations which occur. To give an analogy with an

elementary example, note that if Xnf gn� 1 is a sequence of i.i.d. random variables with

mean 0 variance 1, then the series
P1

n¼1Xn=n converges a.s. (by Kolmogorov’s two ser-

ies theorem). However, if we were to try to bound this deterministically, the sumP1
n¼1n

�1 ¼ 1 would inevitably appear. Analogously, we show that WðA1Þ can be

defined in a probabilistic sense, and in fact the difference WðA1Þ � A
1 is more regular

than the linear part A1: Once this regularity gain is established, we can then obtain the

local existence of A by a deterministic fixed point argument (i.e., Picard iteration).

This general idea to exploit the effects of probabilistic smoothing was (as far as we

can tell) first used by Bourgain [15, 16] to analyze the nonlinear Schr€odinger equation

with GFF initial data. A similar idea was later used by Da Prato and Debussche [26, 27]

in the stochastic PDE setting. There is by now a wide body of work building on this

idea in many different settings – see [17, Section 1.2.2] for a much more complete list

of references.

We next introduce the Gaussian free field (GFF), which will be the main example of

random distributional initial data in this paper. Standard references are [28–30]. A d-

dimensional mean zero GFF on T
d is a mean zero Gaussian process h ¼ ððh,/Þ,/ 2

C1ðTd,RÞÞ such that for all test functions /1,/2 2 C1ðTd,RÞ, the covariance is given

by

E ðh,/1Þðh,/2Þ½ � ¼
X

n2Zd

n 6¼0

1

jnj2
b/1ðnÞb/2ðnÞ: (1.4)

For N � 0, let the Fourier truncation hN ¼ ðhNðxÞ, x 2 T
dÞ be the mean zero

Gaussian process with smooth sample paths defined as hN :¼ FNh: By standard proper-

ties of FN and the GFF, we have that for any / 2 C1ðTd,RÞ, ðhN ,/Þ ! ðh,/Þ both a.s.

and in L2 (actually, the a.s. convergence holds simultaneously for all /). Therefore hN
converges to h in a natural sense. (Another viewpoint is that if we view h as a random

element of a negative Sobolev space, then hN a.s. converges to h in that space.)

Since (ZDDS) is a PDE on 1-forms, the initial data we take must also be a 1-form.

Recalling that we may view a 1-form A as a collection of functions ðAa
j , a 2 ½dg�, j 2 ½d�Þ

satisfying (1.1), this motivates the following definition of the d-dimensional gd-valued

GFF. We say that A0 is a d-dimensional gd-valued GFF if it is a collection of stochastic

processes

A
0 ¼ ðA0,a

j , a 2 dg
� �

, j 2 d½ �Þ,

where A
0,a
j , a 2 ½dg�, j 2 ½d� are independent d-dimensional GFFs. This is g

d-valued,

because given / 2 C1ðTd,RÞ, we may define a g
d-valued random variable ðA0,/Þ ¼

ððA0,/Þj, j 2 ½d�Þ through the relation (1.1).
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As previously mentioned, the assumptions of Theorem 1.19 were abstracted from

properties of the GFF. Thus, naturally, we will be able to obtain the following corollary

of Theorem 1.19.

Corollary 1.22. Let d¼ 3, and let A0 be a g
3-valued GFF on T

3. Then the statement of

Theorem 1.19 applies to A
0:

Remark 1.23. The above corollary will also hold for d¼ 2 by a simpler deterministic

argument. However, once d � 4, the same result does not necessarily apply, because

Assumption (D) will only be satisfied for a small (e.g., a¼ 2 when d¼ 4), which is to

say that the GFF becomes too singular once d � 4:

1.2. Additional notation

We introduce some additional notation. Throughout this paper, C will denote a generic

constant that may depend only on G. It may change from line to line, and even within

a line. To express dependence on some additional parameter, say a, we will write Ca: In
these situations, we always understand Ca to also depend on G. Similarly, if we say that

Ca depends only on a, we really mean that Ca depends only on a and G.

The metric on T
d (that is, the metric induced by the standard Euclidean metric of Rd)

will be denoted by d
T
d : Explicitly, if P : Rd ! T

d is the canonical projection map, then

d
T
dðx, yÞ :¼ inf jx0 � y0j : Pðx0Þ ¼ x,Pðy0Þ ¼ y

� �
: Here jx0 � y0j is the Euclidean dis-

tance between x0, y0 2 R
d:

Fix a real finite-dimensional normed linear space ðV , j 	 jÞ (for instance, we may take

V ¼ g or gd). For r � 0, we write CrðTd,VÞ for the usual H€older space and for p � 0,

we write LpðTd,VÞ for the usual Lp space. We will write the respective norms as jjf jjCr

and jjf jjp for brevity.

Let ðetDÞt>0 be the semigroup generated by the Laplacian D. Explicitly, given f 2
L1ðTd,VÞ and t> 0, we have that

etDf ¼
X

n2Zd

e�4p2jnj2tbf ðnÞen: (1.5)

Additionally, etDf has an explicit representation in terms of convolution with the heat

kernel U, i.e., for all t> 0, x 2 T
d, we have that

ðetDf ÞðxÞ ¼
ð

T
d
f ðyÞUðt, x� yÞdy, (1.6)

where

Uðt, xÞ :¼
X

n2Zd

e�4p2jnj2tenðxÞ, t > 0, x 2 T
d: (1.7)

We also know that Uðt, 	Þ is a probability density, and so it is non-negative, and thus

we have the following monotonicity property for integrable R-valued functions f, g:
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jf j � g ) jetDf j � etDg: (1.8)

(In the above, jf j � g means jf ðxÞj � gðxÞ for all x 2 T
d
— actually, a.e. x 2 T

d suffi-

ces — and similarly for jetDf j � etDg:)
Recall the orthonormal basis ðSa, a 2 ½dg�Þ of g from Definition 1.4. Let

ðf abc, a, b, c 2 ½dg�Þ be the corresponding structure constants, i.e.,

Sa, Sb
� �

¼
X

c2 dg½ �
f abcSc: (1.9)

By starting from the definition above (and using that the inner product is given by

hS1, S2i ¼ TrðS�1S2Þ ¼ �TrðS1S2Þ), we obtain for a, b, c 2 ½dg�, h½Sa, Sb�, Sci ¼ h½Sb, Sc�, Sai:
This shows that f abc ¼ f bca: Proceeding similarly, we may obtain

f abc ¼ f cab ¼ �f acb ¼ �f bac ¼ �f cba ¼ f bca: (1.10)

Remark 1.24. Even though we are introducing structure constants here, the results of

this paper do not really rely on the specific bracket structure of (ZDDS). Indeed, we

expect that the arguments could be adapted to the case where g is replaced by a finite-

dimensional normed algebra, and (ZDDS) is replaced by an equation of the form

@tA ¼ DAþ AðrAÞ þ A3:

1.3. Organization of the paper

We now give a summary of the rest of the paper. In Section 2, we state Theorem 2.9,

which is a deterministic result that gives local existence of solutions to (ZDDS) with dis-

tributional intial data, assuming certain conditions are met. We also state various other

useful deterministic lemmas in Section 2.1. Given Theorem 2.9, the remainder of the

paper is then concerned with showing that the conditions of the theorem are indeed

met, for random distributional initial data with certain properties, as listed just before

Theorem 1.19. Sections 3.1 and 3.2 collect the main intermediate steps toward the proof

of Theorem 1.19. Given these intermediate steps, Theorem 1.19 is proven in Section

3.3. Corollary 1.22 is obtained as an application of Theorem 1.19 in the same section.

In Section 3.4, we state and prove Proposition 3.18, which is a variant of Theorem 1.19

that will be used in [23]. Sections 4.1 and 4.2 contain the technical arguments needed

to prove the intermediate results of Sections 3.1 and 3.2.

We will reiterate this at several later points, but we also mention here that the proofs

of many intermediate results in this paper are omitted. For the full proofs, please see

the complete version of this paper on arXiv.

2. Deterministic results

In this section, we collect the deterministic results that are needed later on in the paper.

We emphasize here that the results of this section may be read independently of the

rest of the paper (although of course the main reason for these results is to use them to

deduce Theorem 1.19). The main result of this section (Theorem 2.9) shows local
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existence of solutions to (ZDDS) with distributional initial data. The proofs of most

results in this section are small variations of proofs of classical results in the theory of

local existence for nonlinear parabolic PDEs, and thus they will be omitted. For full

proofs, please see the complete version of this paper on arXiv. We first define the nota-

tion that will be needed in Theorem 2.9 and in other parts of this paper.

Definition 2.1. For r � 0, T> 0, define the path space Pr
T to be the space of continu-

ous functions A : ½0,T� ! CrðTd, gdÞ: Define the norm jj 	 jjPr
T
on Pr

T by

jjAjjPr
T
:¼ sup

0� t�T

jjAjjCr , A 2 Pr
T :

Note that ðPr
T , jj 	 jjPr

T
Þ is a Banach space.

Definition 2.2. Let c � 0, T> 0. Define the path space Qc
T to be the space of continu-

ous functions A : ð0,T� ! C1ðTd, gdÞ such that

jjAjjQc

T
:¼ sup

t2ð0,T�
tcjjAðtÞjjC0 þ sup

t2ð0,T�
tð1=2ÞþcjjAðtÞjjC1 < 1:

For R � 0, define Qc
T,R :¼ A 2 Qc

T : jjAjjQc

T
� R

n o
:

Remark 2.3. We thank one of the referees for pointing out here that the regularity par-

ameter c is flipped, in that larger c allows for more irregularity.

By standard arguments, one can show that ðQc
T , jj 	 jjQc

T
Þ is a Banach space.

Definition 2.4. Given a 1-form A 2 C1ðTd, gdÞ, define XðAÞ 2 C0ðTd, gdÞ by XðAÞ ¼
ðXiðAÞ, i 2 ½d�Þ, where

XiðAÞ :¼
X

j2 d½ �
Aj, 2@jAi � @iAj þ Aj,Ai½ �
� �

, i 2 d½ �:

Define Xð2ÞðAÞ,Xð3ÞðAÞ 2 C0ðTd, gdÞ as follows. For i 2 ½d�, let

X
ð2Þ
i ðAÞ :¼

X

j2 d½ �
Aj, 2@jAi � @iAj

� �
, X

ð3Þ
i ðAÞ :¼

X

j2 d½ �
Aj, Aj,Ai½ �½ �:

Note by construction that XðAÞ ¼ Xð2ÞðAÞ þ Xð3ÞðAÞ:

Definition 2.5. Let T> 0. Let j 2 2, 3f g: Let A : ½0,T� ! C1ðTd, gdÞ be a continuous

function. Suppose that
ðT

0

jjeðt�sÞDXðjÞðAðsÞÞjjC1ds < 1: (2.1)

Define qðjÞðAÞ : ½0,T� ! C1ðTd, gdÞ by

qðjÞðAÞðtÞ :¼
ðt

0

eðt�sÞDXðjÞðAðsÞÞds, t 2 0,T½ �:

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 219



We say that qðjÞðAÞ is well-defined for A if (2.1) holds. Now if qðjÞðAÞ is well-defined

for A for j¼ 2, 3, define qðAÞ : ½0,T� ! C1ðTd, gdÞ by qðAÞ :¼ qð2ÞðAÞ þ qð3ÞðAÞ: In this

case, we say that qðAÞ is well-defined for A. Note since X ¼ Xð2Þ þ Xð3Þ, we have that

qðAÞðtÞ ¼
ðt

0

eðt�sÞDXðAðsÞÞds, t 2 0,T½ �:

We also will use these definitions in the case where ½0,T� is replaced by ð0,T�
everywhere.

The next lemma shows that qðAÞ is well-defined for A if A 2 P1
T , and moreover

that qðAÞ 2 P1
T :

Lemma 2.6. Let T 2 ð0, 1�. Let A 2 P1
T . Then qðjÞðAÞ is well-defined for A for j 2 2, 3f g,

and moreover qð2ÞðAÞ, qð3ÞðAÞ 2 P1
T . Thus also qðAÞ 2 P1

T :

Definition 2.7. Let A1 : ð0, 1� ! C1ðTd, gdÞ be such that A1ðtÞ ¼ eðt�sÞDA1ðsÞ for all

s, t 2 ð0, 1�, s< t. Let B1 : ð0, 1� ! C1ðTd, gdÞ be a continuous function. We say that B1

is a first nonlinear part for A1 if the following holds. For t0 2 ð0, 1Þ, let ~A1ðtÞ :¼
A1ðt0 þ tÞ, ~B1ðtÞ :¼ B1ðt0 þ tÞ, t 2 ½0, 1� t0�: Then for all t0 2 ð0, 1Þ and all t 2
½0, 1� t0�, we have that ~B1ðtÞ ¼ etD~B1ð0Þ þ qð~A1ÞðtÞ:

Remark 2.8. To see where Definition 2.7 comes from, suppose A0 is a smooth 1-form,

and let A1ðtÞ ¼ etDA0, t 2 ð0, 1�: Then one can verify that B1 ¼ qðA1Þ is a first nonlinear

part of A1. Definition 2.7 abstracts this relation to the setting where qðA1Þ is not neces-
sarily well-defined, which will be the case for us, because we are considering (random)

distributional initial data.

We can now state the main result of this section. This theorem is the deterministic

part of the argument outlined just after the statement of Theorem 1.19. In essence, this

theorem says the following. In usual local existence arguments via contraction mapping,

given A1 as in Definition 2.7, we would want to bound qðA1Þ, and moreover, show that

qðA1Þ is more regular than A1. However, for us, qðA1Þ will not even be well-defined,

because A1 will be too rough. On the other hand, if we are able to obtain a proxy B1

for qðA1Þ, such that B1 is more regular than A1, then we can still run a fixed point

argument to obtain a solution to (ZDDS). If it helps, one can think of this strategy as

running a fixed point argument on an “enhanced space” consisting of pairs ðA1,B1Þ,
instead of just A1.

Theorem 2.9. Let c1 2 ½0, 1=2Þ, c2 2 ½0, 1=4Þ be such that c1 þ c2 < 1=2. Then, there is a

continuous non-increasing function sc1c2 : ½0,1Þ ! ð0, 1� (which only depends on c1, c2, d)

such that the following holds. Let A1 : ð0, 1� ! C1ðTd, gdÞ be such that A1ðtÞ ¼ eðt�sÞDA1ðsÞ
for all s, t 2 ð0, 1�, s< t. Suppose A1 2 Qc1

1 . Suppose that there exists B1 2 Qc2
1 which is a

first nonlinear part for A1. Let R :¼ max jjA1jjQc1
1
, jjB1jjQc2

1

n o
, and let T :¼ sc1c2ðRÞ. Then

there exists B 2 Qc2
T,3R such that A :¼ A1 þ B is in C1ðð0,TÞ � T

d, gdÞ, and moreover A is

a solution to (ZDDS) on ð0,TÞ:
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Additionally, we have continuity in the data, in the following sense. Suppose that we

have a sequence A1
n

� �
n� 1

� Qc1
1 such that for each n � 1, A1

nðtÞ ¼ eðt�sÞDA1
nðsÞ for all

s, t 2 ð0, 1�, s< t. Suppose we have a sequence B1
n

� �
n� 1

� Qc2
1 , such that for each n �

1, B1
n is a first nonlinear part for A1

n. Suppose that jjA1
n � A1jjQc1

1
! 0 and jjB1

n �
B1jjQc2

1
! 0. Let Rn :¼ max jjA1

njjQc1
1
, jjB1

njjQc2
1

n o
, and Tn :¼ sc1c2ðRnÞ. For each n � 1, let

Bn 2 Qc2
Tn,3Rn

be as constructed by the first part of the theorem, so that An :¼ A1
n þ Bn is a

solution to (ZDDS) on ð0,TnÞ. Then for all T0 2 ð0,TÞ, we have that jjBn � BjjQc2
T0

! 0,

which implies that jjAn � AjjQmax c1,c2f g
T0

! 0:

We next state several auxiliary results that arise from the proof of Theorem 2.9.

Lemma 2.10. Let c1, c2, sc1c2 be as in Theorem 2.9. Then

sc1c2ðRÞ
�1 � Cc1 ,c2,dð1þ R4=ð1�2max c1,c2f gÞÞ, R � 0:

The following lemma shows that for smooth initial data A0, the solution to (ZDDS)

given by Theorem 2.9 coincides with the solution to (ZDDS) with initial data A0 (which

is given by Theorem 1.2).

Lemma 2.11. Let c1, c2, sc1c2 be as in Theorem 2.9. Let A0 be a smooth 1-form. Let

A1ðtÞ ¼ etDA0, t � 0. Let B1 ¼ qðA1Þ. (Recall that by Remark 2.8, B1 is a first nonlinear

part for A1.) Let R :¼ max jjA1jjQc1
1
, jjB1jjQc2

1

n o
, T :¼ sc1c2ðRÞ > 0. Then, there exists A 2

C1ð½0,TÞ � T
d, gdÞ such that A is the solution to (ZDDS) on ½0,TÞ with initial data

Að0Þ ¼ A0. Moreover, on ð0,TÞ � T
d, A is equal to the solution to (ZDDS) given by

Theorem 2.9.

2.1. Useful lemmas

In this section, we introduce some deterministic lemmas which will be needed later. For

the first lemma, recall the definition of Pr
T from Definition 2.1, as well as the definitions

of qð2Þ and qð3Þ from Definition 2.5.

Lemma 2.12. Let A0
n

� �
n�1 � C1ðTd, gdÞ be a sequence of 1-forms. For n � 1, let

A1
nðtÞ ¼ etDA0

n, t � 0. Let T 2 ð0, 1�, and suppose that jjA1
n � A1

1jjP1
T
! 0. Then for j 2

2, 3f g, we have that jjqðjÞðA1
nÞ � qðjÞðA1

1ÞjjP1
T
! 0, and consequently, we also have

that jjqðA1
nÞ � qðA1

1ÞjjP1
T
! 0:

Lemma 2.13. Let c 2 ½0, 1=3Þ, T 2 ð0, 1�, R � 0. Let A 2 Qc
T,R. Then qð3ÞðAÞ is well-

defined for A, and moreover qð3ÞðAÞ 2 Q0
T , and

jjqð3ÞðAÞjjQ0
T
� CT1�3cR3:
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Additionally, for A1,A2 2 Qc
T,R, we have that

jjqð3ÞðA1Þ � qð3ÞðA2ÞjjQ0
T
� CT1�3cR2jjA1 � A2jjQc

T
:

In the remainder of Section 2.1, we will give an explicit formula for qðA1Þ, where A1

is defined as A1ðtÞ ¼ etDA0, and A0 is a smooth 1-form. This formula will be in terms

of the Fourier coefficients of A0. It will be used in Section 4.

Recall from Section 1.1 that we may view 1-forms A0 : Td ! g
d equivalently as collections

of R-valued functions ðA0,a
j , a 2 ½dg�, j 2 ½d�Þ which satisfy the relation (1.1). In the following,

recall also the structure constants ðf abc, a, b, c 2 ½dg�Þ defined at the end of Section 1.2.
Definition 2.14. For m ¼ ðn1, n2Þ 2 ðZdÞ2, t � 0, define

Iðm, tÞ :¼
ðt

0

e�4p2jn1þn2j2ðt�sÞe�4p2ðjn1j2þjn2j2Þsds:

Additionally, for a ¼ ða0, a1, a2Þ 2 ½dg�3, j ¼ ðj0, j1, j2Þ 2 ½d�3, define
dðm, a, jÞ :¼ i2pf a0a1a2ðdj0j2n2j1 � dj0j1n

1
j2
þ ð1=2Þdj1j2ðn1j0 � n2j0ÞÞ:

Here, djk ¼ 1ðj ¼ kÞ for j, k 2 ½d�:

Remark 2.15. Note that 0 � Iðm, tÞ � t: Note that by (1.10), if a0, a1, a2 are not distinct,

then f a0a1a2 ¼ 0, and thus also dðm, a, jÞ ¼ 0: Also, note that if we let �m :¼ ð�n1,�n2Þ,
then (here we use that f a0a1a2 is real, which follows by definition – recall (1.9))

dð�m, a, jÞ ¼ �dðm, a, jÞ ¼ dðm, a, jÞ: (2.2)

Finally, note that jdðm, a, jÞj � Cðjn1j þ jn2jÞ:
The proof of the following lemma is a long but straightforward calculation, and thus

it is omitted.

Lemma 2.16. Let A0 2 C1ðTd, gdÞ be a smooth 1-form. Let A1ðtÞ ¼ etDA0, t � 0. Let

A2 ¼ qð2ÞðA1Þ. For any a0 2 ½dg�, j0 2 ½d�, t � 0, we have that

A2,a0
j0

ðtÞ ¼
X

a1,a22 dg½ �
j1,j22 d½ �

X

n1 ,n22Zd

Iðm, tÞdðm, a, jÞbA0,a1
j1

ðn1ÞbA0,a2
j2

ðn2Þen1þn2 ,

where, for brevity, we have taken m ¼ ðn1, n2Þ, a ¼ ða0, a1, a2Þ, j ¼ ðj0, j1, j2Þ.
Additionally, we have that

@t A
2,a0
j0

ðtÞ ¼ DA2,a0
j0

ðtÞ þ
X

a1,a22 dg½ �
j1,j22 d½ �

X

n1,n22Zd

dðm, a, jÞe�4p2jn1j2tbA0,a1
j1

ðn1Þe�4p2jn2j2tbA0,a2
j2

ðn2Þen1þn2 :

From the previous lemma, one can show the following. Again, the proof is omitted,

as it is a calculation. Recall the notation from Definition 1.6.
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Lemma 2.17. Let A0, A2 be as in Lemma 2.16. Suppose that for some N � 0, we have

that bA0ðnÞ ¼ 0 for all jnj1 > N. Then for any a0 2 ½dg�, j0 2 ½d�, t0 2 ð0, 1�, x0 2 T
d,

there exists a smooth function K 2 C1ðI2,RÞ such that

A2,a0
j0

ðt0, x0Þ ¼ ðA0,KA0Þ:

Additionally, for l 2 ½d�, there exists a smooth function L 2 C1ðI2,RÞ such that

@lA
2,a0
j0

ðt0, x0Þ ¼ ðA0, LA0Þ:

Finally, for any a1 2 ½dg�, j1, j2 2 ½d�, x, y 2 T
d, we have that

Kðða1, j1, xÞ, ða1, j2, yÞÞ ¼ Lðða1, j1, xÞ, ða1, j2, yÞÞ ¼ 0:

3. Outline of intermediate results and proof of Theorem 1.19

In this section, we outline the intermediate results that are needed in the proof of

Theorem 1.19. Then, in Section 3.3, we show how to use these intermediate results to

deduce Theorem 1.19. The proofs of these intermediate results are deferred until

Section 4.

3.1. Linear part

Throughout this section, let A
0 be a random g

d-valued distribution satisfying

Assumptions (A), (B), (C), and (D). For this section, we just assume that Assumption

(D) holds for some a 2 ð0, dÞ, i.e., we do not need the restriction a >

max d � 4=3, d=2f g that appears in Theorem 1.19. These assumptions hold, even if they

are not explicitly stated in the various lemmas or propositions. The proofs of all results

stated in this section are in Section 4.1.

Recall the definition of the heat kernel U (Eq. (1.7)). We proceed to define A
1, which

may be interpreted as A1ðtÞ ¼ etDA0:

Definition 3.1. Define the g
d-valued stochastic process A1 ¼ ðA1ðt, xÞ, t 2 ð0, 1�, x 2 T

dÞ
by A

1ðt, xÞ :¼ ðetDA0ÞðxÞ ¼ ðA0,Uðt, x � 	ÞÞ:

We will first show the following result about regularity of A1:

Lemma 3.2. There exists a modification of A1 which has smooth sample paths, and which

is a solution to the heat equation on ð0, 1� � T
d:

Thus from here on out, we will assume that A1 has been modified to have smooth

sample paths which are solutions to the heat equation (so that A1ðtÞ ¼ eðt�sÞD
A

1ðsÞ for

all s, t 2 ð0, 1�, s< t). Next, we define the natural notion of Fourier truncations of A1:

Definition 3.3. Let N � 0: Define the g
d-valued stochastic process A1

N ¼ ðA1
Nðt, xÞ, t 2

ð0, 1�, x 2 T
dÞ by A

1
N :¼ FNA

1:

Remark 3.4. Since FN is linear and A
1 ¼ etDA0, we have that A

1
N ¼ etDFNA

0 ¼ etDA0
N

(recall we defined A
0
N ¼ FNA

0 in Definition 1.9). Also, we have that A
1
Nðt, xÞ ¼
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ðFNA0,Uðt, x � 	ÞÞ ¼ ðA0, FNUðt, x� 	ÞÞ, and so by Assumption (A), we have that for

any t 2 ð0, 1�, x 2 T
d, A1

Nðt, xÞ!
L2

A
1ðt, xÞ:

We now state the main result of Section 3.1.

Proposition 3.5. For e > 0, let ce :¼ ð1=4Þðd � aÞ þ e. For any e > 0, p � 1, we have

that

sup
N� 0

E jjA1
N jj

p

Qce
1

h i
,E jjA1jjpQce

1

h i
� Ce,p < 1:

Here, Ce,p depends only on e, p, d, and the various constants in Assumptions (A)–(D); i.e.,

a, bB, CB, etc. Additionally, we have that

lim
N!1

E jjA1
N � A

1jjpQce
1

h i
¼ 0:

Remark 3.6. By Proposition 3.5, upon replacing A
1 by a suitable modification, we may

assume that jjA1jjQð1=4Þðd�aÞþe

1

< 1 for all e > 0: Hereafter, we assume that this holds

for A1:

3.2. Nonlinear part

As in Section 3.1, throughout this section, we assume that A
0 is a random g

d-valued

distribution satisfying Assumptions (A), (B), (C), and (D). For this section, we assume

(as in Theorem 1.19) that Assumption (D) holds for some a 2 ðmax d � 4=3, d=2f g, dÞ:
Additionally, we assume that Assumption (E) is satisfied. These assumptions hold, even

if they are not explicitly stated in the various lemmas, corollaries, or propositions.

Recall the process A
1 constructed in Section 3.1. This process is such that A

1ðtÞ ¼
eðt�sÞD

A
1ðsÞ for all 0 < s < t � 1: In this section, we construct a first nonlinear part B1

for A
1, in the sense of Definition 2.7. We will do this by constructing A

2 ¼ qð2ÞðA1Þ
and A

3 ¼ qð3ÞðA1Þ (recall Definition 2.5 for the definitions of qð2Þ, qð3Þ), and then letting

B
1 ¼ A

2 þ A
3: The construction of A3 is easier, so we handle it first.

Definition 3.7. Recall Remark 3.6 that A1 2 Qð1=4Þðd�aÞþe
1 for all e > 0: Thus by Lemma

2.13, and the assumption that a > d � 4=3, we may define a g
d-valued stochastic pro-

cess ðA3ðt, xÞ, t 2 ð0, 1�, x 2 T
dÞ by A

3 :¼ qð3ÞðA1Þ, and moreover this process is such

that A3 2 Q0
1: Also, by the definition of qð3Þ, the following holds. Take any T0 2 ð0, 1Þ,

and let eA3 : ½0, 1� T0� ! C1ðTd, gdÞ be defined by eA3ðtÞ :¼ AðT0 þ tÞ, t 2 ½0, 1� T0�:
Then

eA3ðtÞ ¼ etDeA3ð0Þ þ
ðt

0

eðt�sÞDXð3ÞðA1ðT0 þ sÞÞds, t 2 0, 1� T0½ �: (3.1)

For N � 0, define also the stochastic process A
3
N ¼ ðA3

Nðt, xÞ, t 2 ð0, 1�, x 2 T
dÞ

by A
3
N :¼ qð3ÞðA1

NÞ:

The next result shows that A3
N converges to A

3 as N ! 1, as expected.
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Lemma 3.8. For any p � 1, we have that

sup
N� 0

E jjA3
N jj

p

Q0
1

h i
,E jjA3jjpQ0

1

h i
� Cp < 1:

Here Cp depends only on p, d, and the various constants in Assumptions (A)–(D); i.e., a,

bB, CB, etc. Additionally,

lim
N!1

E jjA3
N � A

3jjpQ0
1

h i
¼ 0:

Proof. Both claims follow by combining Lemma 2.13, H€older’s inequality, and

Proposition 3.5 with large enough p. w

We next proceed to construct A2 ¼ qð2ÞðA1Þ: We cannot just construct this determin-

istically as we did for A
3 ¼ qð3ÞðA1Þ, because A

1 is too rough, so that qð2ÞðA1Þ will not

be well-defined. Instead, A2 will be constructed probabilistically.

Definition 3.9. For N � 0, define the process A
2
N ¼ ðA2

Nðt, xÞ, t 2 ð0, 1�, x 2 T
dÞ

by A
2
N :¼ qð2ÞðA1

NÞ:

We proceed to construct A2 as an appropriate limit of A2
N : First, we show the follow-

ing result. The proof is in Section 4.2.

Lemma 3.10. For any t 2 ð0, 1�, x 2 T
d, we have that A

2
Nðt, xÞ

� �
N� 0

is a Cauchy

sequence in L2.

This leads directly to the following definition.

Definition 3.11. Define the g
d-valued stochastic process A

2 ¼ ðA2ðt, xÞ, t 2 ð0, 1�, x 2
T
dÞ as follows. By Lemma 3.10, we have that A

2
Nðt, xÞ

� �
N� 0

is Cauchy in L2, and thus

the sequence converges in L2. Define A
2ðt, xÞ to be the limit.

Having defined A
2, the next step is the following. The proof is in Section 4.2.

Lemma 3.12. The process A
2 has a modification such that the function t 7!A

2ðtÞ is a

continuous function from ð0, 1� into C1ðTd, gdÞ:

Thus hereafter, we assume that (after a suitable modification) A
2 is such that the

function t 7!A
2ðtÞ is a continuous function from ð0, 1� into C1ðTd, gdÞ:

Definition 3.13. Define the g
d-valued stochastic process B

1 ¼ ðB1ðt, xÞ, t 2 ð0, 1�, x 2
T
dÞ by B

1ðt, xÞ :¼ A
2ðt, xÞ þ A

3ðt, xÞ: For N � 0, let B
1
N :¼ qðA1

NÞ ¼ qð2ÞðA1
NÞþ

qð3ÞðA1
NÞ ¼ A

2
N þ A

3
N :

The next result shows that B1 is indeed a first nonlinear part for A
1, in the sense of

Definition 2.7. The proof is in Section 4.2.

Lemma 3.14. On an event of probability 1, we have that for all

t0, t1 2 ð0, 1�, t0 < t1, x 2 T
d,
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B
1ðt1, xÞ ¼ ðeðt1�t0ÞDB1ðt0ÞÞðxÞ þ

ðt1�t0

0

ðeðt1�t0�sÞDXðA1ðt0 þ sÞÞÞðxÞds:

In light of Lemma 3.14, hereafter, we assume that A1,A2,A3 have been modified so

that B
1 is a first nonlinear part of A

1 (in the sense of Definition 2.7). We can now

finally state the main result of Section 3.2. The proof is in Section 4.2.

Proposition 3.15. For e > 0, let ce :¼ ð1=2Þðd � 1� aÞ þ e. For any e > 0, p � 1, we

have that

sup
N� 0

E jjA2
N jj

p

Qce
1

h i
,E jjA2jjpQce

1

h i
� Ce,p < 1, lim

N!1
E jjA2

N � A
2jjpQce

1

h i
¼ 0:

Consequently, we have that

sup
N� 0

E jjB1
N jj

p

Qce
1

h i
,E jjB1jjpQce

1

h i
� Ce,p < 1,

lim
N!1

E jjB1
N � B

1jjpQce
1

h i
¼ 0:

Here, Ce,p depends only on e, p, d, and the various constants in Assumptions (A)–(E); i.e.,

a, bB, CB, etc.

Remark 3.16. By Proposition 3.15, upon replacing A
1,B1 by suitable modifications, we

may assume that jjB1jjQð1=2Þðd�1�aÞþe

1

< 1 for all e > 0, while still ensuring that B1 is a first

nonlinear part of A1: Hereafter, we assume that this holds for A1,B1:

3.3. Proofs of Theorem 1.19 and Corollary 1.22

We can now prove Theorem 1.19 by combining Propositions 3.5 and 3.15 with

Theorem 2.9.

Proof of Theorem 1.19. Let A1 be as constructed in Section 3.1, and let A1 be as con-

structed in Section 3.2. We want to apply Theorem 2.9 to A
1,B1: First, note that by the

assumption that a > d � 4=3 in the statement of Theorem 1.19, we have that ð1=4Þðd �
aÞ < 1=2, ð1=2Þðd � 1� aÞ < 1=4, ð1=4Þðd � aÞ þ ð1=2Þðd � 1� aÞ < 1=2: Therefore,

we may take e0 > 0 small enough such that defining c1 :¼ ð1=4Þðd � aÞ þ e0, c2 :¼
ð1=2Þðd � 1� aÞ þ e0, we have that c1 2 ½0, 1=2Þ, c2 2 ½0, 1=4Þ, and c1 þ c2 < 1=2: By

Proposition 3.5 and Remark 3.6, we have that jjA1jjQc1
1
< 1, and similarly by

Proposition 3.15 and Remark 3.16, we have that jjB1jjQc2
1
< 1:

Let R ¼ max jjA1jjQc1
1
, jjB1jjQc2

1

n o
, and let T ¼ sc1c2ðRÞ, where sc1c2 is as in Theorem

2.9. The fact that E½T�p� < 1 for all p � 1 follows by Lemma 2.10 and Propositions

3.5 and 3.15. By Theorem 2.9, there exists B 2 Qc2
T,3R such that A

1 þ B is in

C1ðð0,TÞ � T
d, gdÞ, and moreover A

1 þ B is a solution to (ZDDS) on ð0,TÞ: We can

then define the process A ¼ ðAðt, xÞ, t 2 ð0, 1�, x 2 T
dÞ by:
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Aðt, xÞ :¼ 1ðt < TÞðA1ðt, xÞ þ Bðt, xÞÞ:

We now move on to the second part of the theorem. Let A
1
N

� �
N� 0

, B
1
N

� �
N� 0

be as

constructed in Sections 3.1 and 3.2, respectively. For N � 0, let RN ¼
maxðjjA1

N jjQc1
1
, jjB1

N jjQc2
1
Þ, and let TN ¼ sc1c2ðRNÞ: For the same reasons as before, we

have that supN� 0E½T
�p
N � < 1 for all p � 1: Also, by Propositions 3.5 and 3.15, we

have that RN!
P
R (here !P denotes convergence in probability) and thus, since sc1c2 is

continuous, we obtain that TN!
P
T: This implies that T�1

N !P T�1: The fact that E½jT�1
N �

T�1jp� ! 0 for all p � 1 now follows by Vitali’s ([31, (21.2) Theorem]) theorem (com-

bined with the Lp-boundedness for any p � 1, which gives uniform integrability).

For each N � 0, we apply Theorem 2.9 and Lemma 2.11 to obtain BN 2 Qc2
TN ,3RN

such that A
1
N þ BN is in C1ð½0,TNÞ � T

d, gdÞ, and moreover it is the solution to

(ZDDS) on ½0,TNÞ with initial data A
0
N (recall that the solution is unique, by Lemma

1.3). We may thus define the process AN ¼ ðANðt, xÞ, t 2 ½0, 1�, x 2 T
dÞ by

ANðt, xÞ :¼ 1ðt < TNÞðA1
Nðt, xÞ þ BNðt, xÞÞ:

It remains to show the last claims about convergence of AN to A. Let p � 1, d 2
ð0, 1Þ, e > 0: Note that by Proposition 3.5, jjA1

N � A
1jjQc1

1
!P 0, and that by Proposition

3.15, jjB1
N � B

1jjQc2
1
!P 0: Combining this with Theorem 2.9, we obtain that jjBN �

BjjQc2
ð1�dÞT

!P 0: (This can be shown by using the fact that convergence to 0 in probability

is equivalent to the property that for any subsequence, there is a further subsequence

which converges to 0 a.s. The ð1� dÞT comes from the fact that BN is a solution to

(ZDDS) on ½0,TNÞ, and TN may be less than T. However, we know that TN!
P
T:) We

thus also obtain jjAN � AjjQc1
ð1�dÞT

!P 0, because the assumption that a > d � 4=3 implies

that c1 > c2: Now to show the last claims about convergence of AN to A, it suffices (by

Vitali’s theorem — [31, (21.2) Theorem]) to show that for any p � 1, the sequence

jjAN � AjjpQc2
ð1�dÞT

n o
N� 0

is L2-bounded (and thus uniformly integrable). Fix p � 1: Since

ANðtÞ ¼ 0 if t � TN , we have that

jjAN � Ajj2pQc1
ð1�dÞT

� Cp

�
jjAN jj2pQc1

TN

þ jjAjj2pQc1
T

	
:

We have that AN ¼ A
1
N þ BN , where A

1
N ,BN 2 Qc1

TN ,3RN
, and similarly for A. From this,

we obtain

jjAN jj2pQc1
TN

� CpR
2p
N , jjAjj2pQc1

T

� CpR
2p:

Now by Propositions 3.5 and 3.15, we have that supN� 0E½R
2p
N � < 1, E½R2p� < 1: The

desired L2-boundedness now follows. Thus we have shown the last claims for e ¼ e0,

where e0 is a small enough quantity that we fixed at the beginning. The last claims for
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general e > 0 then follow, because due to monotonicity in e, it just suffices to show the

claims for small enough e > 0: w

We next turn to proving Corollary 1.22.

Lemma 3.17. Let d¼ 3, and let A0 be a 3D g
3-valued GFF. Then Assumptions (A)–(E)

are satisfied, and moreover Assumption (D) is satisfied with a¼ 2.

Before we prove Lemma 3.17, we note that Corollary 1.22 follows directly.

Proof of Corollary 1.22. This follows from Theorem 1.19 and Lemma 3.17. w

The rest of this section is devoted to the proof of Lemma 3.17. Thus, we assume in

the rest of this section that d¼ 3, and A
0 is a 3D g

3-valued GFF. Assumptions (A) and

(C)-(E) may be readily checked by using standard properties of Gaussian distributions.

Thus, we will only prove that Assumption (B) holds. (See the complete version of this

paper on arXiv for a full proof.)

Proof of Assumption (B). We will show the assumption with bB ¼ 1: We will verify the

assumption “coordinate-wise”, i.e. for the processes A
0,a
j : First, for any / 2

C1ðT3,RÞ, a 2 ½dg�, j 2 ½3�, we have that ðA0,a
j ,/Þ 
 Nð0, ðra/,jÞ

2Þ (here we define ðra/,jÞ
2

to be the variance of ðA0,a
j ,/Þ), and thus by the standard Gaussian tail bound, we have

that

PðjðA0,a
j ,/Þj > uÞ � 2 exp ð�u2=ð2ðra/,jÞ

2ÞÞ, u � 0:

By splitting into cases u � ra/,j and u � ra/,j, it then follows that

PðjðA0,a
j ,/Þj > uÞ � 2 exp ð�u=ð2ra/,jÞÞ, u � 0:

We next turn to concentration for quadratic forms. Fix N � 0: Observe that

ðA0,a
N,jðxÞ, a 2 ½dg�, j 2 ½3�, x 2 T

3Þ is a mean 0 Gaussian process with smooth sample

paths. Let K be as in Assumption (B). For notational simplicity, let Q ¼ ðA0
N ,KA

0
NÞ: Let

k � 1: By approximating T
3 by a lattice with spacing 1=k, we may obtain a random

variable Qk, which is a Riemann sum approximation of Q (recall the definition of

ðA0
N ,KA

0
NÞ in Eq. (1.2)). Moreover, Qk is a quadratic form of a centered Gaussian vec-

tor. Also, we have that EðQkÞ ¼ 0, because A
0
N is a mean 0 process, A0,a1

N,j1
,A0,a2

N,j2
are inde-

pendent for a1 6¼ a2, and the assumption that Kðða, j1, xÞ, ða, j2, yÞÞ ¼ 0: Thus by Lemma

B.1, we have that for all k � 1,

PðjQkj > uÞ � 2e3=2 exp ð�u=ð2ðEðQ2
kÞÞ

1=2ÞÞ, u � 0:

Now since A
0
N has smooth sample paths, we have that Qk ! Q: It then follows that (by,

e.g., Fatou’s lemma)

PðjQj > uÞ � lim inf
k

PðjQkj > uÞ:

Thus to finish, it suffices to show that lim supkEðQ2
kÞ � EðQ2Þ (note that EðQÞ ¼ 0 as

well, for the same reasons why EðQkÞ ¼ 0). Actually, we have that E½ðQk � QÞ2� ! 0,

because Qk ! Q, and the sequence ðQk � QÞ2
� �

k� 1 is uniformly integrable. The
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uniform integrability follows because supk� 1EðQ4
kÞ,EðQ4Þ < 1, which itself can be

seen from the fact that A0
N is a Gaussian process such that supx2T3E½jA0

NðxÞj
2� < 1: w

3.4 A Related result

As mentioned in Section 1, the results of this paper will be applied in [23]. In particu-

lar, we will use Corollary 1.22 in [23]. However, we will not directly use Theorem 1.19.

Instead, we now give a related result that will be more suited for the purposes of [23].

First, suppose that A
0 ¼ ðA0ðxÞ, x 2 T

dÞ is now a g
d-valued stochastic process with

smooth sample paths. Note that this naturally induces a random g
d-valued distribution

by defining ðA0,/Þ :¼
Ð
T
dA

0ðxÞ/ðxÞdx for all / 2 C1ðTd,RÞ: We say that A0 satisfies

some given assumption if the corresponding random g
d-valued distribution satisfies the

assumption.

Proposition 3.18. Let A0 ¼ ðA0ðxÞ, x 2 T
dÞ be a g

d-valued stochastic process with smooth

sample paths. Suppose that it satisfies Assumptions (A)–(E). Moreover, suppose that

Assumption (D) is satisfied with a 2 ðmax d � 4=3, d=2f g, dÞ. Then there exists a g
d-val-

ued stochastic process A ¼ ðAðt, xÞ, t 2 ½0, 1Þ, x 2 T
dÞ, and a random variable T 2 ð0, 1�,

such that the following hold. The function ðt, xÞ 7!Aðt, xÞ is in C1ð½0,TÞ � T
d, gdÞ, and

moreover it is the solution to (ZDDS) on ½0,TÞ with initial data Að0Þ ¼ A
0. Also,

E½T�p� � Cp < 1 for all p � 1, where Cp depends only on p, d, and the various con-

stants in Assumptions (A)–(E); i.e., a, bB, CB, etc. Finally, for any k 2 0, 1f g, p � 1, e >
0, we have that

E sup
t2ð0,TÞ

tpððk=2Þþð1=4Þðd�aÞþeÞjjAðtÞjjp
Ck

� �
� Cp,e:

Here Cp,e depends only on p, e, d, and the various constants in Assumptions (A)–(E); i.e.,

a, bB, CB, etc.

This proposition gives bounds on A, as opposed to Theorem 1.19, which only gives

that A exists, and that AN converges to A in a suitable sense. Also, note that in contrast

to Theorem 1.19, we take sup over t 2 ð0,TÞ as opposed to sup over t 2 ð0, ð1� dÞTÞ
in the final two inequalities. This is because we are only bounding A, which we know

exists on ð0,TÞ, as opposed to AN � A: Recall that AN is a solution to (ZDDS) only on

½0,TNÞ, and it may be the case that TN < T (but on the other hand, we do have that

TN > ð1� dÞT with probability tending to 1 as N ! 1). Before we prove Proposition

3.18, we need the following natural lemma, whose proof is omitted (the complete ver-

sion of this paper on arXiv contains a proof).

Lemma 3.19. Let A
0 ¼ ðA0ðxÞ, x 2 T

dÞ be as in Proposition 3.18. Let A
1,B1 be con-

structed using A
0 as in Sections 3.1 and 3.2. Then a.s., for all t 2 ð0, 1�, x 2 T

d, we have

that A1ðt, xÞ ¼ ðetDA0ÞðxÞ, B1ðt, xÞ ¼ ðqðA1ÞðtÞÞðxÞ:

Proof of Proposition 3.18. We slightly modify the proof of Theorem 1.19. As in that

proof, take e0 > 0 small enough such that defining c1 :¼ ð1=4Þðd � aÞ þ e0, c2 :¼
ð1=2Þðd � 1� aÞ þ e0, we have that c1 2 ½0, 1=2Þ, c2 2 ½0, 1=4Þ, and c1 þ c2 < 1=2: Let
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A
1,B1 be constructed using A

0 as in Sections 3.1 and 3.2. By Lemma 3.19, after a suit-

able modification of A1,B1, we have that A1ðtÞ ¼ etDA0, B1 ¼ qðA1Þ: Then by arguing

as in the proof of Theorem 1.19, we can obtain a stochastic process A ¼ ðAðt, xÞ, t 2
½0, 1Þ, x 2 T

dÞ by letting

Aðt, xÞ :¼ 1ðt < TÞðA1ðt, xÞ þ Bðt, xÞÞ,
such that A is the solution to (ZDDS) on ½0,TÞ with initial data Að0Þ ¼ A

0:
Next, by Propositions 3.5 and 3.15, we have that E½Rp� � Cp,e0 : By Lemma 2.10, we

have that E½T�p� � Cp þ CpE½R4p=ð1�2maxðc1,c2ÞÞ�: From this, we obtain E½T�p� � Cp for

all p � 1, where Cp depends only on p, d, and the various constants in Assumptions

(A)–(E).

For the final two inequalities, note that since B 2 Qc2
T,3R and A

1 2 Qc1
T,R, we have that

jjAjjQc1
T

� 4R (here we use that c1 > c2, which follows by the assumption that a >

d � 4=3). Thus recalling that E½Rp� � Cp,e0 , we have shown the last two inequalities for

e ¼ e0, where e0 is a small enough quantity that we fixed at the beginning. The last two

inequalities for general e > 0 then follow, because due to the monotonicity in e, it just

suffices to show the inequalities for small enough e > 0: w

4. Technical proofs

We first show some general results which will be needed for both the linear and nonlin-

ear parts. Many of the proofs of this section are omitted; see the complete version of

this paper on arXiv for the full arguments. Recall the covariance function q : ðTdÞ2 !
Lðgd, gdÞ from Assumption (C). For notational simplicity, let s : Td ! R be defined by

sðxÞ :¼ Trðqðx, 0ÞÞ: Since q is integrable and translation invariant by Assumption (C),

we have that s is also integrable. We will denote the Fourier coefficients of s by bsðnÞ
for n 2 Z

d:
The following lemma shows that the translation invariance assumption leads to the

Fourier coefficients being uncorrelated. The proof is a short computation, and thus it is

omitted.

Lemma 4.1. Suppose that Assumption (C) holds. For any n1, n2 2 Z
d, we have that

E hbA0ðn1Þ, bA0ðn2Þi
h i

¼ 1ðn1 ¼ n2Þbsðn1Þ:

Consequently, E½jbA0ðnÞj2� ¼ bsðnÞ � 0. Additionally, for any a1, a2 2 ½dg�, j1, j2 2
½d�, n1, n2 2 Z

d, we have that

jE bA0,a1
j1

ðn1ÞbA0,a2
j2

ðn2Þ
h i

j � 1ðn1 ¼ n2Þbsðn1Þ:

The following few lemmas will be needed in Sections 4.1 and 4.2. Most proofs are

fairly standard and are omitted.
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Lemma 4.2. Let a 2 ð0, dÞ. For t 2 ð0, 1�, we have that
jjetDGa

0jjC0 � Cd,at
�ð1=2Þðd�aÞ:

Here Cd,a depends only on d, a:

Lemma 4.3. Suppose that Assumption (D) holds for some a 2 ð0, dÞ. For any k � 0, t 2
ð0, 1�, we have that

jjetDsjjCk � Ckt
�ðdþk�aÞ=2:

Here, Ck depends only on k, d, a, and the constant CD from Assumption (D).

Definition 4.4. For t 2 ð0, 1�, define the metric dt on ðt=2, t� � T
d by

dtððr, xÞ, ðs, yÞÞ :¼
jr � sj

t
þmin

d
T
dðx, yÞffiffi
t

p , 1

� �
:

For e > 0, let Nt,e be the minimum number of e-balls needed to cover the metric

space ððt=2, t� � T
d, dtÞ:

Lemma 4.5. For any t 2 ð0, 1�, e > 0, we have that

Nt,e � Ct�d=2e�ðdþ1Þ:

If e � 3=2, then we have that Nt,e ¼ 1:

Proof. First, note that the diameter of ððt=2, t� � T
d, dtÞ is at most 3/2, and thus the

second claim follows. For the first claim, note that the metric space ðt=2, t� equipped
with Euclidean distance may be covered by Oðe�1Þ balls of radius ðe=2Þt: Let xif gi2½n� �
ðt=2, t� be such a cover. The metric space ðTd, d

T
dÞ may be covered by Oððt1=2eÞ�dÞ balls

of radius
ffiffi
t

p
ðe=2Þ: Let yjf gj2½m� � T

d be such a cover. We then have that

ðxi, yjÞ
� �

i2½n�,j2½m� is an e-cover of ððt=2, t� � T
d, dtÞ, and additionally mn ¼

Oðt�d=2e�ðdþ1ÞÞ: The desired result now follows. w

Lemma 4.6. For any t 2 ð0, 1�, b > 0, we have that
ð1

0

ð log Nt,eÞbde � Cb,dð1þ j log tjbÞ:

Here Cb,d depends only on b, d:

Proof. By Lemma 4.5, we may bound (using that b 6¼ 0)
ð1

0

ð log Nt,eÞbde �
ð3=2

0

ð log ðCt�d=2e�ðdþ1ÞÞÞbde:

Now, note that

ð log ðCt�d=2e�ðdþ1ÞÞÞb � Cb,d þ Cb,dj log tjb þ Cb,dj log ejb:

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 231



The desired result now follows by noting that (here using that b � 0)
ð3=2

0

j log ejbde � Cb < 1:

w

In what follows, given a (possibly vector-valued) random variable X, we will write

jjXjjL2 as a shorthand for the L2 norm of X, i.e., jjXjjL2 :¼ ðEðjXj2ÞÞ1=2:

4.1. Linear part

As in Section 3.1, throughout this section, let A
0 be a random g

d-valued distribution

satisfying Assumptions (A), (B), (C), and (D). We just assume that Assumption (D)

holds for some a 2 ð0, dÞ — that is, for this section, we do not need the restriction that

a > max d � 4=3, d=2f g which appears in Theorem 1.19. These assumptions hold, even

if they are not explicitly stated in the various lemmas or propositions. We first show

the following result. Recall the definition of A1
N from Definition 3.3.

Lemma 4.7. We have that a.s., for all t> 0, k � 0,
X

n2Zd

ð1þ jnjÞke�4p2jnj2tjbA0ðnÞj < 1:

Consequently, we have that a.s., for all t 2 ð0, 1�, x 2 T
d,

lim
N!1

A
1
Nðt, xÞ ¼

X

n2Zd

e�4p2jnj2tbA0ðnÞenðxÞ:

We also have that for all t 2 ð0, 1�, x 2 T
d,

A
1ðt, xÞ¼a:s:

X

n2Zd

e�4p2jnj2tbA0ðnÞenðxÞ:

Proof. It suffices (by monotonicity) to prove the a.s. result for fixed t> 0. Toward this

end, note that by the Cauchy–Schwarz inequality,

X

n2Zd

ð1þ jnjÞke�4p2jnj2tjbA0ðnÞj � C


X

n2Zd

e�4p2jnj2tjbA0ðnÞj2
�1=2

,

for some finite constant C. To finish, observe that (using Lemmas 4.1 and 4.3)

E

X

n2Zd

e�4p2jnj2tjbA0ðnÞj2
" #

¼
X

n2Zd

e�4p2jnj2tbsðnÞ ¼ ðetDsÞð0Þ < 1:

The a.s. convergence follows immediately from the first claim. The a.s. equality follows

from the a.s. convergence and the fact that A1
Nðt, xÞ!

L2

A
1ðt, xÞ (recall Remark 3.4). w
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Proof of Lemma 3.2. Let E be the event that for all t> 0, k � 0, we have that
X

n2Zd

ð1þ jnjÞke�4p2jnj2tjbA0ðnÞj < 1:

By Lemma 4.7, we have that PðEÞ ¼ 1: The desired modification is obtained by setting

A
1 to be identically 0 off the event E. w

Remark 4.8. From Lemma 4.7, we can also ensure that (after a suitable modification)

for all k � 0, t0 2 ð0, 1�,
sup
t2 t0 ,1½ �

jjA1ðtÞjjCk < 1, (4.1)

lim
N!1

sup
t2 t0,1½ �

jjA1
NðtÞ � A

1ðtÞjjCk ¼ 0: (4.2)

We next begin to work toward the proof of Proposition 3.5.

Lemma 4.9. For any k 2 0, 1, 2f g, l1, :::, lk 2 ½d�, t 2 ð0, 1�, x 2 T
d, we have that

E j@l1 	 	 	 @lkA1ðt, xÞj2
h i

� Ct�ð1=2Þðd�aÞ�k: (4.3)

The above inequalities are also true with A
1 replaced by A

1
N for any N � 0. Here, C

depends only on d and the constants a,CD from Assumption (D).

Proof. Let N � 0: We have that for some constant C,

@l1 	 	 	 @lkA1
Nðt, xÞ ¼ C

X

n2Zd

jnj1 �N

nl1 	 	 	 nlke�4p2jnj2tbA0ðnÞenðxÞ:

Thus by Lemma 4.1, we obtain

E j@l1 	 	 	 @lkA1
Nðt, xÞj

2
h i

� C
X

n2Zd

jnj1 �N

jnj2ke�8p2jnj2tbsðnÞ � Cjje2tDsjjC2k :

By Lemma 4.3, the right hand side is bounded by Ct�ð1=2Þðd�aÞ�k, where the constant C

is uniform in N. To finish, we use Fatou’s lemma, combined with Eq. (4.2). w

Let t 2 ð0, 1�, x 2 T
d: For N,M � 0, let

D
1
Nðt, xÞ :¼ A

1
Nðt, xÞ � A

1ðt, xÞ, D
1
N,Mðt, xÞ :¼ A

1
Nðt, xÞ � A

1
Mðt, xÞ:

Lemma 4.10. There exists a sequence d4:10N

� �
N� 0 of non-increasing functions d4:10N :

ð0, 1� ! ½0, 1� such that for any t 2 ð0, 1�, limN!1d4:10N ðtÞ ¼ 0, and for any

k 2 0, 1, 2f g, l1, :::, lk 2 ½d�, N � 0, t 2 ð0, 1�, x 2 T
d,
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E j@l1 	 	 	 @lkD1
Nðt, xÞj

2
h i

� Ct�ð1=2Þðd�aÞ�kd4:10N ðtÞ:

Here, C depends only on d and the constants a,CD from Assumption (D).

Proof. It suffices to show the inequalities with D
1
N replaced by D

1
N,M for any M � N,

since D
1
N,M ! D

1
N as M ! 1 (recall (4.2)). For N � 0, j � 0, t 2 ð0, 1�, define

SðN, j, tÞ :¼
X

n2Zd

jnj1>N

jnjje�8p2jnj2tbsðnÞ:

Arguing as in the proof of Lemma 4.9, we can obtain that

sup
M�N

E j@l1 	 	 	 @lkD1
N,Mðt, xÞj

2
h i

� CkSðN, 2k, tÞ:

Observe that for m 2 0, 2, 4f g, we have that SðN,m, tÞ � Sð0,m, tÞ, and moreover,

from the proof of Lemma 4.9, we have that Sð0,m, tÞ � Ct�ð1=2Þðdþm�aÞ: We may thus

define

d4:10N ðt0Þ :¼ sup
t2 t0,1½ �

maxm2 0,2,4f g
SðN,m, t0Þ

max 1, Sð0,m, t0Þ
� � , t0 2 ð0, 1�:

This ensures that d4:10N is non-increasing, and that it maps into ½0, 1�: To finish, we need

to show that d4:10N ðt0Þ ! 0: To show this, it suffices to show that for m 2 0, 2, 4f g, we
have that

lim
N!1

sup
t2 t0 ,1½ �

SðN,m, t0Þ ¼ 0:

Fix m 2 0, 2, 4f g: Note that for any N � 0, SðN,m, tÞ is non-increasing in t (this fol-

lows since bsðnÞ � 0 for all n 2 Z
d
— recall Lemma 4.1), and thus it just suffices to

show that SðN,m, t0Þ ! 0: This follows by the fact that Sð0,m, t0Þ < 1, combined with

the definition of SðN,m, t0Þ and dominated convergence. w

In what follows, recall the definition of dt in Definition 4.4.

Lemma 4.11 . For any t 2 ð0, 1�, and any r, s 2 ðt=2, t�, x, y 2 T
d, we have that

jjA1ðr, xÞ � A
1ðs, yÞjjL2 � Ct�ð1=4Þðd�aÞdtððr, xÞ, ðs, yÞÞ:

The above inequality is also true with A
1 replaced by A

1
N for any N � 0. Here, C

depends only on d and the constants a,CD from Assumption (D).

Proof. We will show the result for A
1: The proof for A

1
N for N � 0 will be essentially

the same. We will show that

jjA1ðr, xÞ � A
1ðr, yÞjjL2 � Ct�ð1=4Þðd�aÞ min

d
T
dðx, yÞffiffi
t

p , 1

� �
,

jjA1ðr, yÞ � A
1ðs, yÞjjL2 � Ct�ð1=4Þðd�aÞ jr � sj

t
:
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Let ‘ : ½0, 1� ! T
d be a geodesic from y to x, so that ‘ has constant speed j‘0j ¼

d
T
dðx, yÞ: Then

A
1ðr, xÞ � A

1ðr, yÞ ¼
ð1

0

rA
1ðr, ‘ðuÞÞ 	 ‘0ðuÞdu:

We thus have

jA1ðr, xÞ � A
1ðr, yÞj2 �

ð1

0

jrA
1ðr, ‘ðuÞÞ 	 ‘0ðuÞj2du

� d
T
dðx, yÞ2

ð1

0

jrA
1ðr, ‘ðuÞÞj2du:

Taking expectations and applying (4.3) gives

jjA1ðr, xÞ � A
1ðr, yÞjjL2 � Ct�ð1=4Þðd�aÞ dTdðx, yÞ

t1=2
:

Combining this with (4.3), we obtain the first desired inequality.

For the second inequality, assume without loss of generality that s< r, and note that

A
1ðr, yÞ � A

1ðs, yÞ ¼
ðr

s

@uA
1ðu, yÞdu ¼

ðr

s

DA
1ðu, yÞdu:

We thus obtain

jA1ðr, yÞ � A
1ðs, yÞj2 � jr � sj

ðr

s

jDA1ðu, yÞj2du:

Applying (4.3), we obtain the second desired inequality. w

The following result will allow us to show the convergence of A1
N to A

1 (recall the

statement of Proposition 3.5).

Lemma 4.12. There is a sequence d4:12N

� �
N� 0 of functions d4:12N : ð0, 1� ! ½0, 1�, such that

the following hold. For any t 2 ð0, 1�, we have that limN!1d4:12N ðtÞ ¼ 0. Also, for any

N � 0, t 2 ð0, 1�, r, s 2 ðt=2, t�, x, y 2 T
d, we have that

jjD1
Nðr, xÞjjL2 � Ct�ð1=4Þðd�aÞd4:12N ðtÞ,

jjD1
Nðr, xÞ �D

1
Nðs, yÞjjL2 � Ct�ð1=4Þðd�aÞdtððr, xÞ, ðs, yÞÞd4:12N ðtÞ:

Here, C depends only on d and the constants a,CD from Assumption (D).

Proof. Let d4:10N

� �
N� 0 be the sequence of functions from Lemma 4.10. For t 2 ð0, 1�, let

d4:12N ðtÞ :¼ ðd4:10N ðt=2ÞÞ1=2: The first inequality follows by Lemma 4.10 and the fact that

d4:10N is non-increasing. The second inequality follows by the same argument as in the

proof of Lemma 4.11, where we use Lemma 4.10 in place of Lemma 4.9. In the course

of the argument, we also use that d4:10N is non-increasing, so that the value of this func-

tion at u 2 ðt=2, t� is bounded by its value at t=2: w

By combining Lemmas 4.11 and 4.12 with Assumption (B), we obtain the following

result.
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Lemma 4.13. For t 2 ð0, 1�, r, s 2 ðt=2, t�, x, y 2 T
d, we have that for u � 0,

PðjA1ðr, xÞj > uÞ � C exp ð�ðu=t�ð1=4Þðd�aÞÞbBÞ,
PðjA1ðr, xÞ� A

1ðs, yÞj > uÞ �
C exp ð�ðu=ðt�ð1=4Þðd�aÞdtððr, xÞ, ðs, yÞÞÞÞbB=CÞ:

The above inequalities are also true with A
1 replaced by A

1
N for any N � 0.

Additionally, let d4:12N

� �
N� 0 be the sequence of functions from Lemma 4.12. Then for any

N � 0, we have that for u � 0,

PðjD1
Nðr, xÞj > uÞ � C exp ð�ðu=ðt�ð1=4Þðd�aÞd4:12N ðtÞÞÞbB=CÞ,

PðjD1
Nðr, xÞ �D

1
Nðs, yÞj > uÞ �

C exp ð�ðu=ðt�ð1=4Þðd�aÞdtððr, xÞ, ðs, yÞÞd4:12N ðtÞÞÞbB=CÞ:

Here, C depends only on d and the constants bB,CB, a,CD from Assumptions (B) and (D).

Proof. We will prove the first two inequalities for A1: The proof for A1
N for N � 0 will

be essentially the same. Note that (recall (1.7) for the definition of U)

A
1ðr, xÞ¼a:s:ðA0,Uðr, x � 	ÞÞ:

The first inequality now follows by Assumption (B) and the fact that

jjA1ðr, xÞjjL2 � Ct�ð1=4Þðd�aÞ

(which holds by Lemma 4.9). Similarly, note that

A
1ðr, xÞ � A

1ðs, yÞ ¼a:s:ðA0,Uðr, x� 	ÞÞ � ðA0,Uðs, y� 	ÞÞ
¼a:s:ðA0,Uðr, x� 	Þ � Uðs, y � 	ÞÞ:

The second inequality now follows by Assumption (B) and Lemma 4.11. For the last

two inequalities, note that (recall Definition 3.3)

A
1
Nðr, xÞ¼

a:s:ðFNA0,Uðr, x� 	ÞÞ ¼ ðA0, ðFNUÞðr, x� 	ÞÞ:

We then proceed as before, using Lemma 4.12 instead of Lemmas 4.9 and 4.11. w

The tail bounds from Lemma 4.13 allow us to obtain following result.

Lemma 4.14. For any p � 1, t0 2 ð0, 1�, we have that

E sup
t2ðt0=2,t0�
x2Td

jA1ðt, xÞjp
2
4

3
5

� Ct�pð1=4Þðd�aÞð1þ j log t0j1=bBÞp:

The above also holds with A
1 replaced by A

1
N for any N � 0. Additionally, let

d4:12N

� �
N� 0 be the sequence of functions from Lemma 4.12. Then for any N � 0, we

have that
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E

�
sup

t2ðt0=2,t0�
x2Td

jA1
Nðt, xÞ �A

1ðt, xÞjp
�
�

Ct�pð1=4Þðd�aÞð1þ j log t0j1=bBÞpðd4:12N ðt0ÞÞp:

Here, C depends only on d, p and the constants bB,CB, a,CD from Assumptions (B)

and (D).

Proof. Fix p � 1: Define the stochastic process ðXt,x, ðt, xÞ 2 ðt0=2, t0� � T
dÞ by

Xt,x :¼ ðC�1=bBÞtð1=4Þðd�aÞ
A

1ðt, xÞ,

where C is the constant from Lemma 4.13. Then by Lemma 4.13, we have that for

ðr, xÞ, ðs, yÞ 2 ðt0=2, t0� � T
d, u � 0,

PðjXr,xj > uÞ � C exp ð�ubBÞ,
PðjXr,x � Xs,yj > udtððr, xÞ, ðs, yÞÞÞ � C exp ð�ubBÞ:

By the first inequality and [32, Lemma A.2], we have that

sup
ðr,xÞ2ðt0=2,t0��T

d

E jXr,xjp
� �

� C:

Using this bound, together with the second inequality in the previous display and the

tail bound from Lemma 4.6, we can now apply Theorem A.3 to obtain the first desired

result. The second desired result follows similarly. w

We can now finally prove Proposition 3.5.

Proof of Proposition 3.5. First, observe that for t 2 ð0, 1�, we have that

jjA1ðtÞjjC1 ¼ jjeðt=2ÞDA1ðt=2ÞjjC1 � Ct�1=2jjA1ðt=2ÞjjC0 :

It follows that

sup
t2ð0,1�

tð1=2Þþce jjA1ðtÞjjC1 � C sup
t2ð0,1�

tce jjA1ðtÞjjC0 :

The same thing holds with A
1 replaced by A

1
N for any N � 0: Thus for the first desired

result, it suffices to show that

sup
N� 0

E sup
t2ð0,1�

tpce jjA1
NðtÞjj

p

C0

� �
, E sup

t2ð0,1�
tpce jjA1ðtÞjjpC0

� �
< 1:

Similarly, for the second desired result, it suffices to show that

lim
N!1

E sup
t2ð0,1�

tpce jjA1
NðtÞ � A

1ðtÞjjpC0

� �
¼ 0:

The first result follows by combining Lemma 4.14 with Lemma A.1. The second result

follows by combining Lemma 4.14 with Lemma A.2. w
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4.2. Nonlinear part

As in Section 3.2, we assume throughout this section that A0 is a random g
d-valued dis-

tribution satisfying Assumptions (A)-(E). For this section, we just assume that

Assumption (D) holds with a 2 ðd=2, dÞ: These assumptions hold, even if they are not

explicitly stated in the various lemmas, corollaries, or propositions. For space reasons,

we will omit proofs of many of the results in this section. For full proofs, please see the

complete version of this paper on arXiv.

For many of the arguments in this section, we will work with the scalar quantities

A
2,a0
N,j0

instead of the vector quantity A
2
N : Accordingly, recall the definitions of I and d in

Definition 2.14, and recall that by Lemma 2.16, A2,a0
N,j0

has the following explicit form (in

the following, m ¼ ðn1, n2Þ, a ¼ ða0, a1, a2Þ, j ¼ ðj0, j1, j2Þ):
A

2,a0
N,j0

ðt0, x0Þ ¼X

a1,a22 dg½ �
j1,j22 d½ �

X

n1,n22Zd

jn1j1,jn2j1 �N

Iðm, t0Þdðm, a, jÞbA0,a1
N,j1

ðn1ÞbA0,a2
N,j2

ðn2Þen1þn2ðx0Þ: (4.4)

Definition 4.15. For N � 0, k � 0, t � 0, define

SðN , k, tÞ :¼X

n1,n22Zd

max jn1j1,jn2j1f g�N

jn1 þ n2jkIððn1, n2Þ, tÞ2ðjn1j2 þ jn2j2Þbsðn1Þbsðn2Þ:

We now state the following technical lemma, which is one of the key intermediate

steps for proving the results of Section 3.2. The proof is omitted.

Lemma 4.16. For all k � 0, there exists a sequence d4:16N,k

n o
N� 0

of non-increasing func-

tions d4:16N,k : ð0, 1� ! ½0, 1� such that the following hold. For any t 2 ð0, 1�, we have that

limN!1d4:16N,k ðtÞ ¼ 0. Also, for any N � 0, t 2 ð0, 1�, we have that

SðN, k, tÞ � Ckt
�ðd�1þðk=2Þ�aÞd4:16N,k ðtÞ:

Here, Ck depends only on k, d, and the constants a,CD from Assumption (D).

We proceed to use Lemma 4.16 to obtain moment bounds on A
2
N :

Lemma 4.17. For any k 2 0, 1, 2, 3f g, l1, :::, lk 2 ½d�, N � 0, t 2 ð0, 1�, x 2 T
d, we have

that

E j@l1			lkA2
Nðt, xÞj

2
h i

� Ct�ðdþk�1�aÞ:

Here, C depends only on d and the constants a,CD,CE from Assumptions (D), (E).

Proof. We will work with the scalar quantities A
2,a0
N,j0

: Fix a ¼ ða0, a1, a2Þ, j ¼ ðj0, j1, j2Þ:
Define
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Bðt, xÞ :¼
X

n1,n22Zd

jn1j1,jn2j1 �N

en1þn2ðxÞIðm, tÞdðm, a, jÞbA0,a1
j1

ðn1ÞbA0,a2
j2

ðn2Þ:

We first look at the k¼ 0 case. For this, it suffices to show that E½jBðt, xÞj2� �
Ct�ðd�1�aÞ: Toward this end, note that

E jBðt, xÞj2
� �

¼
X

n1,n22Zd

k1,k22Zd

jnij1,jkij1 �N

i¼1,2

Iððn1, n2Þ, tÞIððk1, k2Þ, tÞdððn1, n2Þ, a, jÞ �

dððk1, k2Þ, a, jÞen1þn1�ðk1þk2ÞðxÞ �
E bA0,a1

j1
ðn1ÞbA0,a2

j2
ðn2ÞbA0,a1

j1
ðk1ÞbA0,a2

j2
ðk2Þ

h i
:

We have that (recall Remark 2.15)

jdððn1, n2Þ, a, jÞj � Cðjn1j þ jn2jÞ:

Also by Remark 2.15, we can assume a1 6¼ a2, since otherwise dððn1, n2Þ, a, jÞ ¼ 0: Thus
by Assumption (E), we have that

jE bA0,a1
j1

ðn1Þ
h

bA0,a2
j2

ðn2ÞbA0,a1
j1

ðk1ÞbA0,a2
j2

ðk2Þ�j � CEðjE1E2j þ jE3E4jÞ

where

E1 :¼ E bA0,a1
j1

ðn1ÞbA0,a1
j1

ðk1Þ
h i

, E2 :¼ E bA0,a2
j2

ðn2ÞbA0,a2
j2

ðk2Þ
h i

,

E3 :¼ E bA0,a1
j1

ðn1ÞbA0,a2
j2

ðk2Þ
h i

, E4 :¼ E bA0,a2
j2

ðn2ÞbA0,a1
j1

ðk1Þ
h i

:

By Lemma 4.1, we have that

jE1j � 1ðn1 ¼ k1Þbsðn1Þ, jE2j � 1ðn2 ¼ k2Þbsðn2Þ,
jE3j � 1ðn1 ¼ k2Þbsðn1Þ, jE4j � 1ðn2 ¼ k1Þbsðn2Þ:

Combining these bounds, we see that it suffices to bound (note that Iððn1, n2Þ, tÞ ¼
Iððn2, n1Þ, tÞ)

X

n1,n22Zd

Iððn1, n2Þ, tÞ2ðjn1j2 þ jn2j2Þbsðn1Þbsðn2Þ:

The k¼ 0 case now follows by Lemma 4.16 with N ¼ 0, k ¼ 0:
For the case k 2 1, 2, 3f g, note that following the same steps as before, we may reduce

to bounding
X

n1,n22Zd

jn1 þ n2j2kIððn1, n2Þ, tÞ2ðjn1j2 þ jn2j2Þbsðn1Þbsðn2Þ:

By Lemma 4.16, this is bounded by Ct�ðd�1þk�aÞ, as desired. w
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Definition 4.18. For N,M � 0, t 2 ð0, 1�, x 2 T
d, let

D
2
N,Mðt, xÞ :¼ A

2
Nðt, xÞ � A

2
Mðt, xÞ:

Lemma 4.19. There exists a sequence d4:19N

� �
N� 0 of non-increasing functions d4:19N :

ð0, 1� ! ½0, 1� such that the following hold. For any t 2 ð0, 1�, we have that

limN!1d4:19N ðtÞ ¼ 0. Also, for any k 2 0, 1, 2, 3f g, l1, :::, lk 2 ½d�, M � N � 0, t 2
ð0, 1�, x 2 T

d, we have that

E j@l1			lkD2
N,Mðt, xÞj

2
h i

� Ct�ðdþk�1�aÞd4:19N ðtÞ:

Here, C depends only on d and the constants a,CD,CE from Assumptions (D), (E).

Proof. For m � 0, let d4:16N,m

n o
N� 0

be the sequence of functions from Lemma 4.16.

Define

d4:19N ðtÞ :¼ max
m2 0,2,4,6f g

d4:16N,mðtÞ, t 2 ð0, 1�:

We first look at the k¼ 0 case. We will work with the scalar quantities D2,a0
N,M,j0

: By argu-

ing as in the proof of Lemma 4.17, we may bound

E jD2,a0
N,Mj0

ðt, xÞj2
h i

� C
X

a1 ,a22 dg½ �
j1,j22 d½ �

X

s1 ,s22 s
a1
j1
,s
a2
j2

� �
X

n1,n22Zd

N<max jn1j1,jn2j1f g�M

Iððn1, n2Þ, tÞ2 �

ðjn1j2 þ jn2j2Þbsðn1Þbsðn2Þ:

Note that we may obtain a further upper bound by replacing the sum over n1, n2 2 Z
d

such that N < max jn1j1, jn2j1
� �

� M by a sum over n1, n2 2 Z
d such that

max jn1j1, jn2j1
� �

> N: The k¼ 0 case now follows by Lemma 4.16. The case k 2
1, 2, 3f g may be argued similarly. w

Proof of Lemma 3.10. This is now a direct consequence of Lemma 4.19. w

We next prove various technical lemmas which will help in obtaining moment

bounds on quantities such as A2
Nðt, xÞ � A

2
Nðs, yÞ:

Definition 4.20. Let N � 0, a0 2 ½dg�, j0 2 ½d�, t 2 ð0, 1�, x 2 T
d: Define

F
a0
N,j0

ðt, xÞ :¼
X

a1,a22 dg½ �
j1 ,j22 d½ �

X

n1,n22Zd

jn1j1,jn2j1 �N

dðm, a, jÞ �

e�4p2jn1j2tbA0,a1
j1

ðn1Þe�4p2jn2j2tbA0,a2
j2

ðn2Þen1þn2ðxÞ,

where m ¼ ðn1, n2Þ: Using the collection of R-valued process ðFaN,j, a 2 ½dg�, j 2 ½d�Þ (as

well as the relation (1.1), we may define the g
d-valued pro-

cess FN ¼ ðFNðt, xÞ, t 2 ð0, 1�, x 2 T
dÞ:
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By Lemma 2.16, we have that for any N � 0,

@tA
2
Nðt, xÞ ¼ DA

2
Nðt, xÞ þ FNðt, xÞ, t 2 ð0, 1�, x 2 T

d: (4.5)

Lemma 4.21. For any N � 0, t 2 ð0, 1�, x 2 T
d, l 2 ½d�, we have that

E jFNðt, xÞj2
� �

� Ct�ðdþ1�aÞ, E j@lFNðt, xÞj2
� �

� Ct�ðdþ2�aÞ:

Here, C depends only on d and the constants a,CD,CE from Assumptions (D), (E).

Proof. We will work with the scalar quantities F
a0
N,j0

: Fix a ¼ ða0, a1, a2Þ, j ¼ ðj0, j1, j2Þ:
Define

Bðt, xÞ :¼
X

n1,n22Zd

jn1j1,jn2j1 �N

en1þn2ðxÞdðm, a, jÞ �

e�4p2jn1j2tbA0,a1
j1

ðn1Þe�4p2jn2j2tbA0,a2
j2

ðn2Þ,

where m ¼ ðn1, n2Þ, as usual. For the first inequality, it suffices to show that

E½jBðt, xÞj2� � Ct�ðdþ1�aÞ: Toward this end, we have that

E jBðt, xÞj2
� �

¼
X

n1,n22Zd

k1,k22Zd

jnij1,jkij1 �N

i¼1,2

en1þn2�ðk1þk2ÞðxÞdððn1, n2Þ, a, jÞdððk1, k2Þ, a, jÞ �

e�4p2ðjn1j2þjn2j2þjk1j2þjk2j2Þt
E bA0,a1

j1
ðn1ÞbA0,a2

j2
ðn2ÞbA0,a1

j1
ðk1ÞbA0,a2

j2
ðk2Þ

h i
:

Arguing as in the proof of Lemma 4.17, we may reduce to bounding
X

n1,n22Zd

ðjn1j2 þ jn2j2Þe�8p2jn1j2tbsðn1Þe�8p2jn2j2tbsðn2Þ,

Using that jnj2e�4p2jnj2t � supx� 0xe
�4p2xt � Ct�1, we obtain the further upper bound

Ct�1
X

n12Zd

e�4p1jn1j2tbsðn1Þ
X

n22Zd

e�4p2jn2j2tbsðn2Þ:

Observe that the above is equal to

Ct�1ðetDsÞð0ÞðetDsÞð0Þ:

Using that jjetDsjjC0 , jjetDsjjC0 � Ct�ð1=2Þðd�aÞ (by Lemma 4.3), the first desired result

now follows.

For the second inequality, by arguing as before, we may reduce to bounding
X

n1 ,n22Zd

jn1 þ n2j2ðjn1j2 þ jn2j2Þe�8p2jn1j2tbsðn1Þe�8p2jn2j2tbsðn2Þ:
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We may bound

jn1 þ n2j2ðjn1j2 þ jn2j2Þ � Cðjn1j4 þ jn2j4Þ,
and so arguing as before, we obtain the further upper bound

Ct�2ðetDsÞð0ÞðetDsÞð0Þ,

which is bounded by Ct�2t�ðd�aÞ, as desired. w

Lemma 4.22. There exists a sequence d4:22N

� �
N� 0 of non-increasing functions d4:22N :

ð0, 1� ! ½0, 1�, such that the following hold. For any t 2 ð0, 1�, we have that

limN!1d4:22N ðtÞ ¼ 0. Also, for any M � N � 0, t 2 ð0, 1�, x 2 T
d, we have that

E jFNðt, xÞ � FMðt, xÞj2
� �

� Ct�ðdþ1�aÞd4:22N ðtÞ:

Additionally, for any l 2 ½d�, we have that
E j@lFNðt, xÞ � @lFMðt, xÞj2
� �

� Ct�ðdþ2�aÞd4:22N ðtÞ:

Here, C depends only on d and the constants a,CD,CE from Assumptions (D), (E).

Proof. We will work with the scalar quantities Fa0N,j0
: For N � 0, t 2 ð0, 1�, define

GNðtÞ :¼
X

a1,a22 dg½ �
j1,j22 d½ �

X

n1,n22Zd

max jn1j1,jn2j1f g�N

e�4p2jn1j2tbsðn1Þe�4p2jn2j2tbsðn2Þ:

By arguing as in the proof of Lemma 4.21, we may obtain

E jFa0N,j0
ðt, xÞ � F

a0
M,j0

ðt, xÞj2
h i

� Ct�1GNðtÞ,

E j@lFa0N,j0
ðt, xÞ � @lF

a0
M,j0

ðt, xÞj2
h i

� Ct�2GNðtÞ:

Observe that GNðtÞ � G0ðtÞ for all t 2 ð0, 1�, and from the proof of Lemma 4.21, we

have that G0ðtÞ � Ct�ðd�aÞ: Thus we may define

d4:22N ðt0Þ :¼ sup
t2 t0 ,1½ �

GNðtÞ
max 1,G0ðtÞ

� � , t0 2 ð0, 1�:

This ensures that d4:22N maps into ½0, 1�, and that it is non-increasing. It remains to show

that limN!1d4:22N ðt0Þ ¼ 0 for all t0 2 ð0, 1�: Fix t0 2 ð0, 1�, a1, a2 2 ½dg�, j1, j2 2 ½d�: Since
max jn1j1, jn2j1

� �
� N implies that at least one of jn1j1, jn2j1 is at least N, it suffices

to show that

lim
N!1

sup
t2 t0,1½ �

X

n1,n22Zd

jn1j1>N

e�4p2jn1j2tbsðn1Þe�4p2jn2j2tbsðn2Þ ¼ 0:
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Note that without the limit, the left hand side above can be bounded by
X

n12Zd

jn1j1>N

e�4p2jn1j2t0bsðn1Þ
X

n22Zd

e�4p2jn2j2t0bsðn2Þ:

Note that the second sum is ðet0DsÞð0Þ, which is finite by Lemma 4.3 (and the fact that

t0 > 0). For the same reason, we have that
P

n12Zde�4p2jn1j2t0bsðn1Þ < 1: The desired

result now follows by dominated convergence. w

We next use the previous technical lemmas to control the C0 norm of A2
NðtÞ, culmi-

nating in Proposition 4.30 below. After we control the C0 norm, we will then move on

to controlling the C1 norm. In the following, recall the definition of dt from Definition

4.4. The proof of the next lemma will be omitted, as it is very similar to the proof of

Lemma 4.11, where we use Lemmas 4.17 and 4.21 in place of Lemma 4.10, and Eq.

(4.5) in place of the heat equation @uA
1 ¼ DA

1:

Lemma 4.23. For any N � 0, the following holds. For t 2 ð0, 1�, r, s 2 ðt=2, t�, x, y 2 T
d,

we have that

jjA2
Nðt, xÞjjL2 � Ct�ð1=2Þðd�1�aÞ,

jjA2
Nðr, xÞ � A

2
Nðs, yÞjjL2 � Ct�ð1=2Þðd�1�aÞdtððr, xÞ, ðs, yÞÞ:

Here, C depends only on d and the constants a,CD,CE from Assumptions (D), (E).

In the following, recall the definition of D2
N,M from Definition 4.18. The proofs of the

following few lemmas will be omitted, as they are all very similar to the proofs of the

analogous lemmas in Section 4.1.

Lemma 4.24. There is a sequence d4:24N

� �
N� 0 of functions d4:24N : ð0, 1� ! ½0, 1� such that

the following hold. For any t 2 ð0, 1�, we have that limN!1d4:24N ðtÞ ¼ 0. Also, for any

M � N � 0, t 2 ð0, 1�, r, s 2 ðt=2, t�, x, y 2 T
d, we have that

jjD2
N,Mðr, xÞjjL2 � Ct�ð1=2Þðd�1�aÞd4:24N ðtÞ,

jjD2
N,Mðr, xÞ �D

2
N,Mðs, yÞjjL2 � Ct�ð1=2Þðd�1�aÞdtððr, xÞ, ðs, yÞÞd4:24N ðtÞ:

Here, C depends only on d and the constants a,CD,CE from Assumptions (D), (E).

Definition 4.25. For N � 0, t 2 ð0, 1�, x 2 T
d, let

D
2
Nðt, xÞ :¼ A

2
Nðt, xÞ � A

2ðt, xÞ:

The following result is a direct consequence of Lemmas 4.23 and 4.24 and

Definition 3.11.

Corollary 4.26. Let d4:24N

� �
N� 0 be the sequence of functions from Lemma 4.24. Then for

any N � 0, t 2 ð0, 1�, r 2 ðt=2, t�, x 2 T
d, we have that

jjD2
Nðr, xÞjjL2 � Ct�ð1=2Þðd�1�aÞd4:24N ðtÞ:

Here, C depends only on d and the constants a,CD,CE from Assumptions (D), (E).
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We can now use Assumption (B), Lemma 2.17, and the various moment estimates to

obtain tail bounds for A2 and related quantities.

Lemma 4.27. For any t 2 ð0, 1�, r, s 2 ðt=2, t�, x, y 2 T
d, we have that for u � 0,

PðjA2ðr, xÞj > uÞ � C exp ð�ðu=t�ð1=2Þðd�1�aÞÞbB=CÞ,
PðjA2ðr, xÞ� A

2ðs, yÞj > uÞ �
C exp ð�ðu=ðt�ð1=2Þðd�1�aÞdtððr, xÞ, ðs, yÞÞÞÞbB=CÞ:

The above inequalities also hold with A
2 replaced by A

2
N for any N � 0. Additionally, let

d4:24N

� �
N� 0 be the sequence of functions from Lemma 4.24. Then for any N � 0, we

have that for u � 0,

PðjD2
Nðr, xÞj > uÞ � C exp ð�ðu=ðt�ð1=2Þðd�1�aÞd4:24N ðtÞÞÞbB=CÞ,

PðjD2
Nðr, xÞ �D

2
Nðs, yÞj > uÞ �

C exp ð�ðu=ðt�ð1=2Þðd�1�aÞdtððr, xÞ, ðs, yÞÞd4:24N ðtÞÞÞbB=CÞ:

Here, C depends only on d and the constants bB,CB, a,CD,CE from Assumptions (B), (D)

and (E).

Lemma 4.27 may be used to obtain the following result.

Lemma 4.28. The process A
2 ¼ ðA2ðt, xÞ, t 2 ð0, 1�, x 2 T

dÞ has a continuous

modification.

Hereafter, we assume that (after a suitable modification) the process A
2 ¼ ðA2, t 2

ð0, 1�, x 2 T
dÞ has continuous sample paths. The following lemma is the analogue of

Lemma 4.14. We omit the proof, as it is very similar to the proof of that lemma (where

we use Lemma 4.27 instead of Lemma 4.13).

Lemma 4.29. For any p � 1, t0 2 ð0, 1�, we have that

E sup
ðt,xÞ2ðt0=2,t0��T

d

jA2ðt, xÞjp
� �

� Ct
�pð1=2Þðd�1�aÞ
0 ð1þ j log t0j1=bBÞp:

The above inequality also holds with A
2 replaced by A

2
N for any N � 0. Additionally, let

d4:24N

� �
N� 0 be the sequence of functions from Lemma 4.24. Then for any N � 0, we

have that

E

�
sup

ðt,xÞ2ðt0=2,t0��T
d

jD2
N ðt, xÞj

�
� Ct

�pð1=2Þðd�1�aÞ
0 ð1þ j log t0j1=bBÞpðd4:24N ðt0ÞÞp:

Here, C depends only on d, p, and the constants bB,CB, a,CD,CE from Assumptions (B),

(D) and (E).

Proposition 4.30. For e > 0, let ce :¼ ð1=2Þðd � 1� aÞ þ e. For any e > 0, p � 1, we

have that
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sup
N� 0

E sup
t2ð0,1�

tpce jjA2
NðtÞjj

p

C0

� �
, E sup

t2ð0,1�
tpce jjA2ðtÞjjpC0

� �
� Ce,p < 1:

Moreover, we have that

lim
N!1

E sup
t2ð0,1�

tpce jjA2
NðtÞ � A

2ðtÞjjpC0

� �
¼ 0:

Here the constant Ce,p depends only on e, p, d, and the constants bB,CB, a,CD,CE from

Assumptions (B), (D) and (E).

Proof. The first result follows by combining Lemma 4.29 with Lemma A.1. The second

result follows by combining Lemma 4.29 with Lemma A.2. w

As previously mentioned, having controlled the C0 norm, we now move on to con-

trolling the C1 norm. We first show the following preliminary result, which will also

allow us to prove Lemmas 3.12 and 3.14.

Lemma 4.31. For all t0, t1 2 ð0, 1�, t0 < t1, x 2 T
d, we have that a.s.,

A
2ðt1, xÞ ¼ ðeðt1�t0ÞDA2ðt0ÞÞðxÞ

þ
ðt1�t0

0

ðeðt1�t0�sÞDXð2ÞðA1ðt0 þ sÞÞÞðxÞds: (4.6)

Proof. Note that the result is true if we replace A
2,A1 by A

2
N ,A

1
N , since A

2
N ¼ qðA1

NÞ by
definition (recall Definition 3.9). Taking N ! 1, we have (recall Definition 3.11) that

A
2
Nðt1, xÞ!

L2

A
2ðt1, xÞ: To finish, it suffices to show that

ðeðt1�t0ÞDA2
Nðt0ÞÞðxÞ!

P ðeðt1�t0ÞDA2ðt0ÞÞðxÞ,
and that

ðt1�t0

0

ðeðt1�t0�sÞD Xð2ÞðA1
Nðt0 þ sÞÞÞðxÞds!P

ðt1�t0

0

ðeðt1�t0�sÞDXð2ÞðA1ðt0 þ sÞÞÞðxÞds:

Note that by Proposition 4.30, E½jjA2
Nðt0Þ � A

2ðt0ÞjjC0 � ! 0: The first claim now follows

since

jjeðt1�t0ÞDðA2
Nðt0Þ � A

2ðt0ÞÞjjC0 � jjA2
Nðt0Þ � A

2ðt0ÞjjC0 :

For the second claim, define eA1
NðtÞ :¼ A

1
Nðt þ t0Þ for t 2 ½0, 1� t0�, and analogously for

eA1: Since A
1
Nð0Þ is smooth, we have that A1

N 2 P1
1 for all N � 0, and thus eA1

N 2 P1
1�t0

for all N � 0: We also have that eA1 2 P1
1�t0

, which follows since A
1 is a solution to

the heat equation (by Lemma 3.2). Now by (4.2), we have that jjeA1
N � eA1jjP1

1�t0

! 0:

The second claim follows by Lemma 2.12. w
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Corollary 4.32. On an event of probability 1, we have that (4.6) holds for

all t0, t1 2 ð0, 1�, t0 < t1, x 2 T
d:

Proof. Let E be the event that (4.6) holds for all t0, t1 in a countable dense subset of

ð0, 1�, and all x in a countable dense subset of Td: By Lemma 4.31, PðEÞ ¼ 1: Note that

A
2 has continuous sample paths (recall just after Lemma 4.28), and that

supt2½t0,1�jjA
1ðtÞjjC1 < 1 for all t0 2 ð0, 1� (recall (4.1)). The latter implies that for t0 2

ð0, 1�, if we define eA1ðtÞ :¼ A
1ðt0 þ tÞ, then eA1 2 P1

1�t0
, and thus by Lemma 2.6, we

have that qð2ÞðeA1Þ 2 P1
1�t0

as well. By combining the previous few observations, we

have that on the event E, the identity (4.6) extends by continuity to all t0, t1 2
ð0, 1�, t0 < t1, and x 2 T

d: w

Proof of Lemma 3.12. Let E be the probability 1 event given by Corollary 4.32. As in the

proof of Corollary 4.32, on the event E, we have that for all t0 2 ð0, 1�, t1 2 ½t0, 1�,
A

2ðt1Þ ¼ eðt1�t0ÞDA2ðt0Þ þ qð2ÞðeA1Þðt1 � t0Þ, (4.7)

where eA1ðtÞ :¼ A
1ðt0 þ tÞ for t 2 ½0, 1� t0�: Moreover, as noted in that proof, we have

that qð2ÞðeA1Þ 2 P1
1�t0

: Combining this with the fact that A2ðtÞ 2 C0ðTd, gdÞ for all t 2
ð0, 1� (so that s 7! esDA2ðtÞ is a continuous function ð0,1Þ ! C1ðTd, gdÞ for all t 2
ð0, 1�), we obtain that on E, the map t 7!A

2ðtÞ is a continuous function from ð0, 1� !
C1ðTd, gdÞ: We can modify A

2 to be identically 0 off E. w

Proof of Lemma 3.14. This follows by combining Corollary 4.32 with (3.1). w

We now turn to getting bounds on rA
2ðtÞ: We will omit the proofs of the following

few results, as they are all very similar to the proofs from Section 4.1. As done after

Lemma 3.12, we will assume that (after a suitable modification) t 7!A
2ðtÞ is a continu-

ous function from ð0, 1� ! C1ðTd, gdÞ: Even more, from the the proof of Lemma 3.12,

we may assume that (4.7) holds for all t0 2 ð0, 1�, t1 2 ½t0, 1�: The next lemma is the

analogue of Lemma 4.23.

Lemma 4.33. For any N � 0, the following holds. For l 2 ½d�, t 2 ð0, 1�, r, s 2
ðt=2, t�, x, y 2 T

d, we have that

jj@lA2
Nðt, xÞjjL2 � Ct�ð1=2Þðd�aÞ,

jj@lA2
Nðr, xÞ � @lA

2
Nðs, yÞjjL2 � Ct�ð1=2Þðd�aÞdtððr, xÞ, ðs, yÞÞ:

Here, C depends only on d and the constants a,CD,CE from Assumptions (D), (E).

The next lemma is the analogue of Lemma 4.24.

Lemma 4.34. There is a sequence d4:34N

� �
N� 0 of maps d4:34N : ð0, 1� ! ½0, 1� such that the

following hold. For any t 2 ð0, 1�, we have that limN!1d4:34N ðtÞ ¼ 0. Also, for any M �
N � 0, l 2 ½d�, t 2 ð0, 1�, r, s 2 ðt=2, t�, x, y 2 T

d, we have that
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jj@lD2
N,Mðr, xÞjjL2 � Ct�ð1=2Þðd�aÞd4:34N ðtÞ,

jj@lD2
N,Mðr, xÞ � @lD

2
N,Mðs, yÞjjL2 � Ct�ð1=2Þðd�aÞdtððr, xÞ, ðs, yÞÞd4:34N ðtÞ:

Here, C depends only on d and the constants a,CD,CE from Assumptions (D), (E).

Lemma 4.35. For any l 2 ½d�, we have that @lA2
Nðt, xÞ!

L2

@lA
2ðt, xÞ:

Proof. By Lemma 4.34, the sequence @lA
2
Nðt, xÞ

� �
N� 0

is Cauchy in L2, and thus it con-

verges in L2 to some random variable, call it Y. To finish, it suffices to also show that

@lA
2
Nðt, xÞ!

P
@lA

2ðt, xÞ: Toward this end, let t0 2 ð0, tÞ, and let eA1ðtÞ :¼ A
1ðt0 þ tÞ for

t 2 ½0, 1� t0�: We have that (by (4.7))

@lA
2ðt, xÞ ¼ ð@leðt�t0ÞD A

2ðt0ÞÞðxÞ þ ð@lqð2ÞðeA1Þðt � t0ÞÞðxÞ:

By construction, the above identity is also true with A
2,A1 replaced by A

2
N ,A

1
N for any

N � 0: Thus it suffices to show that

ð@leðt�t0ÞDA2
Nðt0ÞÞðxÞ!

P ð@leðt�t0ÞDA2ðt0ÞÞðxÞ,
jjqð2ÞðeA1

NÞðt � t0Þ � qð2ÞðeA1Þðt � t0ÞjjC1!P 0:

(Here eA1
NðtÞ :¼ A

1
Nðt0 þ tÞ for t 2 ½0, 1� t0�:) Note that by Proposition 4.30,

E½jjA2
Nðt0Þ � A

2ðt0ÞjjC0 � ! 0: We have that

jj@leðt�t0ÞDA2
Nðt0Þ �@le

ðt�t0ÞDA2ðt0ÞjjC0 �
jjeðt�t0ÞDA2

Nðt0Þ � eðt�t0ÞDA2ðt0ÞjjC1 :

We can then obtain the further upper bound

Cðt � t0Þ�1=2jjA2,a
N,jðt0Þ � A

2,a
j ðt0ÞjjC0 :

The first claim follows. For the second claim, note that by (4.2), jjeA1
N � eA1jjP1

1�t0

! 0:

The second claim then follows by Lemma 2.12. w

The following proposition is the analogue of Proposition 4.30. It can be proven by

first proving the analogues of Lemmas 4.27 and 4.29 for rA
2 (by using the various esti-

mates on rA
2 that we have shown). The proofs are omitted.

Proposition 4.36. For e > 0, let ce :¼ ð1=2Þðd � 1� aÞ þ e. For any e > 0, p � 1, we

have that

sup
N�1

E sup
t2ð0,1�

tpðð1=2ÞþceÞjjrA
2
NðtÞjj

p

C0

� �
� Ce,p < 1,

where we use the notation rA
2
1 :¼ rA

2. Moreover, we have that

lim
N!1

E sup
t2ð0,1�

tpðð1=2ÞþceÞjjrA
2
NðtÞ � rA

2ðtÞjjpC0

� �
¼ 0:

Here, Ce,p depends only on e, p, d, and the constants bB,CB, a,CD,CE from Assumptions

(B), (D) and (E).
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Proof of Proposition 3.15. The first two claims follow by combining Propositions 4.30

and 4.36. The final two claims follow by combining the first two claims with Lemma

3.8. w
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Appendix A: Suprema of stochastic processes

Let ðAðt, xÞ, t 2 ð0, 1�, x 2 T
dÞ be a g

d-valued stochastic process with continuous sample paths.

Lemma A.1. Let p � 1. Suppose that there is some C0, c, b such that the following holds. For all
t0 2 ð0, 1�, we have that

E sup
t2ðt0=2,t0�,x2Td

jAðt, xÞjp
� �

� C0t
�pc
0 ð1þ j log t0jbÞp:

Then for any e > 0, there is some non-increasing function d : N ! ½0,1Þ depending only on
p,C0, b, e such that for any integer k0 � 0, we have that
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E sup
t2ð0,2�k0 �,x2Td

tpðcþeÞjAðt, xÞjp
� �

� dðk0Þ:

Moreover, dðk0Þ ! 0 as k0 ! 1:

Proof. Let k0 � 0: We may bound

E sup
t2ð0,2�k0 �,x2Td

�
tpðcþeÞjAðt, xÞjp� �

X1

k¼k0

E sup
t2ð2�ðkþ1Þ ,2�k�,x2Td

tpðcþeÞjAðt, xÞjp
� �

,

which may be further bounded by

C0

X1

k¼k0

ð2�kÞpðcþeÞ2pkcð1þ ðk log 2ÞbÞp:

Thus we may set dðk0Þ to be the above. The fact that limk0!1dðk0Þ ¼ 0 follows because dð0Þ <
1 combined with dominated convergence. w

Now suppose we have a sequence ðANðt, xÞ, t 2 ð0, 1�, x 2 T
dÞ

� �
N� 0 of g

d-valued stochastic

processes with continuous sample paths.

Lemma A.2. Let p � 1. Suppose there is a sequence dNf gN� 0 of functions dN : ð0, 1� ! ½0, 1�,
and C0, c, b, such that the following hold. For all t 2 ð0, 1�, we have that limN!1dNðtÞ ¼ 0. Also,
for all t0 2 ð0, 1�, N � 0, we have that

E sup
t2ðt0=2,t0�,x2Td

jANðt, xÞjp
� �

� C0t
�pc
0 ð1þ j log t0jbÞpdNðt0Þ:

Then for any e > 0, we have that

lim
N!1

E sup
t2ð0,1�,x2Td

tpðcþeÞjANðt, xÞjp
� �

¼ 0:

Proof. Fix e > 0: Let k0 � 0: For N � 0, we may bound

E sup
t2ð0,1�,x2Td

tpðcþeÞjANðt, xÞjp
� �

� I1,k0 ,N þ I2,k0 ,N ,

where

I1,k0 ,N :¼ E sup
t2ð0,2�k0 �,x2Td

tpðcþeÞjANðt, xÞjp
� �

,

I2,k0 ,N :¼ E sup
t2ð2�k0 ,1�,x2Td

tpðcþeÞjANðt, xÞjp
� �

:

By Lemma A.1, we have some function d : N ! ½0,1Þ such that dðkÞ ! 0 as k ! 1, and such
that supN� 0I1,k0 ,N � dðk0Þ: Next, observe that

I2,k0 ,N �
Xk0�1

k¼0

E sup
t2ð2�ðkþ1Þ ,2�k�,x2Td

tpðcþeÞjANðt, xÞjp
� �

� C0

Xk0�1

k¼0

2�pkðcþeÞð2�kÞ�pcð1þ jk log 2jbÞpdNð2�kÞ:

Since k0 is finite, and dN converges pointwise to 0, we obtain that for any fixed k0,
limN!1I2,k0 ,N ¼ 0: We thus obtain for any fixed k0,
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lim sup
N!1

E sup
t2ð0,1�,x2Td

tpðcþeÞjANðt, xÞjp
� �

� dðk0Þ:

Using that dðk0Þ ! 0 as k0 ! 1, the desired result now follows. w

For t0 2 ð0, 1�, let Tt0 :¼ ðt0=2, t0� � T
d: Recall the notation from Definition 4.4, in particular

dt , Nt,e: The following theorem is an immediate consequence of [32, Theorem 3.2]. Thus, the
proof is omitted. See the complete version of this paper on arXiv for the proof.

Theorem A.3. Let ðV, j 	 jÞ be a normed finite-dimensional vector space. Let t0 2 ð0, 1�. Let Tt0 ¼
ðt0=2, t0� � T

d. Let ðXt,x, ðt, xÞ 2 Tt0Þ be a V-valued stochastic process with continuous sample
paths. Suppose for some constants C1 � 0, b > 0, we have that for all ðr, xÞ, ðs, yÞ 2 Tt0 ,

PðjXr,x � Xs,yj > udt0ððr, xÞ, ðs, yÞÞÞ � C1 exp ð�ubÞ, u � 0:

Then for any p � 1, we have that

E sup
ðr,xÞ2Tt0

jXr,xjp
� �

� C2 sup
ðr,xÞ2Tt0

E jXr,xjp
� �

þ C2


ð1

0

ð log Nt0 ,eÞ1=bde
�p

:

Here C2 depends only on V, C1, b, and p.

Appendix B: Concentration of Gaussian quadratic forms

The proof of the following lemma is a fairly standard Chernoff bound argument. Thus, it is omit-
ted. See the complete version of this paper on arXiv for the proof.

Lemma B.1. Let Q be a quadratic form in centered Gaussian random variables. That is, Q is of
the form

Q ¼ XTMX ¼
Xn

i,j¼1

XiMijXj,

where n � 1, X ¼ ðX1, :::,XnÞ is a mean 0 Gaussian random vector, and M is an n� n matrix.
Then for any u � 0,

PðjQ� EQj > uÞ � 2e3=2 exp



� u

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðQÞ

p
�
:
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