
1

Adaptive Fragment-based Parallel State Recovery
for Stream Processing Systems
Hailu Xu, Pinchao Liu, Sarker Tanzir Ahmed, Dilma Da Silva, Liting Hu

Abstract—Today, large-scale cloud organizations are deploying datacenters and “edge” clusters globally to provide their users with low-latency
access to their services. Running stream applications across these geo-distributed sites are emerging as a daily requirement, such as making
business decisions from marketing streams, identifying spam campaigns from social network streams, and analyzing existing genomes in different
labs and countries to track the sources of a potential epidemic. However, while the progress has been encouraging, the existing efforts have
dominantly centered around stateless stream processing, leaving another urgent trend-stateful stream processing-much less explored. A driving
need is that next-generation stream processing systems need to store and update states during processing, and most importantly, successfully
recover large distributed states when faults and failures happen. Existing studies exhibit major limitations including: (1) they mostly inherit
MapReduce’s “single master/many workers” architecture, where the central master is responsible for all scheduling activities and easily becomes a
scalability bottleneck; (2) they offer state recovery mainly through the use of three approaches: replication recovery, checkpointing recovery, and
DStream-based lineage recovery, which are either slow, resource-expensive or failing to handle multiple failures; and (3) they are not adaptive to
heterogeneous hardware settings in the cloud.
In this paper, we present A-FP4S, a novel adaptive fragments-based parallel state recovery mechanism for stream processing systems to manage
and recover large distributed states for a massive number of stream applications. The novelty of A-FP4S is that we organize stream operators into
a distributed hash table (DHT) based peer-to-peer (P2P) overlay. Then we divide each node’s local state into many fragments and periodically
store them in each node’s multiple neighbors (the leaf set nodes of DHT), ensuring that different sets of available fragments can reconstruct failed
states in parallel. By doing that, this failure recovery mechanism is extremely scalable to the size of the lost state, significantly reduces the failure
recovery time, and can tolerate multiple node failures. A-FP4S is adaptive to heterogeneous hardware settings (e.g., CPU speed, disk/file-system
speed, network bandwidth) by automatic parameter tuning over phases. Compared to Apache Storm, A-FP4S achieves a significant 31.8% to
50.5% reduction in recovery latency. It can scale to many simultaneous failures and successfully recover the state, even more than half of the
operators fail or get lost. Large-scale experiments using real-world datasets demonstrate A-FP4S’s attractive scalability and adaptivity properties.

Index Terms—State Recovery; Distributed Hash Tables; Stream Processing.

F

1 INTRODUCTION

T ODAY, many computing applications that are critical to society are
undergoing a profound transformation with the use of large-scale,
diverse, and distributed data sets that allow for data-intensive
analytics and decision-making at a level never before imagined.
Stream processing is proposed and popularized as a “technology
like Hadoop but can give you up-to-date results faster”, which
lets users query a continuous data stream and quickly get results
within very short periods from receiving the data. For that reason,
stream processing technology has become a critical building block
of many applications, such as making business decisions from
marketing streams, identifying spam campaigns from social net-
work streams, predicting tornados and storms from radar streams,
and analyzing genomes in different labs and countries to track the
sources of a potential epidemic.

• A preliminary version of this paper appeared at the 34th IEEE Interna-
tional Parallel & Distributed Processing Symposium (IPDPS’ 20) [55].

• H. Xu is with the Department of Computer Engineering and Computer
Science, California State University, Long Beach, CA, 90840, USA. e-mail:
hailu.xu@csulb.edu

• P. Liu is with the School of Computing and Information Science, Florida In-
ternational University, Miami FL, 33199, USA. e-mail: pliu002@cs.fiu.edu

• S. Tanzir Ahmed and D. Da Silva are with Texas A&M University, College
Station, TX, 77843, USA. e-mail: dilma@cse.tamu.edu

• L. Hu is with the Department of Computer Science and Engineering,
University of California Santa Cruz, Santa Cruz, CA, 95064, USA.

• All correspondence should be addressed to L. Hu (liting@ucsc.edu).

What is stateful stream processing? Over the last decade, a
bloom of stream processing systems has been developed including
Storm [8], Trident [10], Spark Streaming [24], Borealis [29],
TimeStream [66], S4 [61], etc. Stream processing systems typ-
ically organize the distributed processing operators in the form
of a directed acyclic graph (DAG), process the tuples of data
streams instantly as they flow through the DAG, and execute
the application logic to produce results in real-time. Traditionally,
stream processing systems are stateless. An interesting trend is that
more complex streaming pipelines generally need to keep some
sort of task or operator state in order to execute the application
logic, called stateful stream processing [25].

Examples of the state include (depending on the application):
user profiles, email digests, aggregate counts, summary of the
received elements, etc. State computations include aggregations
over a window (a mini-batch), counts over a window, and joining
a stream with a database. Figure 1 illustrates a simple example
of stateful stream processing that might be seen in the backend
of a consumer website. Suppose the application is to count the
number of page views for each user per hour. The input stream
is partitioned by some key in the data and distributed over
multiple task instances for parallel computation, each of which is
responsible for some key range. In this case, the state is the stored
key-value pairs consisting of user IDs and the corresponding
counters. The state can be kept in memory (e.g. a hashtable in
the task instances), at disk (e.g., using RocksDB [22]), or in a
remote database management system shared among applications.
When a new data event is processed, the history counter value

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

Task/
Operator

Task/
Operator

Task/
Operator

var x = …
update local

variables/structures

if (condition(x)) {
….

}

<x,1>

<x,11>
<x,10>

Embedded local
state backend

Figure 1: Example of a stateful stream application.

from the stored state is retrieved and incremented by the new
value (e.g.,〈x,1〉+ 〈x,10〉 → 〈x,11〉). The aggregation is typically
limited to a time window (e.g. 1 minute, 1 hour, 1 day) so
that we can observe changes of activity over time. This kind
of windowed processing is common for ranking and relevance,
detecting “trending topics”, as well as real-time reporting and
monitoring.

Why does state recovery matter? Stream computations are
by nature long-running. They run in a highly dynamic distributed
environment. Many stream operators may leave or fail at the same
time, resulting in expensive time and space costs to recover them.
When stream operators are deployed on a large number of nodes
in the cloud, research shows that a non-negligible percentage
(0.5%-1%) of computation nodes cannot come back to life after
a power outage [76]. The failed operators take a long time to
recover; for example, in August 2019, a failure in Amazon’s
AWS Tokyo region impaired the operations of many users for
around 6 hours [26]. Stream operator failures can be easily caused
by node replacements, service changes, device locations (i.e., in
different geo-distributed datacenters), environment changes such
as temperature, faulty interconnections, and human mistakes [78].

What makes it particularly challenging for stateful stream pro-
cessing is that the state can grow extremely large depending on the
nature of the task, the length of the sliding window(window means
mini-batch of stream), or simply due to the input volume. The
state of many real-world stream applications can easily expand to
the order of hundreds of gigabytes [77]. For example, LinkedIn’s
stream applications create a large amount of distributed states
at runtime, including user profiles, email digests, and aggregate
counts [62].

This paper focuses on scalable and adaptive state recovery
for modern stateful stream processing systems. It addresses the
significant challenges in handling many simultaneous failures
for a large number of concurrently running stream applications.

The first challenge is “how to scale recovery with the state
size, the number of simultaneous failures, and the number of
concurrently running stream applications on a shared platform?”
Existing studies [2, 5, 6, 8, 10, 24, 32, 53, 54, 61] mostly inherit
MapReduce’s “single master/many workers” architecture, where
the central master is responsible for all scheduling activities.
As such, they are limited to a fixed computation model, e.g.,
asynchronous stream processing like Storm [8], synchronous mini-
batch processing like Spark [7], etc. Note that the recovery
operation is a critical consumer of time and space. It must quickly
recover all failed operators’ lost states on failover nodes (if any)
without blocking the normal processing of stream applications.

However, example shows that the failure recovery time takes
nearly 60% of the running time when failures happen [82].
Experimental results in Apache Flink show that even with a very
small failure rate, such as the failure rate of 0.0022 per hour,
the overhead of state recovery dramatically increases to 68.8%
for 1000 nodes and 226.83% for 2000 nodes [49]. As a result,
it is difficult (or even unfeasible) for a centralized master to
manage state recovery for a large number of concurrently running
applications due to the inherent centralization bottlenecks.

The second challenge is “how can we handle many simulta-
neous failures while achieving fast recovery with low hardware
cost?” State-of-the-art stream processing systems offer failure
recovery mainly through three approaches: replication recov-
ery [34, 71], checkpointing recovery [8, 10, 66] and DStream-
based lineage recovery [35, 72, 81]. These solutions are ei-
ther slow, resource-expensive or fail to handle many simulta-
neous failures. Replication recovery adds significant hardware
cost because multiple copies must concurrently run on distinct
nodes for failover. Checkpointing recovery is known to be pro-
hibitively expensive, and users in many domains disable it as a
result [33, 46, 59, 64, 65]. DStream-based lineage recovery is
slow when the lineage graph is long and falls short in handling
multiple simultaneously failures.

The third challenge is “how to recover state adaptively based
on runtime properties, but without manual interventions?” Most
of the existing studies provide fixed recovery mechanisms [1, 8,
10, 35, 38, 44]. Although applications have various Quality-of-
Service (QoS) requirements, they assume unchanging state size
and recovery paths. Existing mechanisms may result in slow
recovery when the state size becomes extremely large, there are
resource limitations, or network conditions vary dynamically.

We present A-FP4S, a novel adaptive fragment-based parallel
state recovery mechanism to address the challenges listed above:
to efficiently handle many simultaneous failures for a large number
of concurrently running stream applications in a fast, scalable, and
adaptive manner.

A-FP4S operates as follows: (1) we first organize all the
application’s operators into a distributed hash table (DHT) based
consistent ring [69] to provide each operator with a unique
set of neighbors; (2) afterward, we divide each operator’s in-
memory state into many fragments using erasure codes [67].
Erasure codes operate by converting a data object into a larger
set of code blocks such that any qualified available subset of the
generated code blocks can be used to reconstruct the original
data object; (3) we periodically store each node’s state in its
neighbors, ensuring that different sets of available fragments can
be used to reconstruct failed state in parallel, and (4) finally,
we provide adaptive recovery mechanism by adjusting the size
and number of fragments based on the hardware properties (e.g.,
network bandwidth, disk speed), the application characteristics
(e.g., state size, number of nodes), and the directed acyclic graph
(DAG) length characteristics. This failure recovery mechanism is
extremely scalable to the size of the lost state, significantly reduces
the failure recovery time, and can tolerate many simultaneous
operator failures.

We build A-FP4S on top of Apache Storm and evaluate it using
large-scale experiments with real-world datasets. Experimental
results demonstrate the scalability, adaptivity, and fast failure
recovery of A-FP4S. When compared to a state-of-the-art solution
(Apache Storm [8]), A-FP4S reduces in 37.8% the state recovery
latency and reduces more than half of the hardware costs. It can

2

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

input

Hot failover
nodes

2. Seamlessly
switch to
backup

1. Node fails

output

input

1. Node fails

Remote
storage

Checkpointing

2. Retrieve last
checkpointed state

1. Node fails

2. Recompute the
linear RDDs

Figure 2: The replication recovery work-
flow.

input

Hot failover
nodes

2. Seamlessly
switch to
backup

1. Node fails

output

input

1. Node fails

Remote
storage

Checkpointing

2. Retrieve last
checkpointed state

1. Node fails

2. Recompute the
linear RDDs

Figure 3: The checkpointing recovery work-
flow.

input

Hot failover
nodes

2. Seamlessly
switch to
backup

1. Node fails

output

input

1. Node fails

Remote
storage

Checkpointing

2. Retrieve last
checkpointed state

1. Node fails

2. Recompute the
linear RDDs

Figure 4: The DStream-based lineage recov-
ery workflow.

scale to many simultaneous failures and successfully recover the
states when up to 66.6% of nodes fail or get lost.

Contributions. We make the following technical contributions:

• We propose a decentralized architecture using a DHT-
based consistent ring and erasure codes to recover the dis-
tributed states for numerous concurrently running stream
applications. To the best of our knowledge, A-FP4S is the
first work to use a fully decentralized architecture for state
recovery (Sec. 3).

• We implement the A-FP4S prototype on the state-of-the-
art stream processing system Storm and demonstrate its
portability to many other stream processing systems (Sec.
3).

• We provide a theoretical analysis of A-FP4S’s adaptive
recovery mechanism by adjusting the size and number of
fragments (Sec. 4).

• We make a comprehensive evaluation of the scalability,
recovery time, and adaptivity of A-FP4S on a large cluster
using real-world stream application’s datasets (Sec. 5).

The remainder of this paper is organized as follows. Section 2
discusses the related work. Section 3 describes the A-FP4S design
and implementation. Section 4 presents the A-FP4S adaptivity
analysis. Sections 5 shows the experimental setup and perfor-
mance evaluation. We conclude with directions for future work
in Section 6.

2 RELATED WORK

Designing a state recovery mechanism for stateful stream process-
ing systems is non-trivial, and existing failure recovery techniques
for stream processing do not achieve the necessary scalability and
adaptivity. In this section, we summarize existing stateful stream
processing systems (see Table 1) and examine why their failure
recovery techniques are either slow, resource-expensive or fail to
handle multiple failures.

2.1 Stateful Stream Processing Systems

Many industrial stream processing systems either do not support
state (Heron [53], S4 [61], early version of Storm [8]), or rely
on in-memory data structures such as hash tables and hash
table variants to store state. For example, Muppet [54] and Tri-
dent [10] (an extension of Storm) store state via hash tables. Spark
Streaming [24] enables state computation via Resilient Distributed
Datasets (RDDs) [80] which are inherent hashmaps. Some other

systems such as Millwheel [31] and Dataflow [32] choose to sepa-
rate state from the application logic and have state centralized in a
remote storage [30, 33, 37] (e.g., a database management system,
HDFS [3] or GFS [43]) shared among applications, along with
periodically checkpointing state for fault tolerance. A few other
systems such as Kafka [5], Samza [6, 62], Spark Streaming [24],
and Flink [1, 35] use a combination of “soft state” stored in in-
memory data structures along with “hard state” persisted in on-
disk data store (e.g., RocksDB [22], LevelDB [16]).

However, it is not easy for these systems to quickly recover
large distributed states from the many concurrent failures. This is
because when a single node fails due to power outage, system
reboot, or environment changes (e.g., temperature), the large
distributed states of all dependent nodes must be reset to the last
checkpoint, and computation must resume from that point, costing
a lot of extra time and space to accomplish recovery. Moreover,
these systems rely on a single master for handling failures and
stragglers, exhibiting significant overhead from centralization bot-
tlenecks.

2.2 Failure Recovery in Stream Processing Systems

Existing stream processing systems offer failure recovery mainly
through the use of three approaches: replication recovery, check-
pointing recovery, and DStream-based lineage recovery.

Replication recovery. In the process of replication recovery,
as shown in Figure 2, there is a completely separate set of hot
failover nodes that processes the same stream in parallel with the
primary set of nodes. Input records are sent to both. When there
is a failure or multiple failures in the primary nodes, the system
automatically switches over to the secondary set of nodes and the
system can continue processing with very little or no disruption.
The replication recovery has been widely used in systems such as
Flux [71] and Borealis [34]. The failover is fast, and it can handle
multiple concurrent failures. However, replication recovery has a
linear increment in hardware cost. For example, if each node fails
at most once, the hardware cost doubles.

Checkpointing recovery. In the process of checkpointing
recovery, as shown in Figure 3, each of the nodes in the pipeline
has a buffer in memory to retain a backup of the records that it
has forwarded to the downstream nodes since the last checkpoint.
All nodes periodically checkpoint their states to remote storage
such as HDFS or GFS. A standby set of nodes is maintained in
the system. If any of the primary nodes fails, a standby node will
retrieve the latest checkpoint from the persistent storage, and its
upstream node essentially replays the backup records serially to
this failover node to recreate the lost state. The checkpointing re-
covery has been widely used in systems such as TimeStream [66]

3

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

Table 1: Overview of state management and recovery in stream processing systems.

System State management State storage State recovery policy State recovery traits Processing traits
In memory Local Remote Static Dynamic Adaptive Latency Cost

Mupppet [54] Checkpointing X X Slow Stream
Trident [10] Checkpointing X X Slow Micro-batch
Millwheel [31] Checkpointing X X Slow Event-based
Dataflow [32] Checkpointing X X Slow Hybrid stream
Samza [6] Checkpointing X X Slow Stream & batch
Flux [71] Replication X X X Fast High Stream
Borealis [34] Replication X X X Fast High Stream
TimeStream [66] Checkpointing X X X Slow Stream
Drizzle [75] Checkpointing X X Slow Micro-batch
Spark [80] DStream X X Slow Micro-batch
Flink [1] Checkpointing X X Slow Event-based
Storm [8] Checkpointing X X Slow Stream
SR3 [79] Parallel fragments X X X Fast Low Hybrid stream
A-FP4S Parallel fragments X X X X Fast Low Hybrid stream

and Trident [10], Drizzle [75]. It avoids the replication hardware
cost. However, the failover is much slower than the replication
recovery because it has to retrieve the checkpointed state from the
disk and replay the buffered data on the last state to recompute
the new state. Multi-level Checkpointing [58] is widely used in
high-performance computing (HPC) systems. For example, asyn-
chronous multi-level checkpointing [57, 70] has been a common
method for efficient checkpointing. However, the overhead of
the checkpointing, especially for the enormous I/O traffic, can
be a performance bottleneck without adjusting optimal inter-
vals of checkpointing and checkpoint count configurations [41].
Drizzle [75] introduced group scheduling and pre-scheduling to
reduce the centralized scheduling bottleneck. However, it uses
a batch processing model and focuses on scheduling tasks for
one application, while A-FP4S uses a record-at-a-time processing
model and focuses on many concurrently running jobs.

DStream-based lineage recovery. To achieve both fast re-
covery and small hardware overhead, the DStream-based lineage
recovery was proposed, as shown in Figure 4. It has been used
in Apache Spark-based systems [1, 35, 72, 81]. The most recent
state is stored in each node’s memory using a data structure
called Resilient Distributed Dataset (RDD) [80], together with the
lineage graph, that is, the graph of deterministic operators used to
build RDDs. When nodes fail in the system, instead of preparing
nodes for failover, DStream will re-run the lost tasks in parallel on
other reliable nodes in the cluster using the lineage graph. These
tasks can be parallelized to recompute the lost states. However, the
entire recovery processing is linear, that is, the lost tasks need to
be executed or computed strictly in line with the original lineage
graph on other nodes. As such, the recovery process may be slow
when the lineage graph is long and incur multiple data uploads
through the network.

To our best knowledge, the very few research projects that
are broadly relevant to state management solutions are [4, 17, 48,
74]. These projects either point out the criticality of making state
explicit [48, 74] or develop mechanisms for reprocessing state [4,
17], but propose no effective solutions for fast state recovery when
concurrently running stream applications.

Static state recovery. The replication-based recovery,
checkpointing-based recovery, and DStream-based lineage recov-
ery have a common characteristic: they are static at runtime. No
matter how the computing environment changes, their configura-
tions do not change while the application is running. For example,
to reduce the checkpointing resources due to extreme large state,

Flink [1, 35] provides a minimum duration between checkpoints
that can determine the minimum time interval between the end
of the latest checkpoint and the beginning of the next. But this
minimum duration is a static value that does not change to
adapt to runtime conditions. Other approaches such as Noria [44]
and window-based recovery [38] either use selective rollback by
recomputing data-flow state or assemble different window sizes
in checkpointed state, but they do not dynamically adjust the
windows or size of checkpointed state. Ozeer et al. [63] introduced
a resilience fault tolerance approach in the Fog-IoT environment,
where the state recovery takes into consideration uncoordinated
checkpoints, message logs, and function call records; its state
recovery differs in appliance, software element and server failures.
Castro et al. [36] proposed an integrated approach for scale-
out and recovery of stateful operators, where it periodically
checkpoints the process state. However, they do not dynamically
customize the configurations of parallel recovery for various
applications. Instead, our work provides adaptive state recovery
mechanism based on the state size and availability of computing
resources.

In our previous work, we proposed SR3 [79], a customizable
state recovery framework that offers three recovery mechanisms to
cater to the needs of different stream processing computation mod-
els, state sizes, and network settings. Compared to SR3, A-FP4S
integrates the adaptive run-time analysis of various applications
and considers to be flexible to different kinds of stateful stream
applications with run-time refinement by adjusting the number of
fragments. SR3 can only choose one of three mechanisms even
with hundreds of different applications. A-FP4S is more flexible
and available for various kinds of stateful stream applications.

3 SYSTEM DESIGN AND IMPLEMENTATION

In this section, we describe the basic workflow of A-FP4S, intro-
duce each component, show how stream applications’ distributed
states are recovered by the A-FP4S-enabled stream processing
system, and explain the performance, scalability and adaptivity
benefits of using A-FP4S.

3.1 Overview

The A-FP4S design aims to achieve the following goals:

• Resource efficiency. Avoid the replication hardware over-
head.

4

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

Leaf set
nodes

N1

N3

N2

N5

N1 N2 N5

Layer 3:

Layer 2:

Layer 1:

DHT-based
Overlay

Stream Processing DAGs

Physical
Network

Stream Processing Application

Stateful Stream
Operators

A-FP4S Interface

states

A-FP4S Encode

A-FP4S Save

A-FP4S Retrieve

A-FP4S Recompute

The recovered state is used to resume
the normal stream processing.

Only m number of fragments are
required to recompute state.

n number of fragments are
saved into leaf set nodes.

Input state is encoded into n
fragments of m raw data and k parity.

 A-FP4S API

Adaptive Analysis

Model configures the
values of m (raw data
fragments) and k (parity
fragments).

m k

N4

N4

N3

Recompute
state

Layer 4:

Adaptive Analysis
Configurations:

CPU speed, network
bandwidth, latency...

Configurations:
CPU speed, network
bandwidth, latency...

+

Figure 5: A-FP4S system design.

• Fast recovery. Avoid the slow recovery of retrieving state
from disk and replaying the data input that hurts the service
quality of stream applications.

• Resilient to multiple failures. The mechanism needs to
handle multiple simultaneous failures due to the much
higher node dynamics in large clusters.

As show in Figure 5, the A-FP4S system consists of four
layers: The DHT-based consistent ring overlay, the fragmented
parallel state recovery mechanism, the adaptive run-time analysis,
and the high-level A-FP4S interfaces that are exposed to the
stream processing systems (e.g., Storm [8], Spark Streaming [24],
Heron [53]) for implementing the state recovery for stream appli-
cations.

• Layer 1: DHT-based ring overlay. Each data center
server is installed with one or many in-situ stream op-
erators, also called “nodes” in this study. We organize
these potentially hundreds of thousands of nodes into a
distributed hash table (DHT) based ring overlay (e.g.,
Pastry [69], Chord [73]) which is commonly used in Bit-
coin [60], BitTorrent [40], and FAROO [14]. This overlay
is self-organizing and self-repairing. To do that, each node
needs to maintain two data structures: a routing table and
a leaf set, in which the routing table is used for looking
for the state (within log(N) hops) and the leaf set nodes
are used for recovering the application state if one or more
nodes fail.

• Layer 2: fragmented parallel state recovery. Periodi-
cally, the state in each node’s memory is divided into m
identically-sized blocks, which are encoded into n blocks,
where n > m. The n blocks of the state are replicated to n
nodes from the original node’s leaf set nodes in parallel,

guaranteeing that the original state can be reconstructed
from any m blocks.

• Layer 3: adaptive run-time. For a variety of applications
that have different resource and QoS requirements, the
A-FP4S runtime uses a module to automatically adjust
system parameters to meet their needs. For example, some
applications may prefer faster recovery time while some
other applications may prefer less storage overhead. The
A-FP4S system automatically adapts to these user prefer-
ences without manual interventions.

• Layer 4: high-level interfaces to stream processing
systems. The high-level A-FP4S programming API (Ta-
ble 2) is exposed to the stream processing systems and
programmers for implementing the parallel state recov-
ery policies for concurrently running stream applications
based on frameworks such as Storm [8], Spark [24], and
Flink [1].

3.2 DHT-based Ring Overlay

A-FP4S leverages a DHT-based consistent overlay [69, 73] to
support parallel recovery of distributed states for a large number
of concurrently running stream applications. In this DHT-based
consistent ring overlay (e.g., Pastry [69], Chord [73]), each node
is equal to the other nodes, having the same rights and duties.
The primary purpose of this model is to enable all nodes to
work collaboratively to deliver a specific service. For example,
in BitTorrent [40], if someone downloads some file, the file is
downloaded to her computer in parts that come from many other
computers in the system that already have that file. At the same
time, the file is also sent (uploaded) from her computer to others
that ask for it.

5

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

Similar to BitTorrent, where many machines work collabora-
tively to undertake the task of downloading files and uploading
files, we enable distributed stream operators to work collab-
oratively to undertake the original centralized master’s failure
recovery task. First, each stream operator maintains an in-memory
buffer to store the application state. Instead of storing states at
a remote storage, these distributed stream operators store the
states for each other. Second, these distributed stream operators
(nodes) are self-organized into a DHT-based overlay. Each node is
randomly assigned a unique NodeId (128 bits in length) in a large
circular NodeId space. NodeIds are used to identify the nodes
and route stream data. It is guaranteed that any data can be routed
to a node whose NodeId is numerically closest to the destination
node within O(logN) hops. To do that, each node maintains two
data structures: a routing table and a leaf set.

1) Routing table: The routing table consists of physical node
characteristics (NodeId, IP) organized in rows by the length
of common prefixes of NodeId. When routing a message, each
node forwards it to the node in the routing table with the longest
prefix in common with the destination NodeId. At each routing
step, given a key, Pastry [69] routes messages to the node whose
NodeId is numerically closest to the key. The node first checks
if the key falls in the range of the NodeIds’ leaf set. If so, the
message is directly forwarded to that node. If not, the message
is forwarded to another node in the routing table whose NodeId
shares a common prefix with the key by at least one more digit. In
some cases, there is no appropriate entry in the routing table or the
associated node is not reachable. Then the message is forwarded to
a node whose prefix is the same as the local node, but numerically
closer.

2) Leaf set: The leaf set contains a fixed number of nodes
whose NodeIds are numerically closest to each node. The
NodeIds in the leaf set are half larger and half smaller than
the current node’s NodeIds. Leaf set nodes are maintained by
piggybacking information about the leaf set membership in keep-
alive messages within a configurable time period T (the default T
is 30 seconds) [47]. Nodes in the leaf set are symmetric, so that
each node can receive a keep-alive message from its leaf set. We
use the keep-alive message to detect node failures. If a keep-alive
message cannot be received within a specific time window, it can
be assumed that the node has failed [56]. When one node fails,
its neighbor node contacts the live node with the largest index of
the failed NodeId in the current node’s leaf set and this live node
will replace the failed node. Nodes are highly unlikely to suffer
correlated failure once the current node fails, so that they can assist
in rebuilding routing tables and reconstructing application’s state
when any operator fails (see Sec. 3.3, next, for more details).

3.3 Fragmented Parallel State Recovery

The parallel recovery mechanism of A-FP4S leverages a key idea
from erasure code. Erasure code is a forward error correction
code [13] by utilizing polynomial interpolation [20]. It transforms
a data object of k symbols into a longer data object with n (n > k)
symbols such that the original data object can be recovered from
any k of the n symbols [12]. It chooses a finite field F with the
default order of 2. It first splits the data symbols from 0 to k−1,
then constructs a (Lagrange) polynomial p(x) of order k such that
p(i) is equal to data symbol i. It then sends p(k), ..., p(n− 1) to
others. Others can use polynomial interpolation to recover the lost
packets by using any k symbols [12]. For example, (32, 16)-Reed-
Solomon (RS) code [67] divides a data object into 16 blocks and

Original state
K1
K2
K3

V1
V2
V3

K1
K2
K3

V1
V2
V3

Aggregate any
m fragments

Retrieve
fragments

K1
K2
K3

V1
V2
V3

K1
K2
K3

V1
V2
V3

Original state

N5

N1

N2

N3

From N2

From N3

From N1

Computation
in N5

d3d3p2p2

dmdm p1p1

d0d0 p0p0 d1d1
d2d2pkpk

p0p0 dmdm
p2p2

d3d3
d1d1

d3d3p2p2
... ...

dmdm p1p1

...

p0p0

Aggregate any
m fragmentsm data fragments k parity fragments

d0d0 d1d1 dmdm p0p0 p1p1 p2p2 pkpkd2d2 d3d3

m data fragments k parity fragments
d0 d1 dm p0 p1 p2 pkd2 d3

Model configurationModel configuration

Figure 6: The fragment-based parallel state recovery process.

transforms these blocks into 32 coded blocks, guaranteeing that
any 16 out of the 32 coded blocks are sufficient to reconstruct
the original data object. So that it can tolerate up to 16 errors.
Erasure codes have been widely used in massive storage systems
(e.g., OceanStore [52]), Bar codes (e.g., QR Code [51]), data
transmission technologies (e.g., DSL [45]) and space transmission
technologies (e.g., Galileo Probe). Figure 6 shows the steps of the
erasure-code-based parallel recovery algorithm.

Built upon Sec. 3.2’s DHT-based ring overlay, each node main-
tains a routing table and a leaf set. Each node periodically sends
heartbeat messages to its neighboring nodes for maintenance. The
state store frequency is determined by systems and applications.
By default, we set it to be 30 seconds. When needed to save
the state at each cycle of streaming processing, the state in each
node’s memory is encoded into n identically-sized fragments,
which include m raw data fragments and k parity fragments,
where k >= 1,n = m+ k. Then these n fragments of the state are
replicated to n nodes in the original node’s leaf set in parallel. The
error correction mechanism of erasure codes guarantees that any m
out of the n fragments are sufficient to correctly recompute, even
when some fragments are not available in the leaf set (denoted as
e), to reconstruct the original state. Thus, as long as n–e >= m, the
original state is safe to be accurately recomputed from the node’s
leaf set nodes.

• Step 1. Adaptive configuration: A-FP4S selects the
number of raw blocks m and the number of parity blocks
k in an adaptive manner based on the resource availability,
application’s QoS requirements, and user’s preferences. By
providing the option to adjust m and k, A-FP4S allows
users to weigh recovery reliability, speed/efficiency, and
storage overhead during the failure recovery process. For
example, in A-FP4S, choosing a larger k will produce
higher reliability, but will result in higher storage overhead
and slightly longer running time.

• Step 2. Encoding state: For each node, A-FP4S converts
its current version of state in a sliding window into n
fragments (configurable parameter) according to the RS-
code algorithm [67]. These n fragments include m raw
data fragments and k parity fragments.

• Step 3. Saving state: Each node sends these n fragments
to any n of its leaf set nodes. We ensure that the size

6

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

of the leaf set is larger than n. We assign the NodeIds
to reflect the physical proximity in order to ensure that
the leaf set nodes are also geographically close nodes that
have abundant bandwidth.

• Step 4. Retrieve state: Once a failure happens, the retrieve
routine is triggered. A request to obtain the lost state’s
fragments will be sent out. To recompute the lost state,
A-FP4S only requires m out of n total fragments. These
fragments are stored at the leaf set nodes that are quite
easy to access.

• Step 5: Recompute state. Finally, the state recomputation
routine is triggered, which reconstructs the lost state using
erasure codes. After that, the recovered state will be used
as input for the downstream operators and the system can
resume the normal stream processing.

The benefits are the following: (1) it allows for tolerating
a maximum of (n−m) simultaneous failures; (2) the recovery
process is fast. For multiple failures, different nodes from non-
overlapping leaf set nodes can work in parallel to recompute the
lost state, which is faster than DStream’s line-structured recovery
that executes strictly in line with the original lineage graph; and (3)
we achieve data locality because the leaf set contains nodes that
are geographically close to the original nodes (e.g., in the same
rack or in the same site) that have abundant upload bandwidth.

3.4 A-FP4S API

A-FP4S is platform-agnostic and can be easily integrated with
stream processing platforms such as Storm [8], Spark Stream-
ing [24], Flink [1], Timely Dataflow [66], Heron [53], etc. In
our design, using A-FP4S is essentially a configuration option.
Depending on the usage scenario (e.g., stateful or stateless, la-
tency requirement, reliability requirement), users can choose to
configure whether and when they want A-FP4S support. Table 2
shows the A-FP4S API.

3.5 Instrumentation Requirements

Here we describe the instrumentation requirements A-FP4S im-
poses and discuss the issues we encountered when integrating it
with the Apache Storm processing engine.

In Apache Storm [8], stream processing applications are de-
ployed and executed as topologies. The topologies contain the
business logic that is then transformed into a Directed Acyclic
Graph (DAG) implemented using spouts and bolts. Spouts are the
data sources of the stream, which accept input data from raw
data sources like the Twitter Streaming API [27] or the Apache
Kafka queue [5]. Bolts are the logical processing units. Spouts
pass data to bolts and bolts process and produce a new output
stream. IRichBolt is the common interface for implementing
bolts.

A-FP4S interacts with the IRichBolt interface in Storm [8].
If A-FP4S is enabled, A-FP4S periodically saves the states into
the DHT-based ring overlay for all stateful operators (bolts). For
record-at-a-time systems like Storm, saving every operator’s state
may incur a lot of overhead. Instead, we aggregate the states for all
the operators except for sources (spouts) and sinks. The aggregated
state size is configurable in order to satisfy different real-world
stream applications’ requirements. After the size reaches a certain
threshold, the Encode function encodes the states into fragments
and the Save function puts these fragments into the DHT-based

Table 2: A-FP4S API

List <Fragment>Encode(int rawDataNumber, int pari-
tyNumber, State inputState)

The function is invoked to encode a state into many frag-
ments. The fragment number is decided based on the argu-
ments rawDataNumber and parityNumber. The output is
a list of encoded fragments with length rawDataNumber +
parityNumber.

Boolean[] Save(List<>fragment, DHTNetwork dhtNet-
work, int numberOfThreads)

The function is invoked to save state into the DHT’s overlay. It
generates multiple threads to concurrently save the fragments.
The inputs are the fragments, the DHT overlay information
and the number of threads. The output is a Boolean array that
indicates the status of each fragment.

List<Fragment>Retrieve(String stateName, DHTNet-
work dhtNetwork, int numberOfThreads)

The function is invoked when a state recovery request is issued.

String Recompute(List<>fragments)

The function is invoked to recover the state. It loops through
all the retrieved fragments. If the number of fragments is equal
or larger than the number of raw fragments, the function will
perform further computation to recompute the retrieved fragments
into the original state.

overlay. If any node fails, the leaf set nodes call the routines
to Retrieve and Recompute states on fail over nodes. Any
qualified available subset of fragments will be sufficient to recover
the lost states through the Recompute function.

3.6 Discussion

Why DHT? A-FP4S leverages a DHT-based ring overlay, and
the main benefit of choosing a DHT-based ring overlay is that
it can flexibly handle the nodes that suffer from high churn for
stream applications in distributed systems. Stream processing, as
a technique to implement real-time processing, has been widely
used in many big data applications. Many of them need to be
deployed in heterogeneous environments, such as edge devices or
IoT systems. These environments naturally lead to high churn,
in which workloads change unexpectedly, wide-area network
bandwidth changes unexpectedly and Edge nodes leave or fail
unexpectedly (e.g., due to signal attenuation, interference, and
wireless channel contention). The flexibility and scalability of
DHT can be a good solution for these environments.

Scalability and robustness. A-FP4S is built upon the DHT-
based ring overlay, which is self-organizing and self-repairing.
Distributed nodes can easily join and leave the overlay, enabling
flexible management for large-scale state recovery for stream
applications. Besides, all nodes are equal. They have the same
duties and responsibilities. The system can easily avoid the central
bottleneck caused by the client/server architecture. Further, when
one node fails, it’s neighbor nodes in its leaf set can quickly detect
the failure by using keep-alive messages. Neighboring nodes will
immediately contact another active node to resume progress,
which can support robust performance for a large number of
concurrently running applications.

Intervals refer to state. How to find an optimal interval
strategy for state saving is a key issue in the stream processing
systems. Without an optimal state saving interval, the performance

7

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

of the application may degrade badly. Besides, due to the dynamic
performance of various kinds of stream applications, the strategy
of state relevant intervals should be more flexible. For example,
different intervals should be applied when handling different
stream applications with various workloads [50].

Dynamic streams. The data streams in modern stream pro-
cessing applications dynamically change with respect to volume,
velocity, and variety [42]. Workloads are in general variant in
the long-term and short-term. Long-term workload fluctuations
have received considerable research efforts. However, workload
fluctuations are mostly short-term and random in nature [42].
Therefore, the runtime overhead of failure recovery for short-
term workloads is time-varying and non-trivial. In A-FP4S, the
runtime adaptive analysis supports to a variety of short-term
stream applications and can dynamically tune the parameter when
dealing with different applications. A-FP4S provides flexibility for
both long-term and short-term stream applications.

4 ADAPTIVITY ANALYSIS

4.1 Adaptive Parameter Tuning

We provide a theoretical analysis of the A-FP4S model that
dynamically determines the size and number of fragments, achiev-
ing system adaptability. A-FP4S collects the instrumentation data
during each round of application, uses this data to train the model
that will be exported next, and then configures system parameters
for the next processing cycle. The input to the model includes
hardware properties (e.g., network and CPU speed), application
characteristics and also user preferences. Using this information,
our models can accurately moderate the number of data fragments
m and parity fragments k to match the requirements for the
subsequent episodes.

A-FP4S can adjust the value of k so that it can accommodate
multi-fragments failures during the recovery process. Such extra
cushion of reliability is particularly desirable when the application
nodes are known to be more failure-prone and unreliable. On the
other hand, some applications (e.g., real-time network monitoring)
may opt for faster recovery time over 100% reliability. A-FP4S can
adjust m and thereby the default size of each fragment to reduce
the recovery latency.

4.2 Analysis

In this subsection, we analyze the performance of A-FP4S with
adaptive number of fragments and compare it with the checkpoint-
based recovery (e.g., Apache Storm) in the cluster. We compare
the different methods of failure recovery based on three aspects:
(1) the hardware properties (e.g., network bandwidth, disk speed),
(2) the application characteristics (e.g., state size, fragment size),
and (3) the DAG length characteristics. Besides, evaluation results
show that the model analysis performance is consistent with the
experimental results.

Assume the volume of state saved by each operator is s bytes.
In a DAG where the operator A sends its output to the operator
B, A retains the s bytes of records that it has passed down to B
since the last checkpoint. For simplicity, we only consider buffer
state, ignoring processing state for the time being. When (and if)
operator B fails, operator C takes over and receives s bytes from A.
In a checkpoint-based recovery method, these s bytes must come
from reading HDFS or some sort of network file system. Assuming
HDFS bandwidth to be h-bytes/sec, a checkpoint-based recovery
scheme such as used in Apache Storm will take:

Rc =
s
h
. (1)

When implementing A-FP4S recovery instead of checkpoint-
ing in the DAG, the buffer state of node A is periodically backed up
in its leafset nodes. Note that the s bytes of buffer state is first split
into m blocks (each with s/m bytes) that are then erasure-coded
into n blocks stored in n leaf-set nodes, where n > m. Therefore,
s bytes of buffer state requires sn/m bytes of storage in A-FP4S,
leading to an overhead factor of (n−m)/m.

Note that although only s bytes of state are needed, C still
issues requests for all n coded blocks in anticipation of any
potential failures among the sending nodes. However, after m
blocks are received correctly, C can ignore the remaining amount.
Assuming a network bandwidth of η-bytes/sec, this retrieval takes
s/η seconds. After that, C can recompute s bytes of state from
these coded blocks, say, at a rate c-bytes/second, which takes s/c
seconds. Therefore, the recovery time of A-FP4S, denoted by R f ,
is:

R f =
s
η
+

s
c
. (2)

We next consider the reliability aspect of the derived models,
which is an important metric to consider because of the random
node failures that can lead to some non-determinism. Assume that
p is the probability for a node failure at any time. We also assume
that node failure is a Poisson process, which means that previous
failures do not affect the current failure.

When B fails in the DAG, another operator C needs at least
m out of n leafset nodes of A to recover fully. That means C will
recover in a single hop of data transfer if n−m or less nodes from
A’s leafset fail. Let the random variable X denote the event when
this happens, i.e., C can recover using A’s leafset nodes in a single
hop, which requires at least m leafset nodes of A to be alive at
that moment. Note that if fewer leafset nodes are available, the
DHT overlay will reorganize itself and provide functioning leafset
nodes for A’s leafset. However, that would take more time and our
model in (2) does not cover that. Therefore, our model reliability
is given by:

P(X = 1) =
n−m

∑
i=0

(
n
i

)
pi(1− p)n−i. (3)

While there is no close-form solution to the above expression,
we perform numerical evaluations with varying m, then varying n
in range [m,2m], and also varying the the node failure probability
p. Results are shown in Fig. 7.

Note that another way to interpret our model reliability equa-
tion in (3) is that it also works as a measure of A-FP4S’s efficiency:
the failure recovery takes the minimum time when the right
parameters m and k are chosen. Of course, A-FP4S will continue
to provide reliability without such parameter tuning, although
potentially sub-optimal in its use of resources.

Combining (1) and (2), we get:

Rc > R f ⇒
s
h
>

s
η
+

s
c
⇒ h <

cη

c+η
. (4)

We show the effect of (4) in Fig. 8, where we compare the
maximum allowed HDFS bandwidth h against A-FP4S’s recom-
pute rate c. The goal is to see up to what HDFS speed it is still
viable to use A-FP4S for a given network bandwidth η . It is clear
that for the most realistic values of c, η and h, A-FP4S is the
preferred choice in terms of performance.

8

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

5 6 7 8 9 10 11 12 13 14 15

0.4

0.6

0.8

1.0
Pr

ob
 o

f s
uc

ce
ss

fu
l r

ec
ov

er
y

of total blocks n

 p = 0.01
 p = 0.04
 p = 0.07
 p = 0.1

(a) Raw blocks m = 5.

5 6 7 8 9 10 11 12 13 14 15

0.4

0.6

0.8

1.0

Pr
ob

. o
f s

uc
ce

ss
fu

l r
ec

ov
er

y

of total blocks n

 p = 0.01
 p = 0.04
 p = 0.07
 p = 0.1

(b) Raw blocks m = 10.

15 20 25 30 35

0.2

0.4

0.6

0.8

1.0

Pr
ob

. o
f s

uc
ce

ss
fu

l r
ec

ov
er

y

of total blocks n

 p = 0.01
 p = 0.04
 p = 0.07
 p = 0.1

(c) Raw blocks m = 15.

15 20 25 30 35

0.2

0.4

0.6

0.8

1.0

Pr
ob

. o
f s

uc
ce

ss
fu

l r
ec

ov
er

y

of total blocks n

 p = 0.01
 p = 0.04
 p = 0.07
 p = 0.1

(d) Raw blocks m = 20.

Figure 7: Probability of successful recovery with varying m, n and p.

0 50 100 150 200
1

10

100

H
D

FS
 b

/w
 h

 m
ax

im
um

 (M
B/

s)

FP4S recompute rate c (MB/s)

 � =10Gbps
 � =1Gbps
 � =100Mbps

Figure 8: Maximum limit for HDFS rate vs Recompute rate c in
A-FP4S.

5 EVALUATION

We evaluate A-FP4S by using large scale real-world experiments,
demonstrating its scalability, adaptivity, and fast failure recovery.
Experimental evaluations answer the following questions:

• How does A-FP4S scale with the state size, the number
of concurrently running applications and the number of
simultaneously failed operators?

• How does the efficiency of the fragment-based parallel
state recovery algorithm change with different parameters
such as the number of the raw fragments (m), the number
of the coded fragments (n)? How does A-FP4S balance the
workload?

• What are the performance and functionality benefits of A-
FP4S compared to state-of-the-art solutions?

• What is the runtime overhead of A-FP4S?

We organize our evaluation with the following key results.

• A-FP4S achieves 31.8% to 50.5% improvement in the total
time (i.e., summation of state saving time and recovery
time) compared to the checkpointing recovery approach in
Apache Storm (§5.2).

• A-FP4S achieves runtime efficiency by adaptively tuning
the parameters with various conditions (§5.3 and §5.4).

• A-FP4S evenly distributes the huge volume of states across
all nodes in the overlay, demonstrating A-FP4S’s attractive
load balancing and scalability features (§5.5).

• The CPU overhead of state recovery and saving in A-FP4S
are on average 17.4% and 16.5% less than checkpointing
recovery in Storm, and for memory overhead, it achieves
25.3% and 28.1% reduction, respectively (§5.6).

Table 3: Real-world application’s dataset.

Application Dataset Size

Trending Topics Twitter Streaming API [27] >1TB

Bargain Index Google Finance [15] >1TB

Word Count
Project Gutenberg [21] 8GB

Wikimedia Dumps [28] 9GB

Traffic Monitoring Dublin Bus Traces [11] 4GB

5.1 Setup

Experiments are conducted on up to 4 machines, each with 16 Intel
Xeon Gold 6130@2.10GHz cores and 256GB of RAM, running
GNU/Linux 3.10.0. On top of these machines, we boot 50 virtual
machines to host 650 stream operators in total, each with 4 cores
and 8GB of memory, running Linux Ubuntu 4.4.0. We use Apache
Storm 2.0.0 [9] configured with 10 TaskManagers, each with 4
slots (maximum parallelism per operator = 36). We use Pastry
2.1 [19] configured with leafset size of 24, max open sockets of
5000 and transport buffer size of 6MB.

We deploy Yahoo streaming benchmarks [39] and real-world
stream applications using A-FP4S (see Table 3) to demonstrate
its generality. These include various representative streaming
operators such as stateless streaming transformations (e.g., map,
filter), stateful operators (e.g., incremental join), and
various window operators (e.g., sliding window, tumbling win-
dow and session window). We compare A-FP4S with a state-
of-the-art check pointing recovery approach commonly used in
TimeStream [66], Storm [8], and Trident [10]. We are not able to
compare with Drizzle [75] because its source code is not publicly
available. We choose the checkpointing recovery approach as the
baseline because the alternatives either incur significant hardware
cost (e.g., replication recovery requires twice the hardware) or
are not generally applicable (e.g., DStream-based lineage recovery
approach lacks programming transparency and must be used with
Spark’s RDDs [80]).

For our experiments, the base value of raw fragments m and the
total coded fragments n are derived from production systems such
as Pond [68] and Sia [23], which set m = 16, n = 16 and m = 10,
n = 20 respectively. To fully evaluate the A-FP4S performance,
we vary the values of m, n and the input state size.

5.2 A-FP4S vs Storm

We evaluate the failure recovery time of A-FP4S by varying
the state size and the number of concurrently running stream
applications.

9

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

8 16 32 64 128 256 512
0

100

200

300

400
Ti

m
e

(s
)

Application state size (MB)

 Storm Save
 Storm Recover
 A-FP4S Save
 A-FP4S Recover

(a) State recovery time for different input state
sizes.

50 100 150 300 600
0

50

100

150

200

Fa
ilu

re
 re

co
ve

ry
 ti

m
e

(s
)

Concurrently running applications

 A-FP4S
 Storm

(b) Total failure recovery time by varying #
concurrently running stream applications.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.6

0.8

1.0

Fr
ag

m
en

t r
et

rie
ve

 ti
m

e
(s

)

Number of nodes (103)

 m=10 k=10
 m=10 k=16
 m=16 k=10

(c) Average retrieve time for state fragments
in A-FP4S.

Figure 9: Performance comparison A-FP4S performance vs checkpointing strategy for different input state size and applications number.

32 64 128 256 512
0

15

30

45

60

Ti
m

e
(s

)

State size (MB)

 Experimental results
 Model calculated

(a) Retrieval time vs model.

32 64 128 256 512
0

2

4

6

8

Ti
m

e
(s

)

State size (MB)

 Experimental results
 Model calculated

(b) Recompute time vs model.

32 64 128 256 512
0

15

30

45

60

75

Ti
m

e
(s

)
State size (MB)

 Experimental results
 Model calculated

(c) Total recovery time vs its model

Figure 10: The retrieve (a) and recovery (b) time compared against the corresponding models. The total recovery time is also given in
part (c).

11 12 13 14 15 16 17 18 19 20
0

20

40

60

St
at

e
re

co
m

pu
tin

g
tim

e
(s

)

Number of parity fragments (k)

 m =10

0
20
40
60

Number of raw fragments (m)

 k =10

(a) Adjust fragment parameters.

11 12 13 14 15 16 17 18 19 20
1.0

1.5

2.0

2.5

3.0

R
Sc

od
e

en
co

de
 ti

m
e

(s
)

Number of parity fragments (k)

 m = 10
 m = 20

(b) Time for RScode encoding.

2 4 6 8 10 12 14 16
0

5

10

15

Fa
ilu

re
 re

co
ve

ry
 ti

m
e

(s
)

Unavailable blocks (m=10, n=30)

 state = 512MB
 state = 256MB
 state = 128MB

(c) Adjust unavailable block number (e).

Figure 11: The recovery performance evaluation by adjusting number of raw fragments, number of parity fragments, and number of
unavailable blocks.

The fragment-based parallel recovery process in A-FP4S
consists of two steps: (1) saving the state to leafset nodes in
the DHT-based overlay, and (2) recomputing the state after any
failure happens. Similarly, the checkpointing recovery process in
Storm [8] also consists of two steps: (1) checkpointing the state
to the HBase [4] or HDFS [3], and (2) retrieving the state from

HBase or HDFS if failure happens. Note that, for both approaches,
the first step can run asynchronously with the second step, so the
first step may not impact the failure recovery time if executed in a
pipeline.

Figure 9a shows the comparison of the state recovery time of
A-FP4S and Storm by varying the input state sizes. In general, Fig-

10

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

ure 9a shows that A-FP4S achieves 31.8% to 50.5% improvement
in the total time (i.e., summation of state saving time and recovery
time) compared to Storm’s checkpointing recovery. Specifically,
we see that A-FP4S achieves 36.2% to 50.8% less state saving
time compared to Storm. A-FP4S’s state saving time includes
the time of fragmenting state into blocks, encoding them, and
then uploading them into the leafset nodes. In order to have a
fair comparison with Storm, we assume that the upload operation
happens sequentially (i.e., one leafset node at a time). However, in
a realistic scenario where the uploading node has higher network
bandwidth compared to the leafset nodes, A-FP4S will deliver
even faster state saving time by uploading the data asynchronously
and in parallel. We also see that A-FP4S achieves 40.3% to 87.1%
less recovery time compared to Storm. This is because A-FP4S’s
multiple leafset nodes can contribute by recalculating the state in
parallel. In contrast, Storm relies on a single node to retrieve the
state from HBase or NFS [18] whose speed is largely determined
by network bandwidth, network interference, node placement and
many other factors.

We next evaluate A-FP4S’s total failure recovery time by
varying the number of concurrently applications and compare it
with Storm. The failure rate of stream operators is set to 1% for
these experiments according to Zorro [65]. As shown in Figure 9b,
A-FP4S achieves 43.8% to 54.4% less total recovery time com-
pared to Storm. The reason behind this is that A-FP4S’s recovery
workload can be distributed evenly across all participating nodes
in the DHT-based overlay. As a result, many operators can run
the recovery process simultaneously, leading to much better and
resilient performance under many failures.

Finally, we evaluate the average per-fragment retrieval time of
A-FP4S by varying the number of nodes, raw fragments m and
parity fragments k. As shown in Figure 9c, the average time does
not vary much with the number of nodes. As the number of nodes
increases from 500 to 5,000, the retrieval time only increases
slightly.

5.3 A-FP4S vs Theoretical Model

We compare our model derived in (2) against observed recovery
times in Figure 10. Note that (2) has two parts: retrieval of the
fragments over the network and recomputing state from them. We
verify the accuracy of the model on these two parts separately
in parts (a) and (b), respectively. In Figure 10 (a), we see that
our model, after assuming network bandwidth of around 72− 75
Mbps, matches with retrieval time. Such variance from the true
bandwidth of 100 Mbps is possible because of multiple operators
being placed in the same physical machine and thus interfering
with each other. However, this effective network bandwidth can
be derived easily from observation even with very little instru-
mentation cost.

Then, in Figure 10(b), we hypothesize that recomputing the
state is linear on state size for a give computation rate c. Under this
assumption, we derive the empirical or observed recomputation
rate to be roughly 65 MBps. This leads us to fairly accurate
recomputation time as a function of state size, as demonstrated
in Figure 10(b). Finally, we combine these two and present the
final model of recovery time (i.e., retrieve time plus recomputation
time) against the observed time for the same in Figure 10(c), which
again shows a good match, deeming our overall model accurate.

5.4 A-FP4S Parameters

We next evaluate the state recovery as a function of several
factors: the number of raw fragments m, the number of the parity
fragments k of a state, the number of unavailable or failed blocks
e of a state, and the routing performance in the overlay.

In Figure 11a, the up-side sub-figure shows the performance
of state recomputing time when recovering from single failure by
varying m. The number of the raw fragments m in a state on the
recovery performance varies from 11 to 20, where k is set to be
10. We can observe that the state recomputing time increases as
the number of raw fragments m increases. The reason lies in that
the recovery time of A-FP4S is mainly determined by mB/(m+
k− 1), where B is the amount of data that any providing peer
uploads. mB/(m+ k− 1) increases with the increases of m when
the values of k and B are given. Thus, the performance of A-
FP4S is more sensitive to m when k is smaller. The down-side
sub-figure of Figure 11a shows that it achieves better recovery
performance when k is increasing from 11 to 20. The reason is
that the recovery time of A-FP4S is mainly determined by by
mB/(m+k−1), where B is the amount of data that any providing
peer uploads. mB/(m+ k− 1) decreases with the increases of k
when the values of m and B are given.

Next, we evaluate the encoding overhead in the RS-code under
varying parity fragments of k. Figure 11b shows the average
encoding time for a state size of 128 MB. We see that the encoding
time increases slightly with the increase of k. Still, the encoding
operation completes within 1.5 to 2 seconds.

Figure 11c shows how the number of unavailable blocks e im-
pacts the recovery performance as we vary e in the range of [1,16].
A-FP4S’s recovery time increases slowly but linearly with e in
this range. A stand-by node, together with the failed node’s leafset
nodes form a star structure for receiving the backup state, causing
the stand-by node to be the main I/O bottleneck. Therefore, the
recovery performance of A-FP4S is inversely proportional to the
amount of data uploaded by the peers.

Figure 12a shows the average routing time in the A-FP4S
overlay with the number of nodes in the range of [500,5000]. We
see a slight increase in routing time with the increasing number
of nodes. This is because each routing decision requires only
O(logN) steps, where N is the number of nodes in the overlay.

This evaluation confirms that we can improve the efficiency of
failure recovery by tuning the A-FP4S parameters dynamically to
adapt to runtime conditions.

5.5 Load Balancing

Since A-FP4S distributes the tasks of state saving and recovery
across the whole overlay, it has load balancing as one of its
differentiating features. As a demonstration, we deploy 5,000
nodes on a platform of 50 virtual servers running 1,000 stream
applications. Each application is configured with m = 10 and
n = 30. Therefore, there are 30,000 fragments in total that need to
be saved in the 5,000 nodes.

Figure 12b shows the distribution of the state fragments on
all nodes. We can observe that the fragments are almost evenly
distributed across all nodes in the overlay. This is because the
DHT overlay can distribute all applications evenly in the whole
ID space. In addition, only a few nodes contain more than 30 state
fragments. These nodes are usually the root nodes or nodes that
are close to the root nodes. Figure 12c shows the cumulative dis-
tribution function of the number of fragments saved per node. We

11

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.0

0.1

0.2

0.3

0.4
Av

er
ag

e
ro

ut
in

g
tim

e
(s

)

Number of nodes (103)

 state = 64MB
 state = 128MB

(a) The average routing time in the DHT over-
lay.

1000 2000 3000 4000 5000
0

10

20

30

40

50

60
Deploying 1,000 apps

of

 fr
ag

m
en

ts
 p

er
 n

od
e

NodeId
0

(b) State fragments distribution across all
DHT nodes.

0 10 20 30 40 50
State fragments per node

0.0001

0.005
0.05
0.25

0.5
0.75
0.95

0.995

0.9999

Pr
ob

ab
ilit

y

reference line
Deploying 1,000 apps

(c) Cumulative distribution function (CDF) of
the state fragments across nodes.

Figure 12: The load balance evaluation of A-FP4S for a collection of concurrently running stream applications.

0 10 20 30 40 50
20

40

60

80

100

C
PU

 u
sa

ge
 (%

)

Time (s)

 Storm_save A-FP4S_save
 Storm_recovery A-FP4S_recovery

(a) The runtime CPU overhead.

0 10 20 30 40 50
400

500

600

700

800

900

M
em

or
y

us
ag

e
(M

B)

Time (s)

 Storm_save A-FP4S_save
 Storm_recovery A-FP4S_recovery

(b) The runtime memory overhead.

0 10 20 30 40 50
0
1
2
3
4
5
6
7
8

N
et

w
or

k
us

ag
e

(M
B)

Time (s)

 Storm_save A-FP4S_save
 Storm_recovery A-FP4S_recovery

(c) The runtime network overhead.

Figure 13: The overhead analysis of the A-FP4S-enabled Storm at runtime.

see that 95% of nodes store less than 25 fragments, demonstrating
A-FP4S’s advantageous load balancing and scalability features.

5.6 Overhead Analysis

Finally, we evaluate A-FP4S’s runtime overhead in terms of CPU,
main memory, disk and network.

CPU overhead. Figure 13a shows the per-node CPU runtime
overhead comparison of A-FP4S vs checkpointing recovery. The
CPU overhead of state recovery and saving in A-FP4S are on av-
erage 17.4% and 16.5% less than those in checkpointing recovery,
respectively. While A-FP4S requires additional CPU bandwidth to
compute the fragments, this cost accounts for only a small fraction
(<10%) of the total recovery time.

Memory overhead. Figure 13b shows the per-node memory
run-time overhead comparison of A-FP4S vs checkpointing recov-
ery. We see that A-FP4S takes on average 25.2% and 28.1% less
than the checkpointing recovery, respectively. The large memory
overhead of checkpointing recovery is mainly due to the adoption
of a centralized daemon process such as Zookeeper for coordinat-
ing the operators. In contrast, nodes in A-FP4S work in a peer-to-
peer (P2P) fashion that avoids any centralized daemons.

Network overhead. Figure 13c shows the per-node network
run-time overhead comparison of A-FP4S vs checkpointing re-
covery. Checkpointing recovery incurs lower network usage, but
results in longer latencies. In contrast, A-FP4S failure recovery can

be completed in a fast fashion by utilizing the distributed nodes
among the overlay.

6 CONCLUSION

In this paper, we present A-FP4S, an adaptive fragment-based par-
allel state recovery mechanism that can handle many simultaneous
failures for stateful stream applications. A-FP4S leverages DHTs
and erasure codes to divide each operator’s in-memory state into
fragments that are periodically saved in the corresponding leaf set
nodes. Since the recovery operation stays local within a small clus-
ter of nodes, it can proceed in parallel for simultaneously failed
nodes over different parts of the network. Besides, based on its
performance models, A-FP4S’s adaptive component can dynami-
cally adjust several system parameters (e.g., fragment numbers m,
parity blocks k, state size) at runtime with minimal instrumentation
cost. Therefore, unlike the replication, checkpointing or DStream-
based methods, A-FP4S is resilient against simultaneous failures,
achieves low-latency and is less resource (CPU, memory, disk
space, network traffic) intensive.

A-FP4S is framework-agnostic and thus broadly applicable to
a large collection of streaming systems. We have implemented A-
FP4S atop the state-of-the-art stream processing engine Apache
Storm, and demonstrated its scalability, efficiency, and fast failure
recovery features that incur negligible instrumentation overheads.
In the future, we envision exploring A-FP4S’s performance on

12

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

heterogeneous compute clusters (e.g., nodes with varying net-
work bandwidth, CPU speed, and storage capacity) that have
the potential to take further advantage of A-FP4S’s decentralized
architecture, resilience, reliability and efficiency.

ACKNOWLEDGMENT

This work is supported by the National Science Founda-
tion (NSF-SPX-1919126, NSF-SPX-1919181, NSF-CAREER-
1943071, NSF-CCF-1934904, NSF-OAC-2212256).

REFERENCES
[1] Apache flink. http://flink.apache.org/.
[2] Apache flume. http://flume.apache.org/.
[3] Apache hadoop hdfs. https://hadoop.apache.org/docs/current/

hadoop-project-dist/hadoop-hdfs/.
[4] Apache hbase. http://hbase.apache.org/.
[5] Apache kafka. http://kafka.apache.org/.
[6] Apache samza. http://samza.apache.org/.
[7] Apache spark. http://spark.apache.org/.
[8] Apache storm. http://storm.apache.org/.
[9] Apache storm 2.0.0. https://storm.apache.org/2019/05/30/

storm200-released.html.
[10] Apache trident. http://storm.apache.org/releases/current/Trident-tutorial.

html.
[11] Dublin bus gps sample data from dublin city council. https://data.gov.ie/

dataset/.
[12] Erasure code. https://en.wikipedia.org/wiki/Erasure code.
[13] Error correction code. https://en.wikipedia.org/wiki/Error correction

code#Forward error correction.
[14] Faroo. https://en.wikipedia.org/wiki/FAROO.
[15] Google finance data api. http://finance.google.com/finance/feeds/.
[16] Leveldb. https://github.com/google/leveldb/.
[17] Mongodb. http://www.mongodb.com/.
[18] Network file system. https://en.wikipedia.org/wiki/Network File

System.
[19] Pastry. https://www.freepastry.org/FreePastry/.
[20] Polynomial interpolation. https://en.wikipedia.org/wiki/Polynomial

interpolation.
[21] Project gutenberg. http://www.gutenberg.com/.
[22] Rocksdb. http://rocksdb.org/.
[23] Sia: a decentralized storage platform secured by blockchain technology.

http://sia.tech/.
[24] Spark streaming. https://spark.apache.org/streaming/.
[25] Stateful stream processing. https://www.oreilly.com/library/view/

stream-processing-with/9781491974285/ch01.html.
[26] Summary of the amazon ec2 and amazon ebs service event in the tokyo

(ap-northeast-1). https://aws.amazon.com/message/56489/.
[27] Twitter streaming apis. https://developer.twitter.com/en/docs/tutorials/

consuming-streaming-data.
[28] Wikimedia dumps. https://dumps.wikimedia.org/.
[29] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel,

Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag
Maskey, Alex Rasin, Esther Ryvkina, et al. The design of the borealis
stream processing engine. In Cidr, volume 5, pages 277–289, 2005.

[30] Daniel J Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and
Stan Zdonik. Aurora: a new model and architecture for data stream
management. the VLDB Journal, 12(2):120–139, 2003.

[31] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh
Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom,
and Sam Whittle. Millwheel: fault-tolerant stream processing at internet
scale. Proceedings of the VLDB Endowment, 6(11):1033–1044, 2013.

[32] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, et al. The dataflow model: a practical
approach to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. Proceedings of the VLDB
Endowment, 8(12):1792–1803, 2015.

[33] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur
Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer
Widom. Stream: The stanford data stream management system. In Data
Stream Management, pages 317–336. Springer, 2016.

[34] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael
Stonebraker. Fault-tolerance in the borealis distributed stream processing

system. In Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 13–24. ACM, 2005.

[35] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter,
and Kostas Tzoumas. State management in apache flink®: consistent
stateful distributed stream processing. Proceedings of the VLDB Endow-
ment, 10(12):1718–1729, 2017.

[36] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki,
and Peter Pietzuch. Integrating scale out and fault tolerance in stream
processing using operator state management. In Proceedings of the 2013
ACM SIGMOD international conference on Management of data, pages
725–736, 2013.

[37] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J
Franklin, Joseph M Hellerstein, Wei Hong, Sailesh Krishnamurthy,
Samuel Madden, Vijayshankar Raman, Frederick Reiss, et al. Tele-
graphcq: Continuous dataflow processing for an uncertain world. In
Cidr, volume 2, page 4, 2003.

[38] Qiming Chen and Meichun Hsu. Recovering a failure in a data processing
system, October 9 2014. US Patent App. 13/857,885.

[39] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas
Graves, Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar
Patil, Boyang Jerry Peng, et al. Benchmarking streaming computation
engines: Storm, flink and spark streaming. In 2016 IEEE international
parallel and distributed processing symposium workshops (IPDPSW),
pages 1789–1792. IEEE, 2016.

[40] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on
Economics of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[41] Tonmoy Dey, Kento Sato, Bogdan Nicolae, Jian Guo, Jens Domke,
Weikuan Yu, Franck Cappello, and Kathryn Mohror. Optimizing
asynchronous multi-level checkpoint/restart configurations with machine
learning. In 2020 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 1036–1043. IEEE, 2020.

[42] Junhua Fang, Rong Zhang, Tom ZJ Fu, Zhenjie Zhang, Aoying Zhou, and
Junhua Zhu. Parallel stream processing against workload skewness and
variance. In Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing, pages 15–26, 2017.

[43] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. In Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 29–43, 2003.

[44] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó
Araújo, Martin Ek, Eddie Kohler, M Frans Kaashoek, and Robert Morris.
Noria: dynamic, partially-stateful data-flow for high-performance web
applications. In 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18), pages 213–231, 2018.

[45] Philip Golden, Hervé Dedieu, and Krista S Jacobsen. Implementation
and applications of DSL technology. CRC press, 2007.

[46] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw,
Michael J Franklin, and Ion Stoica. Graphx: Graph processing in
a distributed dataflow framework. In 11th Symposium on Operating
Systems Design and Implementation, pages 599–613, 2014.

[47] Andreas Haeberlen, Jeff Hoye, Alan Mislove, and Peter Druschel. Con-
sistent key mapping in structured overlays. Technical Report TR05-456,
2005.

[48] Zhiming Hu, Baochun Li, and Jun Luo. Flutter: Scheduling tasks
closer to data across geo-distributed datacenters. In IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on Computer
Communications, pages 1–9. IEEE, 2016.

[49] Sachini Jayasekara, Aaron Harwood, and Shanika Karunasekera. A
utilization model for optimization of checkpoint intervals in distributed
stream processing systems. Future Generation Computer Systems,
110:68–79, 2020.

[50] Sachini Jayasekara, Shanika Karunasekera, and Aaron Harwood. Op-
timizing checkpoint-based fault-tolerance in distributed stream process-
ing systems: Theory to practice. Software: Practice and Experience,
52(1):296–315, 2022.

[51] Peter Kieseberg, Manuel Leithner, Martin Mulazzani, Lindsay Munroe,
Sebastian Schrittwieser, Mayank Sinha, and Edgar Weippl. Qr code
security. In Proceedings of the 8th International Conference on Advances
in Mobile Computing and Multimedia, pages 430–435. ACM, 2010.

[52] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Westley Weimer, et al. Oceanstore: An architecture for global-
scale persistent storage. In ACM SIGARCH Computer Architecture News,
volume 28, pages 190–201. ACM, 2000.

[53] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ra-
masamy, and Siddarth Taneja. Twitter heron: Stream processing at scale.
In Proceedings of the 2015 ACM SIGMOD International Conference on

13

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

http://flink.apache.org/
http://flume.apache.org/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/
http://hbase.apache.org/
http://kafka.apache.org/
http://samza.apache.org/
http://spark.apache.org/
http://storm.apache.org/
https://storm.apache.org/2019/05/30/storm200-released.html
https://storm.apache.org/2019/05/30/storm200-released.html
http://storm.apache.org/releases/current/Trident-tutorial.html
http://storm.apache.org/releases/current/Trident-tutorial.html
https://data.gov.ie/dataset/
https://data.gov.ie/dataset/
https://en.wikipedia.org/wiki/Erasure_code
https://en.wikipedia.org/wiki/Error_correction_code#Forward_error_correction
https://en.wikipedia.org/wiki/Error_correction_code#Forward_error_correction
https://en.wikipedia.org/wiki/FAROO
http://finance.google.com/finance/feeds/
https://github.com/google/leveldb/
http://www.mongodb.com/
https://en.wikipedia.org/wiki/Network_File_System
https://en.wikipedia.org/wiki/Network_File_System
https://www.freepastry.org/FreePastry/
https://en.wikipedia.org/wiki/Polynomial_interpolation
https://en.wikipedia.org/wiki/Polynomial_interpolation
http://www.gutenberg.com/
http://rocksdb.org/
http://sia.tech/
https://spark.apache.org/streaming/
https://www.oreilly.com/library/view/stream-processing-with/9781491974285/ch01.html
https://www.oreilly.com/library/view/stream-processing-with/9781491974285/ch01.html
https://aws.amazon.com/message/56489/
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://dumps.wikimedia.org/

Management of Data, pages 239–250. ACM, 2015.
[54] Wang Lam, Lu Liu, Sts Prasad, Anand Rajaraman, Zoheb Vacheri,

and AnHai Doan. Muppet: Mapreduce-style processing of fast data.
Proceedings of the VLDB Endowment, 5(12):1814–1825, 2012.

[55] Pinchao Liu, Hailu Xu, Dilma Da Silva, Qingyang Wang, Sarker Tanzir
Ahmed, and Liting Hu. Fp4s: Fragment-based parallel state recovery for
stateful stream applications. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 1102–1111. IEEE,
2020.

[56] Ratul Mahajan, Miguel Castro, and Antony Rowstron. Controlling the
cost of reliability in peer-to-peer overlays. In International Workshop on
Peer-to-Peer Systems, pages 21–32. Springer, 2003.

[57] Avinash Maurya, Bogdan Nicolae, M Mustafa Rafique, Thierry Tonellot,
and Franck Cappello. Towards efficient i/o scheduling for collaborative
multi-level checkpointing. In 2021 29th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 1–8. IEEE, 2021.

[58] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R
De Supinski. Design, modeling, and evaluation of a scalable multi-level
checkpointing system. In SC’10: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–11. IEEE, 2010.

[59] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martı́n Abadi. Naiad: a timely dataflow system. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 439–455. ACM, 2013.

[60] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Technical report, Manubot, 2019.

[61] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari.
S4: Distributed stream computing platform. In 2010 IEEE International
Conference on Data Mining Workshops, pages 170–177. IEEE, 2010.

[62] Shadi A Noghabi, Kartik Paramasivam, Yi Pan, Navina Ramesh, Jon
Bringhurst, Indranil Gupta, and Roy H Campbell. Samza: stateful scal-
able stream processing at linkedin. Proceedings of the VLDB Endowment,
10(12):1634–1645, 2017.

[63] Umar Ozeer, Xavier Etchevers, Loı̈c Letondeur, François-Gaël Otto-
galli, Gwen Salaün, and Jean-Marc Vincent. Resilience of stateful iot
applications in a dynamic fog environment. In Proceedings of the
15th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, pages 332–341, 2018.

[64] Daniel Peng and Frank Dabek. Large-scale incremental processing using
distributed transactions and notifications. In 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 10), 2010.

[65] Mayank Pundir, Luke M Leslie, Indranil Gupta, and Roy H Campbell.
Zorro: Zero-cost reactive failure recovery in distributed graph processing.
In Proceedings of the Sixth ACM Symposium on Cloud Computing, pages
195–208. ACM, 2015.

[66] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu,
Taizhi Zhang, Lidong Zhou, Yuan Yu, and Zheng Zhang. Timestream:
Reliable stream computation in the cloud. In Proceedings of the 8th ACM
European Conference on Computer Systems, pages 1–14. ACM, 2013.

[67] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics,
8(2):300–304, 1960.

[68] Sean C Rhea, Patrick R Eaton, Dennis Geels, Hakim Weatherspoon,
Ben Y Zhao, and John Kubiatowicz. Pond: The oceanstore prototype. In
FAST, volume 3, pages 1–14, 2003.

[69] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Platforms
and Open Distributed Processing, pages 329–350. Springer, 2001.

[70] Kento Sato, Naoya Maruyama, Kathryn Mohror, Adam Moody, Todd
Gamblin, Bronis R de Supinski, and Satoshi Matsuoka. Design and
modeling of a non-blocking checkpointing system. In SC’12: Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 1–10. IEEE, 2012.

[71] Mehul A Shah, Joseph M Hellerstein, and Eric Brewer. Highly available,
fault-tolerant, parallel dataflows. In Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, pages 827–
838. ACM, 2004.

[72] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant Shenoy.
Flint: Batch-interactive data-intensive processing on transient servers. In
Proceedings of the Eleventh European Conference on Computer Systems,
page 6. ACM, 2016.

[73] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-
net applications. ACM SIGCOMM Computer Communication Review,

31(4):149–160, 2001.
[74] Radu Tudoran, Gabriel Antoniu, and Luc Bouge. Sage: geo-distributed

streaming data analysis in clouds. In 2013 IEEE International Symposium
on Parallel & Distributed Processing, Workshops and Phd Forum, pages
2278–2281. IEEE, 2013.

[75] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Arm-
brust, Ali Ghodsi, Michael J Franklin, Benjamin Recht, and Ion Stoica.
Drizzle: Fast and adaptable stream processing at scale. In Proceedings
of the 26th Symposium on Operating Systems Principles, pages 374–389.
ACM, 2017.

[76] Haoyu Wang, Haiying Shen, and Zhuozhao Li. Approaches for resilience
against cascading failures in cloud datacenters. In 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS),
pages 706–717. IEEE, 2018.

[77] Yingjun Wu and Kian-Lee Tan. Chronostream: Elastic stateful stream
computation in the cloud. In 2015 IEEE 31st International Conference
on Data Engineering, pages 723–734. IEEE, 2015.

[78] Erci Xu, Mai Zheng, Feng Qin, Yikang Xu, and Jiesheng Wu. Lessons
and actions: What we learned from 10k ssd-related storage system
failures. In 2019 USENIX Annual Technical Conference (USENIX ATC
19), pages 961–976, 2019.

[79] Hailu Xu, Pinchao Liu, Susana Cruz-Diaz, Dilma Da Silva, and Liting
Hu. Sr3: Customizable recovery for stateful stream processing systems.
In Proceedings of the 21st International Middleware Conference, pages
251–264, 2020.

[80] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion
Stoica. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pages
2–2. USENIX Association, 2012.

[81] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the twenty-fourth ACM sympo-
sium on operating systems principles, pages 423–438. ACM, 2013.

[82] Yuan Zhuang, Xiaohui Wei, Hongliang Li, Yongfang Wang, and Xubin
He. An optimal checkpointing model with online oci adjustment for
stream processing applications. In 2018 27th International Conference
on Computer Communication and Networks (ICCCN), pages 1–9. IEEE,
2018.

Hailu Xu received his Ph.D. degree in Computer
Science from Florida International University at sum-
mer 2020. He received B.S. and M.S. degrees in
Computer Science from North China Electric Power
University, China and The University of Toledo, USA,
in 2014 and 2016, respectively. His current research
interests include cloud computing, big data system,
and operating systems. Currently he is an assistant
professor of Department of Computer Engineering
& Computer Science at California State University,
Long Beach.

Pinchao Liu is current a Ph.D. student in School
of Computing and Information Science, Florida In-
ternational University, Miami, USA. He received the
BSc (Hons) from Tianjin University of Science and
Technology (TUST), China and MSc degrees from
TUST, China. His research interests include systems
virtualization, cloud computing, and operating sys-
tems.

14

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

Sarker Tanzir Ahmed Sarker Tanzir Ahmed ob-
tained his BS degree from Bangladesh University
of Engineering and Technology, Bangladesh and
PhD in from Texas A&M University, College Station,
both in Computer Science. Currently, he works as
an Instructional Assistant Professor in the Depart-
ment of Computer Science and Engineering at Texas
A&M University. His research interests include large-
scale information processing, streaming frameworks
with state-management, web crawling, and high-
performance computing.

Dilma Da Silva is a Professor and holder of the
Ford Motor Company Design Professorship II at the
Department of Computer Science and Engineering
at Texas A&M University, USA. She received her
Ph.D. in Computer Science from Georgia Tech in
1997. She is an ACM Distinguished Scientist. Her re-
search in operating systems addresses the need for
scalable and customizable system software. Dilma
is a member of the board of CRA-WP (Computer
Research Association’s Committee on Widening the
Participation in Computing) and a co-founder of the

Latinas in Computing group.

Liting Hu received her Ph.D. degree in Computer
Science at Georgia Institute of Technology, USA,
2016. Before that, she completed her undergraduate
degree in Computer Science at Huazhong University
of Science and Technology, China, 2007. She con-
ducts experimental computer systems research in
the areas of stream processing systems, cloud and
edge computing, distributed systems, and systems
virtualization. Currently she is an Assistant Professor
at University of California Santa Cruz.

15

This article has been accepted for publication in IEEE Transactions on Parallel and Distributed Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2023.3251997

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on June 16,2023 at 07:09:50 UTC from IEEE Xplore. Restrictions apply.

	Introduction
	Related Work
	Stateful Stream Processing Systems
	Failure Recovery in Stream Processing Systems

	System Design and Implementation
	Overview
	DHT-based Ring Overlay
	Fragmented Parallel State Recovery
	A-FP4S API
	Instrumentation Requirements
	Discussion

	Adaptivity Analysis
	Adaptive Parameter Tuning
	Analysis

	Evaluation
	Setup
	A-FP4S vs Storm
	A-FP4S vs Theoretical Model
	A-FP4S Parameters
	Load Balancing
	Overhead Analysis

	Conclusion
	Biographies
	Hailu Xu
	Pinchao Liu
	Sarker Tanzir Ahmed
	Dilma Da Silva
	Liting Hu

