Breaking edge shackles: Infrastructure-free collaborative mobile
augmented reality

Kittipat Apicharttrisorn®
kapic001@ucr.edu
University of California, Riverside
Riverside, CA, USA

Anthony Rowe
agr@andrew.cmu.edu
Carnegie Mellon University
Pittsburgh, PA, USA

Abstract

Collaborative AR applications are gaining popularity, but have
heavy computing requirements for identifying and tracking AR de-
vices and objects in the ecosystem. Prior AR frameworks typically
rely on edge infrastructure to offload AR’s compute-heavy tasks.
However, such infrastructure may not always be available, and
continuously running AR computations on user devices can rapidly
drain battery and impact application longevity. In this work, we
enable infrastructure-free mobile AR with a low energy footprint,
by using collaborative time slicing to distribute compute-heavy AR
tasks across user devices. Realizing this idea is challenging because
distributed execution can result in inconsistent synchronization of
the AR virtual overlays. Our framework, FreeAR, tackles this with
novel lightweight techniques for tightly synchronized virtual over-
lay placements across user views, and low latency recovery upon
disruptions. We prototype FreeAR on Android and show that it can
improve the virtual overlay positioning accuracy (with respect to
the IOU metric) by up to 78%, relative to state-of-the-art collabora-
tive AR systems, while also reducing power by up to 60% relative
to a direct application of those prior solutions.

CCS Concepts

+ Human-centered computing — Ubiquitous and mobile com-
puting systems and tools.

Keywords

Mobile Augmented Reality, Energy Efficiency, Object Detection and
Tracking, Simultaneous Localization and Mapping

ACM Reference Format:

Kittipat Apicharttrisorn, Jiasi Chen, Vyas Sekar, Anthony Rowe, and Srikanth
V. Krishnamurthy. 2022. Breaking edge shackles: Infrastructure-free collabo-
rative mobile augmented reality. In ACM Conference on Embedded Networked

“The corresponding author is currently a postdoctoral researcher at CyLab, Carnegie
Mellon University, PA, USA, and can also be reached at kapichar@andrew.cmu.edu.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SenSys ’22, November 6-9, 2022, Boston, MA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9886-2/22/11.

https://doi.org/10.1145/3560905.3568546

Jiasi Chen
jiasi@cs.ucr.edu
University of California, Riverside
Riverside, CA, USA

Vyas Sekar
vsekar@andrew.cmu.edu
Carnegie Mellon University
Pittsburgh, PA, USA

Srikanth V. Krishnamurthy
krish@cs.ucr.edu
University of California, Riverside
Riverside, CA, USA

Sensor Systems (SenSys '22), November 6-9, 2022, Boston, MA, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3560905.3568546

1 Introduction

Collaborative or multi-user AR experiences are on the rise, with
examples including Pokemon Go’s Buddy Adventures mode [51],
Google’s Just a Line virtual graffiti drawing app [22], and Meta-AR-
App for education [64]. While many multi-user AR apps rely on
cloud/edge infrastructure for heavy computations and sharing of
information across devices, such infrastructure may be unavailable
in many cases (e.g., a search-and-rescue in a disaster zone or an
ad-hoc AR game at a beach). In the first example, AR users may
need to see virtual overlays around people needing rescue. In the
second, users may interact with virtual coins hidden behind real-
world objects (e.g., palm tree) in a hide-and-seek game. In both cases,
the virtual overlays (highlight around person, virtual coins) should
be viewed in the correct locations with respect to the real-world
objects by all the users; otherwise, a person might not be correctly
identified, or the virtual coin might not be hidden.

Realizing these types of collaborative AR apps requires several
steps. Step 1: An AR device must determine where to place a virtual
overlay, based on an analysis of the real world scene; Step 2: While
moving, the AR device must track its own pose (i.e., position and
orientation) and the pose of the virtual overlay, so that the overlay
is at the correct location on the display; Step 3: The AR devices
must communicate about the virtual overlays with each other, so
that the overlays appear at consistent locations on all their displays.

For Steps 1 and 2, today’s AR entails two sources of high-power
computation that can drain a device’s battery. For Step 1, deep
neural networks (DNNs) are used by recent AR work [7, 37, 38]
to correctly detect and classify objects with high accuracy (e.g., to
avoid cases like Fig. 1b where the virtual overlays are drawn over
the wrong real world objects due to incorrect detection).

For Step 2, simultaneous localization and mapping (SLAM) is
commonly used in AR [21, 33, 50] to allow a device to determine its
pose in the real world. While these computations work well when
executed on edge infrastructure, as shown in prior work [9, 13, 36]
and seen in our measurements, their high power consumption
makes them unsuitable for a direct application in infrastructure-
free settings. For example, SLAM [33, 42] consumes roughly 1.01
- 1.85 watts, while a DNN execution consumes 0.98 watts on a
Google Pixel 4 (comparable to or even higher than what is incurred

https://doi.org/10.1145/3560905.3568546
https://doi.org/10.1145/3560905.3568546

SenSys ’22, November 6-9, 2022, Boston, MA, USA

AR device AR Virtual AR device
Overlay

AR device AR Virtual sp govice
Overlay ~

Person of Interest

Person of Interest

(a) Desired case (b) Undesired case
Figure 1: Virtual overlays are (a) correctly placed, (b) mis-
placed due to poor synchronization or inaccurate object de-
tection. The purple arrows point at the person of interest.

with video streaming [62, 71]). Although hardware offloading may
reduce power consumption of these computations, we focus on
software solutions that work on heterogeneous devices without
requiring hardware accelerators (e.g., GPU) [40, 55, 65].

A key observation we make is that many of the critical/high
energy computations are redundant across devices in collaborative
AR settings, unlike when each device operates independently. This
is because 1) AR devices detect and track a common set of physical
objects, and so only some (not all) of the devices need to re-detect
the objects using DNNs, and 2) AR devices move around a common
space, and so in principle, only some of them need to perform
localization independently using SLAM. Thus, having all battery-
operated AR devices perform these computations all the time is not
only expensive but also wasteful in terms of energy consumption.

To enable long-lived (power efficient) AR experiences when there
is no infrastructure support, we envision employing collaborative
time slicing, wherein not every device continuously runs all heavy
computations (DNNs and SLAM). Rather, such computations per-
formed by a primary device are re-purposed by others (secondary
devices); the role of the primary can be rotated as needed to distrib-
ute the energy drain. While seemingly a simple idea, it is very hard
to realize collaborative time slicing in practice, such that the AR ex-
perience (in terms of virtual overlay placement accuracy) is similar
to when all devices perform their own computations, expending
high power. Specifically, we encounter the following challenges.

Synchronizing moving AR devices in new areas. To place virtual
overlays with consistent positions and orientations in their views,
AR devices need to synchronize their 3D coordinate systems. This
is very difficult for two reasons. First, users can launch AR apps
from different locations, and thus the devices do not share a com-
mon initial reference point for synchronization. Second, AR devices
move independently and see the same scene from different view-
points at different times, so it is difficult to determine a common
coordinate system that all devices agree on. To address these chal-
lenges, we rely on spatiotemporal, repeat observations of the scene
from different viewpoints to try to estimate a shared coordinate
system [15-17, 39]. Our key observation is that when the users
view a scene, matters as much as what they view. In other words,
to construct the common coordinate system, two viewpoints that
are recent but less similar in appearance might be preferable to two
viewpoints that are older but more similar, since the scene may
have changed over time (see Fig. 3). Prior approaches [13, 15, 17, 39]
neglect this time factor, i.e., they assume a static real world.

Recovering from failures due to abrupt motion. After synchroniza-
tion, a tenet of collaborative time slicing is that the secondary AR
devices keep track of their own poses in the agreed-upon coordi-
nate system in a lightweight way. However, challenges in tracking

K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

arise if there are changes in the appearance of an object in the FoV
or in an AR user’s pose. To cope with such disruptions, we design
triple-layered repair mechanisms, viz. view-based and location-
based local repairs, and primary-assisted collaborative repair. The
main idea is for a secondary to search for the object in view based
on its previously saved appearances; or failing that, to display the
virtual overlay at the object’s previous locations; or if all else fails,
to obtain updated object locations from the primary (tracking them
using the heavy computations) and map them to its own view.

Representing virtual overlays in 3D coordinates. As an AR device
moves around a 3D world, because the viewpoint (e.g., relative
distance and angle) from the device to the virtual overlay may
have changed, the pose of a virtual overlay needs to be updated
in 3D. This is challenging since the virtual overlay is not a real
3D object. We solve this problem, in a nutshell, as follows. The
2D object coordinates of the virtual overlay, provided by the DNN,
are mapped onto the 3D coordinates from SLAM on the primary.
These 3D coordinates are then shared with the secondary devices
so that they can consistently project the coordinates to the devices
according to their viewpoints. We believe that we are the first to
harmonize the usage of DNNs and SLAM to correctly maintain
virtual overlay poses as multiple devices move.

Contributions and Roadmap: In summary, our work makes the
following contributions:

o We identify fundamental challenges in existing systems to sup-
port infrastructure-free AR (§ 2).

o We design, arguably, the first infrastructure-free AR system
FreeAR (§ 3), which incorporates novel components to realize
robust coordinate system synchronization and virtual overlay
consistency. FreeAR’s lightweight mechanisms save power yet
ensure overlay placement accuracy across AR devices.

e We implement an end-to-end prototype on Android (§ 4), work-
ing on multiple smartphones without needing root access. Our
implementation adds more than 10,000 lines of code to the code
base [43]. Our code is available at the FreeAR website [6].

o We perform extensive experiments (§ 5) to evaluate and compare
FreeAR’s performance with two state of the art approaches, MAR-
VEL [13] which uses edge infrastructure, and MARLIN [7] which
performs power efficient on-device computations (no edge is in-
volved). Our evaluations in various representative scenarios show
that on average (i) FreeAR reduces power by 46% and improves the
object detection accuracy by 43% in terms of IOU, compared to
MARLIN, and (ii) FreeAR improves the object detection accuracy
by 78% in terms of IOU with an 18% increase in power, compared
to MARVEL (which benefits from edge infrastructure).

Ethics. This paper does not raise ethical concerns; human vol-
unteer experiments were performed with IRB approval.

2 Motivation and AR landscape

In this section, we provide a detailed example use case, current AR
methods, and energy measurements to motivate FreeAR’s approach.

Example: Consider a scenario (Fig. 1a) where AR-equipped
firefighters navigate a building to search and rescue trapped people.
When the lead firefighter (left AR device) finds a person, her AR
device automatically detects and highlights the person on its display

Breaking edge shackles: Infrastructure-free collaborative mobile AR

SenSys 22, November 6-9, 2022, Boston, MA, USA

System | AR- | AVR | Liuet | Edge- | SPAR | MAR- | MAR- | FreeAR [o .
A Core | 18] | aL[37] | stam | [s0] | LN[7] | VEL l | Primary has significant energy drain
[21] (9] [13]
Energy efficient v v v Fast Coordinate Virtual SeconFlary Secgndaries do
No edge infrastructure v v v bootstrap k- system ~ overlay transit to IMU/image-based
Multiple users v v v v 53 5)p synchronization consistency low-power tracking
Pose tracking v v v v v v) (§3.1) (§3.2) mode (§3.3)
Object detection v v v I'4
Table 1: Comparison of FreeAR and related work Local repair failure triggers | _ Abrupt motion leads to local
collaborative repair (§ 3.4.3) | repair (§ 3.4.1, § 3.4.2)
Operation Power (W) Operation Power (W)
0S+Camera+Screen 3.016+ 0239 | Optical Flow (OF) 0319 £ 0.072 Figure 2: FreeAR’s workflow: (red) synchronization phase,
. object tracking [10] (green) steady-state (low-power) phase.
IMU-based Tracking 0.361 + 0.151 Image-based Local- 0.994 + 0.438
(§3.3) ization (§ 3.3)
WiFi P2P Send 016640033 | SLAM [33] 1,208 + 0.164 with DNNs and c.)bject tracking mmultaneogsly is 2.4 W (averaging
WiFi P2P Receive 0.085 + 0.027 | DNN [58] 1.225 + 0.308 across the four different phone models mentioned above). The latter
Local Repair (§ 3.4.1) 0.650 +0.105 | SLAM+DNN+OF 2424 + 0.402 case has both SLAM and DNNs running simultaneously to keep

Table 2: Energy expenditures for key operations in FreeAR.
Averaged measurements with Google Pixel 4, Google Pixel
4a 5G, Google Pixel 5, and Samsung S21.

with a red rectangular overlay and a purple virtual arrow. When a
supporting firefighter (right AR device) arrives, the person is also
highlighted on his display. If the person or a firefighter moves, these
overlays must be updated on the appropriate AR displays. Realizing
this requires the three computation steps listed in § 1; however,
these steps are done without communication infrastructure that
may be damaged, so the firefighters need to form an infrastructure-
free network among themselves to coordinate their activities.

Current AR landscape: Current AR systems fall short in the
above infrastructure-free scenario and cannot run solely on a light-
weight mobile device, where energy is of paramount importance.
This is because (a) they require infrastructure support (cloud/edge)
to provide consistent overlays [13, 21, 38], (b) they are unconcerned
with device energy because they can offload heavyweight compute
to the cloud/edge [9, 37, 48, 49], and/or (c) they do not allow for real
time coordination between multiple AR devices [9, 13, 37, 38, 49].

Canonical AR solutions: Google ARCore [21] allows for co-
ordination across devices, but requires access to the Google Cloud
Platform, which synchronizes different user views. Similarly, Liu
et al. [37] require edge support, offloading camera frames in order
to perform heavyweight computations (DNNs) to detect the per-
son in view. MARVEL [13] utilizes edge infrastructure, and unlike
FreeAR, requires specialized hardware (depth camera or LIDAR) to
generate an offline map for localization. MARLIN [7] focuses on
power efficient object detection with DNNs, and SPAR [50] enables
multi-user AR through SLAM without energy concerns. Related
work is summarized in Table 1 and § 6. In this work, we investigate
whether such computations and coordination can be done without
infrastructure on the devices with low power.

Energy costs: A seemingly natural way of enabling infrastruc-
ture free AR would be to have AR devices operate independently
and run DNNs (for step 11in § 1, to detect the person) and SLAM (step
2, to keep track of the person and devices’ poses). Prior work, such
as [7, 37], run DNNs while the others [21, 33] run SLAM on nearly
every frame. We empirically measure the energy consumption of
such a strategy. We perform measurements on several smartphones
(Google Pixel 4/4a/5 and Samsung S21), using VINS-AR [33] as
the SLAM implementation, and EfficientDet [58] on Tensorflow
Lite as the DNN. As shown in Table 2, the energy expenditure of
running SLAM alone is 1.2 W, DNNs alone is 1.2 W, and SLAM

track of existing virtual overlays and device poses, and to provide
new virtual overlays, respectively. Note that this is the average
energy consumed by a single device; with N users would consume
approximately > 2.4 X N W of power.

A case for sharing: We thus observe a natural opportunity
for energy savings — sharing common information about the vir-
tual overlays’ poses, and avoiding redundant computations as men-
tioned in § 1. Returning to the example (Fig. 1a), the lead firefighter’s
AR device (left) could initially detect the trapped persons and high-
light the one needing immediate attention (with a virtual purple
arrow). It can then share this information to supporting firefighters,
having recently arrived, so that they do not have to repeat the
computations already done by the lead’s device. As the lead and
supporting devices move around in a common area with overlap-
ping viewpoints, they can share this information to each other and
re-purpose their computations to save overall energy. If one device
takes care of heavy computations for too long and drains significant
energy, it can hand over these tasks to another device.

Our goal is to design a system that is able to overcome the
practical challenges stated in § 1, but we cannot trivially apply
prior methods because of the absence of supporting infrastructure,
devices’ continuous mobility, and low-power requirements for the
longevity of the AR experience.

3 Design of FreeAR

As discussed, FreeAR uses collaborative time slicing to divide heavy-
weight computations across collaborating AR devices. In Fig. 2, we
depict the high level workflow of FreeAR’s functions and operations.
At the beginning of a slice, FreeAR incorporates a novel coordinate
system synchronization phase (or sync phase), where all devices
converge to a common coordinate system (§ 3.1), and make the
virtual overlays’ 3D poses consistent across all the devices (§ 3.2).
Thereafter, a chosen primary device runs SLAM and DNNs and
is able to update the device pose, physical object locations, and
the 3D virtual overlays as in traditional AR systems. On the other
hand, the secondaries transition to a low-power mode, and will
now track their locations in the converged coordinate system with
lightweight methods (IMU/image-based tracking), and render the
virtual overlays appropriately based on their own motion dynamics
(§ 3.3). If a secondary experiences abrupt scene changes, the virtual
overlays may be lost; then, FreeAR’s local repair kicks in for rapid
recovery (§ 3.4.1, 3.4.2). If local repair fails, FreeAR’s collaborative
repair is attempted (§ 3.4.3). FreeAR transitions to the next time
slice either when the repair repeatedly fails, or when the primary’s

SenSys ’22, November 6-9, 2022, Boston, MA, USA

K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

v
input key | virtual cube (a) no (b) with . (c) with
frame \ | visual visual visual
from ‘ ‘ similarity, similarity, : ¢ chair similarity,
secondary L _on N with d no curren with
21 - «P > temporal temporal Jocation, temporal
| ent PR ee p p POEYE 4 por
cut . proximity proximity proximity

Figure 3: Performing coordinate system synchronization, the primary, choosing frames with (a) partial view or (b) misplaced
chair, places the virtual cube at a wrong location. (c) considering the full view of table and chair and the current chair location
leads to successful synchronization; hence, the virtual cube is placed correctly (on top right of the table).

energy drops, and it now chooses a new primary (§ 3.5). Next, we
provide a more in-depth view of FreeAR’s key components.

3.1 Coordinate system synchronization

The primary must be able to describe the 3D location and 3D ori-
entation (i.e., pose) of a physical object (and its associated virtual
overlay) to a secondary, for the latter to locate the same object in
space, and draw the virtual overlay at proper positions. Towards
this, the primary and secondary need a common coordinate system
to represent the poses of the virtual overlays, objects, and devices.
Prior methods: Centralized collaborative SLAM systems [28,
52, 70] allow multiple agents to coordinate in a common space by
establishing a common coordinate system at a central server, which
performs most of the heavy computations. On the other hand, de-
centralized systems [39] assume a pre-built map (database) of a
location that allows distributed agents to work together. Finally,
recent SLAM systems [16, 17] do not assume a central server or of-
fline maps, but assume that the agents observe common landmarks
at the same time to synchronize the coordinate systems.
Challenges: All the above systems fail to meet the requirements
we have. (1) Infrastructure-free settings must not assume a central
server, (2) impromptu operations (e.g., emergency response) cannot
assume pre-built offline maps, and (3) even if such an offline map
is available, the actual scene may already have changed (e.g., an
object has been moved), making the visual features in an AR device’s
view differ from the features stored in the map, thus causing the
coordinate system synchronization to fail. (4) Finally, AR users may
not observe the same scene at the same time (e.g., two firefighters
are looking for trapped people at different corners of the room).
Key ideas: We observe that to converge to a common coordinate
system, what we need is a common point with spatial and temporal
proximity in terms of the views of the primary and secondary.
That is, if we can find recent time instances where the primary
and the secondary had similar views, those views can be used
to synchronize them. Visual similarity between the primary and
secondary is important because the more the visual features that
are used to estimate the mapping (or homographic transformation
[45]) between coordinate systems, the more accurate the estimation
becomes [32, 66]. Fig. 3 shows an example where the primary and
the secondary have different views; the virtual cube originally in
the secondary’s coordinate system is transformed to that in the
primary’s coordinate system using the synchronization output. The
left frame is from a secondary. In Fig. 3a where the primary has
a partial view of the table and chair, only some of the objects’
visual features can be used to map to the secondary’s frame, which
has a full view of both objects. This mapping mismatch leads to
a large synchronization error; hence, the virtual cube is rendered
incorrectly in the primary’s view (e.g., to the left of the table). Thus,

this well-known technique for synchronizing multiple SLAM agents
[16, 17] does not work well when both (primary, secondary) are in
motion unless pre-coordination is enabled to ensure similar views.

In addition to visual similarity, temporal freshness is also im-
portant since it increases the likelihood that the physical objects
observed by the primary and secondary will be at nearly the same
positions (not moved or moved very little). Recent systems [15—
17, 39] ignore this temporal aspect by unrealistically assuming that
(1) no objects in the scene have moved [15, 39] or (2) agents fully
observe the same objects (e.g., table and chair) at the same time
[16, 17]. In Fig. 3b, the primary has a full view of the table and chair;
however, a comparison between the frames from the primary and
secondary should consider not only what features are in the frames
(e.g., those of table and chair), but also where they are (e.g., chair
features are on the right side of the frames). Without this, the frame
in Fig. 3b where the chair is on the left side of the frame results in
poor synchronization, and thus causes a virtual cube to be rendered
incorrectly in the primary’s view.

In sum, only when both visual similarity and temporal freshness
are considered together is the synchronization very likely to be
successful, leading to the correct rendering of the virtual cubes in
both views. As an example in Fig. 3¢, the primary is able to identify a
key frame that (1) has a full view of table and chair (visual similarity)
and (2) was captured not too long ago (temporal freshness), that
matches with a secondary’s frame. Using this match, it correctly
renders the virtual cube on top right of the table due to a tight
synchronization of the two coordinate systems.

Practical realization: Given this intuition, the secondary can
send its recent (to be discussed) camera view to the primary which
then searches through the history of its trajectory to find a set of
reference frames for synchronization. The primary then checks
the spatial correlation (visual) between the two sets of frames. It
then chooses the pair (one from each set) that provides the best
match to synchronize the coordinate systems of the two entities
(i.e., knowing their poses at those times, it creates a mapping).

To elaborate on the details of the above in practice, we leverage
a well known technique for homographic transformation called
Perspective-n-Point (PnP) method [32] (also used in [33, 39, 50])
as the underpinning of our synchronization method due to its low
latency and acceptable power consumption. As input to a basic PnP
operation (details to follow), (1) FreeAR chooses frames from the pri-
mary that are (a) similar in appearance and are (b) close in time to
an input frame sent by the secondary. We call this selection of suit-
able input frames improper frame avoidance. (2) If there are multiple
primary frames that are similar in space and time, FreeAR checks,
for each of these frames, how many feature correspondences fit
with the secondary’s frame; the more features that fit, the better

Breaking edge shackles: Infrastructure-free collaborative mobile AR

the synchronization. We call this variance suppression. Below, we
describe these two components in more detail.

Step 1: Improper Frame Avoidance. Coordinate system synchro-
nization is fairly heavyweight, so it takes place on the primary.
FreeAR’s primary has access to its own entire frame history, but
only to the most recent frame from a secondary; hence, it needs to
search for the best matches from its history to establish a mapping
with the secondary’s frame, so it computes two scores:

e A visual similarity score, v[i], where i is the index associated with
the primary’s candidate frame. The similarity is based on work
in [19] where dictionaries of BRIEF visual features are matched
between the primary’s frame i and the secondary’s frame. Note
that FreeAR uses selected key frames (e.g., those in which many
features are detected) for coordinate system synchronization
because they are less prone for visual distortion (e.g., less blurri-
ness), and the synchronization more likely succeeds. However,
even in the case of failure, FreeAR will attempt another iteration of
synchronization in the next time period (more details to follow).

e A time score that downweighs old frames, 0.99(t_ti)/s, where t
is the current time, ¢; is the timestamp associated with frame i,
and s is a normalization factor.

We then combine the visual and time scores to define the frame
proximity score (ps) for primary’s frame i as

Ps[i] =ol[i] * 0.99“7&)/S (1)

and rank the frame indices i in a descending order of this score.
Finally, we select the primary’s top-k frames that maximize ps|i].
We choose the top k frames to increase the pool of candidates for
high-quality matches, with further filtering below in Step 3.

Step 2: PnP synchronization method. The previous step returns
k candidate frames from the primary’s frame history for aiding
synchronization, given a secondary’s input frame. However, we still
need to estimate the homographic transformations [45] (estimated
spatial relations) between the coordinate systems of the primary
and the secondary. PnP is a well-known technique [57] to do this,
and so we only briefly summarize its usage here. First, it takes as
inputs the primary frame (fp, determined by Step 1), the secondary
frame (fs), and the pose at fs (T, ,s) with respect to the secondary’s
coordinate system (s). Second, it uses the intersection of the visual
features in f, and f; to compute the pose of the secondary’s frame
with respect to the primary’s coordinate system (p), using PnP,
as Ty, _,,. Finally, it estimates a 4x4 homogeneous transformation
matrix Hy—,5 = (Tfs—>p)_1 - (Tf,), which is used to transform the
3D coordinates of an object from p to s as os = Hy—s - 0p, Where 0,
and o are the 3D vector coordinates of the object in the primary
and secondary’s coordinate systems, respectively. Details about
how we obtain o, are discussed in § 3.2.

Estimation of synchronization quality: The PnP solver fits a linear
model (Hp—s) from the 3D world points to visual features from
the 2D camera frame inputs. More of the visual features fitting
the linear model means that the linear model can consistently ex-
plain the observed data; thus, the synchronization is more likely
to be accurate. In other words, Hy—,s more likely represents the
unknown ground truth transformation between the two coordinate
systems. To use this information, FreeAR counts the number of vi-
sual feature correspondences that fits the linear model (within a

SenSys 22, November 6-9, 2022, Boston, MA, USA

tolerance threshold); this is called numInliers [57]. Recent work
on PnP solvers [30, 32, 69] reports that the more inliers there are,
the smaller the translation and rotation estimation errors become.

The primary runs the PnP solver for all the k frames from Step
1 and returns the largest found numInliers value, along with the
corresponding Hp—s, to the secondary. The value of k drives a
tradeoff between higher-quality synchronization and the compute
latency (=~ k X 70 ms). Guided experimentally, we choose k = 3.

Step 3: Variance Suppression. Upon receiving Hp—,s and numInliers,
the secondary uses numInliers to determine whether to accept
the proposed synchronization. It only does so only if numInliers
is greater than in the previous synchronization attempts. If this is
true, it records both (a) Hp—s for transforming 3D points in the
primary’s coordinates (p) to those in its own coordinates (s), and (b)
numInliers for comparison in the next synchronization iteration.

Finally, FreeAR checks numInliers > threshold for all the secon-
daries; if so, their coordinate systems are synchronized with that
of the primary. We choose threshold = 5 because it is the minimum
number for PnP to be successful [32].

3.2 Consistent virtual overlay placement

A key requirement of AR is that all users have a consistent view
of a virtual overlay (in terms of its location, size, and orientation
in the 3D world). For example, an overlay should appear larger on
the display of a user closer to it, than of another who is further
away. Thus, after coordinate system synchronization, the primary
needs to share information about the physical objects in its view
(whose locations are fixed in the 3D world), along with the relative
positions of the virtual overlays with respect to these objects, with
all the secondaries, so that all users will have consistent views.

Prior methods: Virtual overlays given by DNNs are in 2D, and
AR users may observe the objects from different angles or distances,
and so the same objects appear differently in terms of sizes, shapes,
and orientations in different FoVs. Therefore, 2D virtual overlays
directly shared by the primary can easily be mis-represented at a
secondary’s view (e.g., as in Fig. 1b). SLAM generates key points in
3D, but cannot determine the locations for the virtual overlays from
their 2D representation. Current AR systems focus on either DNNs
[7, 37] or SLAM [9, 13, 50], but not both; others [23, 36] require
edge infrastructure to compute the location of the virtual overlay
on each user’s view. Objectron [2, 20], detecting objects in 3D on
mobile devices without edge infrastructure, in theory allows the
user devices to utilize the 3D object coordinates to determine the
correct placement of the virtual overlays, but it only works for a
single user, without any virtual overlay sharing mechanism.

Challenges: Unfortunately, prior systems do not meet FreeAR’s
requirements. First, there is no edge infrastructure to coordinate vir-
tual overlay placement. Second, we need a mechanism to represent
these virtual overlays in 3D, and then perform a transformation to
the 2D display of a different (secondary) user.

Key ideas and realization: Our vision is to harmonize the
outputs of the DNN with that of SLAM in order to ensure the con-
sistency of virtual overlay placement across primary and secondary
devices. During the synchronization phase, AR devices run both
DNNs and SLAM. DNNs provide information regarding physical
objects in the environment by extracting features in an image view

SenSys ’22, November 6-9, 2022, Boston, MA, USA

Real environment © Received 3D points mapped
o—© to 2D view on display

AR user A .
X o
N a .
2D view from DNNs Map 2D to 3D using SLAM AR user B

Figure 4: SLAM and DNNs cooperation maps 2D features of
interest into 3D space allowing another AR user to view a
consistent virtual overlay (virtual cube).

and returning 2D locations (u, v) where objects of interest (e.g., per-
son) likely appear. SLAM also extracts features of the environment,
but instead of looking at a single image, it tracks those features
in 3D continuously over time. By bundling information of feature
movement (from frame to frame) and estimates of device pose
changes using IMU, SLAM can estimate these features in the 3D
world (x, y, z). For each (x, y, z) in the FoV observing the 3D world,
we can project it to the 2D display as follows.

[wo,1]" = [K] [Rlt] [x.9.2 1] @
where K is an intrinsic camera parameter matrix (from a camera
calibration), and R and ¢ represent an estimated camera pose (rota-
tion and translation, respectively) [29]. To harmonize the DNN and
SLAM outputs, we consume a set of 3D points (x, y, z) output by
SLAM, and map them to their corresponding projected 2D points
(u,v) in the current view. Then, we filter the (u, v) by whether they
lie within the 2D coordinates of a virtual overlay output by DNNs
(e.g., a bounding box). The 3D coordinates (x, y, z) corresponding
to the filtered (u, v) are considered the 3D coordinates of the object.

FreeAR exploits this association as illustrated in Fig. 4. The pri-
mary device (user A) has the 2D coordinates of the chair from
DNNs, which allows it to determine the 2D coordinates of the “blue
cube” virtual overlay relative to the chair. Then, FreeAR converts the
coordinates of the chair into 3D coordinates using SLAM and Eq. 2;
subsequently from this, we are able to estimate the 3D coordinates
of the virtual overlay, which are then conveyed to the secondaries.
Each secondary then maps the virtual overlay’s 3D coordinates
onto its own 2D view again using Eq. 2 with its own R and ¢, and
thus is able to place the virtual overlays properly on its display
(on the table). Specifically, with changes in FoVs (or pose changes),
(x,y,2) in Eq. 2 are fixed while R and ¢ are updated; thus, u,v is
projected into the view with proper sizing and orientation.

3.3 Lightweight device localization

Once the AR devices synchronize their coordinate systems and
display virtual overlays consistently across devices, a steady state
has been reached within the collaborative time slice. At this point,
the secondary devices turn off SLAM and DNNs to save power.
However, every secondary needs to continuously update its pose
relative to its own coordinate system because when the primary
shares new object information, the secondary will need to map it on
to its view (which has changed) correctly. Note that it is relatively
easy for the primary, which runs SLAM, to track its pose changes.

Prior methods: Previous systems [13, 53, 54] use an IMU to
estimate pose changes in the 3D world (referred to as IMU-based
tracking). However, this can accumulate drift and become inaccu-
rate over time (10-20 s) [31] and result in displacements of virtual
overlays from their correct positions. Recent systems such as [36]
use image-based methods without considering IMUs (referred to

K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

Device motions —> t;: rotation t,: limited translation t3: significant translation
IMU-based
tracking, 0.36W
to: Start frame

—t

Fixed
Virtual
cube

Image-based ol
localization, 0.99W

Figure 5: IMU-based and image-based localization results in
high accuracy and low power updates of AR device poses.

as image-based localization) wherein a device uses a recent image
frame (i) to search for a correspondence (a similar frame j) in its
own trajectory history. Using these two frames (i and j), the device
can compute a homographic transformation from the known pose
at j to the current unknown pose at i. This transformation is used
to update the device pose, and is re-computed as the device moves
around. However, our measurements on different device models
(Table 2) indicate that image-based localization consumes 0.99 W,
which is 2.75 X higher power than IMU-based tracking (0.36 W);
utilizing the former continuously can cause undesired power drain.
Prior work [36] does not consider power efficiency as we do in
FreeAR. However, a recent AR system [13] reduces power consump-
tion on AR devices by offloading image-based localization to an
edge infrastructure, not existing in our infrastructure-free settings.

Challenges: Unlike prior systems’ assumptions, we do not have
edge infrastructure and our solution has to be power efficient. Yet,
we need to have high accuracy, i.e., if a large drift occurs, FreeAR
needs to recover from that drift and correctly place the virtual
overlay in the view again. This process should incur low latency to
update the pose of an AR device, in motion, almost in real time.

Key ideas: From the above, we make the observations that since
image-based localization is relatively power heavy, we should use
it sparingly if at all. Thus, we seek to use the IMU-based tracking
to the extent possible. To increase its usability, we incorporate the
impact of gravity to help improve the accuracy of basic IMU-based
tracking. This is inspired by a prior work [53] that uses gravity
estimation to improve tracking of a wrist watch with an arm model.
We significantly build upon this to improve tracking of an AR device
in free space where the user may move an arm or walk around in
the space. We only trigger image-based localization upon need.
Specifically, we find that while our modified IMU tracking is very
robust to rotation and minor translation (also shown in [53, 54]), its
error accumulation increases over larger translations. Thus, if the
IMUs indicate significant translation (> 20cm), we trigger image-
based localization to ameliorate the error.

A simple example in Fig. 5 showcases the benefits of integrat-
ing IMU and visual tracking with FreeAR. The upper row shows
IMU-based tracking alone, and the lower row shows image-based
tracking alone. An AR device at ¢y observes a physical cup, on top
of which a virtual cube is rendered. As the device moves (without
SLAM), the cube should remain fixed if the device pose is being
tracked correctly. At ¢1, the device rotates to the right (e.g., right
edge of the device moves closer to the user); here, FreeAR uses IMU
to track its pose correctly (using the image-based method results
in pose estimation error, i.e., the cube shrinks and drops down a

Breaking edge shackles: Infrastructure-free collaborative mobile AR

estimate use prior use FreeAR’s custom
gravitational forces method ** IMU-based tracker (§ 3.3)
yes f yes f yes4
no no — -
| (I) mostly motionless |—>| (II) only rotation |—>| (III) limited translation only |
no)/
| (V) significant translation |<L| (IV) concurrent rotation and tra.nslationl
yes yes'\

use image-based localization (§ 3.3) use (II) and (III) concurrently

Figure 6: FreeAR’s lightweight localization workflow; **[47]

bit). At ty, the device experiences limited translation to the left
and both IMU and image-based methods result in consistent device
tracking; however, because IMU consumes less power, FreeAR uses
it to update the device pose at this time. Finally at t3, when the
device is moved to the right with significant translation, IMU-based
tracking results in a very large error and causes the cube to go
further away from the cup to the far right of the frame. FreeAR’s
choice of image-based localization, however, helps regain the pose
and thus, the cube placement on top of the cup. Next, we provide
some details of FreeAR’s combined IMU and image-based tracking.

Augmenting IMU Tracking with Gravity Estimates. We first inte-
grated several publicly available IMU-based tracking methods [4,
27] into FreeAR, but found they did not perform well (e.g., fixed
virtual cube is displaced as the device moves). Hence, as mentioned,
we develop our custom IMU-based tracker, inspired by two prior
efforts, viz., Shen et al. [53] removing gravity from accelerometers
under arm motion, and Solin et al. [54] tracking devices with legged
or wheeled motion. Neither fulfils our need to track the device in 3D,
with the user both moving her arm while holding the AR device and
walking. Thus, we combine and build on these ideas to significantly
improve tracking accuracy as follows: (1) When the device is mostly
motionless (acceleration (ax, ay, a;) < 0.2m/s%), we estimate the
gravitational forces in the three dimensions viz., (gx, gy, 9z)- (2)
When the user starts moving the device, we estimate the linear
accelerations as lax = ax — gx,lay = ay — gy,and la; = a; — g.. (3)
Using standard physics kinematic equations [31], we estimate the
translation every At = 10 ms.

We find that this simple method works well under the assumption
that the user moves and stops occasionally (which provides a chance
to re-estimate gravity). Since prior methods for rotation tracking
work reasonably well, we incorporate the one from [47] into FreeAR.

Augmenting IMU Tracking with Visual Information. When IMU
tracking indicates significant translation, the secondary device cap-
tures the recent camera frame and uses it to recover the pose within
its own coordinate system. Setting this translation threshold too
high can cause pose estimation to be off and virtual overlays to
drift away; setting it too low will cause frequent invocations of
the image-based approach, and thus induce high energy. Based on
experiments with our smartphones, we set the threshold to 20 cm.

The image-based localization within FreeAR is similar to its coor-
dinate system synchronization method. The key difference is that
instead of comparing the secondary’s most recent frame with the
primary’s history of frames (Eq. 1), the comparison is made between
the secondary’s most recent frame and its own historical frames.
Fig. 6 summarizes FreeAR’s workflow for device pose tracking.

3.4 Recovery upon abrupt motion

While the above modules (§ 3.1-3.3) enable FreeAR to cope with
gradual motion, they cannot fully handle a user’s abrupt motion
(e.g., a quick turn). Here, a secondary can lose track of an object

SenSys 22, November 6-9, 2022, Boston, MA, USA

(1) at sync phase, secondary (3) slide each template over each (4) if successful, virtual
collects object templates patch of the current frame overlay is recovered

(2) at low-power phase, — A J S |
secondary loses track of ,v% & b7
object and starts local _ -~

repair process - -

objld: 1

-
-

S — ___ | representative
| | templates of | =
objlId: 1

current frame

Figure 7: View-based Local Repair (VLR): a secondary uses
collected templates to recover the lost virtual overlay.

and its virtual overlay can disappear. Abrupt pose changes also
cause a loss in synchronization with the primary. A naive way
to recover from such a loss is to trigger SLAM and DNNs for a
reset; however, this consumes high power and importantly, induces
long delays for the system to return to a steady state. Thus, we
desire power thrifty, low latency repair mechanisms, to allow the
secondary device (not running SLAM or DNNis) to (a) recover object
locations in the device’s 2D view correctly, and (b) place virtual
overlays that are consistent with those in other AR users’ views.
3.4.1 View-based local repair (VLR): Intuitively, if we know what
object was lost, and can remember what it looked like, we can try
to find it on our display in a lightweight way. Specifically, we can
look for the lost object in historical frames, extract its features, and
try to find the part of the display which has the same features.

Prior methods: There are many possible candidates from the
literature for performing view-based local repair on the above basis.
(1) Template matching [46] finds the location of a template image (of
the physical object) in the current view. It slides the template over a
template sized window (or patch) of the input image and compares
the template and the patch (see (3) in Fig. 7). Then, if the patch
with minimum difference to the template differs by lower than a
threshold, it is considered to be the recovered 2D location of that
object (see (4) in Fig. 7). (2) DNN [61]: detects and classifies physical
objects in the current view. (3) A cascade classifier [44] uses Haar
features to train a classifier to determine the location of a physical
object (if present). Our experiments (on a Pixel 4 phone) indicate
that template matching consumes the lowest power (0.56 W) with
the smallest latency (20 ms), while the DNN (cascade classifier)
consumes 0.98 (1.91) W with 250 (120) ms latency, as one might
expect since they are considered heavyweight [7, 25].

Challenges: We cannot simply plug in template matching into
FreeAR because there are too many templates (e.g., 3600 templates
in 2 mins), so blindly matching the current frame with all of these
can induce large delays in recovery.

Key ideas: Our approach is to collect templates of the objects
of interest (with which the AR virtual overlays are associated)
during the sync phase. A secondary then uses those templates to
re-locate lost objects and re-draw the virtual overlays. We filter
out redundant templates and use fast template matching to recover
multiple physical objects simultaneously (details to follow). Since
both the template and candidate match were captured under similar
conditions by the same device, VLR is very likely to succeed. We
next describe VLR’s two main components that accomplish this.

Intelligent template collection: When the DNN (during the sync
phase) and the accelerometer indicate that a device is mostly mo-
tionless, candidate object templates from the camera frames are

SenSys 22, November 6-9, 2022, Boston, MA, USA

_\ﬂ (3) secondary applies
device pose: R, t

to X, y,Z to get objld: 1
virtual overlay

W positions in the view

(1) at sync phase,

~|secondary also
objld: 1 registers object
locations

(2) at low-
power phase,
if VLR fails

(4) if successful, virtual
overlay is recovered

objld: 1atxy,z secondary’s current frame

Figure 8: Location-based Local Repair (LLR): a secondary uses
object locations and current pose to recover a virtual overlay.

obtained, as illustrated in step (1) in Fig. 7. To enable future local re-
pairs, FreeAR needs to collect a diverse, yet compact set of templates
for each object. It uses a color moment hash [59], a compressed
representation of the image that is quick to compute (10ms) and
compare (< 1ms), to determine if it should store a new template. It
stores a new template based on two criteria: (1) the minimum hash
distance compared to all previous templates must be greater than a
threshold or (2) the minimum difference between a new template’s
width and height and all previous templates’ widths and heights,
is greater than a threshold. In a representative experiment in Fig.
7, we find that FreeAR stores four representative object templates
(green boxed) for an object out of ~ 3,000 frames.

Fast template matching: When a secondary loses an object due to

abrupt motion, FreeAR first retrieves the templates associated with
that object. It then waits for the device to be relatively motionless to
ensure that a non-blurry camera frame is captured, appropriate for
template matching, which is then performed (as described earlier
in this subsection) and repeated for each template. The patch with
the lowest sum of square differences (also lower than a threshold)
is chosen as the recovered object location. Fig. 7 shows that the
right most template in the green box matches the current frame and
successfully places the bounding box in step (4). Our experiments
show that template matching takes ~ 60ms with high-precision
object recovery (e.g., IOU = 0.7 — 0.8).
3.4.2 Location-based local repair (LLR): An object’s appearance
may change from how the secondary remembers it; in other words,
visual features of the templates can deviate from the object features
in the current view (e.g., when viewing an object from a different
angle). In such cases, VLR may fail, and to handle such cases, we
imbibe a second layer of local repair. Here, we remember where the
objects were before they were lost. With this location information,
we can then recover the virtual overlays.

Straw-man methods: An AR device can use DNNs to recover
the object locations. However, DNN executions drain significant
energy from AR devices (see Table 2); hence, this method fails to
serve as a good candidate for location based local repair.

Key ideas: During the sync phase, a secondary device not only
collects templates for VLR, but also registers and updates an ob-
ject’s location in its own coordinate system. Leveraging FreeAR’s
SLAM and DNN cooperation method (§ 3.2), these registered ob-
ject locations are in the 3D world, which is stationary. If VLR fails,
FreeAR triggers LLR by projecting the last known 3D object location
(x,y, z) to the secondary’s view, making corrections based on the
device pose (R, t) (discussed in § 3.3) and Eq. 2. Fig. 8 illustrates this
simple, yet effective process in recovering a virtual overlay (orange
bounding box). Note that FreeAR will not draw the virtual overlay
if the object is not within the secondary’s current view (Eq. 2).

K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

(1) at low-power phase if local repair fails, secondary
receives object information from the primary

; S ’ /bj} (2) secondary
| % converts Xp, Yp, Zp
into its coordinate
system using Hy, s,
8 then apply device
pose R, t to get
virtual overlay
positions in the view

primary tracking
the object

secondary’s
current frame

(3) if successful, virtual
overlay is recovered

Figure 9: Primary-assisted Collaborative Repair (PCR): the
primary shares object information with a secondary which
can recover the position of the virtual overlay in its view.

3.4.3 Primary-assisted collaborative repair (PCR): In a few cases,
LLR may also fail (e.g., if the object has been moved) and we provide
a third repair layer to try to prevent SLAM and DNNs executions
on the secondaries. We observe that the primary, which still runs
SLAM and DNNG, can share object (and virtual overlay) information
with a secondary experiencing object loss; the latter can then use
the information to recover the virtual overlays in the local view.

Prior methods: MARVEL [13] determines object locations of-
fline and registers them on an edge infrastructure which shares
these locations with AR devices to aid recovery of virtual overlays.
EdgeSharing [36] uses DNNs running on an edge to determine
object locations, and shares them with the user devices.

Challenges: We cannot directly apply these methods because
of the lack of offline surveys and edge infrastructure. The primary
is in motion (along with the secondaries), and thus cannot directly
play the role of the fixed edge assumed in the prior systems.

Key ideas: The primary device, using SLAM and DNNs coop-
eration, estimates an object’s 3D locations (xp, Yp zp) and shares
them with a secondary that has lost track of the object. The latter
uses Hp_,s (from §3.1) to transform the 3D points into its own
coordinate system (xs, ys, zs). It then uses its recent device pose R, t
(updated by § 3.3) and Eq. 2 to project the 3D points onto its 2D
view and draw the virtual overlay. Fig. 9 illustrates PCR’s processes.

3.5 Fast and seamless global fallback

In extremely rare cases, all of the repair methods may fail, and here
FreeAR will start a new time slice and fallback to the synchronization
phase, i.e, all devices will execute SLAM and DNNs again. This
is outside normal invocations of this phase either periodically or
when the primary’s battery drops by a certain threshold.

Challenges: Re-initializing SLAM naively can either cause it
to reset, or to fail to reconnect with its previous state and crash.
Resetting SLAM from a cold state clearly misses on opportunities to
leverage previously stored data, and incurs high latency. However,
naively attempting to merge with SLAM’s previous state usually
fails because SLAM expects a continuous stream of data from the
camera and IMUs, and the secondary device has not been running
SLAM during a steady-state phase.

Key ideas: We use an existing technique in SLAM, called loop
closure [33, 42] in FreeAR, to “trick” SLAM into merging the informa-
tion from the current and previous synchronization phases. Loop
closure is normally used to determine when a user re-visits a previ-
ously seen area (e.g., by walking in a loop). We exploit loop closure
to give SLAM the impression that the device was simply lost for

Breaking edge shackles: Infrastructure-free collaborative mobile AR

a while (i.e, during the steady state phase), and is now re-visiting
the area from the previous synchronization phase. Loop closure
here helps stitch these two worlds (from the current and previous
synchronization phases) together, allowing for their smooth re-
connection. This speeds up FreeAR’s re-synchronization, the start of
a new time slice, and the transition to the next steady-state phase.
Primary rotation policy. At the beginning of each time slice,
all AR devices share their residual energy = remaining battery (%)
X battery capacity (Ah), and the device with the maximum residual
energy is chosen as the primary (an election can be used [63]). When
the primary’s residual energy drops significantly (e.g., compared
to the secondaries), a new time slice is initiated to choose a new
primary device using the maximum residual energy criterion. We
defer more sophisticated policies (e.g., considering computational
resources, network topology or objects in the FoVs) to future work.
Handling group change dynamics. A new device joining an
existing AR session in the middle of a time slice has to synchronize
its coordinate system only with the primary device. After the syn-
chronization phase is done, the new device can enter the low-power
mode. A secondary device can leave the AR group at any time; when
a primary device leaves the AR ecosystem, a new primary is chosen
(based on residual energy as before), and a time slice initiated.

4 Implementation

Platforms: FreeAR is implemented on smartphones running An-
droid 11 (Google Pixel 4, Google Pixel 4a 5G, Google Pixel 5, and
Samsung S21). We use VINS-Mobile [33], TensorFlow [60], and
OpenCV [11] libraries to implement SLAM, object detection and
tracking, and PnP synchronization and image processing, respec-
tively. Our code is available at the FreeAR website [6].

Module implementation: There are two main parts of FreeAR
viz., the main Ul in Android (MainActivity) in Java, and the key
SLAM class (ViewController) in C++. The coordinate system syn-
chronization and SLAM and DNN coordination work inside View-
Controller to retrieve and match keyframes, and share object in-
formation, respectively. Lightweight localization’s IMU tracking is
implemented inside MainActivity to access and process IMU sensor
inputs. Repair methods and global fallback are implemented inside
ViewController to access required inputs.

Inter-device information sharing: We use Android’s WiFi P2P
[3] to implement inter-device communications. We use Java’s client-
server TCP sockets for unicast, and UDP sockets for broadcast.

Logging: To estimate the power consumption, we read voltage
and current variables of Andorid’s BATTERYMANAGER to obtain
the battery’s voltage (mV) and current (zA), then calculate power
as Power = Voltage * Current in Watts. To compute the virtual
overlay’s IOU, we log information about each tracked object shared
by the primary: timestamp, bounding box, class. At the secondaries
if there is a matched local virtual overlay, we also log: (matched)
local object id and (matched) local bounding box.

Baselines: We implement the following baselines:

MARVEL [13] Since MARVEL is not open sourced, we implement
a faithful reproduction as follows. We build an offline map of the
ecosystem with its objects using SLAM [33]. Then, the lightweight
AR client app localizes itself online in this pre-built map on the
edge server using our implementation of Egs. 6-8 from [13]. We
call this Centralized Localization.

SenSys 22, November 6-9, 2022, Boston, MA, USA

MARLIN [7] We obtained MARLIN’s source code, but replaced
the DNN models (e.g., Tiny YOLO) with the newer and more accu-
rate EfficientDet model [58] trained on the COCO 2017 dataset [35].
FreeAR also uses this DNN model for fair comparison. We modify
MARLIN slightly to achieve collaborative AR among multiple de-
vices as follows. The primary device runs MARLIN and shares the
2D virtual overlays (rather than 3D coordinates as in FreeAR) and
object classes with the secondary devices, which also run MARLIN.
The secondaries only display a virtual overlay if a locally detected
object matches the object class sent by the primary (IOU > 0.3).

Multi-user SLAM or MU-SLAM runs SLAM on all the AR devices
all the time, but only the primary runs DNNs to get the virtual
overlay positions and shares these with the secondaries. The sec-
ondaries also perform coordinate system synchronization with the
primary, similar to FreeAR. Inspired by SPAR [50], this represents a
direct application of collaborative SLAM [9, 28, 39, 52] to AR.

Vanilla runs SLAM and DNN continuously on all the devices and
performs coordinate systems synchronization, similar to FreeAR, to
achieve collaborative AR without considering energy issues.

5 Evaluation

In this section, we present our evaluations of FreeAR. We first list
our metrics of interest and then present our results.

5.1 Evaluation metrics

Power consumption: We log the power consumption on each
phone, when it is running only the Android OS, the camera, and
screen display (brightness set to 70%); this is called the base power,
powerp,se- In our evaluations, we run FreeAR or a baseline and log
the total power power;,;q;. We estimate powergpp = pOWer o141 —
powerp,se, thereby isolating the power consumed by AR.

IOU accuracy: The Intersection Over Union (IOU) [12] lies
between 0 and 1 and captures whether a virtual overlay (bounding
box) is where it should be on a display. The IOU is defined as %,
where G is the ground truth bounding box and O is the bounding
box displayed by FreeAR or a baseline. The larger the IOU, the better.
We report the average IOU over all analyzed frames. To obtain
the ground truth bounding boxes and object classes, we execute
the largest EfficientDet DNN model, EfficientDet-7x. The IOU is
non-zero only if the ground truth object class matches the class
output by the primary/secondary’s DNN. This measures whether
the secondary is indeed highlighting the correct object.

5.2 End-to-end evaluations of FreeAR

We first provide our holistic evaluations of FreeAR in various sce-
narios and compare its performance with the baselines.
5.2.1 Holisitic results. We run 15 AR experiments, each with 2 to
5 volunteers using the devices mentioned in § 4. In each experi-
ment, AR users follow different trajectories, move devices differ-
ently (semi-stationary to constant motion), with one or two (bottle
and/or cup) objects of interest in a 20 m X 20 m space, where they
are always in proximity (e.g., < 10 m from each other); in this space,
objects do not appear too small in the FoVs. These experiments were
done on weekends to avoid background WiFi traffic from non-AR
users and encompass all scenarios described in §5.2.2 to §5.2.7.
Fig. 10 shows the CDF of FreeAR and the four comparison base-
lines for power consumption and IOU accuracy. As can be seen, the

SenSys ’22, November 6-9, 2022, Boston, MA, USA

K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

FreeAR FreeAR MARVEL-+- MU-SLAM @ FreeAR @ MU-SLAM @ Vanilla @ FreeAR @ MARLIN
Primar Secondary = MARLIN ==+ Vanilla @ MARVEL @ MARLIN
- ’ 10 2, i
1.0 = 1.0 - 3 1M B
N ARy T T [P ¥ iln
g8 0547 1 8 05 i -~ ° E
: f = i
I A 0fr——rrrrr>r ‘B:Z T g, i

0 1 2 0 0.5 1.0 v 1 o
2 9 & %0 Yoo b 2 e ™ S
QI eReM oM oM ot
Power (W) 10U = Prim. Sec. 1 Sec. 2 Sec. 3 Average

Figure 10: On average, FreeAR consumes low Figure 11: Four semi-stationary users track two ob- Figure 12: When five
power (~ 0.5 W), comparable to MARVEL’s jects from similar FoVs: FreeAR improves 78% IOU but users track an object
and only one-fourth of the vanilla scheme’s increases 42% power over MARVEL which has edge from different FoVs,
power. FreeAR also improves IOU accuracy infrastructure. FreeAR both reduces 30% (46%) power FreeAR outperforms MAR-
by 78%, 64% and 43% compared to MARVEL, and improves 39% (49%) IOU compared to MARLIN LIN with 63% better IOU,

Multi-user SLAM and MARLIN, respectively. (Multi-user SLAM or MU-SLAM).

primary device consumes more power (similar to Vanilla), while
the secondary devices save significant power.

Compared to MARLIN, FreeAR reduces power by 46% and
improves IOU accuracy by 43%. MARLIN consumes high power
(~ 1.0 W) because AR devices continuously execute DNNs. Because
of its low-power mode, FreeAR consumes only 0.5 W on average.
Furthermore, MARLIN only achieves an average IOU of 0.46 because
it only shares 2D virtual overlay positions; since users have different
views, the overlays can easily be dislocated from their associated
physical objects. On the other hand, FreeAR leverages both DNNs
and SLAM to share 3D virtual overlays for consistency among
different views, leading to a 43% increase in IOU over MARLIN.

Compared to MARVEL, FreeAR consumes 18% more power
but improves IOU by 78%. MARVEL consumes low power be-
cause it offloads heavy computations to the edge, unlike FreeAR.
However, MARVEL only achieves an IOU accuracy of 0.2 because
it fully depends on centralized localization at the edge, and has
no repair mechanisms. If many devices send frames to the edge
for localization, they experience long delays and thus misplace
their virtual overlays. In contrast, FreeAR’s distributed localization
quickly updates devices’ poses or triggers fast local repair upon
failure, achieving an IOU accuracy of 0.8, on average.

Compared to Multi-user SLAM, FreeAR consumes 60% less
power and improves IOU by 64%. With MU-SLAM, secondaries
indirectly compute the virtual overlay poses from object informa-
tion shared by the primary. It is thus susceptible to synchronization
or localization errors which result in a low IOU accuracy of 0.3, on
average. FreeAR employs effective repair mechanisms, leading to
an IOU accuracy of 0.8. Further, secondaries in FreeAR run neither
SLAM nor DNNs extensively, thus consuming much lower power.

Compared to vanilla, FreeAR consumes just one-fourth of
the power but takes only a 12% hit in terms of IOU accuracy.

FreeAR’s synchronization phase takes ~ 2 - 4 minutes and
consumes 2.3 - 3.0 W of power. During this phase, the secondary
devices collect object templates for later use in VLR. These devices
also repeatedly send key frames to the primary to perform coor-
dinate system synchronization, until successful. The greater the
number of AR devices, the longer this phase takes. This phase con-
sumes high power, because AR devices have to run SLAM, DNNE,
and P2P communications, but will last only for a short duration.
The primary consumes an additional 0.5 W of power during syn-
chronization (e.g., running PnP solver [32]).

with comparable power.

FreeAR’s communication overhead is low. Because the AR de-
vices are in proximity, the WiFi P2P links are measured (using iPerf
[18]) to operate at bandwidths of 100 - 300 Mbps. During synchro-
nization, key frames (each with ~ 100-200 KB size taking ~ 50ms
transmission time) are periodically sent from each secondary to the
primary every N X 300 ms where N is the number of AR devices; as
N increases, the frequency is decreased to avoid contention at the
primary. Hp_s (a 4x4 matrix defined in §3.1 and of size ~ 170 B),
and the 3D object representation anchoring the virtual overlay (~
600 B per object), are much smaller and take < 1 ms of transmission
time. Notification messages (e.g., primary device selection) are car-
ried via UDP broadcasts to all N devices. Therefore, for moderate
values of N (e.g., < 20), FreeAR can perform synchronization and
allow devices to exchange information reasonably quickly.

FreeAR’s memory footprint is small. The memory require-

ments of FreeAR are predominantly due to the baseline SLAM frame-
work [33], which primarily stores a collection of key frames along
the AR user trajectory. Continuously walking in a 20 m X 20 m
space for 2 minutes results in 250 key frames and 0.6 GB of mem-
ory. This would be incurred in any AR system that runs SLAM. In
addition to this memory consumption due to SLAM, FreeAR stores
Hp—s (= 170 B) for each secondary, and the 3D representation (~
600 B) and multiple templates (= 50 B each) for each object. For all
the scenarios, FreeAR’s memory footprint beyond SLAM is < 5 KB
(which is negligible in comparison to SLAM).
5.2.2 Semi-stationary scenarios. In this experiment, four volun-
teers holding devices (the primary is a Samsung S21, Secondary 1 is
a Google Pixel 5, and Secondaries 2 and 3 are Google Pixel 4), walk
around an area of 20 m X 20 m and after synchronization, point their
devices with similar FoVs to look at two objects (bottle and cup).
At steady state, remaining for 2 minutes, they move the devices
around 5-10cm and/or rotate them by 5-10 degrees, keeping the
objects in their FoVs. This reflects AR use cases where the users are
semi-stationary to interact with the virtual overlays. We perform
5 trials, each with FreeAR and then with the four baselines. Fig. 11
shows the power consumed by and IOU accuracy of each user.

FreeAR improves the IOU by 78% over MARVEL. On the sec-
ondary devices, FreeAR consumes power comparable to MARVEL
because with both methods, these devices operate in the low-power
mode, mostly performing IMU-based tracking. As mentioned ear-
lier, FreeAR achieves significantly better IOU because it utilizes the
object locations found by the DNNs during the sync phase, rather
than relying on MARVEL’s centralized localization on the edge. The

Breaking edge shackles: Infrastructure-free collaborative mobile AR

!
primary does
not observe rimary | secondary’s partial
secondary A the object P V" view of the object

(a) (b)
Figure 13: In scenarios (a) where primary does not observe the
object, or (b) where secondary partially observes the object,
the secondaries can still have consistent virtual overlays.

secondary B

average power, however, is higher with FreeAR, since in MARVEL
the edge does the heavy computation (in our implementation of
MARVEL, both the primary and secondaries offload the computa-
tion). We again point out (a) FreeAR eliminates the need for the edge
server, and (b) we only have four devices in our experiments. If the
number of devices leveraging the primary’s computations is higher,
this power is amortized and the penalty will be much smaller.

Compared to MARLIN, FreeAR both reduces the power (by
30%) and improves IOU (by 39%). By not considering the 3D po-
sitions of the devices and objects, MARLIN frequently fails to place
the virtual overlays consistently at the primary and secondaries
(e.g., when the users view objects from slightly different distances).
Further, although MARLIN can save power by not running SLAM,
it often triggers DNNs, consuming higher power than FreeAR’s
secondaries, which run neither DNNs nor SLAM in steady states.

Compared to Multi-user SLAM, FreeAR both reduces power
by 46% and improves IOU by 49%. Secondaries in MU-SLAM
draw virtual overlays simply based on information from the primary.
In contrast, FreeAR’s secondaries use effective repair mechanisms
to quickly recover lost virtual overlays, leading to significant im-
provements in IOU accuracy compared to MU-SLAM. Secondaries
in MU-SLAM run SLAM consuming high power, while those in
FreeAR run only lightweight methods (no SLAM or DNNs).

Compared to vanilla, FreeAR has a marginally lower IOU
(by 8%) but reduces significant power consumption (by 59%).
5.2.3 Scenarios where users have different FoVs. In this experiment,
we add a fifth volunteer with a Google Pixel 4a 5G (as Secondary
4) to the previous setup; after the sync phase, the users track a
single object on a table from 5 different FoVs with semi-stationary
motion. We run 1 trial and compute the average power and IOU
for the 10-minute duration of the experiment (with samples at the
granularity of each frame). We focus on comparing FreeAR with
MARLIN because the latter shows acceptable performance in terms
of power and IOU, and both are infrastructure-free.

Compared to MARLIN, when users have different FoVs,
FreeAR improves the IOU by 63%. Fig. 12 shows that MARLIN
takes a significant hit due to mismatches between the virtual over-
lays on the primary and secondaries, arising due to the different
FoVs of the users; we see that users are disconnected from the AR
experience for significant times (as shown by their low IOUs). In
contrast, FreeAR tracks the object with high IOU, because it (a) syn-
chronizes the 3D coordinate systems to ensure consistency in spite
of the different FoVs and (b) adapts quickly to user motion through
device localization (§ 3.3) and repair methods (§ 3.4).

SenSys 22, November 6-9, 2022, Boston, MA, USA

From Fig. 12, FreeAR’s user Secondary 1 (Sec. 1) is seen to ex-
perience a lower IOU than the others. A log analysis shows that
this user suddenly moves the device during the sync phase, causing
the object ID to be changed; thus, VLR does not create the proper
object templates and later cannot recover from failure. However,
this user uses LLR and PCR (object 3D coordinates) to recover the
virtual overlay (bounding box), and achieves an IOU of 0.36, on
average. This is lower than that of the other users who run VLR
and thus achieve IOUs of 0.7-0.8; however, importantly, we see that
FreeAR achieves a higher IOU than MARLIN, even for this user.
5.2.4 Secondary Device in Constant Motion. In this experiment,
we run FreeAR with one primary and one secondary device, which
track two objects in their FoVs. The primary user is semi-stationary
but the secondary moves or rotates back and forth (i.e., until the left
object nears the left screen edge or right object reaches the right
screen edge); at this point, the user immediately moves/rotates
the device in the opposite direction. We run 3 trials, each lasting
2 minutes. In Figs. 14a, we see that in this challenging scenario
of a constantly moving secondary device, the IOU drops to 0.56
(compared to 0.7-0.8 in the previous semi-stable experiments) which
is still considered to be very good for object tracking [34]. Because
of the motion, stable object templates can rarely be collected, and
VLR is mostly unsuccessful. However, because the secondary user
still has the 3D coordinates of the object used by LLR or PCR, it
achieves good IOU accuracy with its virtual overlays.

5.25 Collaborative AR with users walking in circle. In this experi-
ment, three users (one primary and two secondary) slowly (1m/s)
and continuously (walk 1m and momentarily stop and then con-
tinue), walk around a table while always keeping one object in the
FoVs. This is one of the most challenging scenarios because (a) ob-
ject tracking can easily fail because the object appearance changes
quickly due to changing FOVs, invoking local repairs often and
(b) drift accumulates in the IMU-based translational tracker. Still,
Fig. 14b shows that FreeAR’s performance is quite good, as the sec-
ondaries achieve IOUs of ~ 0.4 (considered satisfactory [34]) with
approximately 0.4 W of power. Compared to MARVEL and MARLIN
in § 5.2.2, in this more complex scenario, FreeAR (i) achieves a better
average IOU of 56% compared to MARVEL, and (ii) consumes 52%
less power and achieves 12% higher IOU compared to MARLIN.

5.2.6 Scenarios where the primary and secondaries do not observe
the same set of objects. In this experiment, one primary and two
secondary devices track one cup in their views. In Fig. 13a, when
the primary changes its FoV, away from the object, the secondaries
can still have consistent overlays. Towards this, secondary A (s4)
registers the object in its own coordinate system and shares the
object information with the primary, which applies H;,—p to com-
pute (xp, Yp, zp) of the object in the primary’s coordinate system.
Then, these 3D coordinates are forwarded to secondary B (sg), who
applies Hp_s; to have the object’s 3D coordinates in its own co-
ordinate system. Finally, sg maps the 3D points onto its own view
using its device pose (Rsy, ts;) and Eq. 2 to place the virtual overlay.
5.2.7 Scenarios where the secondary partially observes the object.
This experiment setup is similar to the previous one, except the
secondary only partially observes the cup. These are challenging
scenarios for VLR as the collected templates likely cover a full view
of the object (e.g., DNNs usually consider full visual features of an

SenSys ’22, November 6-9, 2022, Boston, MA, USA

K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

@ Power [10U @ rower () I0U Improved @ Decentralized @ Decentralized
g 1.0 4 OMARVEL MARVEL FreeAR (@ Centralized (@ Centralized
< S g 055 107 OIS 2 0.5
g 1 05 2 §2 55 2 05 3o.tsﬂﬂrﬂﬂ s} OM‘HHFI%
o = 1 =]

Y 0 g0 NS 0 0 *E 011 g’é‘ 1
& & RS — 1 2 3 o
F S e e 0 50100 O 50 100 0O 50 100 ~ 0
. . . Number of Clients Cl1 C2
(a) Power, IOU (b) Power, IOU Time (s) Time(s) Time (s)

(a) Latency (b) Power and IOU

Figure 14: In FreeAR, (a) a constantly mo- Figure 15: FreeAR outperforms base- Figure 16: FreeAR’s decentralized localiza-
bile secondary and (b) three users constantly lines in coordinate system synchro- tion reduces latency and improves accu-
walking around achieve good IOU accuracy nization with improper frame avoid- racy with low power. C1 and C2 are the

due to efficient repair methods.

object [56]). Therefore, the templates used to match the patches
of an input image will likely fail because of the mismatched ap-
pearances. Fig. 13b shows that with LLR and PCR, FreeAR can still
function despite the partial views. At t; using PCR, the primary
shares 3D “cup” locations with the secondary which then uses Eq.
2 to project the 3D coordinates into its 2D view. Eq. 2 automatically
determines that some of those 3D coordinates (e.g., right parts of
the cup) appear outside the view, and thus should not project them
onto the display. The virtual overlay (orange bounding box) is then
drawn accordingly by considering only those 3D points that are
inside the FoV. Subsequently, the secondary registers these 3D co-
ordinates of the object, and at ¢, uses LLR to recover the virtual
overlay after the device has moved to the right. The virtual overlay
then is drawn, again, over the 3D points that are inside the FoV.

5.3 Component-wise benchmarks

Here, we evaluate FreeAR’s four components from § 3 individually.
FreeAR’s coordinate system synchronization improves IOU
by 40% compared to MARVEL. In this experiment, we use two
smartphones (Google Pixel 4 and Samsung S21) which establish
SLAM, synchronize their coordinate systems, and track one ob-
ject in their FoVs. Specifically, one (primary) device runs DNNs
and shares a virtual overlay to another (secondary, not running
DNNSs) device, in order for the latter to project the overlay onto its
view. Fig. 15 shows a timeline of the secondary’s IOUs. We see that
MARVEL exhibits very low IOU accuracy, because it does not con-
sider the freshness of the keyframes. It repeatedly picks improper
keyframes from the primary’s history, based only on visual feature
similarity, leading to poor coordinate system synchronization.

To show how considering freshness improves coordinate sys-
tem synchronization, we incorporate the exact improper frame
avoidance technique (§ 3.1) of FreeAR, within MARVEL; we call
this Improved MARVEL. We find that the IOU accuracy improves
significantly in Improved MARVEL, and there are very few out-
liers in coordinate system synchronization. However, Improved
MARVEL finds a good synchronization result initially, but gives it
up too quickly and replaces it with a worse result on subsequent
synchronization attempts, lacking FreeAR’s variance suppression.
In contrast, FreeAR (on the right side of Fig. 15) quickly achieves a
high IOU by using improper frame avoidance, and retains this high
level for a long time using variance suppression, thereby improving
IOU accuracy by 40% on average over Improved MARVEL.

FreeAR’s lightweight localization copes better with user
motion and achieves up to 66% better IOU, compared to cen-
tralized localization (MARVEL). In this experiment, multiple

ance and variance suppression.

clients.

(up to 3) devices move slowly from left to right ~ 5 cm, stop, and
then move right to left, and keep going for 2 minutes. This reflects
a case where users stop to interact with virtual overlays and move
to change FoVs and interact with them again. At steady state, with
FreeAR, the secondary devices perform lightweight, distributed lo-
calization (§ 3.3). The baseline is MARVEL's centralized localization,
wherein all users offload visual data to the edge server, to find their
locations in the offline map built a priori. We measure the latency
from when the localization request is made to when the result is
received. Fig. 16a shows that FreeAR experiences =~ 0.22s latency
on average per device, when there are 1 to 3 users. On the other
hand, MARVEL latency increases from 0.48s to 0.59s as the num-
ber of users grows from one to three, respectively. This is because
MARVEL sends camera frames to the edge server over a WiFi P2P
link, which can become a bottleneck due to congestion, whereas
FreeAR performs lightweight localization locally across devices in
parallel. In Fig. 16b, we run experiments with two clients and see
that FreeAR’s low latency improves the IOU accuracy by 36% and by
66%, for secondaries 1 (C1) and 2 (C2) respectively, with negligible
power overhead, compared to centralized localization.

FreeAR’s VLR recovers lost tracked objects 29X faster than
using DNNss directly for local repair. In this experiment, we
have a pair of primary and secondary devices tracking one object in
their FoVs. At steady state, the secondary suddenly changes its FoV
(e.g., turns away) and then returns to the original FoV. We run 10
trials for each method. We measure the time from when the object
first re-appears in the FoV, to when its virtual overlay appears on
the screen, i.e., how long local repair takes.

From Fig. 17, we find that FreeAR’s VLR spends (A) 0.32s waiting
for the device to become quasi-stationary (t3 — tz in Fig. 17 (top)) , a
portion of which (0.06s) is spent on performing template matching,
and (B) 0.08 s on coordinating the object between the primary and
secondary’s views (f4 — t3 in Fig. 17 (top)). In contrast, a baseline
of triggering DNNs repeatedly to search for the re-appearance of
the object takes 1.85s (t3 — t2 in Fig. 17 (bottom)). Subsequently,
because DNN only understands 2D object coordinates, it waits until
the object’s 2D position in the secondary’s display is similar to the
2D coordinates mapped from the primary, for confidence (IOU >
0.3) that it is highlighting the same object. These two processes
take about 14.95s in total (t4 — t2 in Fig. 17 (below)) in this trial. We
observe similar behaviors over the 10 trials and find that on average
t4 — tp takes 16.38s for DNNs which is 29X over FreeAR (only 0.57s).

However, as one might expect, DNN offers object detection with
higher IOU both before (= 0.9 before t1) and after repair (= 0.9 after
t4) than FreeAR’s VLR which runs object template matching (~ 0.8

Breaking edge shackles: Infrastructure-free collaborative mobile AR

t1 - moves 12- sees t3 - sees

device away object

t4 - primary's virtual
virtual overlay overlay match

1.0 t4 - 3 = 0.08s
2 05100 13- 12 = 0.32s — > ToU
= 01z08 t1 122i [13:it4 =03
e
0.5 1.0 1.5 2.0 2.5 3.0 3.5
1.0 '« 14-13=1310s
2 4z]I0U < —>13-12 = 185 Iou
0.5 .08
= AL 11 it2 i3 H4]i.00
e T Y st EESCal S
0 5 10 15 20
Time (s)

Figure 17: FreeAR’s VLR (top) quickly recovers the virtual
overlay after an object re-appears in the user’s FoV (¢2), 29x
faster than direcly using a DNN for local repair (bottom).

before t; and after t4) (Fig. 17). Our measurements also show that
FreeAR’s VLR consumes less power than DNN (0.84 W vs 1.41 W).

FreeAR’s seamless global fallback enables transition to a
new low-power steady state 4.4x faster than with a cold-start.
To show this, with two devices, we highlight what happens during
global fallback in Fig. 18. The primary (Device 2) initiates a new
time slice because of a present energy drop. With FreeAR’s seam-
less global fallback, the secondary (Device 1) re-instantiates SLAM
and quickly succeeds in coordinate system synchronization with
Device 2, leveraging stored data from the previous synchronization
instance. Now, Device 1 is promoted to be the new primary in the
new time slice, and Device 2 transits to a low-power mode.

From Fig. 18 (top), we see that with FreeAR, from when a new time
slice is initiated (#1) to when the secondary device re-instantiates
SLAM (#2), both the devices still have high IOUs because they main-
tain coordinate system synchronization and thus, are able to use
shared object information. Furthermore, the time from t; to until
the low-power transition of Device 2 (t3) is 13.9s. In contrast, with
a cold start of SLAM, we see in Fig. 18 (bottom) that from #; to 2
the coordinate systems are not synchronized and IOUs fall to zeros,
and the time from t» to t3 is 61.7s. To summarize, FreeAR’s transition
to a new time slice is seamless and 4.4X faster.

6 Related work

Single-user AR: Several works study cloud or edge-based AR for
a single user [14, 24, 26, 37, 49, 67]. They mainly focus on virtual
overlay placement using DNNs or other computer vision methods,
without concerns of power. MARVEL [13] and MARLIN [7] do focus
on energy of mobile AR. Since we discussed them extensively in
§ 5, we omit further discussion here in the interest of space.

Multi-user AR: CARS [68] and COllabAR [38] rely on the
cloud/edge for collaborative AR. AVR [48] and SPAR [50] use SLAM
for localization like we do. AVR shares sparse point clouds between
multiple vehicles. SPAR shares environment data between multiple
mobile devices, but runs SLAM continuously on all devices and
assumes that the virtual overlay locations are provided in advance
(i.e, no DNNs are running). Neither considers energy drain; in
AVR’s vehicles, for example, energy is not a major concern due to
plentiful on-board power sources. In contrast, FreeAR focuses on
infrastructure-free AR with energy limitations.

Localization: SLAM-based localization is used in off-the-shelf
AR systems [8, 21, 41] to enable sharing of virtual overlay positions.
Edge-SLAM [9] and EdgeSharing [36] rely on edge infrastructure for

SenSys 22, November 6-9, 2022, Boston, MA, USA

------- Device 1 (#1) - #1 as primary ~ #1 as secondary
------- Device 2 (#2) + #2 as primary ~ #2 as secondary
t1 - start a new time slice t3 - low-power mode enforced
t2 - previous secondary init SLAM success

2 1 ;

e 0 ;, Local repair ~ , % Seamless transition
9 t1 t2 t3 = the next time slice
Sg o i $yi
o ~— 0 4 st i e e i & A e,
~

100 150 200 250 300

2 1 ¥ :

9 0 Invalidated Hy, . : : Cold start : =
= t1° 't2 re-init 13
S~) . :
S5 ok
(ol (0 2= pal 2 it B s 2523 SR SOV
~

300 350 400 450 500

Time (s)
Figure 18: FreeAR’s global fallback (top) transitions to a next
time slice 4.4 X faster than using a cold start (bottom).

SLAM processing, unlike in FreeAR. Research on multi-user SLAM [1,
70] neglect AR aspects such as virtual overlay positioning. We
significantly go beyond SLAM used in the robotics community [33]
by adding multi-user capabilities with energy savings for FreeAR.

7 Discussion and future work

FreeAR is a practical collaborative mobile AR framework even with
network infrastructure (e.g., 5G), because it leverages peer to peer
(P2P) low traffic (occasional frames and 3D coordinates only) con-
nections between AR users. Congestion, network induced delays,
or overload on the infrastructure can cause high latency that dis-
rupt the AR experience among users [5]; therefore, augmenting
such experiences with P2P links can help. In the future, we will
consider cases where there could be multiple primaries, and hybrid
edge-P2P systems to expand the spatial range of the AR experience.
We also note that FreeAR can perform additional optimizations on
the primary, such as those in MARLIN [7], to further save power.

8 Conclusions

Our work sets out to answer a question applying to many practical
cases: Can we enable a rich AR experience in infrastructure-free
settings, running natively on user devices, without significant en-
ergy drain? Our system FreeAR is proof that this goal can be within
our reach using collaborative time slicing to reuse/reduce com-
pute heavy tasks such as DNNs/SLAM. While conceptually easy
to explain, achieving this in practice induces key synchronization,
consistency, and recovery challenges in decentralized AR opera-
tions that we address in FreeAR. We showed that FreeAR reduces the
power consumption of users by up to 60% compared to state-of-
the-art AR systems, while also improving the detection accuracy
of objects in the real world by nearly 78%. FreeAR thus can enable
a low power framework that can allow users to engage in an AR
experience on the fly, without needing infrastructure support.

Acknowledgments

We thank the anonymous reviewers and shepherd for their valu-
able comments, from which this paper greatly benefited. We also
thank the volunteers who participated in our user study. This work
was partially supported by the NSF grants CPS 1544969, CAREER
1942700, CNS 2106214. We extend special thanks to CMU’s CyLab
and WiSE Lab for the support during the development of this work.

SenSys ’22, November 6-9, 2022, Boston, MA, USA

References

(1]

[2

—

[9

=

[10]

[12]

[13

[14

[15]

[16

[17

[18]

[19

[20]

[21

[22

[23

[24]

Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and Ramesh Govindan. 2020.
Carmap: Fast 3d feature map updates for automobiles. In 17th { USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 20). USENIX
Association, Santa Clara, CA, 1063-1081.

Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jianing Wei, and Matthias
Grundmann. 2021. Objectron: A Large Scale Dataset of Object-Centric Videos in
the Wild With Pose Annotations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

Android. [n.d.]. Wi-Fi Direct (peer-to-peer or P2P) overview. https://
developer.android.com/guide/topics/connectivity/wifip2p.
Android. 2022. Android Sensor: Linear Acceleration.

https://developer.android.com/reference/android/hardware/
Sensor#TYPE_LINEAR_ACCELERATION. Accessed: 2022-09-30.

Kittipat Apicharttrisorn, Bharath Balasubramanian, Jiasi Chen, Rajarajan Sivaraj,
Yi-Zhen Tsai, Rittwik Jana, Srikanth Krishnamurthy, Tuyen Tran, and Yu Zhou.
2020. Characterization of Multi-User Augmented Reality over Cellular Networks.
In 2020 17th Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON). 1-9. https://doi.org/10.1109/SECON48991.2020.9158434
Kittipat Apicharttrisorn, Jiasi Chen, Vyas Sekar, Anthony Rowe, and Srikanth V.
Krishnamurthy. 2022. FreeAR Website. https://sites.google.com/view/infra-free-
ar/home.

Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V. Krishnamurthy,
and Amit K. Roy-Chowdhury. 2019. Frugal Following: Power Thrifty Object
Detection and Tracking for Mobile Augmented Reality. In Conference on Embedded
Networked Sensor Systems (New York, New York) (SenSys). ACM, New York, NY,
USA.

Apple. [n.d.]. Creating a Multiuser AR Experience. https://developer.apple.com/
documentation/arkit/creating_a_multiuser_ar_experience.

Ali J. Ben Ali, Zakieh Sadat Hashemifar, and Karthik Dantu. 2020. Edge-SLAM:
Edge-Assisted Visual Simultaneous Localization and Mapping. In Proceedings of
the 18th International Conference on Mobile Systems, Applications, and Services
(MobiSys °20). ACM, New York, NY, USA.

S. Benhimane and E. Malis. 2004. Real-time image-based tracking of planes using
efficient second-order minimization. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools
(2000).

L. Cehovin, A. Leonardis, and M. Kristan. 2016. Visual Object Tracking Perfor-
mance Measures Revisited. IEEE Transactions on Image Processing 25, 3 (March
2016), 1261-1274. https://doi.org/10.1109/TIP.2016.2520370

Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and Randy H Katz. 2018.
MARVEL: Enabling Mobile Augmented Reality with Low Energy and Low La-
tency. In Conference on Embedded Networked Sensor Systems (SenSys). ACM,
292-304.

Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile
devices. ACM SenSys (2015).

Titus Cieslewski, Siddharth Choudhary, and Davide Scaramuzza. 2018. Data-
Efficient Decentralized Visual SLAM. In 2018 IEEE International Conference
on Robotics and Automation (ICRA). 2466-2473. https://doi.org/10.1109/
ICRA.2018.8461155

Alexander Cunningham, Vadim Indelman, and Frank Dellaert. 2013. DDF-SAM
2.0: Consistent distributed smoothing and mapping. In 2013 IEEE International
Conference on Robotics and Automation. 5220-5227. https://doi.org/10.1109/
ICRA.2013.6631323

Alexander Cunningham, Manohar Paluri, and Frank Dellaert. 2010. DDF-SAM:
Fully distributed SLAM using Constrained Factor Graphs. In 2010 IEEE/RSY In-
ternational Conference on Intelligent Robots and Systems. 3025-3030. https:
//doi.org/10.1109/IROS.2010.5652875

Jon Dugan, Seth Elliott, Jeff Mah, Bruce A.and Poskanzer, and Kaustubh Prabhu.
2022. iPerf - The ultimate speed test tool for TCP, UDP and SCTP. https://iperf.fr/.
Dorian Galvez-Lopez and Juan D. Tardos. 2012. Bags of Binary Words for Fast
Place Recognition in Image Sequences. IEEE Transactions on Robotics (2012).
Google. [n.d.]. MediaPipe Objectron. https://google.github.io/mediapipe/
solutions/objectron.html.

Google. 2018. Share AR Experiences with Cloud Anchors.
//developers.google.com/ar/develop/java/cloud-anchors/cloud-anchors-
overview-android.

Google. 2022. Google Just a Line. https:/justaline.withgoogle.com/. Accessed:
2022-09-30.

Yongjie Guan, Xueyu Hou, Nan Wu, Bo Han, and Tao Han. 2022. Realtime 3D
Object Detection for Headsets. arXiv preprint arXiv:2201.08812 (2022).

Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and
Mahadev Satyanarayanan. 2014. Towards wearable cognitive assistance. ACM
MobiSys (2014).

https:

[25

@
&,

@
20,

[40

[41

[42

[43

[44

'S
)

[46

[47

(48]

[49]

[52

K. Apicharttrisorn, J. Chen, V. Sekar, A. Rowe, S. V. Krishnamurthy

Seongwon Han, Sungwon Yang, Jihyoung Kim, and Mario Gerla. 2012. Eye-
Guardian: A Framework of Eye Tracking and Blink Detection for Mobile Device
Users. In Proceedings of the Twelfth Workshop on Mobile Computing Systems and
Applications (San Diego, California) (HotMobile °12). Association for Computing
Machinery, New York, NY, USA, Article 6, 6 pages. https://doi.org/10.1145/
2162081.2162090

Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. 2016. Low Bandwidth
Offload for Mobile AR. ACM CoNEXT (2016).

Kaleb. 2022. FSensor. https://github.com/KalebKE/FSensor. Accessed: 2022-09-30.
Marco Karrer, Patrik Schmuck, and Margarita Chli. 2018. CVI-
SLAM—Collaborative Visual-Inertial SLAM. IEEE Robotics and Automation
Letters 3, 4 (2018), 2762-2769. https://doi.org/10.1109/LRA.2018.2837226

Kris Kitani. [n. d.]. Camera Matrix. http://www.cs.cmu.edu/~16385/s17/Slides/
11.1_Camera_matrix.pdf.

Laurent Kneip, Hongdong Li, and Yongduek Seo. 2014. UPnP: An Optimal
O(n) Solution to the Absolute Pose Problem with Universal Applicability. In
Computer Vision — ECCV 2014, David Fleet, Tomas Pajdla, Bernt Schiele, and
Tinne Tuytelaars (Eds.).

Steven LaValle. [n. d.]. Virtual Reality. Cambridge University Press.

Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. 2009. EPnP: An
Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vision (2009).
Peiliang Li, Tong Qin, Botao Hu, Fengyuan Zhu, and Shaojie Shen. 2017. Monoc-
ular Visual-Inertial State Estimation for Mobile Augmented Reality. In 2017 IEEE
International Symposium on Mixed and Augmented Reality (ISMAR).

Pengpeng Liang, Yifan Wu, Hu Lu, Liming Wang, Chunyuan Liao, and Haibin
Ling. 2018. Planar Object Tracking in the Wild: A Benchmark. In 2018 IEEE
International Conference on Robotics and Automation (ICRA).

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and C. Lawrence
Zitnick. 2014. Microsoft COCO: Common Objects in Context. CoRR abs/1405.0312
(2014). arXiv:1405.0312 http://arxiv.org/abs/1405.0312

Luyang Liu and Marco Gruteser. 2021. EdgeSharing: Edge Assisted Real-time
Localization and Object Sharing in Urban Streets. In IEEE INFOCOM 2021.
Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge Assisted Real-time
Object Detection for Mobile Augmented Reality. ACM MobiCom (2019).

Zida Liu, Guohao Lan, Jovan Stojkovic, Yunfan Zhang, Carlee Joe-Wong, and
Maria Gorlatova. 2020. CollabAR: Edge-assisted Collaborative Image Recognition
for Mobile Augmented Reality. In 2020 19th ACM/IEEE International Conference
on Information Processing in Sensor Networks (IPSN).

Giuseppe Loianno, Yash Mulgaonkar, Chris Brunner, Dheeraj Ahuja, Arvind
Ramanandan, Murali Chari, Serafin Diaz, and Vijay Kumar. 2016. A swarm of
flying smartphones. In 2016 IEEE/RS International Conference on Intelligent Robots
and Systems (IROS). 1681-1688. https://doi.org/10.1109/IROS.2016.7759270
Microsoft. [n.d.]. HoloLens 2. https://www.microsoft.com/en-us/hololens/
hardware.

Microsoft. 2018. Shared experiences in Unity. https://docs.microsoft.com/en-
us/windows/mixed-reality/shared-experiences-in-unity.

Ratll Mur-Artal and Juan D. Tardés. 2017. ORB-SLAM2: an Open-Source SLAM
System for Monocular, Stereo and RGB-D Cameras. IEEE Transactions on Robotics
33,5 (2017), 1255-1262. https://doi.org/10.1109/TRO.2017.2705103

Jannis Méller. 2019. VINS-Mobile-Android. https://github.com/jannismoeller/
VINS-Mobile- Android.

OpenCV. [n.d.]. Cascade Classifier.
tutorial_cascade_classifier.html.
OpenCV. 2022. Basic concepts of the homography explained with code. https:
//docs.opencv.org/4.x/d9/dab/tutorial_homography.html. Accessed: 2022-09-30.
OpenCV. 2022. Object Detection with Template Matching. https://
docs.opencv.org/3.4.16/df/dfb/group__imgproc__object.html. Accessed: 2022-
09-30.

Alexander Pacha. [n. d.]. Sensor Fusion Demo. https://github.com/apacha/sensor-
fusion-demo.

Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and Ramesh Govindan. 2018.
AVR: Augmented vehicular reality. In Proceedings of the 16th Annual International
Conference on Mobile Systems, Applications, and Services. 81-95.

Xukan Ran, Haoliang Chen, Zhenming Liu, and Jiasi Chen. 2018. DeepDecision:
A Mobile Deep Learning Framework for Edge Video Analytics. IEEE INFOCOM
(2018).

Xukan Ran, Carter Slocum, Yi-Zhen Tsai, Kittipat Apicharttrisorn, Maria Gorla-
tova, and Jiasi Chen. 2020. Multi-user augmented reality with communication
efficient and spatially consistent virtual objects. In ACM CoNEXT. 386-398.
Matthew Reynolds. [n.d.]. Pokemon Go Buddy Adventure explained - how to
get hearts, excited Buddies, and all Buddy level rewards including Best Buddy ex-
plained. https://www.eurogamer.net/articles/2019-12-19-pokemon-go-buddy-
adventure-play-excited-6002.

Patrik Schmuck and Margarita Chli. 2019. CCM-SLAM: Robust and efficient
centralized collaborative monocular simultaneous localization and mapping for
robotic teams. Journal of Field Robotics (2019).

https://docs.opencv.org/3.4/db/d28/

https://developer.android.com/guide/topics/connectivity/wifip2p
https://developer.android.com/guide/topics/connectivity/wifip2p
https://developer.android.com/reference/android/hardware/Sensor#TYPE_LINEAR_ACCELERATION
https://developer.android.com/reference/android/hardware/Sensor#TYPE_LINEAR_ACCELERATION
https://doi.org/10.1109/SECON48991.2020.9158434
https://sites.google.com/view/infra-free-ar/home
https://sites.google.com/view/infra-free-ar/home
https://developer.apple.com/documentation/arkit/creating_a_multiuser_ar_experience
https://developer.apple.com/documentation/arkit/creating_a_multiuser_ar_experience
https://doi.org/10.1109/TIP.2016.2520370
https://doi.org/10.1109/ICRA.2018.8461155
https://doi.org/10.1109/ICRA.2018.8461155
https://doi.org/10.1109/ICRA.2013.6631323
https://doi.org/10.1109/ICRA.2013.6631323
https://doi.org/10.1109/IROS.2010.5652875
https://doi.org/10.1109/IROS.2010.5652875
https://iperf.fr/
https://google.github.io/mediapipe/solutions/objectron.html
https://google.github.io/mediapipe/solutions/objectron.html
https://developers.google.com/ar/develop/java/cloud-anchors/cloud-anchors-overview-android
https://developers.google.com/ar/develop/java/cloud-anchors/cloud-anchors-overview-android
https://developers.google.com/ar/develop/java/cloud-anchors/cloud-anchors-overview-android
https://justaline.withgoogle.com/
https://doi.org/10.1145/2162081.2162090
https://doi.org/10.1145/2162081.2162090
https://github.com/KalebKE/FSensor
https://doi.org/10.1109/LRA.2018.2837226
http://www.cs.cmu.edu/~16385/s17/Slides/11.1_Camera_matrix.pdf
http://www.cs.cmu.edu/~16385/s17/Slides/11.1_Camera_matrix.pdf
https://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://doi.org/10.1109/IROS.2016.7759270
https://www.microsoft.com/en-us/hololens/hardware
https://www.microsoft.com/en-us/hololens/hardware
https://docs.microsoft.com/en-us/windows/mixed-reality/shared-experiences-in-unity
https://docs.microsoft.com/en-us/windows/mixed-reality/shared-experiences-in-unity
https://doi.org/10.1109/TRO.2017.2705103
https://github.com/jannismoeller/VINS-Mobile-Android
https://github.com/jannismoeller/VINS-Mobile-Android
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html
https://docs.opencv.org/4.x/d9/dab/tutorial_homography.html
https://docs.opencv.org/4.x/d9/dab/tutorial_homography.html
https://docs.opencv.org/3.4.16/df/dfb/group__imgproc__object.html
https://docs.opencv.org/3.4.16/df/dfb/group__imgproc__object.html
https://github.com/apacha/sensor-fusion-demo
https://github.com/apacha/sensor-fusion-demo
https://www.eurogamer.net/articles/2019-12-19-pokemon-go-buddy-adventure-play-excited-6002
https://www.eurogamer.net/articles/2019-12-19-pokemon-go-buddy-adventure-play-excited-6002

Breaking edge shackles: Infrastructure-free collaborative mobile AR

[53]

[54]

[55

[56

o
)

[58

[59

[60]

[61

[62]

Sheng Shen, Mahanth Gowda, and Romit Roy Choudhury. 2018. Closing the
Gaps in Inertial Motion Tracking. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking (MobiCom ’18). ACM, New York,
NY, USA.

Arno Solin, Santiago Cortes, Esa Rahtu, and Juho Kannala. 2018. Inertial Odome-
try on Handheld Smartphones. In 2018 21st International Conference on Informa-
tion Fusion (FUSION).

Spectacles. [n. d.]. New Spectables AR Glasses. https://www.spectacles.com/new-
spectacles/.

Christian Szegedy, Alexander Toshev, and Dumitru Erhan. 2013. Deep neural
networks for object detection. Advances in neural information processing systems
26 (2013).

Richard Szeliski. 2010. Computer vision: algorithms and applications. Springer
Science & Business Media.

Mingxing Tan, Ruoming Pang, and Quoc V. Le. 2020. EfficientDet: Scalable and
Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Zhenjun Tang, Y. Dai, and X. Zhang. 2012. Perceptual hashing for color images
using invariant moments. Applied Mathematics and Information Sciences 6 (04
2012), 6435-650S.

TensorFlow. [n.d.]. TensorFlow Lite Object Detection Example.
www.tensorflow.org/lite/examples/object_detection/overview.
TFHub.dev. [n.d.]. Image object detection. https://tthub.dev/tensorflow/
efficientdet/lite2/detection/1.

Ramona Trestian, Arghir-Nicolae Moldovan, Olga Ormond, and Gabriel-Miro
Muntean. 2012. Energy consumption analysis of video streaming to Android

https://

[63

[64

[65

[66

(68

[69

[70

SenSys 22, November 6-9, 2022, Boston, MA, USA

mobile devices. In 2012 IEEE Network Operations and Management Symposium.
Maarten Van Steen and Andrew S Tanenbaum. 2017. Distributed systems. Maarten
van Steen Leiden, The Netherlands.

Ana Villanueva, Zhengzhe Zhu, Ziyi Liu, Kylie Peppler, Thomas Redick, and
Karthik Ramani. 2020. Meta-AR-App: An Authoring Platform for Collaborative
Augmented Reality in STEM Classrooms. ACM.

VUZIX. [n.d.]. VUZIX BLADE UPGRADED SMART GLASSES.
www.vuzix.com/products/vuzix-blade- smart- glasses-upgraded.
Yihong Wu and Zhanyi Hu. 2006. PnP problem revisited. Journal of Mathematical
Imaging and Vision 24, 1 (2006), 131-141.

Wenxiao Zhang, Bo Han, and Pan Hui. 2018. Jaguar: Low Latency Mobile Aug-
mented Reality with Flexible Tracking. In International Conference on Multimedia.
ACM, 355-363.

Wenxiao Zhang, Bo Han, Pan Hui, Vijay Gopalakrishnan, Eric Zavesky, and Feng
Qian. 2018. CARS: Collaborative Augmented Reality for Socialization. ACM
HotMobile (2018).

Yingiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle Astrém, and Masatoshi
Okutomi. 2013. Revisiting the PnP Problem: A Fast, General and Optimal Solution.
In 2013 IEEE International Conference on Computer Vision.

Danping Zou and Ping Tan. 2012. Coslam: Collaborative visual slam in dynamic
environments. IEEE transactions on pattern analysis and machine intelligence 35,
2 (2012), 354-366.

Longhao Zou, Ali Javed, and Gabriel-Miro Muntean. 2017. Smart mobile device
power consumption measurement for video streaming in wireless environments:
WiFi vs. LTE. In 2017 IEEE International Symposium on Broadband Multimedia Sys-
tems and Broadcasting (BMSB). 1-6. https://doi.org/10.1109/BMSB.2017.7986151

https://

https://www.spectacles.com/new-spectacles/
https://www.spectacles.com/new-spectacles/
https://www.tensorflow.org/lite/examples/object_detection/overview
https://www.tensorflow.org/lite/examples/object_detection/overview
https://tfhub.dev/tensorflow/efficientdet/lite2/detection/1
https://tfhub.dev/tensorflow/efficientdet/lite2/detection/1
https://www.vuzix.com/products/vuzix-blade-smart-glasses-upgraded
https://www.vuzix.com/products/vuzix-blade-smart-glasses-upgraded
https://doi.org/10.1109/BMSB.2017.7986151

	Abstract
	1 Introduction
	2 Motivation and AR landscape
	3 Design of FreeAR
	3.1 Coordinate system synchronization
	3.2 Consistent virtual overlay placement
	3.3 Lightweight device localization
	3.4 Recovery upon abrupt motion
	3.5 Fast and seamless global fallback

	4 Implementation
	5 Evaluation
	5.1 Evaluation metrics
	5.2 End-to-end evaluations of FreeAR
	5.3 Component-wise benchmarks

	6 Related work
	7 Discussion and future work
	8 Conclusions
	Acknowledgments
	References

