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ABSTRACT
We present a new annotated microscopic cellular image dataset to
improve the e�ectiveness of machine learning methods for cellular
image analysis. Cell counting is an important step in cell analysis.
Typically, domain experts manually count cells in a microscopic
image. Automated cell counting can potentially eliminate this te-
dious, time-consuming process. However, a good, labeled dataset
is required for training an accurate machine learning model. Our
dataset includes microscopic images of cells, and for each image,
the cell count and the location of individual cells. The data were
collected as part of an ongoing study investigating the potential
of electrical stimulation to modulate stem cell di�erentiation and
possible applications for neural repair. Compared to existing pub-
licly available datasets, our dataset has more images of cells stained
with more variety of antibodies (protein components of immune
responses against invaders) typically used for cell analysis. The
experimental results on this dataset indicate that none of the �ve
existing models under this study are able to achieve su�ciently ac-
curate count to replace the manual methods. The dataset is available
at https://�gshare.com/articles/dataset/Dataset/21970604.
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• Computing methodologies ! Supervised learning; • Ap-
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1 INTRODUCTION
Cell biology is a sub-discipline of biology where the structure and
physiological functioning, and interaction of cells are studied [3].
Cells are examined under a microscope and imaged at a high resolu-
tion. In immunocytochemistry (ICC), di�erent antibodies are used
to visualize the presence of particular proteins to identify speci�c
cell types in a given sample. Cell analysis involves a wide range
of tasks, such as counting cells and measuring and evaluating cell
state (e.g., shape, motility), cell health, and cell growth. Cell biology
is closely intertwined with other �elds, such as neuroscience, genet-
ics, and molecular biology. One fascinating application area of cell
biology is research for the potential diagnosis and treatment of dis-
eases. The research in this area is full of potential and possibilities
that could improve quality of life.

Deep Neural Networks (DNNs) have been applied in the analysis
of microscopic cell images, including cell counting [24, 32], segmen-
tation [1, 8, 9, 21], and detection [6, 19, 22]. Given an input image,
cell counting provides the number of cells in the image. In contrast,
cell segmentation �nds the contours of individual cells, separating
them from each other and the background. On the other hand, cell
detection localizes a cell by drawing the smallest rectangle around
each cell in the input image. The advantages of DNNs over tra-
ditional machine learning methods are that DNNs automatically
extract important properties (features) of the object of interest and
use them to perform the intended task. However, the major draw-
back of DNNs is that it requires a large high-quality labeled dataset
for accurate predictions. Existing DNN methods for cell counting
can be broadly categorized into two groups: detection-based and
regression-based categories.

The detection-based category undertakes the counting task by
�rst detecting individual cells (contours, bounding boxes, or cen-
troids of the cells) in a given image and counting the detected
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cells to obtain the �nal cell count [11, 21]. These methods hinge
on the availability of the annotated ground truth of the bounding
box or a centroid of a cell. The methods are also dependent on
the characteristics of the microscopic input images. In particular,
detection-based methods fail to o�er good performance when there
is a high occlusion in the images. The regression-based category
[24, 32] predicts the cell count without detecting individual cells.
Some of these methods use only the ground truth cell count for each
training image for training. Other methods predict a corresponding
density map for a given image and obtain the �nal count from the
predicted density map.

Our team examines cellular images taken after electrical stimu-
lation experiments on stem cells for cell di�erentiation. Cell di�er-
entiation is the process in which an unspecialized cell develops and
matures to become a specialized cell. Electrical stimulation of stem
cells is potentially useful for stem cell therapy in patients with nerve
injuries. Cell counting is an important step toward determining an
appropriate amount of electrical voltage and stimulation duration
to be applied. To perform the electrical stimulation, cells are placed
on the surface of a sca�old, which are structures providing support
for cells to grow within an interdigitated electrode region. Then the
voltage is applied to the electrode pads of the sca�old, which are
structures providing support for cells to grow. During an electrical
stimulation experiment, cells exhibit changes in size, shape, and
energy requirement [5, 30, 31]. Following electrical stimulation,
immunocytochemistry (ICC) is performed to measure the e�ect of
the stimulation on the cells. Di�erent antibodies are used during
the ICC process to identify the potential cell types these cells could
be di�erentiating into. A �uorescent microscope is used to examine
and image the cells. Currently, cell counting and cell analysis are
done manually. The challenges for developing accurate automated
cell counting are a wide range of cells in an image given di�erent
antibodies, di�erent cell sizes, low contrast, and cell occlusion.

The main contributions of this work are as follows.
(1) An annotated dataset for automated cell counting along with

the domain knowledge to use the dataset. The annotation
includes the cell locations as well as the count of cells per
image. To the best of our knowledge, there is no annotated
�uorescent microscopic cell image dataset that covers as
many staining methods as this dataset.

(2) Performance comparison of the state-of-the-art regression-
based and density map estimation DNNmethods. The results
can be used as baseline results for future improvement. The
source code and the trained models are available publicly at
https://github.com/ISU-NRT-D4/cell-analysis.

The rest of the paper is organized as follows. In Section 2, we
provide a summary of existing datasets related to cell counting. Sec-
tion 3 presents our data collection and annotation process and the
details of our new dataset. Section 4 includes applicable scenarios
to utilize the dataset. Section 5 details the baseline experimental
results on the dataset with �ve DNN models. Finally, we provide a
conclusion and description of the future work in Section 6.

2 EXISTING DATASETS
Several cellular image datasets are available publicly. Some datasets
are for cell segmentation [13], while others are for cell detection

Table 1: Datasets for Cell Counting

Dataset Type of cell No. of
images

Resolution

Existing
Synthetic Bacterial
Cells [16]

Bacteria 200 256 x 256

Bone Marrow [10] Bone Marrow 40 60 x 60
Colorectal Cancer
Cells [29]

Colorectal Cancer
Cells

100 500 x 500

hESCs [20] Human Embryonic
Stem Cells

49 512 x 512

Proposed
IDCIA Adult Hippocampal

Progenitor Cells
262 800 x 600

[6, 19, 21, 22]. These datasets, consisting of either contour or small-
est bounding box annotations of individual cells, are suitable for
cell counting tasks. A few datasets are speci�cally intended for
cell counting [10, 15, 16, 20, 29]. Table 1 summarizes the existing
datasets for cell counting for di�erent types of cells. Lempitsky and
Zisserman provided a synthetic dataset of RGB images of bacterial
cells from �uorescence microscopy [16]. This dataset is widely used
for training machine learning models for cell counting. Kainz et al.
[10] introduced a dataset of bright�eld microscopic bone marrow
cell images. These are RGB images with inhomogeneous back-
grounds. The dataset described in [20] is comprised of histology
RGB images of human embryonic cells. The images in this dataset
have noisy backgrounds and a large variance in the number of cells
in the images. To the best of our knowledge, the proposed dataset
is the only dataset that contains images of Adult Hippocampal
Progenitor Cells with di�erent antibodies for staining.

Compared to thousands of images in the public datasets for seg-
mentation and detection of generic objects (e.g., Microsoft COCO
[18] [15], PASCALVOC [7], and CityScapes [4]), each of the datasets
in Table 1 has much fewer images. Moreover, there is no dataset that
incorporates images from more than �ve antibody staining meth-
ods, as well as additional information about the antibody used per
image. Having more public datasets and ground truth is desirable
for automated cell image analysis.

3 IDCIA: PROPOSED IMAGE DATASET
We describe the data collection process and annotation process and
the structure of the dataset.

3.1 Data Collection
Our dataset contains images of rat Adult Hippocampal Progenitor
Cells (AHPCs) [12] after electrical stimulation experiments and ICC.
AHPCs have the potential to di�erentiate into the three primary cell
types of the central nervous system in vitro: Neurons, Astrocytes,
and Oligodendrocytes. The experiments were performed in the
Sakaguchi Lab1 at Iowa State University. The cells were generously
gifted by Dr. Fred H Gage2. The experiments started by placing

1https://faculty.sites.iastate.edu/dssakagu/
2https://gage.salk.edu/
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400,000 cells onto sca�olds containing graphene-based interdigi-
tated electrode circuits [30]. Fig. 1 shows a picture of 3D-printed
polylactic acid (PLA) sca�olds used in the experiments. PLA is a
biocompatible and biodegradable polymer making it an ideal sub-
strate for supporting cell growth. The sca�olds were, in turn, placed
inside 60mm dishes containing cell culture media. During the stim-
ulation, the sca�olds were removed from the dish and covered with
a small volume of media, and the electrode pads of the sca�olds
were connected to a power supply with a desired voltage.

Figure 1: Sca�old for cells undergoing an electrical stimula-
tion. The red box indicates the cell culture region.

For this dataset, the cultured cells underwent electrical stimu-
lation at 125 mV for 10, 15, or 20-minute durations, once a day
for a period of 7 days. An additional sca�old was set aside as a
control and received no stimulation. After the 7-day period, ICC
was performed on both the stimulated and non-stimulated samples
to evaluate various neural di�erentiation markers. The process oc-
curred as follows. The electrode pad regions of the sca�olds were
discarded, and then each sca�old was cut into six pieces using
sterile scissors. The cut pieces then underwent a process of ICC
that involved a �xation process, repeated rinsing, and incubation
in primary and secondary antibodies. Primary antibodies bind to
antigens, whereas �uorophore-conjugated secondary antibodies
bind to a primary antibody to allow for the indirect detection of the
target protein. Cell nuclei were stained with DAPI. Table 2 shows
the seven primary antibodies used during the experiments. Once
this process was complete, the pieces were mounted onto micro-
scope slides for �uorescence imaging with an upright �uorescence
microscope (Nikon Microphot FXA) for visualization. Imaging of
the cells was made with a 20x objective, and images were captured
with a CCD camera. Fig. 2(A-C) shows pseudo-colorized examples
of the cells.

Imaging and counting of cells of the microscope images were
conducted blind. That is, the individuals conducting these processes
were not informed which sca�olds underwent which stimulation
condition. This was done to limit the amount of bias when collecting
the results of the experiments.

Following the imaging of the samples, manual annotation was
performed by a group of undergraduate students led by a graduate
student with more than three years of experience in cellular image

Table 2: Seven primary antibodies used in the experiments

Antibody Cell Type Identi�cation
DAPI Cell Nuclei
TuJ1 Immature Neurons
MAP2ab Maturing Neurons
RIP Oligodendrocytes
GFAP Astrocytes
Nestin Neural stem cells
Ki67 Proliferating Cells

analysis. The ImageJ [26] Cell Counter tool was used to annotate
a cell by manually placing a dot on each cell in an input image.
The tool reports the total number of dots in the image. ImageJ is a
powerful tool for processing and analyzing scienti�c images. The
tool also allows the measurement of various cell properties, such
as size, shape, and intensity.

We used dot annotations to label the cells for counting purposes.
First, dot annotation enables the accurate marking of individual
cells. This is to avoid double counting some cells or missing to
count other cells for images with a large number of cells or with
densely packed or overlapping cells. Second, dot annotation is a
fast and e�cient way to count and identify cells since the exact cell
contour or bounding box is not required. It is useful for expanding
the dataset in the future. Third, dot annotations can be used to verify
how a DNN model arrives at the predicted cell count, which should
improve cell biologists’ trust in the model. Finally, dot annotations
are useful for the development and evaluation of both detection-
based and regression-based DNN methods for cell counting.

3.2 Dataset Structure and Details
After the completion of annotating all the images, we split the
dataset into three non-overlapping sets: Training, Validation, and
Testing at the ratio of 60:20:20. To ensure that each of these sets
contains a proportional number of samples from each antibody
type, we used strati�ed sampling based on antibody type. We then
ran a program to extract the coordinates of individual dots from
a dot-annotated image by thresholding the color of the dot and
saving the coordinates in a csv �le.

Table 3 presents statistics about the IDCIA dataset of 262 images
with 84 cells on average per image. Notice that the cells are not
evenly distributed across antibodies. Images from DAPI staining
to identify cell nuclei has the most cells. The dataset has a high
variance in terms of the number of cells per image. This dataset
brings an interesting and challenging problem due to the variability
introduced by the use of multiple antibodies in immunolabeling
experiments. Each antibody interacts di�erently with the cells,
resulting in a wide range of appearances and visual characteristics
within the same sample. This can make it di�cult to accurately
and reliably count the number of cells present. Additionally, the
presence of multiple antibody labels may also result in overlap
between cells, further complicating the cell counting process.

The provided dataset has two directories: images and ground_truth,
and the readme.md �le for the description of the dataset folder. The
images directory contains seven sub-directories, one for each of
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Table 3: Statistics of IDCIA: 800x600 image resolution; range
of the number of cells per image [0, 581]

Antibody No. of images Mean cell count per image
± std

DAPI 119 141.35 ± 122.56
TuJ1 25 17.48 ± 18.34
MAP2ab 24 49.71 ± 35.07
RIP 24 49.542 ± 45.65
GFAP 23 3.43 ± 5.17
Nestin 23 89.35 ± 79.70
Ki67 24 8.17 ± 8.38
Total 262 83.857±104.42

the primary antibodies used in the experiments. Inside each di-
rectory are grayscale images from �uorescence microscopy. The
images were resized to 800x600 pixels. The images in Fig. 2 were
pseudo-colored for better visualization. All the images are named
using a consistent format that gives information about the antibody,
objective, cell type, and �eld number. Similarly, the ground truth
directory contains seven directories under it. Inside these directo-
ries are .csv �les containing coordinates of the dot-annotated cells
for each image in the images directory. For the reproducibility of
experiments, we provide .csv �les that list the names of the images
in the training, validation, and testing sets.

4 USAGE SCENARIOS OF IDCIA
The dot-annotated microscopic cell images and accompanying im-
munolabeling and staining information provided in this dataset of-
fer opportunities for computer scientists to contribute to advancing
cell biology research. Here, we outline a few potential applications.

The dot annotationswith the number and location of cellsmarked
for each image are useful for developing e�ective and interpretable
counting methods, as outlined in Section 2. As cell counting is an
important task in cell analysis, desirable automated methods should
produce the predicted count within the experts’ acceptable error
rate of, at most 5% di�erence from the actual cell count. If auto-
mated cell counting is quick, accurate, and trustworthy, electrical
stimulation experiments for stem cell therapy can be accelerated.
Due to a high variance in the number of cells labeled for each
staining antibody, the name of the antibody used may be useful
for improving automated cell counting methods. For instance, the
DAPI staining of cell nuclei identi�es many more cells than the
immunolabeling with the antibodies. This dataset includes images
from the experiments covering the use of seven primary antibodies
for immunolabeling. On the contrary, DNN methods may be devel-
oped to classify images to predict the antibody used for cell labeling.
We refer to this problem as antibody classi�cation problem.

Given the limited number of datasets for cellular image anal-
ysis and the limited number of images for each dataset, more
high-quality datasets are needed. Our dataset supplements exist-
ing datasets and may be useful for transfer learning that extracts
information from data in one domain and transfers the learned
knowledge to another domain [14, 27].

Both the cell count and the locations of individual cells are useful
for developing cell segmentation or cell detection methods based on

high-level labeling (i.e., weak supervision). Dot annotations, which
are faster to acquire than detailed annotations, can be leveraged
to obtain more detailed annotations and reduce manual labeling
time. Utilizing ground truth information obtained through weak
supervision can help in the automated segmentation and detection
of individual cells. This allows the measurement of cell shape and
orientation. Currently, proprietary software such as MetaXpress
exists for measuring cell shape and cell orientation. However, the
software requires that cell culture be done on a smooth surface,
which greatly limits the opportunities for using custom-designed
sca�olds for electrical stimulations, as shown in Fig. 1.

4.1 Suggested Metrics
Suggested metrics for the cell counting task are Mean Absolute
Error (MAE) [2] and Root Mean Squared Error (RMSE) [2]. MAE
is the average of the absolute di�erence between the label ground
truth count ~8 and the predicted value count ~̂8 for all n images
in a given dataset. RMSE penalizes large errors to a greater extent
compared to MAE. See Equations 1-2. We introduce Acceptable
Error Count Percent (ACP) to measure the percentage of images
whose predicted count is within a 5% di�erence from the true count
by the domain expert, as shown in Equation 3. We use Iverson
brackets ».… to denote a function that returns 1 if the condition is
satis�ed or 0 otherwise. These metrics are calculated below. Due to
limited space, we only report MAE and ACP in this paper.

"�⇢ =
✓
1
=

◆ =’
8=1

|~̂8�~8 | (1)

'"(⇢ =

vt✓
1
=

◆ =’
8=1

(~̂i � ~8 )2 (2)

�⇠% =
✓
1
=

◆
⇤ 100

=’
8=1

»|~̂8 � ~8 |  0.05 ⇤ ~8… (3)

The lower the values of MAE, the more accurate a model’s pre-
dictions are. On the other hand, a higher ACP indicates that more
predictions are in the acceptable margin. For the antibody classi�-
cation problem, traditional performance metrics for classi�cation
problems such as accuracy, precision, recall, and F1-score can be
used [2].

5 BASELINE EXPERIMENTS FOR CELL
COUNTING

We evaluated �ve di�erent models for cell counting using the ID-
CIA dataset. They are a Convolutional Neural Network (CNN) with
regression output (CNN Regression), two-crowd counting meth-
ods (CSRNet [17], MCNN [33]), and two cell-counting methods
(Count-ception [24], FCRN [32]). All these four methods are based
on density map estimation. For CSRNet and Count-ception, we used
the source code provided by the original authors of the methods.
Our CNN Regression model has a pre-trained VGG16 [28] network
with a fully connected layer at the end of it, followed by one output
neuron for the predicted cell count for a given image. We excluded
[11, 21] from our experiments since they require detailed annota-
tions for training. All models were implemented in Python using
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Figure 2: Quanti�cation of immature neurons in AHPCs after 7 days in vitro (DIV) of electrical stimulation. Row 1 (A-C) shows
�uorescence images of AHPCs labeled with an immature neuron marker (TuJ1, red; A and C) and nuclei marker (DAPI, blue; B
and C) following 15 min. of 125 mV electrical stimulation once a day for 7 days. Row 2 (D-E) shows the dot-annotated images of
the TuJ1 (D) and DAPI (E) staining by using the ImageJ Cell Counter tool to put a pink dot on a cell to be counted. Scale bar = 50
�m. Images have been pseudo-colorized for better visualization.

the PyTorch [23] library and trained on NVIDIA Tesla T4 and P2000
GPUs.

Count-ception and FCRNwere developed for cell counting. Count-
ception is a network of fully convolutional layers without any pool-
ing layer. This is to avoid losing pixel information and to ease the
calculation of the receptive �eld. Given an input image, Count-
ception produces an intermediate count map. Each network inside
it counts the number of objects in its receptive �eld. FCRN uses
CNN to regress a cell’s spatial density across an image. It �rst maps
the input image to feature maps with dense representation and then
recovers the spatial span by bilinear up-sampling. FCRN allows
prediction for input with an arbitrary size. FCRN-A is a version of
FCRN that uses small 3 × 3 kernels for every convolutional layer,
and each convolutional layer is followed by a pooling layer.

CSRNet [17] and MCNN [33] are density-map based models de-
veloped for counting people in a congested environment. These
models can handle dense crowds, which makes them well-suited for
handling cell congestion. In addition, these models were designed
to be robust to variations in object size and shape, lighting, and
contrast conditions. CSRNet is a two-component network with a
CNN as the �rst component for feature extraction. The second com-
ponent is a dilated CNN to produce larger reception �elds, replacing
pooling operations. MCNN extracts scale-relevant features by using
�lters with di�erent sizes of receptive �elds. The authors proposed
a network of three parallel CNNs with di�erent �lter sizes. For an
input image, the network averages the predicted density maps of

the three CNNs and outputs a �nal count prediction. To use the
dot-annotated images for training CSRNet and MCNN, we followed
the ground truth generation method in [33] by blurring each dot
annotation using a Gaussian kernel to produce corresponding den-
sity maps. Since the generated density maps have a high impact on
the performance of the models for cell counting, we used geometry-
adaptive kernels [17] to accurately generate corresponding density
maps for input images. Fig. 3 (left) shows input images. Fig. 3 (right)
shows the corresponding density maps generated.

All models were then trained using an end-to-end stochastic
gradient descent method [25] and data augmentations per the orig-
inal authors’ code. The loss function used in training was PyTorch
L1Loss. The grid search method was conducted to obtain the best
hyperparameter values on the validation dataset. For each method,
we performed �ve runs on the IDCIA dataset. Each run involved
training the model using the hyperparameter values that give the
best MAE on the validation dataset. The average of the MAEs over
the �ve runs was reported for each model.

The optimal learning rate, batch size, and the number of epochs,
as determined by the grid search method, are given for each count-
ing method. The results are indicated in Table 4. Count-ception
is the best method giving the lowest MAE. CSRNet and MCNN
perform comparably despite being originally proposed for crowd-
counting tasks. CNN Regression and FCRN-A are the two worst
methods. FCRN-A gives the worst performance on IDCIA, although
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Figure 3: Images (left) and generated density maps (right)

Table 4: Avg. MAEs of the �ve methods on the IDCIA test
dataset

Model Learning rate Batch
Size

Epochs Avg.
MAE

CNN Regression 3.5e-05 16 500 24.15
CSRNet [32] 2e-7 1 400 18.64
MCNN [33] 1e-7 1 1500 19.57
Count-ception [34] 1e-2 2 1000 15.47
FCRN-A [35] 1e-2 16 1000 27.49

Table 5: Comparison of ACP of the �ve methods

Model ACP%
CNN Regression 9%
CSRNet 17%
MCNN 0%
Countception 9%
FCRN_A 9%

it was proposed for cell counting. FCRN-A uses small 3 × 3 ker-
nels for every convolutional layer, and each convolutional layer is
followed by a pooling layer.

According to Table 5, the CSRNet model has the highest ACP
at 17%, which indicates that it has the best performance. On the
other hand, the MCNN model has the lowest ACP at 0%, indicating
poor performance in this aspect, even though it has comparable
performance under the mean absolute error (MAE) metric. The
CNN regression, Count-ception, and FCRN-Amodels have the same
ACP at 9%, indicating similar performance. While MCNN performs
decently in terms of MAE, it performs the worst based on ACP,
which is an important criterion for domain experts.

Breaking down the performance of the models with respect to
the di�erent antibody labeling in Table 6, Count-ception performs
better on most of the staining types, while the simple CNN Regres-
sion model exhibits the best performance in two of the staining

Table 6: Avg. MAE per antibody labeling on the IDCIA test
dataset

Staining Avg. MAE by di�erent methods
CNN Reg. CSRNet MCNN Count-

ception
FCRN_A

DAPI 25.94 13.29 29.84 15.8 21.82
TuJ1 16.98 7 4.66 3.11 11.23
MAP2ab 37.72 41.4 46.59 25.2 38.13
RIP 14.43 15.2 23.42 16.9 64.43
GFAP 36.13 75.4 37.15 38.59 58.67
Nestin 19.05 15.5 9.08 6.69 8.41
Ki67 16.32 7.4 1.11 2.18 7.56

methods. CSRNet performs best for the DAPI labeled samples, while
MCNN performs best for the Ki67 labeled samples. Such perfor-
mance di�erences are caused by the di�erent visual appearances
of cells under di�erent staining antibodies. It indicates the need to
build models that can produce an accurate prediction for a given
image under a certain antibody labeling. Count-ception has the
lowest MAE on the TuJ1, MAP2ab, and Nestin immunolabeled im-
ages. Count-ception is the second best for the rest of the antibody
labels. CNN Regression has the lowest MAE on the RIP and GFAP
labeled images.

Overall, our results demonstrate the potential of DNNs for count-
ing cells from microscope images. IDCIA has a high variance in
terms of cell count for di�erent antibody labels. In our experiments,
Count-ception undercounts cells in some images but overcounts in
others. It undercounts all the DAPI labeled images in the test dataset.
This highlights the importance of evaluating the performance of
di�erent models on di�erent immunolabeling antibodies.

6 CONCLUSION AND FUTUREWORK
In this paper, we present a new annotated dataset of images of cells
from a �uorescence microscope. The cells were immunolabeled
using a panel of cell type-speci�c antibody markers, and all cell
nuclei stained using DAPI. The dataset is available for public use
along with the source code and the trained models. We present
the e�ectiveness of deep-learning methods for counting on the
dataset. We found that di�erent existing deep-learning models are
best for di�erent antibodies used for labeling. All the methods still
underperform when using the ACP metric based on the domain
experts, leaving room for improvement. The results of our study
highlight the challenges in accurately predicting cell counts. We
plan to continue to explore di�erent architectures and training
techniques in order to increase the performance on the ACP metric.
Future work includes the development of a new DNN method that
is su�ciently accurate and acceptable by domain experts.
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