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data, which includes the 3D Gaussian free field. The main idea,
which goes back to work of Bourgain as well as work of Da Prato-
Debussche, is to decompose the solution into a rougher linear part
and a smoother nonlinear part, and to control the latter by probabil-
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1. Introduction

Take any dimension d > 2. Let G be a compact Lie group and let g denote the Lie
algebra of G. We assume that G C U(N) for some N > 1. A connection on the trivial
principal G-bundle T x G is a function A : T¢ — g% that is, a d-tuple of functions
A= (A ....,Ay), with A; : T — g for 1 < i < d. Note that A can also be viewed as a
g-valued 1-form on T¢. Thus, in this paper, we will use “connection” and “l-form”
interchangeably.

The main object of this paper is to prove local existence of solutions to the Yang-
Mills heat flow with random distributional initial data. The Yang-Mills heat flow
(also often called the Yang-Mills gradient flow, or Yang-Mills heat equation) is the
following PDE on time-dependent connections A(#) (in the following, we omit the
time parameter f):

d
OiA; = AA; + Z(_ajiAj + [Aj, 20;A; — 0:A; + [Aj, Al
=1
+[0454i]), 1 <i<d

(YM)

This equation can be obtained as the gradient flow of a certain action on the space of
connections, analogous to how the heat equation can be obtained as the gradient flow
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of the Dirichlet energy. The Yang-Mills heat flow has played a central role in various
areas of mathematics, starting with the paper by Atiyah and Bott [1]. See [2, Section 1]
for a historical overview of this equation and its many applications in mathematics and
physics, as well as for an encyclopedic account of existing results. See also [3-9] for
some newer results.

Actually, in this paper, we will not directly work with (YM), but rather a certain
well-known variant which is often treated as equivalent to (YM). This variant is the fol-
lowing PDE:

d
DA = AA; + ) [Aj20,A1 — OiA + [Ap A, 1< i < d. (ZDDS)
=1

We will refer to this as the ZDDS equation, named after the authors associated with
this equation — Zwanziger [10], DeTurck [11], Donaldson [12], Sadun [13]. For a dis-
cussion as to why (ZDDS) is equivalent to (YM), see, e.g., [14, Section 1]. The advan-
tage of (ZDDS) is that it is a parabolic equation, and thus local existence is often easier
to establish for (ZDDS) than (YM). Indeed, one of the main methods for showing local
existence of (YM) for various types of initial data is to first show it for (ZDDS), and
then use a well-known procedure to obtain solutions to (YM) out of solutions to
(ZDDS) (see, e.g., [3, Section 1.3]).

By now, local existence of solutions to (ZDDS) has been established for various
classes of initial data — again, see the survey [2], as well as [3, 6]. However, as far as
we can tell, there are no results for distributional initial data. In particular, there are no
results which consider random distributional initial data that is too rough to be handled
purely by deterministic methods. The present paper seeks to address this case. Our
motivation is twofold. For one, we think that this case is of intrinsic interest — random
initial data has been studied for a variety of PDEs, such as the nonlinear Schrodinger
equation [15-19], the nonlinear wave equation [20, 21], and the Navier-Stokes equa-
tions [22]. (This list of references is woefully incomplete. See, e.g., [17, 19] for more.)

Second, we originally came upon this problem through the companion work [23]. In
that paper, we give a proposal for constructing 3D Euclidean Yang-Mills theories (fol-
lowing a suggestion of Charalambous and Gross [3]), and in particular, we construct
and study a state space that may potentially support 3D Yang-Mills measures. As evi-
dence of this possibility, in [23] we apply the results of the present paper to give nontri-
vial elements of the state space, and additionally to give a road map for completing the
program and actually constructing 3D Yang-Mills measures. See [23] for more back-
ground and discussion.

1.1. The main result

We begin to build toward the statement of the main result, Theorem 1.19. In this paper,
we will often deal with functions A(t, x) of both ¢ € [0,00) and x € T%. In an abuse of

notation, for t € [0,00), we will write A(f) to denote the function on T“ given
by x— A(t, x).
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Definition 1.1. Let 0 < T < co. We say that A is a solution to (ZDDS) on [0,T) if
A€ C*([0,T) x T% g%) and A satisfies (ZDDS) on (0, T) x T¢. Similarly, we say that A
is a solution to (ZDDS) on (0,T) if A € C*((0,T) x T% g%) and A satisfies (ZDDS)
on (0, T) x T

We next state the following classical theorem and lemma, which give local existence
and uniqueness for solutions to (ZDDS) with smooth initial data. Since these results
concern smooth initial data, they are not new and quite classical. For instance, the local

existence and regularity results stated below can be obtained by combining the various
general results of [2, Sections 17.4, 17.5, and 20.1]. Thus, the proofs will be omitted.

Theorem 1.2. Let A® be a smooth I-form. There exists T>0 and a solution A €
C*([0,T) x T¢, %) to (ZDDS) on [0, T) with initial data A(0) = A°.

Lemma 1.3. Let T> 0. Suppose that A,A € C°([0,T) x T% g%) are solutions to (ZDDS)
on [0, T) such that A(0) = A(0). Then A = A.

Because of Lemma 1.3, in circumstances where the smooth initial data has been
specified, we will usually say “the solution to (ZDDS)” rather than “a solution to
(ZDDS)”.

Before we proceed, we need some notation. For integers n > 1, let [n] := {1,...,n}.
For vectors v € R” for some n, we write |v| for the Euclidean norm of v, and we write
|V|o = max; <;<,|v;| for the £*° norm of v. Next, since we assumed that G C U(N),

the Lie algebra g is a real finite-dimensional Hilbert space, with inner product given by
(S1,82) = Tr(S;S2) = —Tr(S5:S2) (note that §* = —S§ for all S € g, because G C U(N)).

Definition 1.4. Let d, be the dimension of g. Throughout this paper, fix an orthonor-
mal basis (8%, a € [dy]) of g.
We may thus equivalently view a (g-valued) 1-form A :T¢ — g% as a collection
(Af,a € [dy],j € [d]) of functions A7 : T¢ — R, satisfying the relation
Aj= Y Ars, jeld. (1.1)
ue[dﬂ]
Next, we recall the notation for Fourier coefficients. Let {e,}, 7 be the Fourier basis

on T“. Explicitly, if we identify functions on T? with 1-periodic functions on RY, then
e,(x) = é2™*. Given f € L'(T% R), define the Fourier coefficient

f(n) = JTdf(x)mdx cC, ne7d

Note (since f is R-valued) that ]A((—n) :j?(n) for all n € Z?. We note that this all gener-
alizes to the case where f takes values in some finite-dimensional normed linear space
(V,]-]), in which case ]?(n) € VC, where VC:={v +iv:v,v, €V} is the

“complexified” version of V, with norm |v; + ivs| := (|n1|* + [v2|*)"/*. Moreover, defin-

ing v; + iv, := v; — iv,, we have that jAf(—n) :f(n) for all n € Z°.
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Throughout this paper, given a normed linear space (V,| - |,), we will abuse notation
and write |v| instead of |v|,, for the norm of v € V. Similarly, when (V,(-,-),) is an
inner product space, we will write (v;,v,) instead of (vy,v;),,. The main examples of

this are when V is one of g, , g%, (g"’)(C (note that the inner product that we defined
on g induces inner products on the latter three spaces).

Definition 1.5. For N > 0, define the Fourier truncation operator Fy on distributions
as follows. Given a distribution ¢ on T, define Fy¢ € C*(T¢) by

Fyo = Z d(n)e,,
nezt
Inc <N

where |n|_ is the > norm of n. (Here $(n) = (¢,e_,) for n € Z4.)

Definition 1.6 (Quadratic forms). Let A be a smooth 1-form. Let I := [d,] x [d] x T9.
Let 4 be the measure on I defined by taking the product of counting measure on [d,],

counting measure on [d], and Lebesgue measure on T?. We say that K:I> — R is a
smooth function if for any aj,a, € [dy], ji,jo € [d], the function on (T9)* defined by
(x,y) — K((a1,j1,X), (a2, j2, ¥)) is smooth. In this case, we write K € C*(I%,R). Given a
smooth function K € C® (HZ,R), define

(A% KA®) := J JA]O (x)K (i1, i) AL (y)dA(ir)dA(i2) € R, (1.2)
IJI

where i} = (ay,j1,%), i2 = (42,2, ¥)-
We next begin to state the assumptions that are involved in the statement of our

main result, Theorem 1.19. First, we make some definitions.

Definition 1.7. By a random g%-valued distribution A°, we mean a stochastic process
(A% @), ¢ € C°(T%R)) of g%valued random variables such that for all ¢,,¢, €
COO(']I'd, R), ¢c1,¢; € R, we have that

(AO’ a1y + ) = (AO’ $) + CZ(AO) $,). (1.3)

Remark 1.8. There are several different ways one can view A°. By linearity, we may
also view A° as a (g9)C-valued stochastic process ((A, $),p € C*(T%,C)) indexed by
C-valued test functions, which satisfy (1.3) for ¢, ¢, € COC(’]Td,C) and c¢;,c, € C, and
which also satisfy (A%, ¢) = (A, ¢) for all ¢ € C*(T% C).

Also, as is the case with 1-forms, we may equivalently view A° as a R-valued process
((A](-)’“, )¢ € C*(T% R),a € [dy],j € [d]). Then again by linearity, we may view A° as
a C-valued process ((A](»)’“, }), ¢ € C*(T9,C),a € [dy).j € [d]).

We will use these different viewpoints (i.e., g“-valued, (gd)c—valued, R-valued, C-val-
ued) interchangeably. As much as possible, we will try to take the vector-valued (i.e. g¢
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-valued or (gd)c—valued) viewpoint, but we will find it convenient later on (in particular
in Section 4.2) to take the scalar-valued viewpoint for certain arguments.

In what follows, let A° be a random gd—valued distribution.

Definition 1.9 (Fourier truncations). Let N > 0 be a finite integer. Define the Fourier
truncation A% := FyA®, which is a g?-valued stochastic process with smooth sample
paths.

Remark 1.10. Since A?, is a random smooth 1-form, we may (recalling (1.1)) equiva-
lently view A}, as a R-valued stochastic process with smooth sample

paths AY, = (A%Z(x),a € [dyl,j € [d],x € TY).

Definition 1.11 (Fourier coefficients). Define the Fourier coefficients of A° by

A'(n) == (A%e_,), ac [dy].jeld,nez

Note that A’(n) = A°(—n) for all n € Z¢.

Definition 1.12. For ¢ € C*(T%R), define g, := (E[|(A% ¢)|*])%. For K€
C=(I%,R), let oy x = (E[(A%, KA%)?))"/? (recall Definition 1.6).

Definition 1.13. Let o € (0,d), and define the bivariate distribution

1
G*(x,y) :== Z Wen(x —y).
nezd
n#0

Define Gj(x) := G*(0,x).

Remark 1.14. Note that G* is the Green’s function for the fractional negative Laplacian

(—A)“/ > on T¢. In particular, G* is the Green’s function for — A (which is the covari-
ance function of the GFF, to be introduced a bit later).

We quote the following lemma giving properties of G*. See [24, Theorem 2.17] for a
proof.

Lemma 1.15. Let o € (0,d). The distribution G% is smooth on T¢ — {0}, with the follow-
ing properties.

(1) G} is bounded from below.
(2)  As x — 0, we have that G}(x) ~ dr(0, x) """ Here “~” means that the ratio
tends to a positive constant.

We now make the following assumptions on A°. One should think of these assump-
tions as saying that A° qualitatively behaves like a Gaussian field. Indeed, the assump-
tions were all abstracted from properties of the Gaussian free field, which will be
introduced later.
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(A)

(B)

(©

(D)

(E)

(L* regularity). For all ¢ € C*(T% R), we have E[|(A°, $)|*] < co. Moreover,
we have that as N — oo, E[|(A% ¢) — (A%, $)[°] — 0.

(Tail bounds). There exist constants Cg > 0 and iz > 0 such that the following
hold. For any ¢ € C* (']I'd, R), we have that

P(|(A% ¢)| > u) < Co exp (—(u/oy)’/Cp), u > 0.

Additionally, for any N > 0, and for any smooth function K € C*(I%,R) such
that K((a,j1,x), (@ /2, y)) = 0 for all a € [dy], j1,j2 € [d], x,y € T, we have that

P(|(A%, KAR)| > u) < Cp exp (—(u/onk)™/Cp), u > 0.

(Translation invariance of covariance function) There is an integrable function
p: (T — L(g% g%) (here L(g% g?) is the space of linear maps g% — g%) such
that for any test functions ¢,,¢, € C°(T%R), and any linear map
K:g?— ¢4

EL(A% ) K% 0] = || 61000 Tr(Kp(o9) ey

d

Moreover, we assume that p is translation invariant, i.e. p(x,y) = p(x — »,0) =
p(0,y — x) for x,y € T?. Here, Tr(Kp(x,y)") is (for instance) computed by rep-
resenting M, p(x,y) as matrices with respect to the basis of g? induced by the
orthonormal basis (%, a € [dy]) of g. Similarly, “integrable” in this context can
be taken to mean that all matrix entry functions of p are integrable.
(Covariance is only as singular as G*). For some o € (0,d), there is some con-
stant Cp such that for any x,y € T, x # 9,

Tr(p(x.y))| < Co(G*(x,y) + Cp).

We assume without loss of generality that G* + Cp > 1 (this is possible since
Gj is bounded from below, by Lemma 1.15).

(Four product assumption). There is some constant Cg > 0 such that the fol-
lowing holds. Let aj,a; € [dg], ji.jo € [d], ¢1> Py, 3, Py € C°(T9,C). Assume
that a #ay.  Let  Zy = (A", 1), Zo = (A)™, ), Zs = (A)™, ¢3), Zs =
(AJ(-)Z’“Z, ¢4). Then

E[2.27:7,]| < Ce([B[2Z]E[2,Z4] | + [E[2.Z]E[2.Z:])).

Remark 1.16. Assumption (C) is motivated by the following fact. Let X, Y be random
vectors in R”, and let X := E[XY'] (so X is an n X n matrix). Then for any n x n matrix
M, we have that E[X'MY] = Tr(MX").

Also, to be more concrete, instead of working with the function p in Assumption

(C), one may work with scalar functions p®® : (T9)* — R for aj,a, € [dy), j1.jo € [d],

J1j2

which are defined by requiring that

The function p;

B[, 60 0n)] = || aung e)ba)dsdy

2% is then interpreted as the ((ai,j1), (a2,2)) matrix entry of p.
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Remark 1.17. In fact, we don’t really need to assume that o < d; G} can be defined for
o > d as well. However, we will just assume that o € (0,d), because this will simplify
our proofs later on. In any case, the regime o € (0,d) is the more nontrivial setting,
since G becomes less singular as o increases (see, e.g., [24, Section 6.1]).

Remark 1.18. In assumption (E), it is important that we don’t have the term
E[Z12,)E[Z3Z,), because this term will lead to divergences in Section 4.2.

We now state the main result of this paper.

Theorem 1.19. Let A° be a random g%-valued distribution that satisfies Assumptions
(A)-(E). Moreover, suppose that Assumption (D) is satisfied with o€ (max{d—
4/3,d/2},d). Then there exists a g%-valued stochastic process A = (A(t,x),t € (0,1),x €
T9), and a random variable T € (0,1], such that the following hold. The function
(t,x)— A(t,x) is in C°((0,T) x T% g), and moreover, it is a solution to (ZDDS) on
(0,T). Also, E[T?] < oo forallp > 1.

The process A relates to A° in the following way. There exists a sequence {Tn}y-, of
(0, 1]-valued random variables such that the following hold. First, for any p > 1, we have
that supy - E[Ty/] < oo, and that E[|Ty' — T[] — 0. Also, let {A%}, ., be the
sequence of Fourier truncations of A° (defined in Definition 1.11). Then there is a
sequence {An}ys, of g%-valued stochastic processes Ay = (Ay(t,x),t €[0,1),x € T)
such that for each N > 0, the function (t,x)+ Ax(t,x) is in C°([0, T,) x T% g%) and is
the solution to (ZDDS) on [0, T,,) with initial data Ax(0) = AY,.

Finally, for any k € {0,1}, p > 1, 6 € (0,1),& > 0, we have that

ImE[ s HOBOEI ) AGIL] =0
te(0,(1—

Remark 1.20. A closely related result was obtained by Chandra et al. as part of their
recent work [25] - see Section 1.2 and Remarks 2.8 and 3.15 in their paper for some
similarities and differences. While there is some variation in the ways the results and
the proofs are phrased, ultimately we are both (as far as we can tell) exploiting the
same phenomenon, which is probabilistic smoothing, which we describe next.

Remark 1.21. The assumption that o > max{d —4/3,d/2} ensures that A° is not too
singular, so that there is no need for renormalization when defining the solution to
(ZDDS) with initial data A°.

We now give a quick overview of the proof of the local existence part of Theorem
1.19. The proof of the other part of the theorem has a similar main idea. As usual with
local existence for parabolic PDEs, we would like to try to realize the solution A as the
fixed point of some contraction map W. Then, we could for instance obtain A by taking
the limit of W(")(A!), where W(" is the n-fold composition of W, and A! is the linear
part of A, i.e., A! is the solution to the heat equation with initial data A°. However, the
problem is that the initial data A® is too rough, so that deterministic arguments break



216 @ S. CAO AND S. CHATTERJEE

down already in the first step of the Picard iteration — that is, when trying to obtain
estimates on W(A') by deterministic (worst-case) methods, we get divergent integrals.

The saving grace is that W(A') behaves better than the worst-case. So instead of
bounding W(A') deterministically, we bound it probabilistically, which allows us to
take advantage of probabilistic cancelations which occur. To give an analogy with an
elementary example, note that if {X,},-, is a sequence of i.i.d. random variables with
mean 0 variance 1, then the series > ° X, /n converges a.s. (by Kolmogorov’s two ser-
ies theorem). However, if we were to try to bound this deterministically, the sum
S>> n! =00 would inevitably appear. Analogously, we show that W(A') can be
defined in a probabilistic sense, and in fact the difference W(A') — A' is more regular
than the linear part A'. Once this regularity gain is established, we can then obtain the
local existence of A by a deterministic fixed point argument (i.e., Picard iteration).

This general idea to exploit the effects of probabilistic smoothing was (as far as we
can tell) first used by Bourgain [15, 16] to analyze the nonlinear Schrodinger equation
with GFF initial data. A similar idea was later used by Da Prato and Debussche [26, 27]
in the stochastic PDE setting. There is by now a wide body of work building on this
idea in many different settings — see [17, Section 1.2.2] for a much more complete list
of references.

We next introduce the Gaussian free field (GFF), which will be the main example of
random distributional initial data in this paper. Standard references are [28-30]. A d-
dimensional mean zero GFF on T“ is a mean zero Gaussian process h = ((h, ¢), ¢ €
C®(T%R)) such that for all test functions ¢,, ¢, € C°(T%R), the covariance is given

by

El( 1) )] = 3 — b1 (n) oy (). (L4)

nezt

n#0

n|

For N > 0, let the Fourier truncation hy = (hy(x),x € T%) be the mean zero
Gaussian process with smooth sample paths defined as hy := Fyh. By standard proper-
ties of Fy and the GFF, we have that for any ¢ € C(T%,R), (hy,$) — (h, ¢) both as.
and in L® (actually, the a.s. convergence holds simultaneously for all ¢). Therefore hy
converges to h in a natural sense. (Another viewpoint is that if we view / as a random
element of a negative Sobolev space, then hy a.s. converges to h in that space.)

Since (ZDDS) is a PDE on 1-forms, the initial data we take must also be a 1-form.
Recalling that we may view a 1-form A as a collection of functions (Af,a € [dy],j € [d])
satisfying (1.1), this motivates the following definition of the d-dimensional g%-valued
GFF. We say that A° is a d-dimensional g?-valued GFF if it is a collection of stochastic
processes

A" = (AY",a € [dy).j € ld]),
where A](-)’“,a € [dy).j € [d] are independent d-dimensional GFFs. This is g?-valued,

because given ¢ € C°(T% R), we may define a g*-valued random variable (A°, ¢) =
((A°, ®);»j € [d]) through the relation (1.1).
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As previously mentioned, the assumptions of Theorem 1.19 were abstracted from
properties of the GFF. Thus, naturally, we will be able to obtain the following corollary
of Theorem 1.19.

Corollary 1.22. Let d=3, and let A° be a §>-valued GFF on T°. Then the statement of
Theorem 1.19 applies to A°.

Remark 1.23. The above corollary will also hold for d=2 by a simpler deterministic
argument. However, once d > 4, the same result does not necessarily apply, because
Assumption (D) will only be satisfied for o small (e.g., ® =2 when d=4), which is to
say that the GFF becomes too singular once d > 4.

1.2. Additional notation

We introduce some additional notation. Throughout this paper, C will denote a generic
constant that may depend only on G. It may change from line to line, and even within
a line. To express dependence on some additional parameter, say o, we will write C,. In
these situations, we always understand C, to also depend on G. Similarly, if we say that
C, depends only on a, we really mean that C, depends only on « and G.

The metric on T¢ (that is, the metric induced by the standard Euclidean metric of RY)
will be denoted by dr.. Explicitly, if IT : R? — T is the canonical projection map, then
dpa(x,y) == inf{|xo — yo| : I1(xo) = x,I1(yo) = y}. Here |xg — yo| is the Euclidean dis-
tance between xg, yp € R%.

Fix a real finite-dimensional normed linear space (V,|-|) (for instance, we may take
V =g or g%). For r > 0, we write Cf(’]I‘d, V) for the usual Holder space and for p > 0,
we write LP(T%, V) for the usual L? space. We will write the respective norms as ||f|
and |[[f]|, for brevity.

Let (e),., be the semigroup generated by the Laplacian A. Explicitly, given f €
L'(T% V) and t> 0, we have that

e = Ze‘4n2|”‘zt}’\(n)en. (1.5)

nezt

Cr

Additionally, e'f has an explicit representation in terms of convolution with the heat
kernel @, ie., for all £>0, x € T% we have that

@00 = | 101005 =)y, (1.6
where
D(t,x) := Ze_“"z'"‘zten(x), t>0,xc T (1.7)
nezd

We also know that ®@(t,-) is a probability density, and so it is non-negative, and thus
we have the following monotonicity property for integrable R-valued functions f, g
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fl < g=lef] < ey (1.8)

(In the above, |f| < g means |f(x)| < g(x) for all x € TY — actually, a.e. x € T suffi-
ces — and similarly for |eAf| < efAg.)
Recall the orthonormal basis (8% a€[dy]) of g from Definition 1.4. Let

(o, a,b,c € [dy]) be the corresponding structure constants, i.e.,

[s7,8"] = 3 potese. (1.9)

ce [dg]

By starting from the definition above (and using that the inner product is given by
(S1,82) = Tr(S;Sy) = —Tr(S:S1)), we obtain for a,b,c € [d,], ([$%, 5], = ([, §,8%).
This shows that f%¢ = fb_ Proceeding similarly, we may obtain

fabc :fcab — _facb — _fbac — _fcba :fbca. (110)

Remark 1.24. Even though we are introducing structure constants here, the results of
this paper do not really rely on the specific bracket structure of (ZDDS). Indeed, we
expect that the arguments could be adapted to the case where g is replaced by a finite-
dimensional normed algebra, and (ZDDS) is replaced by an equation of the form

OA = AA + A(VA) + A>.

1.3. Organization of the paper

We now give a summary of the rest of the paper. In Section 2, we state Theorem 2.9,
which is a deterministic result that gives local existence of solutions to (ZDDS) with dis-
tributional intial data, assuming certain conditions are met. We also state various other
useful deterministic lemmas in Section 2.1. Given Theorem 2.9, the remainder of the
paper is then concerned with showing that the conditions of the theorem are indeed
met, for random distributional initial data with certain properties, as listed just before
Theorem 1.19. Sections 3.1 and 3.2 collect the main intermediate steps toward the proof
of Theorem 1.19. Given these intermediate steps, Theorem 1.19 is proven in Section
3.3. Corollary 1.22 is obtained as an application of Theorem 1.19 in the same section.
In Section 3.4, we state and prove Proposition 3.18, which is a variant of Theorem 1.19
that will be used in [23]. Sections 4.1 and 4.2 contain the technical arguments needed
to prove the intermediate results of Sections 3.1 and 3.2.

We will reiterate this at several later points, but we also mention here that the proofs
of many intermediate results in this paper are omitted. For the full proofs, please see
the complete version of this paper on arXiv.

2. Deterministic results

In this section, we collect the deterministic results that are needed later on in the paper.
We emphasize here that the results of this section may be read independently of the
rest of the paper (although of course the main reason for these results is to use them to
deduce Theorem 1.19). The main result of this section (Theorem 2.9) shows local
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existence of solutions to (ZDDS) with distributional initial data. The proofs of most
results in this section are small variations of proofs of classical results in the theory of
local existence for nonlinear parabolic PDEs, and thus they will be omitted. For full
proofs, please see the complete version of this paper on arXiv. We first define the nota-
tion that will be needed in Theorem 2.9 and in other parts of this paper.

Definition 2.1. For r > 0, T >0, define the path space P’ to be the space of continu-
ous functions A : [0, T] — C'(T%, g%). Define the norm || - |

pron Pp by

Al = sup [[Allg 4 € P
0<t<T
Note that (P, || - H’P’T) is a Banach space.

Definition 2.2. Let y > 0, T> 0. Define the path space Q. to be the space of continu-
ous functions A : (0, T] — C'(T% g%) such that

1Al = sup £l|A(#)]|co + sup VDA |1 < oo
te(0,T] te(0,T]

For R > 0, define Q?)R = {A €9 ||AHQ;% < R}.

Remark 2.3. We thank one of the referees for pointing out here that the regularity par-
ameter y is flipped, in that larger y allows for more irregularity.

By standard arguments, one can show that (Q7, || - ||Q} ) is a Banach space.

Definition 2.4. Given a 1-form A € C'(T% g%), define X(A) € C°(T? ¢¢) by X(A) =
(Xi(A),i € [d]), where

Xi(A) = [Aj20/Ai — OiA; + A3 All], i€ ldl.
jeldl

Define X?(A), X®)(A) € C°(T¥, g?) as follows. For i € [d], let

XP(A) =D [4p204; - 0iA]], XP(A) = [A) A Al
jeld] jeld]

Note by construction that X(A) = X?)(A) + XB)(A).

Definition 2.5. Let T>0. Let j € {2,3}. Let A:[0,T] — C'(T% g% be a continuous
function. Suppose that

T
J et X0 (A(s))]| o ds < oo 2.1)
0

Define p'(A) : [0, T] — C(T¢, g%) by
PP (A)(t) == Jte(t_s)AX(j) (A(s))ds, tel0,T].
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We say that pi)(A) is well-defined for A if (2.1) holds. Now if p¥)(A) is well-defined
for A for j=2, 3, define p(A) : [0, T] — C'(T% ¢%) by p(A) := p@(A) + p®(A). In this
case, we say that p(A) is well-defined for A. Note since X = X) 4+ X©®), we have that

t
p(A)(t) = J e"IAX(A(s))ds, te[0,T).
0
We also will use these definitions in the case where [0,T] is replaced by (0, T]
everywhere.

The next lemma shows that p(A) is well-defined for A if A € P}, and moreover
that p(A) € Py.

Lemma 2.6. Let T € (0,1]. Let A € P}. Then p)(A) is well-defined for A for j € {2,3},
and moreover p?)(A), p® (A) € PL. Thus also p(A) € P}.

Definition 2.7. Let A': (0,1] — C'(T% g% be such that Al(t) = el=92Al(s) for all
s,t € (0,1], s<t. Let B':(0,1] — C'(T% g%) be a continuous function. We say that B'
is a first nonlinear part for A' if the following holds. For t, € (0,1), let Al(t) :=
Al(to +1t), B (t) := B'(ty +1t), t € [0,1 — t;). Then for all t, € (0,1) and all t&
[0,1 — to], we have that B'(t) = e"*B'(0) + p(A)(1).

Remark 2.8. To see where Definition 2.7 comes from, suppose A° is a smooth 1-form,
and let A(t) = e"*A°, t € (0,1]. Then one can verify that B' = p(A!) is a first nonlinear
part of A'. Definition 2.7 abstracts this relation to the setting where p(A!) is not neces-
sarily well-defined, which will be the case for us, because we are considering (random)
distributional initial data.

We can now state the main result of this section. This theorem is the deterministic
part of the argument outlined just after the statement of Theorem 1.19. In essence, this
theorem says the following. In usual local existence arguments via contraction mapping,
given A' as in Definition 2.7, we would want to bound p(A'!), and moreover, show that
p(A!) is more regular than A'. However, for us, p(A!) will not even be well-defined,
because A' will be too rough. On the other hand, if we are able to obtain a proxy B'
for p(Al), such that B! is more regular than A', then we can still run a fixed point
argument to obtain a solution to (ZDDS). If it helps, one can think of this strategy as
running a fixed point argument on an “enhanced space” consisting of pairs (A!, B!),
instead of just A",

Theorem 2.9. Let 7y, € [0,1/2), y, € [0,1/4) be such that y, + 7, < 1/2. Then, there is a
continuous non-increasing function t,,, : [0,00) — (0,1] (which only depends on y,,7,,d)

such that the following holds. Let A : (0,1] — C'(T9,g%) be such that A'(t) = e"92A(s)
for all s,t € (0,1], s<t. Suppose A' € Q}'. Suppose that there exists B € Q> which is a
first nonlinear part for A'. Let R := max{||A1||Q'i'1, ||B1||Q;1‘z }, and let T := 1, (R). Then
there exists B € Q' such that A := A' + B is in C*((0,T) x T% g%), and moreover A is
a solution to (ZDDS) on (0, T).
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Additionally, we have continuity in the data, in the following sense. Suppose that we
C QI such that for each n > 1, AL(t) = e""92AL(s) for all

n>1 —
s,t € (0,1], s<t. Suppose we have a sequence {B;}Wl C QF, such that for each n >

1, B, is a first nonlinear part for A,. Suppose that ||A, — Alllgn — 0 and |[|B, —
Bl||g«l‘2 — 0. Let R, := max{||A,11||Q-{1, ||B}1||Q~,lvz }, and T, := 1,,,(R,). For each n > 1, let

have a sequence {Al}

B, € Q%SRn be as constructed by the first part of the theorem, so that A, := Al + B, is a
solution to (ZDDS) on (0, T,). Then for all Ty € (0,T), we have that ||B, —B||Q»Tz — 0,
0
which implies that |[Ay — A| gresiniy — 0.
To

We next state several auxiliary results that arise from the proof of Theorem 2.9.

Lemma 2.10. Let y,,7,,7T,,,, be as in Theorem 2.9. Then

172

T"/]”/Z(R)_l S C‘/M’z,d(l +R4/(1_2maX{71’VZ}>)’ R 2 0.

The following lemma shows that for smooth initial data A° the solution to (ZDDS)
given by Theorem 2.9 coincides with the solution to (ZDDS) with initial data A° (which
is given by Theorem 1.2).

Lemma 2.11. Let y;,9,,1,,, be as in Theorem 2.9. Let A° be a smooth 1-form. Let
Al(t) = A% t > 0. Let B' = p(A"). (Recall that by Remark 2.8, B' is a first nonlinear
part for A'.) Let R := max{||A1||Q:1‘1, 1B | g2 }, T :=1,,,(R) > 0. Then, there exists A €

C®([0,T) x T4, %) such that A is the solution to (ZDDS) on [0,T) with initial data

A(0) = A°. Moreover, on (0,T) x T% A is equal to the solution to (ZDDS) given by
Theorem 2.9.

2.1. Useful lemmas

In this section, we introduce some deterministic lemmas which will be needed later. For
the ﬁrst lemma, recall the definition of P7. from Definition 2.1, as well as the definitions

of p@ and p® from Definition 2.5.

Lemma 2.12. Let {A%} _ C CYT g% be a sequence of I1-forms. For n < oo, let
Al(t) =A% t > 0. Let T E (0,1}, and suppose that ||A, — AL ||p1 — 0. Then for j €

{2,3}, we have that ||p¥(Al) — pU) (AL )lpy — 0, and consequently, we also have
that [[o(4%) — p(AL)[lp, — 0.

Lemma 2.13. Let y € [0,1/3), T € (0,1], R > 0. Let A € Q. Then p®)(A) is well-
defined for A, and moreover p® (A) € QY, and

1Pl < CT¥R.
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Additionally, for A}, A, € Q?’R, we have that
1P (Ar) — 0(3)(A2)||Q(; < CTVR[AL — Adl g

In the remainder of Section 2.1, we will give an explicit formula for p(A'), where A
is defined as A'(t) = 'A%, and A° is a smooth 1-form. This formula will be in terms
of the Fourier coefficients of A°. It will be used in Section 4.

Recall from Section 1.1 that we may view 1-forms A° : T¢ — g% equivalently as collections
of R-valued functions (A](.)’“, a € [dy],j € [d]) which satisfy the relation (1.1). In the following,

recall also the structure constants (f%, a,b,c € [dy]) defined at the end of Section 1.2.

Definition 2.14. For m = (n',n?) € (Zd)z, t > 0, define

t
I(m, t) = J e—4n2|n1+n2\Z(t—s)e—4n2(|n1‘2+|n2|2)5ds.
0

Additionally, for a = (a, a1, a,) € [dy]’, j = (jo-j1»j2) € [d], define

d(f’l’l, a,j) = iznfflomﬂz(éjojzn]?l — 5]'01'1 njlz + (1/2)5]‘1]'2(1’1}0 — f’ljzo)).

Here, o3 = 1(j = k) for j,k € [d].

Remark 2.15. Note that 0 < I(m,t) < t. Note that by (1.10), if ay, a;, a, are not distinct,
then f%*% = 0, and thus also d(m, a,j) = 0. Also, note that if we let — m := (—n!, —n?),
then (here we use that f** is real, which follows by definition - recall (1.9))

d(—m,a,j) = —d(m, a,j) = d(m, a,j). (2.2)
Finally, note that |d(m, a,j)| < C(|n'| + |n?|).

The proof of the following lemma is a long but straightforward calculation, and thus
it is omitted.

Lemma 2.16. Let A° € C°(T%g%) be a smooth I1-form. Let A'(t) = A% t > 0. Let
A% = p@)(AY). For any ay € [d,], jo € [d], t > 0, we have that

Afo’“"(t) = Z Z I(m, t)d(m, a,j)K]‘?;“l(nl)Z]‘.’;“Z(nz)enwz,
al,aze[dg] nln2ezd
Juiz€ld]
where, for brevity, we have taken m = (n',n?), a= (ay,a,a2),j= (joji,j2)-
Additionally, we have that

0y AT () = AAZ™ (1) +
Z Z d(m, a’j)ef4n2\n1 ‘Zt;&](.)l’“‘ (nl)ef4n2|n2|2t2;)z,uz (n2)3n1+n2-

a1,a,€ [dn} n\n2ezd

Jij2€ld]

From the previous lemma, one can show the following. Again, the proof is omitted,
as it is a calculation. Recall the notation from Definition 1.6.
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Lemma 2.17. Let A%, A be as in Lemma 2.16. Suppose that for some N > 0, we have
that A°(n) =0 for all |n|, > N. Then for any aq € [dy), jo € [d], to € (0,1], xo € T¢,
there exists a smooth function K € C*(I%,R) such that

AP (1o, x0) = (A°, KA®).
Additionally, for | € [d], there exists a smooth function L € C*(I*,R) such that
DA™ (1o, %0) = (A%, LA).

Finally, for any a, € [dy], ji,jo € [d], x,y € T% we have that
K((avji, %), (a1, o, y)) = L((@a1, j1 %), (a1, 2, 7)) = 0.

3. Outline of intermediate results and proof of Theorem 1.19

In this section, we outline the intermediate results that are needed in the proof of
Theorem 1.19. Then, in Section 3.3, we show how to use these intermediate results to
deduce Theorem 1.19. The proofs of these intermediate results are deferred until
Section 4.

3.1. Linear part

Throughout this section, let A’ be a random g?-valued distribution satisfying
Assumptions (A), (B), (C), and (D). For this section, we just assume that Assumption
(D) holds for some o€ (0,d), ie, we do not need the restriction o >
max{d — 4/3,d/2} that appears in Theorem 1.19. These assumptions hold, even if they
are not explicitly stated in the various lemmas or propositions. The proofs of all results
stated in this section are in Section 4.1.

Recall the definition of the heat kernel ® (Eq. (1.7)). We proceed to define A!, which

may be interpreted as A'(t) = 2 A°.

Definition 3.1. Define the g?-valued stochastic process A' = (A'(t,x),t € (0,1],x € T%)
by Al(t,x) := (e*A%)(x) = (A%, ®(t,x — -)).

We will first show the following result about regularity of A'.

Lemma 3.2. There exists a modification of A' which has smooth sample paths, and which

is a solution to the heat equation on (0,1] x T

Thus from here on out, we will assume that A’ has been modified to have smooth
sample paths which are solutions to the heat equation (so that A'(t) = e(*")2A!(s) for
all s,t € (0,1], s <t). Next, we define the natural notion of Fourier truncations of A.

Definition 3.3. Let N > 0. Define the g?-valued stochastic process Ay, = (A} (t,x),t €
(0,1],x € T?) by AL, := FyAl.

Remark 3.4. Since Fy is linear and A! = ¢"*A°, we have that A} = e"“FyA” = €AY
(recall we defined A% = FyA® in Definition 1.9). Also, we have that A)(f,x) =
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(ENA°, ®(t,x — -)) = (A%, Ey®(t,x — -)), and so by Assumption (A), we have that for
2
any t € (0,1], x € T¢ A}\,(t,x)LHAl(t,x).
We now state the main result of Section 3.1.

Proposition 3.5. For ¢ > 0, let y, := (1/4)(d — a) +¢. For any ¢ >0, p > 1, we have
that

sup B[y 15, | E[IIA"IIG ]| < Cop < ox.

Here, C,, depends only on ¢,p,d, and the various constants in Assumptions (A)-(D); i.e.,
o, Py, Cp, etc. Additionally, we have that

. 1 Alyp _
ngr;CE[HAN A||Q,l.,,}_0.

Remark 3.6. By Proposition 3.5, upon replacing A! by a suitable modification, we may
assume that [|A!|| Qo+ < 00 for all &> 0. Hereafter, we assume that this holds
1

for Al

3.2. Nonlinear part

As in Section 3.1, throughout this section, we assume that A” is a random g“-valued
distribution satisfying Assumptions (A), (B), (C), and (D). For this section, we assume
(as in Theorem 1.19) that Assumption (D) holds for some « € (max{d —4/3,d/2},d).
Additionally, we assume that Assumption (E) is satisfied. These assumptions hold, even
if they are not explicitly stated in the various lemmas, corollaries, or propositions.

Recall the process A' constructed in Section 3.1. This process is such that A'(t) =
e=9AAl(s) for all 0 < s < t < 1. In this section, we construct a first nonlinear part B!
for A', in the sense of Definition 2.7. We will do this by constructing A> = p(®)(A")
and A® = p()(A!) (recall Definition 2.5 for the definitions of p(), p(®)), and then letting
B! = A2 + A3. The construction of A® is easier, so we handle it first.

Definition 3.7. Recall Remark 3.6 that A! 9 for all ¢ > 0. Thus by Lemma
2.13, and the assumption that « > d — 4/3, we may define a g?-valued stochastic pro-
cess (A3(t,x),t € (0,1],x € TY) by A®:= p()(A!), and moreover this process is such
that A*> € QY. Also, by the definition of p®), the following holds. Take any Ty € (0,1),
and let A>:[0,1 — Ty — C'(T% g?) be defined by A*(t) := A(Ty +t), t € [0,1 — T,].
Then

(1/4)(d—a)+e

A%(1) = e A%(0) +Jt (E=)AXG)(AY(Ty +5))ds, te[0,1— Ty (3.1)
0

For N > 0, define also the stochastic process A?\, = (A?\,(t,x),te (0,1],x € Td)
by A = pP(AY).

The next result shows that A?\, converges to A3 as N — oo, as expected.
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Lemma 3.8. For any p > 1, we have that

sup E[|[A3][5 | E[I1A°l| < € < oo
N>0 1 1

Here C, depends only on p, d, and the various constants in Assumptions (A)-(D); i.e., o,
By, Cg, etc. Additionally,

lim E[HA;V - A3||PO} =0.
N—oo 1

Proof. Both claims follow by combining Lemma 2.13, Holder’s inequality, and
Proposition 3.5 with large enough p. O

We next proceed to construct A = p)(A!). We cannot just construct this determin-
istically as we did for A> = p(®)(A!), because A! is too rough, so that p®(A!) will not
be well-defined. Instead, A? will be constructed probabilistically.

Definition 3.9. For N > 0, define the process A% = (A%(tx),t € (0,1],x € TY)
by A% = p?(A}).
We proceed to construct A® as an appropriate limit of A%, First, we show the follow-

ing result. The proof is in Section 4.2.

Lemma 3.10. For any t € (0,1], x € T% we have that {Azz\,(t,x)}NM is a Cauchy
sequence in L°. -

This leads directly to the following definition.

Definition 3.11. Define the g%-valued stochastic process A* = (A%(t,x),t € (0,1],x €
T¢) as follows. By Lemma 3.10, we have that {A%(t,x)} v=o is Cauchy in L? and thus

the sequence converges in L>. Define A(t,x) to be the limit.

Having defined A?, the next step is the following. The proof is in Section 4.2.
Lemma 3.12. The process A* has a modification such that the function t+— A*(t) is a
continuous function from (0,1] into C'(T¢, ¢).

Thus hereafter, we assume that (after a suitable modification) A? is such that the
function ¢+ A%(t) is a continuous function from (0, 1] into C'(T¢, g¢).

Definition 3.13. Define the g%-valued stochastic process B! = (B!(t,x),t € (0,1],x €
T) by B(t,x):= A%(t,x) + A*(t,x). For N >0, let Bl :=p(A}) = p®(A})+
pI(AY) = A% + AL,

The next result shows that B! is indeed a first nonlinear part for Al, in the sense of
Definition 2.7. The proof is in Section 4.2.

Lemma 3.14. On an event of probability 1, we have that for all
to,t, € (0,1], o < t1, x € TY,
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BI(t),x) = (el VB! (1)) (x) + j (el IAX(AL (1 + 5)) (x)ds.

In light of Lemma 3.14, hereafter, we assume that A', A>, A’> have been modified so
that B! is a first nonlinear part of A' (in the sense of Definition 2.7). We can now
finally state the main result of Section 3.2. The proof is in Section 4.2.

Proposition 3.15. For ¢ >0, let 7, := (1/2)(d — 1 — o) +¢ For any ¢ >0,p > 1, we
have that

20 2P : 2 20 ]
supE |||} g, |- E[IA%1lg; | < Cop <00 lim E[IIA} - A%ll5 | =0.
Consequently, we have that
suplE |[By| 5. |- 1B
N>0 1

; 1 _plpp ] —
A}EEOE[HBN BHQ;{E}fO.

14 .
Q;::

i| S Cg,p < OO’

Here, C;, depends only on &,p,d, and the various constants in Assumptions (A)-(E); i.e.,
o, Py, Cg, etc.

Remark 3.16. By Proposition 3.15, upon replacing A', B! by suitable modifications, we
may assume that ||B|| gU/a-1-a+ < 00 for all & > 0, while still ensuring that B! is a first
1

nonlinear part of A'. Hereafter, we assume that this holds for A', B'.

3.3. Proofs of Theorem 1.19 and Corollary 1.22

We can now prove Theorem 1.19 by combining Propositions 3.5 and 3.15 with
Theorem 2.9.

Proof of Theorem 1.19. Let A' be as constructed in Section 3.1, and let A' be as con-
structed in Section 3.2. We want to apply Theorem 2.9 to A', B!. First, note that by the
assumption that o > d — 4/3 in the statement of Theorem 1.19, we have that (1/4)(d —
a) <1/2, (1/2)(d—1—a) < 1/4, (1/4)(d —a) + (1/2)(d — 1 —a) < 1/2.  Therefore,
we may take & >0 small enough such that defining y, := (1/4)(d — o) + &, , :=
(1/2)(d — 1 — o) + &, we have that y, €[0,1/2), y, € [0,1/4), and 7, +7, < 1/2. By
Proposition 3.5 and Remark 3.6, we have that ||A1||Q>1‘1 < 00, and similarly by

Proposition 3.15 and Remark 3.16, we have that ||B1HQ'{'2 < 0.

Let R = max{|\A1||Q:1'1, ||B1||Q"i‘z}, and let T =1, ,, (R), where 1, is as in Theorem

N7
2.9. The fact that E[T 7] < oo for all p > 1 follows by Lemma 2.10 and Propositions
35 and 3.15. By Theorem 2.9, there exists B € Q7,; such that A'+B is in
C((0, T) x T g%), and moreover A' + B is a solution to (ZDDS) on (0, T). We can
then define the process A = (A(t,x),t € (0,1],x € T¢) by:
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A(t,x) ;= 1(t < T)(A'(t,x) + B(t,x)).

We now move on to the second part of the theorem. Let {A}\,} N> {lev be as

}NZO
constructed in Sections 3.1 and 3.2, respectively. For N > 0, let Ry =

max(||A1{,||Q:1-1,||B}\,||Qzlrz), and let Ty = 7,,,(Ry). For the same reasons as before, we

/

have that supy . E[Ty] < oo for all p > 1. Also, by Propositions 3.5 and 3.15, we

have that RNiR (here 2 denotes convergence in probability) and thus, since t,,, is
continuous, we obtain that Ty—>T. This implies that TﬁliT*I. The fact that E[|Ty' —
T~'f] — 0 for all p > 1 now follows by Vitali’s ([31, (21.2) Theorem]) theorem (com-
bined with the L”-boundedness for any p > 1, which gives uniform integrability).

For each N > 0, we apply Theorem 2.9 and Lemma 2.11 to obtain By € QVTZNﬁRN
such that Al + By is in C®([0, Ty) x T%g%), and moreover it is the solution to
(ZDDS) on [0, Ty) with initial data A}, (recall that the solution is unique, by Lemma

1.3). We may thus define the process Ay = (Ay(t,x),t € [0,1],x € T%) by
An(t,x) = 1(t < Ty)(AN(tx) + By(t,x)).
It remains to show the last claims about convergence of Ay to A. Let p > 1,0 €

(0,1), ¢ > 0. Note that by Proposition 3.5, ||A) — A1||Q>1-1 2.0, and that by Proposition
3.15, ||B11\,—B1||Q:{z£>0. Combining this with Theorem 2.9, we obtain that |[By —

B|

Qgﬂi)rio. (This can be shown by using the fact that convergence to 0 in probability

is equivalent to the property that for any subsequence, there is a further subsequence
which converges to 0 a.s. The (1 — )T comes from the fact that By is a solution to

(ZDDS) on [0, Ty), and Ty may be less than T. However, we know that TNiT.) We
thus also obtain ||[Ay — AHQ*(J ‘)TLO, because the assumption that o > d — 4/3 implies
1-0

that y; > 7,. Now to show the last claims about convergence of Ay to A, it suffices (by

Vitali’s theorem — [31, (21.2) Theorem]) to show that for any p > 1, the sequence

{||AN —A|P, } is L*-bounded (and thus uniformly integrable). Fix p > 1. Since
N>0

(1-0)T

An(t) =0if t > Ty, we have that
Av — A2 A2 2p
|| N ||QE}—5)T < CP(H N||Q,11N ||AHQ/II)

We have that Ay = A}\, + By, where All\,, By € QVTIMRN, and similarly for A. From this,
we obtain

IANI[5: < GRY. A5, < GRY.
oy ok

Now by Propositions 3.5 and 3.15, we have that supNZOE[Riﬂ < o0, E[R?] < co. The
desired L*-boundedness now follows. Thus we have shown the last claims for & = &,
where & is a small enough quantity that we fixed at the beginning. The last claims for
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general ¢ > 0 then follow, because due to monotonicity in ¢, it just suffices to show the
claims for small enough ¢ > 0. 0

We next turn to proving Corollary 1.22.

Lemma 3.17. Let d=3, and let A° be a 3D g*-valued GFF. Then Assumptions (A)-(E)
are satisfied, and moreover Assumption (D) is satisfied with o.= 2.

Before we prove Lemma 3.17, we note that Corollary 1.22 follows directly.
Proof of Corollary 1.22. This follows from Theorem 1.19 and Lemma 3.17. O

The rest of this section is devoted to the proof of Lemma 3.17. Thus, we assume in

the rest of this section that d=3, and A” is a 3D g’-valued GFF. Assumptions (A) and
(C)-(E) may be readily checked by using standard properties of Gaussian distributions.
Thus, we will only prove that Assumption (B) holds. (See the complete version of this
paper on arXiv for a full proof.)
Proof of Assumption (B). We will show the assumption with f; = 1. We will verify the
assumption “coordinate-wise”, i.e. for the processes A](-)’“. First, for any ¢ €
C*(T°,R), a € [d), j € [3], we have that (A](»)’“, ¢) ~ N(0, (GZ,J)Z) (here we define (ai’j)2
to be the variance of (A](-)’“, ¢)), and thus by the standard Gaussian tail bound, we have
that

P(/(A},¢)] > u) < 2 exp (—u?/(2(0}))")), u > 0.
By splitting into cases u < o and u > g, it then follows that
P(|(A}", §)| > u) < 2 exp (—u/(20;)), u > 0.

We next turn to concentration for quadratic forms. Fix N > 0. Observe that
(A?\}’;(x),a € [dy).j € [3],x € T°) is a mean 0 Gaussian process with smooth sample
paths. Let K be as in Assumption (B). For notational simplicity, let Q = (A%, KAY,). Let
k > 1. By approximating T> by a lattice with spacing 1/k, we may obtain a random
variable Qg, which is a Riemann sum approximation of Q (recall the definition of
(A?\], KA?V) in Eq. (1.2)). Moreover, Qy is a quadratic form of a centered Gaussian vec-
tor. Also, we have that E(Qx) = 0, because A?\, is a mean 0 process, A?\,‘jll,A?\,‘Z are inde-

pendent for a; # ay, and the assumption that K((a,j;, ), (a,j2,y)) = 0. Thus by Lemma
B.1, we have that for all k > 1,

P(|Qk| > u) < 26%/2 exp(—u/(Z(]E(Qi))l/z)), u>0.

Now since A?\, has smooth sample paths, we have that Qx — Q. It then follows that (by,
e.g., Fatou’s lemma)

P(|Q| > u) < limkianP(|Qk| > u).

Thus to finish, it suffices to show that limsup,E(Q}) < E(Q?) (note that E(Q) =0 as
well, for the same reasons why E(Qx) = 0). Actually, we have that E[(Qx — Q)’] — 0,
because Qx — Q, and the sequence {(Qk — Q)Z} k> is uniformly integrable. The
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uniform integrability follows because sup,. E(Q}), E(Q*) < oo, which itself can be

seen from the fact that A% is a Gaussian process such that sup, »E[JAY(x)|’] < c0. 0

3.4 A Related result

As mentioned in Section 1, the results of this paper will be applied in [23]. In particu-
lar, we will use Corollary 1.22 in [23]. However, we will not directly use Theorem 1.19.
Instead, we now give a related result that will be more suited for the purposes of [23].
First, suppose that A° = (A%(x),x € T%) is now a g?-valued stochastic process with
smooth sample paths. Note that this naturally induces a random g%-valued distribution
by defining (A°, ¢) := [A’(x)$(x)dx for all ¢ € C*(T“ R). We say that A satisfies
some given assumption if the corresponding random g?-valued distribution satisfies the
assumption.

Proposition 3.18. Let A° = (A°(x),x € T%) be a g%-valued stochastic process with smooth
sample paths. Suppose that it satisfies Assumptions (A)-(E). Moreover, suppose that
Assumption (D) is satisfied with o € (max{d — 4/3,d/2},d). Then there exists a g°-val-
ued stochastic process A = (A(t,x),t € [0,1),x € T%), and a random variable T € (0,1],
such that the following hold. The function (t,x)+ A(t,x) is in C°([0,T) x T%, g%), and
moreover it is the solution to (ZDDS) on [0,T) with initial data A(0) = A°. Also,
E[T™?] < C, < oo for all p > 1, where C, depends only on p, d, and the various con-
stants in Assumptions (A)-(E); i.e., o, Py, Cp, etc. Finally, for any k € {0,1},p > 1, &>
0, we have that

E| sup #(K2D+A/=0+) |7 (1), | < Cpe-
t€(0,T) ¢ ,

Here C,, depends only on p,e,d, and the various constants in Assumptions (A)-(E); i.e.,
o, Pg, Cs, etc.

This proposition gives bounds on A, as opposed to Theorem 1.19, which only gives
that A exists, and that Ay converges to A in a suitable sense. Also, note that in contrast
to Theorem 1.19, we take sup over t € (0,T) as opposed to sup over t € (0,(1 —0)T)
in the final two inequalities. This is because we are only bounding A, which we know
exists on (0,T), as opposed to Ay — A. Recall that Ay is a solution to (ZDDS) only on
[0, Ty), and it may be the case that Ty < T (but on the other hand, we do have that
Ty > (1 — 0)T with probability tending to 1 as N — oc). Before we prove Proposition
3.18, we need the following natural lemma, whose proof is omitted (the complete ver-
sion of this paper on arXiv contains a proof).

Lemma 3.19. Let A° = (A°(x),x € T) be as in Proposition 3.18. Let A',B' be con-

structed using A% as in Sections 3.1 and 3.2. Then a.s., forall t € (0,1],x € T¢, we have
that A (t,x) = (¢3A%)(x), B! (t,x) = (p(A))(1)) ().

Proof of Proposition 3.18. We slightly modify the proof of Theorem 1.19. As in that
proof, take ¢ >0 small enough such that defining y, := (1/4)(d — o) + &, 7, =
(1/2)(d — 1 — o) + &, we have that y, € [0,1/2), y, € [0,1/4), and 7y, + 7, < 1/2. Let
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A', B! be constructed using A° as in Sections 3.1 and 3.2. By Lemma 3.19, after a suit-
able modification of A', B!, we have that A'(t) = ¢"*A°, B! = p(A!). Then by arguing
as in the proof of Theorem 1.19, we can obtain a stochastic process A = (A(t,x),t €
[0,1),x € T?) by letting

A(t,x) := 1(t < T)(A'(t,x) + B(t,x)),
such that A is the solution to (ZDDS) on [0, T) with initial data A(0) = A°.

Next, by Propositions 3.5 and 3.15, we have that E[RF] < C,,. By Lemma 2.10, we
have that E[T*] < C, + C,E[R¥/(1-2mx(1:22)]. From this, we obtain E[T*] < C, for
all p > 1, where C, depends only on p, d, and the various constants in Assumptions
(A)-(E).

For the final two inequalities, note that since B € Q%R and Al € Q’TI’R, we have that
||A||Q;1 < 4R (here we use that y, > 7,, which follows by the assumption that o >
d — 4/3). Thus recalling that E[R’] < C,,, we have shown the last two inequalities for
& = &), where g is a small enough quantity that we fixed at the beginning. The last two

inequalities for general ¢ > 0 then follow, because due to the monotonicity in ¢, it just
suffices to show the inequalities for small enough ¢ > 0. O

4, Technical proofs

We first show some general results which will be needed for both the linear and nonlin-
ear parts. Many of the proofs of this section are omitted; see the complete version of

this paper on arXiv for the full arguments. Recall the covariance function p : (T9)* —
L(g% g%) from Assumption (C). For notational simplicity, let 7 : T — R be defined by
7(x) := Tr(p(x,0)). Since p is integrable and translation invariant by Assumption (C),
we have that 7 is also integrable. We will denote the Fourier coefficients of t by 7(n)

for n € Z°.

The following lemma shows that the translation invariance assumption leads to the
Fourier coefficients being uncorrelated. The proof is a short computation, and thus it is
omitted.

Lemma 4.1. Suppose that Assumption (C) holds. For any n',n* € 7%, we have that
E[A%n"),A2%)| = 1(n' = n2)2(n').

Consequently, E[A°(n)|"] =%(n) > 0. Additionally, for any aj,a; € g, j1-J2 €
[d], n',n* € Z% we have that

B[R (nHAM ()] | < 1(n' = w)E(n?).

The following few lemmas will be needed in Sections 4.1 and 4.2. Most proofs are
fairly standard and are omitted.
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Lemma 4.2. Let o € (0,d). For t € (0,1], we have that
||etAG(o)cHCO < Cd)atf(l/Z)(dfoc).

Here Cg44 depends only on d, o.

Lemma 4.3. Suppose that Assumption (D) holds for some o« € (0,d). For any k > 0,t €
(0, 1], we have that

||€tAT||Ck < thf(djtkfoz)/z.

Here, Cy depends only on k, d, o, and the constant Cp from Assumption (D).

Definition 4.4. For t € (0, 1], define the metric d; on (t/2,t] x T¢ by

d((r,%), (s,y)) == |r;s| +min{de\(/xZ’y),l}.

For ¢ >0, let N;. be the minimum number of ¢-balls needed to cover the metric
space ((t/2,t] x T%d,).

Lemma 4.5. For any t € (0,1], ¢ > 0, we have that
N,, < Ct 2g-(d+1),
If ¢ > 3/2, then we have that Ny, = 1.
Proof. First, note that the diameter of ((¢/2,¢] x T, d;) is at most 3/2, and thus the

second claim follows. For the first claim, note that the metric space (t/2,t] equipped
with Euclidean distance may be covered by O(¢™") balls of radius (e/2)t. Let {x;}, e S

(t/2,] be such a cover. The metric space (T% dp«) may be covered by O((t/ 26)™) balls
of radius +/f(e/2). Let Ui icim CTY be such a cover. We then have that

{(x,-,yj)}ie[n]’je[m] is an ecover of ((t/2,t] x T%d,), and additionally mn =
O(t=4/2g=(d4+1)) The desired result now follows. O

Lemma 4.6. For any t € (0,1], > 0, we have that

J:O(log N,,)de < Cpa(1+ | log t|h).
Here Cgq depends only on f,d.
Proof. By Lemma 4.5, we may bound (using that § # 0)

00 3/2
J (log Ny,)Pde < J (log (Ct~42~ (1)) ge.
0 0

Now, note that

(log (Ct_d/zs_(dH)))ﬁ < Cga+ Cpa| log t|ﬁ + Cga| log 8|ﬁ.
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The desired result now follows by noting that (here using that § > 0)
3/2
J | log ¢|fde < Cp < o0.
0

O
In what follows, given a (possibly vector-valued) random variable X, we will write

||X||;> as a shorthand for the L? norm of X, i.e., [1X]])2 = (E(|X|2))1/2.

4.1. Linear part

As in Section 3.1, throughout this section, let A° be a random g?-valued distribution
satisfying Assumptions (A), (B), (C), and (D). We just assume that Assumption (D)
holds for some o € (0,d) — that is, for this section, we do not need the restriction that
o > max{d — 4/3,d/2} which appears in Theorem 1.19. These assumptions hold, even
if they are not explicitly stated in the various lemmas or propositions. We first show
the following result. Recall the definition of A} from Definition 3.3.

Lemma 4.7. We have that a.s., forall t>0, k > 0,
S (1 + [l e A ()] < oo
nezf
Consequently, we have that a.s., for all t € (0,1], x € TY
Jim. Ay (tx) = Ze““ﬂnl ‘A% (n)e, (x).
nezd
We also have that for all t € (0,1], x € T,

Al(t,x)g'z —472|nf? tAO< ) (x)

nezd

Proof. Tt suffices (by monotonicity) to prove the a.s. result for fixed ¢ > 0. Toward this
end, note that by the Cauchy-Schwarz inequality,

1/2
Z(l + |7’l|)k —47{2‘ﬂ| t|A0(I’l)| S C<Z€_4n2|n2t|A0(H)|2) ,
nezd neZ?
for some finite constant C. To finish, observe that (using Lemmas 4.1 and 4.3)

E Ze—4n2|n\ tlAO ] Ze—4n2|n\ 2(n ( )(O) < 0.

neZd neZ®

The a.s. convergence follows immediately from the first claim. The a.s. equality follows

2
from the a.s. convergence and the fact that Ay(t, x)L—>A1(t, x) (recall Remark 3.4). O



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS . 233

Proof of Lemma 3.2. Let E be the event that for all >0, k > 0, we have that
ST+ e IR ()] < oo
nezd

By Lemma 4.7, we have that P(E) = 1. The desired modification is obtained by setting
Al to be identically 0 off the event E. 0O

Remark 4.8. From Lemma 4.7, we can also ensure that (after a suitable modification)
forall k > 0, t, € (0,1],

sup ||A'(£)]]x < o0, (4.1)
te(ty,1]
hm sup [|AN(t) — A'()|| o = 0. (4.2)
Ote [ty 1]

We next begin to work toward the proof of Proposition 3.5.

Lemma 4.9. For any k € {0,1,2}, I, ...l € [d], t € (0,1],x € T¢ we have that

Ela, - a,A! (60| < cr /2 (4.3)

The above inequalities are also true with A' replaced by A}, for any N > 0. Here, C
depends only on d and the constants o, Cp from Assumption (D).

Proof. Let N > 0. We have that for some constant C,

By AL (LX) =C Y my e IR () ey (x).

nezd
Inle <N

Thus by Lemma 4.1, we obtain

B[l aAlm0)F] < € 3 e ) < Ol
nezd
Il <N

By Lemma 4.3, the right hand side is bounded by Ct~(1/2/(d=%)-k yhere the constant C
is uniform in N. To finish, we use Fatou’s lemma, combined with Eq. (4.2). O

Lett € (0,1], x € T¢. For N,M > 0, let
Dy (t,x) := Ay(t,x) — Al(t,x), Dy (tx) = Ay(t,x) — A (£, x).

Lemma 4.10. There exists a sequence {5;{,‘10}2\,20 of non-increasing functions 5y :
(0,1 = [0,1] such that for any te€ (0,1], limy_o0x5'"(t)=0, and for any
ke{0,1,2}, I,...lk € [d, N > 0,t € (0,1], x € T,
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[|<911 D1 v (5 x)|2] < Ct*(l/Z)(dfa)fké;L\le(t)'
Here, C depends only on d and the constants o, Cp from Assumption (D).

Proof. It suffices to show the inequalities with D, replaced by Dy ,, for any M > N,
since D}\])M — D}\, as M — oo (recall (4.2)). For N > 0,j > 0, t € (0, 1], define

S(Njit) = > |nfe*m I g(n),

nezd
Inloo >N

Arguing as in the proof of Lemma 4.9, we can obtain that

sup[E[|8ll B,D (L x)ﬂ < CiS(N, 2k, 1).
M>N
Observe that for m € {0,2,4}, we have that S(N,m,t) < S(0,m,t), and moreover,

from the proof of Lemma 4.9, we have that $(0,m,t) < Ct~(1/2d+m=%) We may thus
define

S N) m’t
51}10(&)) = Sup maxXye{o,24} ( 0)

2, , to € (0, l}.
teton1] max{1, (0, m, %) }

This ensures that 5%10 is non-increasing, and that it maps into [0, 1]. To finish, we need

to show that 6%'(ty) — 0. To show this, it suffices to show that for m € {0,2,4}, we
have that

lim sup S(N,m,t;) = 0.

N=00¢ty,1]

Fix m € {0,2,4}. Note that for any N > 0, S(N,m, t) is non-increasing in ¢ (this fol-
lows since 7(n) > 0 for all n € Z% — recall Lemma 4.1), and thus it just suffices to
show that S(N, m,t;) — 0. This follows by the fact that S(0,m, t) < co, combined with
the definition of S(N,m, t;) and dominated convergence. O

In what follows, recall the definition of d; in Definition 4.4.
Lemma 4.11 . For any t € (0,1], and any r,s € (t/2,t], x,y € T¢ we have that
1A' (%) = Al (s )l < WA (1), (5.9).
The above inequality is also true with A' replaced by A), for any N > 0. Here, C
depends only on d and the constants o, Cp from Assumption (D).

Proof. We will show the result for A'. The proof for A} for N > 0 will be essentially

the same. We will show that
C~(1/4)(d—) min{de (%)) i 1}’

[AY(r,x) — Al (r, )] 2 e

IN

1A' (ry) — syl < a0 T
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Let £:[0,1] — T¢ be a geodesic from y to x, so that ¢ has constant speed |¢'| =
dpi(x,y). Then
1

Al(rx) — Al(ry) = LVAl(r, 0(w)) - € (u)du.
We thus have
A~ AP < [ IVAG ) - 0P
< ([ VA 00 P

Taking expectations and applying (4.3) gives

—(1/4)(d—s) e (%))
|AY(r,x) — Al (r,y)]], < Ct (/D) Ttl e

Combining this with (4.3), we obtain the first desired inequality.
For the second inequality, assume without loss of generality that s <7, and note that

Al(r,y) - Al(s,y) = J auAl(u,y)du = J AAl(u,y)du.

s

We thus obtain
1A' (r,y) — Al(s ) < |r—s|j IAA (1) Pdu.

Applying (4.3), we obtain the second desired inequality. O

The following result will allow us to show the convergence of A} to A' (recall the
statement of Proposition 3.5).

Lemma 4.12. There is a sequence {5?\;12}1\,20 of functions 65 : (0,1] — [0,1], such that
the following hold. For any t € (0,1], we have that limy_.,05'*(t) = 0. Also, for any
N > 0,tc(0,1), r,s € (t/2,t], x,y € T we have that
1Dy (7, %) 2 < Cr ISR ),
DX (r.%) =Dy (s.p)ll2 < CUEDd((r,x), (5,) 03 (1)

Here, C depends only on d and the constants o, Cp from Assumption (D).

Proof. Let {5}4\}10}N>0 be the sequence of functions from Lemma 4.10. For t € (0, 1], let
SN (t) = (5?}10(:%/2))1/ ?. The first inequality follows by Lemma 4.10 and the fact that
o' is non-increasing. The second inequality follows by the same argument as in the
proof of Lemma 4.11, where we use Lemma 4.10 in place of Lemma 4.9. In the course
of the argument, we also use that 63" is non-increasing, so that the value of this func-
tion at u € (t/2,t] is bounded by its value at ¢/2. O

By combining Lemmas 4.11 and 4.12 with Assumption (B), we obtain the following
result.
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Lemma 4.13. For t € (0,1], r,s € (t/2,t], x,y € T, we have that for u > 0,
P(IA' (%) > u) < Cexp (—(u/t WOE)h),
P(|A'(r,x)— Al(s,y)| > u) <
C exp (—(u/ (" d,((r,x), (5,9))))" /C).

The above inequalities are also true with A' replaced by A}, for any N > 0.
Additionally, let {5%12}N>0 be the sequence of functions from Lemma 4.12. Then for any
N > 0, we have that for u > 0,

P(|Dy(rx)| > u) < Cexp (—(u/(t" /2552 (1))) /),
P(|Dy(r,x) =Dy(s,y)| > u) <
C exp (—(u/ (¢~ dy((r,x), (5,)05"2(1))) "/ C).
Here, C depends only on d and the constants By, Cg, o, Cp from Assumptions (B) and (D).
Proof. We will prove the first two inequalities for A'. The proof for A}, for N > 0 will
be essentially the same. Note that (recall (1.7) for the definition of ®)
Al(r,x)Z (A% O(r,x — ).
The first inequality now follows by Assumption (B) and the fact that
1A' (n o)l < Crt/mE)
(which holds by Lemma 4.9). Similarly, note that

IIM

Al(r,x) = Al(s,y) S(A% D(rx — ) — (A% D(s,y — )

(A% D(r,x =) = D(s,y — ).

Q
“n

The second inequality now follows by Assumption (B) and Lemma 4.11. For the last
two inequalities, note that (recall Definition 3.3)

AL (r,x)E (FyA%, ®(r, x — ) = (A, (Fx®)(r,x — -)).

We then proceed as before, using Lemma 4.12 instead of Lemmas 4.9 and 4.11. O
The tail bounds from Lemma 4.13 allow us to obtain following result.

Lemma 4.14. For any p > 1, ty € (0,1], we have that

(t0/2:t0)]
xeT?

E[ sup |A1(t,x)|P] < CtPUME=0 (1 4| log to\l/ﬁB)P.

te

The above also holds with Al replaced by A}\, for any N > 0. Additionally, let
{5}*\}12}1\,20 be the sequence of functions from Lemma 4.12. Then for any N > 0, we
have that
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E| sup |Ay(Lx) —A'(tx)[f| <
te(to/2,t0)
xeT*

CerPUE (1 4| log to]'/P)P (85" (1) )P

Here, C depends only on d, p and the constants Py, Cg, o, Cp from Assumptions (B)
and (D).

Proof. Fix p > 1. Define the stochastic process (X;., (£,x) € (to/2,to] x T%) by
Xy i= (C7VP) (/D=2 AL (1 ),

where C is the constant from Lemma 4.13. Then by Lemma 4.13, we have that for
(1, %), (5,9) € (to/2,t0) x T% u > 0,

P(|X,.| > u) < Cexp (—uh),
P(|Xpx — Xsy| > udi((r, %), (5,7))) < C exp (—ul).

By the first inequality and [32, Lemma A.2], we have that

sup  E[|X..f] < C

(rx)€(to/2,t0) xT?

Using this bound, together with the second inequality in the previous display and the
tail bound from Lemma 4.6, we can now apply Theorem A.3 to obtain the first desired
result. The second desired result follows similarly. O

We can now finally prove Proposition 3.5.

Proof of Proposition 3.5. First, observe that for t € (0, 1], we have that
A (D)l = [leP2AN(t/2) [l < CV2|AY(8/2)]|eo.
It follows that

sup /217 ||AL(1)] | < Csup t7
te(0,1] t€(0,1]

Al

The same thing holds with A' replaced by A} for any N > 0. Thus for the first desired
result, it suffices to show that

supE [ sup tp“’“||A}\,(t)||€0} , E [ sup 7

A' D)y | < oco.
N>0 |te(0,] t€(0,1]
Similarly, for the second desired result, it suffices to show that

lim E| sup #7:[|[AN(t) — A'(1)|[5 | = 0.
N=00 | 1e(0,1]

The first result follows by combining Lemma 4.14 with Lemma A.1. The second result
follows by combining Lemma 4.14 with Lemma A.2. O
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4.2. Nonlinear part

As in Section 3.2, we assume throughout this section that A° is a random g“-valued dis-
tribution satisfying Assumptions (A)-(E). For this section, we just assume that
Assumption (D) holds with « € (d/2,d). These assumptions hold, even if they are not
explicitly stated in the various lemmas, corollaries, or propositions. For space reasons,
we will omit proofs of many of the results in this section. For full proofs, please see the
complete version of this paper on arXiv.

For many of the arguments in this section, we will work with the scalar quantities

AIZV”;‘; instead of the vector quantity A%. Accordingly, recall the definitions of I and d in
Definition 2.14, and recall that by Lemma 2.16, Aif;‘; has the following explicit form (in
the following, m = (n',n?), a = (ag, a1, a2), j = (jo. j1,j2)):
2,
ANZ'(())(tO)xO) =
S Y imw)dma )R (AN (e () (4
al,aze[dg] n'n2ez?
jupa€ld] Mol <N

Definition 4.15. For N > 0, k > 0, t > 0, define
S(N ,k,t) :=
> |nt + w2 1((n', n?), ) (|n' [P + |22 )2(n )2(r?).
nlntezd
max{\n1|m,|n2|x}2N

We now state the following technical lemma, which is one of the key intermediate
steps for proving the results of Section 3.2. The proof is omitted.

Lemma 4.16. For all k > 0, there exists a sequence {5%};} of non-increasing func-

tions Sy ¢ (0,1] — [0,1] such that the following hold. For 16\1%}0 t € (0,1, we have that
limy_o0y'C(t) = 0. Also, for any N > 0, t € (0,1], we have that

S(N, ko t) < Gt~ ED =0 5818 (p).
Here, Cy depends only on k, d, and the constants o, Cp from Assumption (D).

We proceed to use Lemma 4.16 to obtain moment bounds on A;.

Lemma 4.17. For any k € {0,1,2,3}, I},...x €[d], N > 0, t € (0,1], x € T¢ we have
that

E[|all-~lkA12\7(t,x)|2] < Cpld+k-1-9),
Here, C depends only on d and the constants a, Cp, Cg from Assumptions (D), (E).

Proof. We will work with the scalar quantities Ai,‘;‘:) Fix a = (ap,a1,a2), j = (jo, j1>j2)-
Define
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B(tx):= > enpn(x)I(m t)d(m,a,j)A0" (n)AM (n?).
n',ntez?

[11]olm2] o SN
We first look at the k=0 case. For this, it suffices to show that E[B(t,x)’] <
Ct~(@=1-%)_ Toward this end, note that
E[BLol] = > K\ a?).0I(K, &), 0d((n',n?),a,)) x
n'n2ez?
kK ez!

I7|oolK e <N
i=1,2

A0 e o1 (3) ¥
B[R0 (n!) A0 () A (kAP (k2)]

We have that (recall Remark 2.15)
|d((n',n%),a,j)] < C(|n'| + |n*]).

Also by Remark 2.15, we can assume a; # a, since otherwise d((n',n?),a,j) = 0. Thus
by Assumption (E), we have that

|E[Kﬁ’“l(ﬂl) AP () AP (KA (R2)]| < Cy(|BiEo| + [EsEy])
where
B = B[R (AL ()], B = B[R ()R (k0
E; = E[Kﬁ’“%nﬁ%}, Ey = E{K%“Z(HZ)W]
By Lemma 4.1, we have that
|Ey| < 1(n' =kNa(n'), |E| < 1(n* = K)(n?),
B3| < 1(n' = K)7(n'), |E4| < 1(n* = K")7(n?).

Combining these bounds, we see that it suffices to bound (note that I((n',n?),t) =
I((n? 1), 1))
> K ), ) (|n' ! + [P )e(n 2 ().
nln2ezd

The k=0 case now follows by Lemma 4.16 with N = 0,k = 0.
For the case k € {1,2,3}, note that following the same steps as before, we may reduce
to bounding

Y It P n?), ) ([0 o [P )E(n ().

n,n2ez?

By Lemma 4.16, this is bounded by Ct~(@~1*k=%) a5 desired. O



240 S. CAO AND S. CHATTERJEE

Definition 4.18. For N,M > 0, t € (0,1], x € T let
D3 (1 x) == A% (t,x) — A}, (1 x).

Lemma 4.19. There exists a sequence {5?\,'19}1\,20 of non-increasing functions 5y" :
(0,1] — [0,1] such that the following hold. For any t€ (0,1], we have that

limy_8x"(t) = 0. Also, for any k€{0,1,2,3}, L,..,k€[d, M >N >0, te
(0,1], x € T¢ we have that

]E[|811...1kDi,’M(t,x)|2] < Gkl 59
Here, C depends only on d and the constants a, Cp, Cg from Assumptions (D), (E).

Proof. For m > 0, let {5?\}1,2}1\] be the sequence of functions from Lemma 4.16.
’ >0
Define B

oY1) := max 0%(1), te (0,1].
N (t) johax Nom () (0,1]

We first look at the k=0 case. We will work with the scalar quantities DN M- By argu-

ing as in the proof of Lemma 4.17, we may bound
, 2
E D}, (60|

<C Z > > L) x
a aze 11 rze{ 4 “Z} n'n2ezd
]1,]26[d] N<max{\n1\oc,\n2|oo} <M

(In'[* + |2 )2t )2(n?).
Note that we may obtain a further upper bound by replacing the sum over n',n* € 24
such that N < max{|n'|_,|n’|.} <M by a sum over n',n*>€Z‘ such that

max{|n'|,[n*|.} > N. The k=0 case now follows by Lemma 4.16. The case k €
{1,2,3} may be argued similarly. 0

Proof of Lemma 3.10. This is now a direct consequence of Lemma 4.19. O
We next prove various technical lemmas which will help in obtaining moment

bounds on quantities such as A} (¢,x) — A% (s, y).

Definition 4.20. Let N > 0, a € [dy], jo € [d], t € (0,1], x € T“. Define

Ey,, (t:x) Z Z d(m,a,j) x

ap aze[d\] n! eZd
jia€ldl |”1|ao’|"2\OC <N

—4n |n'|? tAOal( ) —47*|n?| tAJ(‘)Z’aZ(nZ)enqunz (x)’
where m = (n1,n,). Using the collection of R-valued process (Fy;,a € [dg],j € [d]) (as

well as the relation (1.1), we may define the g“-valued pro-
cess Fy = (Fy(t,x),t € (0,1],x € TY).
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By Lemma 2.16, we have that for any N > 0,
DA (t,x) = AA%(t,x) + Ey(t,x), t€ (0,1],x €T (4.5)

Lemma 4.21. For any N > 0, t € (0,1}, x € T% I € [d], we have that
E[|[Fx(t,x)*] < @14 E[|§Fy(tx)]?] < cr @22,

Here, C depends only on d and the constants a, Cp, Cg from Assumptions (D), (E).

Proof. We will work with the scalar quantities F?\‘,’JO. Fix a = (ag, a1, ), j = (jo» j1>/2)-
Define

B(t,x) := Z ez (x)d(m,a,j) x

nln2ez?

Imlooslmalo <N
—4?|n' PR 0ar 1\ —dn? [n? Pt R0z (2
e A" (n)e A" (n7),

where m = (nl,nz), as usual. For the first inequality, it suffices to show that
E[|B(t,x)|*] < Ct~@+1=2) Toward this end, we have that

E[Btx) ] = > eniwpie)(®)d((n',n?),a,))d((K, ), a,j) x
nl,ntez?
K k2ezd
1] oK oo <N
i=1,2

—am2 (! P2 P K PR [AO,a 1NR0:2 (2 A 0.1 (117 A0z (12 }
y E|A% (') A2 (n?)A0" (k1) AZ (k2)]

Arguing as in the proof of Lemma 4.17, we may reduce to bounding

Z <|n1|2 + |n2|2)e—8n2\n1\2t:[\(n1)e—Snz\n2|zt/T\(n2))

nl,n2ez?
Using that |n[?e#% "t < sup, - pxe 4" < Ct~!, we obtain the further upper bound
Ct! Z 674711\111\21&;5(”1) Z ef4n2\n2|2t{[\<n2>'
nlezd n2ez!
Observe that the above is equal to
Ct1(e"*1)(0) (1) (0).
Using that [|e" ||, |[e7]|0 < Ct=(/2E%) (by Lemma 4.3), the first desired result

now follows.
For the second inequality, by arguing as before, we may reduce to bounding

Z |l’ll +n2|2<|n1|2+|n2|2)e—8n2|n1|2t?(n1)efSnz\nz\zt;E(nZ)'

n'n2ezd
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We may bound
n' + w2 P (In' P+ |n*?) < Cln'[* + [?)"),
and so arguing as before, we obtain the further upper bound
Ct2(e"1)(0) (e"7)(0),
which is bounded by Ct~2t~(4=%), as desired. 0O

Lemma 4.22. There exists a sequence {5?\}22}1\720 of non-increasing functions 95> :
(0,1] — [0,1], such that the following hold. For any te€ (0,1, we have that

limy 0,052 (t) = 0. Also, for any M > N > 0, t € (0,1], x € T, we have that
E[|Ey(tx) — Ex(t,x)[*] < C@1=0532(1).

Additionally, for any | € [d], we have that
E[|0Fx(t x) — OFy(t,x)[]] < Cr@20542(1),

Here, C depends only on d and the constants o, Cp, Cg from Assumptions (D), (E).

Proof. We will work with the scalar quantities Fy i For N > 0, t € (0,1], define

GN(t) = Z Z 6_47[2‘”1‘Zt:L'\(I/ll)6_4n2‘n2|2t?(}12),
ul,aze[dg] nln2ezf
jojreld) max{[nt]oln?] } >N

By arguing as in the proof of Lemma 4.21, we may obtain
E[|F?§Jo(t,x) - FZ}’LJ-O(t,x)ﬂ < Ct'Gy (),
E[|81F?\}’Jo(t, x) — OFY. (L x)|2] < Ct2Gy(1).

Observe that Gy(t) < Gy(t) for all ¢ € (0,1], and from the proof of Lemma 4.21, we
have that Go(t) < Ct~=*). Thus we may define

Gy(t
5}%22(1‘0) = sup MU

——, ty € (0,1].
te[m,l]max{l,Go(t)} 0 ( ]

This ensures that %> maps into [0, 1], and that it is non-increasing. It remains to show
that limy_, x> (fo) = 0 for all ) € (0,1]. Fix ty € (0,1], a1,a, € [dg], j1,jo € [d]. Since
max{|n'|,|n*|,} > N implies that at least one of |n
to show that

is at least N, it suffices

[l

oo

. A2l 2 42022
lim sup E eI (n e Il (12) = 0.
N=00 ¢ 1,1

o] 1 2 ez

nl] >N
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Note that without the limit, the left hand side above can be bounded by

Z e_4n2|”]|2t°?(nl) Z e_4nzl”2|2t°?(n2).
n'ez? n2ezs
|n'| >N
Note that the second sum is ("“7)(0), which is finite by Lemma 4.3 (and the fact that
ty > 0). For the same reason, we have that oae I PeT(n1) < 00, The desired
nl'eZ

result now follows by dominated convergence. O

We next use the previous technical lemmas to control the C° norm of A%(t), culmi-
nating in Proposition 4.30 below. After we control the C° norm, we will then move on
to controlling the C' norm. In the following, recall the definition of d; from Definition
4.4. The proof of the next lemma will be omitted, as it is very similar to the proof of
Lemma 4.11, where we use Lemmas 4.17 and 4.21 in place of Lemma 4.10, and Eq.
(4.5) in place of the heat equation J,A' = AA'.

Lemma 4.23. For any N > 0, the following holds. For t € (0,1], r,s € (t/2,t], x,y € T¢,
we have that
AR (6012 < ¢,
1A% (%) = AR (s )l < € P04, (%), (5,9))-

Here, C depends only on d and the constants o, Cp, Cg from Assumptions (D), (E).

In the following, recall the definition of D}, ,, from Definition 4.18. The proofs of the

following few lemmas will be omitted, as they are all very similar to the proofs of the
analogous lemmas in Section 4.1.

Lemma 4.24. There is a sequence {53™*} -, of functions 53** : (0,1] — [0,1] such that
the following hold. For any t € (0,1], we have that limy_.,0%>*(t) = 0. Also, for any
M >N >0,tc (0,1, r,s € (t/2,t], x,y € T% we have that

IDZ (1, %) < Cm (/A2 5224 (),
1D} 01 (%) = DYy (s, 9)] 2 < CE 204, (7, x), (5, ) 3374 ().

Here, C depends only on d and the constants a, Cp, Cg from Assumptions (D), (E).

Definition 4.25. For N > 0, t € (0,1], x € T, let
D% (t,x) := A% (t,x) — A*(t,x).
The following result is a direct consequence of Lemmas 4.23 and 4.24 and
Definition 3.11.

Corollary 4.26. Let {5**} N>o be the sequence of functions from Lemma 4.24. Then for
any N > 0,t € (0,1), r € (t/2,t], x € T¢ we have that

D3 (r )l < Cr g2 p)

Here, C depends only on d and the constants o, Cp, Cg from Assumptions (D), (E).
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We can now use Assumption (B), Lemma 2.17, and the various moment estimates to
obtain tail bounds for A? and related quantities.

Lemma 4.27. For any t € (0,1], r,s € (t/2,t], x,y € T% we have that for u > 0,
P(JA%(rx)| > u) < Cexp (—(u/t” P)RC),
P(|A%(r,x)— A¥(s,9)] > u) <
C exp (—(u/ (¢~ 0d,((r, ), (5,)))) /©).
The above inequalities also hold with A* replaced by A%, for any N > 0. Additionally, let

{5?\}24}N>0 be the sequence of functions from Lemma 4.24. Then for any N > 0, we
have that for u > 0,

P(|D%,(rx)] > ) < Cexp (—(u/(t" VD154 1))/ €),
P(|D}(r,x) =D (s,)] > u) <
C exp (—(u/ (¢~ 0d,((r, ), (5,) 037 (1)) /C).

Here, C depends only on d and the constants fy, Cg, o, Cp, Cg from Assumptions (B), (D)
and (E).

Lemma 4.27 may be used to obtain the following result.

Lemma 4.28. The process A?= (A*(t,x),t€ (0,1, x €T has a continuous
modification.

Hereafter, we assume that (after a suitable modification) the process A’ = (Az,t S

(0,1],x € T?) has continuous sample paths. The following lemma is the analogue of
Lemma 4.14. We omit the proof, as it is very similar to the proof of that lemma (where
we use Lemma 4.27 instead of Lemma 4.13).

Lemma 4.29. For any p > 1, ty € (0,1], we have that
E[ sup  |AX(t,x) |P] < CtyPURETI0 (1 | og to|V/Pe)P.
(tx)e(

Ye(to/2:t] X T¢
The above inequality also holds with A* replaced by A}, for any N > 0. Additionally, let
{5}1\]24}1\,20 be the sequence of functions from Lemma 4.24. Then for any N > 0, we
have that

E[ sup D} m)l] < Cty PP (1 4| log o] P (552 (10) P
(t,x)E(to/2,t0] X T

Here, C depends only on d, p, and the constants fy, Cg, o, Cp, Cg from Assumptions (B),
(D) and (E).

Proposition 4.30. For ¢ >0, let 7, := (1/2)(d —1—oa) +¢ For any ¢ >0,p > 1, we
have that
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supE | sup 7"

[ Afv(t)||{go}, E [ sup
N>0 |te(0,1]

te(0,1]

A2<t>||f;o] < Cyp <00
Moreover, we have that

lim E | sup #7:||A%(t) — A*(t)|[fs | = 0.
N—=oo 14e(0,1]

Here the constant C,, depends only on &, p,d, and the constants Py, Cs,a, Cp,Cg from
Assumptions (B), (D) and (E).

Proof. The first result follows by combining Lemma 4.29 with Lemma A.1. The second
result follows by combining Lemma 4.29 with Lemma A.2. O

As previously mentioned, having controlled the C° norm, we now move on to con-
trolling the C' norm. We first show the following preliminary result, which will also
allow us to prove Lemmas 3.12 and 3.14.

Lemma 4.31. For all ty,t; € (0,1], to < t;, x € T we have that a.s.,
A’(tr,x) = (eAA% (1)) (x)
hi=to Ao(2) a1 (4.6)
+ J (et 0=IAX @) (AL (1) 4 5))) (x)ds.

0

Proof. Note that the result is true if we replace A%, A! by A}, A}, since A = p(A)) by
definition (recall Definition 3.9). Taking N — oo, we have (recall Definition 3.11) that

Aij(tl,x)L—iAz(tl,x). To finish, it suffices to show that
(el A2 (1)) (x) Do (el A2 (1)) (),
and that

t1—to
J (e(fl—to_S)A X(2)(A11\[(t0 + s)))(x)dsi
0

Jt —ty (e(fl—tO“)AX(z) (Al (to +5)))(x)ds.

Note that by Proposition 4.30, E[||A%, () — A*(ty)||0] — 0. The first claim now follows
since

e =4 (AR (10) — A%(00))lleo < 1A% (1) — A%(t0) |-
For the second claim, define AL (t) := AL (t + to) for ¢ € [0,1 — o], and analogously for
Al. Since A, (0) is smooth, we have that A}, € P; for all N > 0, and thus X}\, € 'P%_to
for all N > 0. We also have that A' € P}_to, which follows since A' is a solution to
the heat equation (by Lemma 3.2). Now by (4.2), we have that ||A} — A'||, — 0.
1-ty

The second claim follows by Lemma 2.12. O
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Corollary 4.32. On an event of probability 1, we have that (4.6) holds for
all to, f1 € (0, 1}, hh<t,x¢€ Td.

Proof. Let E be the event that (4.6) holds for all #,, t; in a countable dense subset of
(0,1], and all x in a countable dense subset of T¢. By Lemma 4.31, P(E) = 1. Note that
A? has continuous sample paths (recall just after Lemma 4.28), and that
supte[t0,1]||A1(t)||C1 < oo for all t, € (0,1] (recall (4.1)). The latter implies that for ¢, €
(0,1], if we define A'(t) :== A'(t +t), then A' € Pi_,» and thus by Lemma 2.6, we
have that p®? (7\1) € Pi_to as well. By combining the previous few observations, we
have that on the event E, the identity (4.6) extends by continuity to all fy,# €
(0,1], to < t;, and x € T, O

Proof of Lemma 3.12. Let E be the probability 1 event given by Corollary 4.32. As in the
proof of Corollary 4.32, on the event E, we have that for all t, € (0,1], t; € [fo, 1],

A2(t)) = e (1) + p@ (AN (8, — to), (4.7)

where A'(t) := Al(ty + t) for t € [0,1 — fo]. Moreover, as noted in that proof, we have
that p@(A!) € P%_to. Combining this with the fact that A%(t) € C°(T%, g%) for all t €
(0,1] (so that s— e®A2(t) is a continuous function (0,00) — C'(T% g%) for all t €
(0,1]), we obtain that on E, the map ¢+ A%(t) is a continuous function from (0,1] —
C'(T% g%). We can modify A? to be identically 0 off E. O

Proof of Lemma 3.14. This follows by combining Corollary 4.32 with (3.1). O

We now turn to getting bounds on VA?*(¢). We will omit the proofs of the following
few results, as they are all very similar to the proofs from Section 4.1. As done after
Lemma 3.12, we will assume that (after a suitable modification) ¢+ A*(¢) is a continu-
ous function from (0,1] — C'(T¢,g?). Even more, from the the proof of Lemma 3.12,
we may assume that (4.7) holds for all t, € (0,1], t; € [ty,1]. The next lemma is the
analogue of Lemma 4.23.

Lemma 4.33. For any N > 0, the following holds. For led], te (0,1],rs¢€
(t/2,1], x,y € T% we have that
1A% (822 < cr (),
10:A% (1, x) = O (s )l < CVPEDd((r,x), (5,9))-
Here, C depends only on d and the constants o, Cp, Cg from Assumptions (D), (E).
The next lemma is the analogue of Lemma 4.24.

Lemma 4.34. There is a sequence {5?\;34}1\,20 of maps 53>t (0,1] — [0, 1] such that the
following hold. For any t € (0,1], we have that limy_...6%>*(t) = 0. Also, for any M >
N >0,1e[d,te(0,1], rse (t/2,t], x,y € T¢ we have that
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IN

Ct—(l/z)(d—oc)64.34(t)

>

10D 51 (7> %) 2
18D 01 (1, %) = DY (59| < CE V2 Dd (1), (5,7)) 0™ (8).

Here, C depends only on d and the constants o, Cp, Cg from Assumptions (D), (E).
Lemma 4.35. For any | € [d], we have that O|A%(t, x)ialAz(t, x).

Proof. By Lemma 4.34, the sequence {81A t,x) } N> is Cauchy in L?, and thus it con-
verges in L? to some random variable, call it Y. To finish, it suffices to also show that

GIAN(t,x)—>81A (t,x). Toward this end, let t, € (0,¢), and let A'(t) := Al(ty +t) for
t € [0,1 — to]. We have that (by (4.7))

DA% (1,x) = (9™ A2(19))(x) + (A1p™P (AN) (¢ — 1)) (x)-

By construction, the above identity is also true with A%, A’ replaced by A%, Ay, for any
N > 0. Thus it suffices to show that

(0 ™A AG (10)) (x) = (D1~ A% (1)) (),
~ ~ P

10 (AR (¢t = to) — pP (AN (t — to)[| s —0.
(Here AL(t):=AL(to+1t) for te€[0,1—14)]) Note that by Proposition 4.30,
E[||A%(t)) — A*(t)]| 0] — 0. We have that

101e!" A AR () —Ohe! AA (to) ]| 0 <
e~ 2AR (1) — €2 A% (1) |-
We can then obtain the further upper bound
Clt —t0) "7 |AF} (t0) — AP (o)l co-

The first claim follows. For the second claim, note that by (4.2), [|AL — 1~&1||P} — 0.
"
The second claim then follows by Lemma 2.12. O

The following proposition is the analogue of Proposition 4.30. It can be proven by
first proving the analogues of Lemmas 4.27 and 4.29 for VA?* (by using the various esti-
mates on VA? that we have shown). The proofs are omitted.

Proposition 4.36. For ¢ >0, let 7, := (1/2)(d — 1 — o) +¢ For any ¢ >0,p > 1, we
have that

sup E| sup l‘p((l/z)J“/*)||VA12\,(1,‘)|\‘Z0 < Cyp < 00,
N<oo |te(0,]]

where we use the notation VA2 := VA2 Moreover, we have that

lim E | sup #((1/2)+7:) [[VAL(t) — VAz(t)H%o =
N—=oo | ye(0,]

Here, C,, depends only on &, p,d, and the constants Py, Cp,a, Cp, Cg from Assumptions
(B), (D) and (E).
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Proof of Proposition 3.15. The first two claims follow by combining Propositions 4.30
and 4.36. The final two claims follow by combining the first two claims with Lemma
3.8. 0
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Appendix A: Suprema of stochastic processes

Let (A(t,x),t € (0,1],x € T?) be a g%-valued stochastic process with continuous sample paths.

Lemma A.1. Let p > 1. Suppose that there is some Cy, 9, f such that the following holds. For all
to € (0, 1], we have that

E[  sup |A(LX)]] < Coty?'(1+ | log 1] ).

te(to/2,t),x€T?

Then for any ¢ >0, there is some non-increasing function ¢ :N — [0,00) depending only on
P> Co, P, & such that for any integer ko > 0, we have that



250 S. CAO AND S. CHATTERJEE

IE[ sup tp("+£)|A(t,x)|P} < (ko).

1€(0,27%0],xeT?

Moreover, d(ky) — 0 as kg — oc.

Proof. Let ky > 0. We may bound

o0

E{ sup 0+ |A(t, x)[P] < ZE[ sup PO A (L x) ],

t€(0,27%0],xeT? k=ko |te(2~®D 27K xeTd

which may be further bounded by

coZ POTE PR (1 4 (K log 2)P Y.
k=ko

Thus we may set d(ko) to be the above. The fact that limy,_...0(ko) = 0 follows because 6(0) <
oo combined with dominated convergence. 0O

Now suppose we have a sequence {(Ay(tx),t€ (0,1],x € Td)}Nzo of g?-valued stochastic
processes with continuous sample paths.

Lemma A.2. Let p > 1. Suppose there is a sequence {on}y~, of functions oy : (0,1] — [0,1],
and Co,7, f, such that the following hold. For all t € (0,1], we have that limy_...0n(t) = 0. Also,
for all ty € (0,1], N > 0, we have that

IE{ sup |AN(t,x)|P] < Cotg P (1 + | log to|P)Pon (o).
(

te(to/2,t0] x€T
Then for any & > 0, we have that
lim IE[ sup 04| Ay (8 x) q =0.

N=oo 1€(0,1],x€T?

Proof. Fix ¢ > 0. Let ky > 0. For N > 0, we may bound

E| sup #0Ay(tx))| < Lo N + Lgo N»
t€(0,1],xeT?

where

t€(0,2 k0], xeT?

LN i= E[ sup  #PUTI|AN (1, x) |p] ,

Ly =E sup tp(""+8)|AN(t, x)P|.
te(27%0,1],xeT?

By Lemma A.1, we have some function ¢ : N — [0,00) such that d(k) — 0 as k — oo, and such
that supy ol15,~n < J(ko). Next, observe that

ko—1
Ljx < Y E sup 09| Ay (, x) [P
te(2~*+0 27K xeT?
ko—1

COZZ PR+) (27K TP (1 4 |k log 2|V on(275).

IN

Since ko is finite, and 0y converges pointwise to 0, we obtain that for any fixed ko,
limy_,oolp 4, = 0. We thus obtain for any fixed ko,
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limsupE| sup 079 |Ax(t%)[?| < d(ko).
N—o0 t€(0,1],xeT?

Using that d(kg) — 0 as kg — oo, the desired result now follows. O

For ty € (0,1], let T}, := (to/2, to] x T¢. Recall the notation from Definition 4.4, in particular
di, Ni.. The following theorem is an immediate consequence of [32, Theorem 3.2]. Thus, the
proof is omitted. See the complete version of this paper on arXiv for the proof.

Theorem A.3. Let (V,||) be a normed finite-dimensional vector space. Let ty € (0,1]. Let Ty, =
(to)2,to] X T% Let (Xix, (t,x) € T,) be a V-valued stochastic process with continuous sample

paths. Suppose for some constants C; > 0, > 0, we have that for all (r,x),(s,y) € Ty,
P(1Xrx = Xsy| > udy (%), (5,9)) < Crexp(—u), u > 0.
Then for any p > 1, we have that

E[ sup | X,
(

rXx)€ Tfo

00 4
< G sup E[|X.[] + G (J (log Nto,g)l//}ds) )
0

(rx)€Ty,

Here C, depends only on V, Cy, f, and p.

Appendix B: Concentration of Gaussian quadratic forms

The proof of the following lemma is a fairly standard Chernoff bound argument. Thus, it is omit-
ted. See the complete version of this paper on arXiv for the proof.

Lemma B.1. Let Q be a quadratic form in centered Gaussian random variables. That is, Q is of
the form

Q=X"MX =) X:M;X;,
ij=1

where n > 1, X = (X3, ...,X,,) is a mean 0 Gaussian random vector, and M is an n X n matrix.
Then for any u > 0,
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