

8 **Running Title: Royal jelly & Mosquito Diapause**

Authors: Olivia E. Bianco¹, Aisha Abdi², Matthias S. Klein^{1,2} and Megan E. Meuti^{1*}

15 ¹ Department of Entomology, The Ohio State University
16 Kottman Hall, Room 212
17 2021 Coffey Rd.
18 Columbus, OH 43210

20 ² Department of Food Science and Technology, The Ohio State University
21 313 Parker Food Science Building
22 2015 Fyffe Rd.
23 Columbus, OH 43210

25 * Corresponding Author
26 Email: meuti.1@osu.edu

28 **Keywords:** Reproductive diapause, Major Royal Jelly Protein 1 (MRJP1), metabolomics, NMR
29 spectroscopy, qRT-PCR, RNA interference (RNAi)

30 **Summary Statement:**

31 Consuming royal jelly reversed seasonal differences in physiological states, lifespan and
32 metabolic profiles in females of the Northern house mosquito, a major vector of West Nile virus.

33

34

35

36 **Abstract**

37 Females of the Northern house mosquito, *Culex pipiens*, enter an overwintering dormancy,
38 or diapause, in response to short day lengths and low environmental temperatures. Diapausing
39 female mosquitoes feed exclusively on sugar-rich products rather than human or animal blood,
40 thereby reducing disease transmission. During diapause, Major Royal Jelly Protein 1 (MRJP1) is
41 upregulated in females of *Cx. pipiens*. This protein is highly abundant in royal jelly, a substance
42 produced by honey bees (*Apis mellifera*), that is fed to future queens throughout larval development
43 and stimulates longevity and fecundity. However, the role of MRJP1 in *Cx. pipiens* is unknown. We
44 investigated how supplementing the diets of both diapausing and nondiapausing females of *Cx.*
45 *pipiens* with royal jelly affects gene expression, egg follicle length, fat content, protein content,
46 longevity, and metabolic profile. We found that feeding royal jelly to long day-reared females
47 significantly reduced the egg follicle lengths of females and switched their metabolic profiles to be
48 similar to diapausing females. In contrast, feeding royal jelly to short day-reared females
49 significantly reduced lifespan and switched their metabolic profile to be similar nondiapausing
50 mosquitoes. Moreover, RNAi directed against *MRJP1* significantly increased egg follicle length of
51 short day-reared females, suggesting that these females averted diapause, although RNAi against
52 *MRJP1* also extended the lifespan of short day-reared females. Taken together, our data show that
53 consuming royal jelly reverses the seasonal responses of *Cx. pipiens* and that these responses are
54 likely mediated in part by MRJP1.

55

56

57 **1. Introduction**

58 The Northern house mosquito, *Culex pipiens* (L.), transmits pathogens that cause St. Louis
59 encephalitis (Bailey et al., 1978), West Nile virus (Hamer et al., 2008), and canine heartworm
60 (Cancrini et al., 2007) that infect millions of humans and animals each year (reviewed by Farajollahi
61 et al., 2011). Female mosquitoes transmit these pathogens when they take a blood meal from a
62 human or animal host (Brugman et al., 2018). However, disease transmission is not equally
63 distributed across time (Hay et al., 2000). During the winter in temperate zones, mosquitoes enter a
64 state of overwintering dormancy, known as diapause, where they no longer ingest blood (Bowen et
65 al., 1988) and as a result, they no longer transmit diseases (Hay et al., 2000). Therefore, diapause in
66 mosquitoes and other vectors has important implications for human and animal health.

67

68 Females of *Cx. pipiens* enter diapause in response to short day lengths and low
69 environmental temperatures that act as harbingers of the approaching winter (Eldridge, 1968).
70 Diapause allows mosquitoes to survive unfavorable winter conditions (Denlinger and Armbruster,
71 2014), and it involves a unique suite of behavioral, hormonal and metabolic changes (Bowen et al.,
72 1988; Mitchell and Briegel, 1989; Robich and Denlinger, 2005). Diapause in females of *Cx. pipiens* is
73 characterized by reproductive arrest, resulting in a decrease in the size of egg follicles as females
74 divert energy away from reproduction (Spielman and Wong, 1973). Adult mosquitoes that enter
75 diapause feed on sugar-rich plant nectar, causing an increase in whole body fat content (Robich &
76 Denlinger, 2005; Sim & Denlinger, 2009; Sim et al., 2015). Several genes that regulate metabolism
77 are differentially expressed between diapausing and nondiapausing female mosquitoes;
78 specifically, Robich and Denlinger (2005) found that a gene associated with lipid accumulation,
79 *fatty acid synthase*, was upregulated in diapausing females of *Cx. pipiens*, while two genes that
80 encode enzymes related to digesting a blood meal, *trypsin* and *chymotrypsin-like* proteins, were
81 down-regulated.

82

83 Royal jelly is produced by worker honey bees, and it is a rich source of amino acids, lipids,
84 vitamins, and other nutrients (Colhoun and Smith, 1960). One protein in royal jelly, referred to as
85 Major Royal Jelly Protein 1 (MRJP1), produces strong antibacterial activity and is the most
86 abundant glycoprotein within royal jelly, constituting over 50% of total protein content and exists
87 in a complex with the apisimin protein and 24-methylenecholesterol (Fontana et al., 2004; Ohashi
88 et al., 1997; Tian et al., 2018). Worker bees and drones feed on royal jelly for the first 3 and 5 days
89 of larval life respectively. Future queen bees consume royal jelly exclusively, and this induces

90 reproductive development and extends their lifespan (Drapeau et al., 2006; Page and Peng, 2001).
91 Surprisingly, the gene encoding MRJP1 is upregulated by the forkhead transcription factor (FOXP)
92 and is more abundantly expressed during diapause in females of *Cx. pipiens* (Sim et al., 2015).
93 However, the function of MRJP1 in diapausing mosquitoes is unclear, as females in diapause are not
94 reproductively active but do live substantially longer than nondiapausing females (Spielman and
95 Wong, 1973).

96

97 Consuming royal jelly affects the physiology of mammals, including humans, as well as fruit
98 flies and nematodes. Integrating royal jelly into human diets can improve reproductive health,
99 combat neurodegenerative disorders, slow aging, and promote wound-healing (reviewed by
100 Pasupuleti et al., 2017). In rats, proteins in royal jelly can also function as antioxidants, protecting
101 the testes of males against oxidative stress (Asadi et al., 2019). Additionally, supplementing the
102 diets of male rams with royal jelly increases sperm motility and viability (Amini et al., 2019).
103 Similarly, royal jelly positively impacts fertility as well as semen quality and quantity in male
104 rabbits (El-Hanoun et al., 2014). Introducing royal jelly into the diet of *Drosophila melanogaster* (L.)
105 extends adult lifespan in males and females, possibly by increasing antioxidant activity, and
106 stimulates feeding behavior and fecundity in females (Xin et al., 2016). Royal jelly also extends adult
107 lifespan in the nematode *Caenorhabditis elegans* (Maupas) (Honda et al., 2011), suggesting that
108 royal jelly may promote longevity across a wide range of invertebrates. Moreover, Fischman et al.
109 (2017) demonstrate that consuming royal jelly enhances the likelihood that alfalfa leaf cutting bees
110 will enter diapause. While several studies have examined the role of royal jelly in animals, little is
111 known about how consuming royal jelly might influence the seasonal responses and metabolic
112 profile of mosquitoes.

113

114 Although the metabolic differences between diapausing and nondiapausing *Cx. pipiens* have
115 not been extensively investigated, previous research has examined metabolic differences in other
116 insects including Asian tiger mosquitoes, *Aedes albopictus* (Skuse), the flesh fly *Sarcophaga*
117 *crassipalpis* (Macquart), and the parasitic wasp *Nasonia vitripennis* (Walker) (Batz and Armbruster,
118 2018; Michaud and Denlinger, 2007; Li et al., 2015). Not surprisingly, metabolomic studies
119 demonstrate that diapausing mosquitoes, flesh flies, and parasitic wasps upregulate metabolites
120 that act as cryoprotectants (Batz and Armbruster, 2018; Li et al., 2015; Michaud and Denlinger,
121 2007). In *N. vitripennis*, amino acids that are related to the overall metabolic pathway of glycolysis
122 and pyruvate metabolism were differentially abundant between diapausing and nondiapausing

123 wasps, reflecting an overall perturbation of the metabolic pathways in diapause (Li et al., 2015).
124 Moreover, the amino acid leucine was more abundant in diapausing flesh flies while aspartate and
125 tyrosine were more abundant in nondiapausing *S. crassipalpis* and *N. vitripennis*. However, alanine
126 was upregulated in diapausing *S. crassipalpis* but upregulated in nondiapausing *N. vitripennis*, while
127 glucose was upregulated in diapausing *S. crassipalpis* but upregulated in nondiapausing *N.*
128 *vitripennis* (Li et al., 2015; Michaud and Denlinger, 2007). In *A. albopictus*, the monoamine
129 neurohormones dopamine and octopamine, as well as phosphocholine and oleoyl glycine were
130 more abundant in nondiapausing eggs compared to diapausing eggs. Preliminary data suggests that
131 there are large-scale, global differences in the metabolic profile of diapausing and nondiapausing
132 *Cx. pipiens* (Fig. 1), and one objective of this study is to identify specific metabolites that are
133 differentially abundant between diapausing and nondiapausing *Cx. pipiens* and how consuming
134 royal jelly influences the overall metabolome of short day and long day-reared mosquitoes.
135

136 To characterize how consuming royal jelly affects seasonal responses in mosquitoes, we
137 measured the abundance of *MRJP1* mRNA transcripts, reproductive development, lifespan, overall
138 fat and protein content as well as the metabolic profile of long and short day-reared females of *Cx.*
139 *pipiens* that had consumed royal jelly relative to sugar-water fed controls. We also assessed which,
140 if any, of the physiological impacts of royal jelly on seasonal responses were mediated by *MRJP1* by
141 using RNA interference (RNAi) to knock down this transcript in diapausing and nondiapausing
142 mosquitoes. We hypothesized that mosquitoes that consumed royal jelly would enter a diapause-
143 like state regardless of environmental conditions, characterized by small egg follicles and increased
144 longevity, and that this would be mediated in part by an increased expression of *MRJP1*.
145 Accordingly, we hypothesized that mosquitoes that consumed royal jelly would express a metabolic
146 profile that was similar to that of diapausing mosquitoes that consumed sugar water. In contrast,
147 we hypothesized that knocking down *MRJP1* with RNAi would prevent mosquitoes reared in short
148 day, diapause-inducing conditions from entering diapause and would decrease longevity.
149

150 **2. Materials and Methods**

151 2.1. Mosquito rearing

152 A colony of *Culex pipiens* established in June 2013 from Columbus, Ohio (Buckeye strain)
153 was used in this experiment. Larvae were reared at 18°C and exposed to either long day, diapause-
154 averting conditions (photoperiod of Light:Dark 16:8 hr) or short day, diapause-inducing conditions
155 (photoperiod of L:D 8:16 hr). Larvae were reared in plastic containers filled with reverse osmosis

156 water, and they were fed a diet of ground fish food (Tetramin Tropical Fish Flakes) according to the
157 procedure described by Robich and Denlinger (2005). Pupae from both the long and short-day
158 photoperiods were divided equally into 2 cages, one of which contained royal jelly, and the
159 other that contained sugar water (4 treatments total; $n \geq 150$ adults/treatment). Adult mosquitoes
160 consumed their prescribed dietary treatments *ad libitum*: sugar water (control treatment; 10%
161 sucrose solution) or royal jelly (experimental treatment; 2 g Starkish Royal Jelly dissolved in 1.5 mL
162 of 10% sucrose solution). One week after peak adult emergence, mosquitoes were euthanized and
163 collected for experimental analyses.

164

165 2.2. Measuring the abundance of *MRJP1* mRNA

166 Quantitative real time PCR (qRT-PCR) was used to assess how the abundance of *MRJP1* was
167 affected by supplementing the diet of adult mosquitoes with royal jelly. The procedure for qRT-PCR
168 was based on Meuti et al. (2015a). We designed primers for *MRJP1* in *Cx. pipiens* (CPIJ008700-RA)
169 using Primer3 (Forward: TGAACGATCGTCTGCTGTT; Reverse: TCCTCCACATGGTATCGTT; Rozen
170 & Skaletsky, 1999). A standard curve verified that the primers met the MIQE guidelines (R^2 : 0.9885;
171 efficiency = 108%; Bustin et al., 2009). RNA was isolated from female mosquitoes ($n=5$
172 females/biological replicate; 5 biological replicates/rearing condition and feeding treatment) one
173 week following adult emergence using TRIzol and following the manufacturer's instructions.
174 Complementary DNA (cDNA) was produced using the SuperScript III kit (Invitrogen), following the
175 manufacturer's instructions. All qRT-PCR reactions were done in triplicate on a 96-well plate using
176 a CFX Connect qRT-PCR machine (BioRad). Each well contained a 10 μ L reaction, consisting of 5 μ L
177 of iTaq Universal SybrGreen Supermix (BioRad), 400 nM of forward and reverse primers for either
178 *MRJP1* or our reference gene (*Ribosomal Protein 19*; *RpL19*; Chang and Meuti, 2020), 3.2 μ L of
179 molecular grade water, and 1 μ L of cDNA. qRT-PCR reactions were completed through an initial
180 denaturation at 94°C for 2 min, followed by 40 cycles at 94°C for 15 sec and 60°C for 1 min. The
181 abundance of *MRJP1* transcripts was normalized to the abundance of *RpL19* using the $2^{-\Delta CT}$ method
182 as previously described (Chang and Meuti, 2020).

183

184 2.3. Assessing diapause status

185 To assess the diapause status of long and short day-reared females that had consumed
186 sugar water (control) or royal jelly, we used two common markers of diapause: egg follicle length
187 and fat content. One-week-old female mosquitoes were euthanized and dissected in a 0.9% saline
188 solution (NaCl) using dissection needles to isolate the ovaries and egg follicles. The lengths of 10

189 egg follicles/female were measured and recorded at 200 times magnification using an inverted
190 microscope (Nikon; n=20 females/treatment). The average fat content in each female mosquito was
191 measured using a Vanillin lipid assay (Van Handel, 1985; n=8 females/treatment) that was
192 modified to allow us to measure samples using a plate reader (Meuti et al., 2015b). The data were
193 normalized by dividing the measured lipid content by the lean mass of the whole-body mosquito
194 (lean mass = μg of lipid - μg wet mass).

195

196 **2.4. Measuring protein content**

197 As royal jelly is protein-rich, we also wanted to determine whether supplementing the diet
198 with royal jelly affected the whole-body protein content of female mosquitoes. The protein content
199 within individual female mosquitoes was measured using a Bradford Assay kit (BioRad) following
200 the manufacturer's instructions (n=8 females/treatment; Bradford, 1976). In brief, each female
201 mosquito was weighed and then homogenized in a 2 mL microcentrifuge tube with 200 μL of a 10%
202 ethanol solution. Samples were added in triplicate to a 96-well plate, and 250 μL of Quick Start
203 Bradford 1X Dye Reagent (BioRad) was added to each well. The absorbance of each sample was
204 measured using a FLUOStar Omega Microplate Reader. Measurements were normalized by dividing
205 the protein content by the fresh mass of each female mosquito (Huck et al. 2021).

206

207 **2.5. Evaluating longevity**

208 To determine how dietary conditions affected the lifespan of female mosquitoes, pupae
209 were placed in cages and were exposed to long or short-day conditions with access to sugar water
210 or royal jelly (4 treatments total; n=100 adults/treatment). One week after adult emergence, all
211 male mosquitoes as well as the royal jelly or sugar-water food sources were removed from each
212 cage. The remaining females were counted and allowed constant access to water. Every week
213 thereafter we counted and removed dead females from the bottom of the cage until no female
214 mosquitoes remained.

215

216 **2.6. Performing metabolomic analyses**

217 The experimental protocol followed for tissue extraction for Nuclear Magnetic Resonance
218 (NMR) metabolomics was based on the procedure described in Wu et al. (2008). One mosquito was
219 weighed and placed in a 2 mL microtube with approximately 750 mg of ceramic beads (10 females
220 per treatment group * 2 rearing conditions * 2 dietary treatments; 40 total samples). Mosquito
221 samples were homogenized in 400 μL cold methanol and 85 μL water, and the homogenate was

222 transferred to a separate tube without beads. Next, 400 μ L chloroform and 200 μ L water were
223 added to the homogenate, which was then vortexed and centrifuged (2,000 rcf for 5 min at 4°C).
224 The aqueous (methanol) layer was isolated and collected in a new 1.5 mL microtube before being
225 dried in an evaporator. Deuterium oxide (heavy water), trimethylsilylpropanoic acid (TSP), and
226 boric acid were added to the evaporated extracts and vortexed. The pH of the samples was
227 manually adjusted to a pH of 7.4 and then transferred to 5 mm NMR tubes.

228

229 The metabolites in each mosquito sample were measured using NMR spectroscopy
230 following the procedure detailed in Newell et al. (2018). 1D 1 H NOESY spectra were obtained for
231 the aqueous extracts. In addition, one 1 H- 13 C HSQC spectrum of a pooled sample was acquired
232 according to Gronwald et al. (2008). An Avance III HD 850 MHz spectrometer with an inverse
233 cryoprobe and z-gradients (Bruker BioSpin, Billerica, MA) was utilized to obtain NMR
234 measurements and resulting NMR spectra were analyzed as described in Newell et al. (2018) and
235 Klein et al. (2011). Topspin 3.6.1 and AMIX 3.9.15 software (Bruker BioSpin, Billerica, MA) were
236 used for preprocessing. 1D NMR spectra were binned with a bin width of 0.003 ppm using the
237 statistical programming language R and the package mrbin (Version 1.5.0). Signals that showed
238 large inter-spectra chemical shift differences were manually added to broader bins. Noise signals
239 were automatically removed, and data was scaled using PQN (probabilistic quotient normalization)
240 to correct for differences in sample mass and extraction efficacies. Each bin was then scaled to unit
241 variance. Principal Component Analysis (PCA) models were generated to visualize metabolic data.
242 Signals of interest were identified using public databases and identifications were validated using
243 the acquired HSQC spectrum and measurements of pure samples.

244

245 2.7. Assessing the effect of knocking down *MRJP1* with RNAi

246 RNA interference (RNAi) was used to knock down *MRJP1* mRNA to evaluate how this
247 protein affects the diapause status of female mosquitoes. The procedure for RNA interference was
248 based on the protocol detailed in Meuti et al. (2015a). Double-stranded RNA (dsRNA) specific to
249 *MRJP1* and *Beta-galactosidase* (β -gal; control; Meuti et al., 2015a) were synthesized using the
250 Promega T7 RNAi Express Kit according to the manufacturer's instructions. We designed primers to
251 synthesize a 230 bp fragment of *MRJP1* (CPIJ008700-RA) in *Cx. pipiens* using Primer3 (Forward:
252 CACCGCCAAACCGAACAAAT; Reverse: TGAGCAGCCAAAGTACAGG; Rozen & Skaletsky, 1999),
253 which served as the template to create dsRNA. On the day of adult emergence, 3 μ g of either β -gal
254 or *MRJP1* dsRNA was injected into the thorax of long and short day-reared mosquitoes. Following

255 injection, females were placed into small plastic containers (4.62 x 6.75 x 7.19 inches) where they
256 consumed 10% sucrose solution *ad libitum*. To confirm gene knockdown, RNA was isolated from 5
257 biological replicates each containing 5 whole-body, female mosquitoes two days after dsRNA
258 injection as described above. cDNA was synthesized and qRT-PCR was conducted as described
259 above, except that after normalizing *MRJP1* expression to the *RpL19* reference gene, *MRJP1*
260 expression was again normalized to its expression in β -gal-dsRNA injected mosquitoes (Chang &
261 Meuti, 2020). To determine how knocking down *MRJP1* affected seasonal phenotypes, the egg
262 follicle lengths (n=20) and fat content (n=8) of females injected with dsRNA were measured ten
263 days following injection, while the longevity of β -gal or *MRJP1* dsRNA-injected females (n=100) was
264 also measured as described above.

265

266 2.8. Data analysis

267 All data analyses were conducted in R (Version 3.3.3; R Core Team, 2017). A two-way
268 ANOVA and Tukey's post-hoc tests were used to determine whether dietary treatment and/or
269 photoperiod significantly affected *MRJP1* expression, egg follicle length, lipid content, and protein
270 content in female mosquitoes. A value of alpha < 0.05 was applied to discern statistical significance.
271 A Student's T-test was also used to determine whether injecting *MRJP1* dsRNA effectively knocked
272 down *MRJP1* abundance, and whether dsRNA injection significantly affected the egg follicle length
273 or fat content of females within each rearing condition. A Kaplan-Meier survival curve and analysis
274 were used to determine how supplementing the diet with royal jelly and knocking down *MRJP1*
275 with RNAi affected the longevity of female mosquitoes (Therneau and Grambsch, 2000; Therneau,
276 2020). For analysis of NMR metabolomics data, for each spectral bin, a general linear model was
277 created to account for the effect of diet (sugar water or royal jelly), photoperiod (long or short day-
278 rearing conditions), and the interaction term between diet and photoperiod. Resulting p-values
279 were corrected for multiple testing using a False Discovery Rate (FDR) of 5% (Benjamini &
280 Hochberg, 1995).

281

282 **3. Results**

283 3.1. Measuring *MRJP1* mRNA abundance in response to rearing condition and dietary treatment

284 The relative abundance of *MRJP1* mRNA did not change significantly in response to dietary
285 treatment or rearing conditions (Fig. 2A). Females reared in long day conditions that consumed
286 royal jelly showed a slightly but not significantly higher abundance of *MRJP1* transcripts compared
287 to those that consumed sugar water (mean relative mRNA abundance 0.0310 ± 0.00282 s.e.m.;

288 0.0269 ± 0.00276 s.e.m., respectively). The same trend was observed between females reared in
289 short day conditions that consumed royal jelly (Fig. 2A; 0.0317 ± 0.00811 s.e.m.) and sugar water
290 (0.0205 ± 0.00178 s.e.m.), but there was no significant difference. Additionally, there was no
291 significant difference in the abundance of *MRJP1* transcripts between females reared in long day or
292 short-day conditions.

293
294

295 **3.2. Assessing the effects of royal jelly on mosquito diapause status and longevity**

296 Consuming royal jelly altered seasonal phenotypes in mosquitoes (Fig. 2B). Egg follicle
297 length can be used to determine diapause status of female mosquitoes of *Cx. pipiens* (Robich and
298 Denlinger, 2005; Spielman and Wong, 1973), such that an average egg follicle length of less than 75
299 µm indicates diapause, follicle lengths between 75 and 90 µm indicates an intermediate state, and
300 follicles greater than 90 µm indicates non-diapause (Meuti et al., 2015b). As expected, one week
301 after adult emergence all females reared in long-day conditions that consumed sugar water were in
302 a clear non-diapause state (Fig. 2B; average egg follicle length of 99.5 ± 1.8 µm s.e.m.). However,
303 50% of long-day reared females that consumed royal jelly had egg follicles that were characteristic
304 of being in diapause, while the remaining females were in an intermediate state, and no long day
305 females that consumed royal jelly had egg follicle lengths that were large enough to be considered
306 in a non-diapause state (Fig. 2B). Therefore, consuming royal jelly caused a significant decrease in
307 the overall average egg follicle length in long day-reared females ($p < 0.001$), such that the average
308 length was just above the threshold for diapause (75.4 ± 1.8 µm s.e.m.). Females reared in short-day
309 conditions had significantly smaller egg follicles compared to those reared in long day conditions (p
310 < 0.001). All females reared in short-day conditions were in a clear diapause state (Fig. 2B),
311 regardless of whether they consumed sugar water (46.9 ± 0.4 µm s.e.m.) or royal jelly (45.7 ± 0.3
312 µm s.e.m.), and dietary treatment did not significantly impact egg follicle length of short day-reared
313 females ($p = 0.92$).

314

315 We also assessed whether dietary treatment and/or photoperiod affected fat and protein
316 content within female mosquitoes (Fig. S1), as low values for fat content indicate a non-diapause
317 state, while higher values indicate a diapause state (Meuti et al., 2015ab). There was a non-
318 significant increase in fat content for females reared in long day-conditions that consumed royal
319 jelly (Fig. S1A; % lipid to lean mass 27.46 ± 4.99 % s.e.m.) compared to sugar water (16.89 ± 2.37 %
320 s.e.m.; $p = 0.21$). In short day-reared females, consumption of royal jelly led to decreased levels of

321 fat compared to sugar water, although the difference was not significant (22.19 ± 2.46 % s.e.m.;
322 29.48 ± 4.75 % s.e.m., respectively, $p = 0.55$). Females reared in long-day conditions contained
323 roughly the same amount of protein whether they consumed royal jelly or sugar water (Fig. S1B;
324 average protein content of 12.16 ± 0.76 $\mu\text{g}/\text{mg}$ s.e.m. and 12.60 ± 1.41 $\mu\text{g}/\text{mg}$ s.e.m., respectively; p
325 = 0.99). Dietary treatment did not significantly affect the protein content of short day-reared
326 females (average protein content in royal jelly-fed females = 10.22 ± 0.98 $\mu\text{g}/\text{mg}$ s.e.m.; average
327 protein content in sugar water-fed females 9.33 ± 1.32 $\mu\text{g}/\text{mg}$ s.e.m.; $p = 0.95$). However, females
328 reared in short day conditions contained significantly less protein than long day-reared females (p
329 = 0.03).

330

331 We also investigated how the lifespan of female mosquitoes was affected by different
332 rearing conditions and dietary treatments. There was a significant difference in lifespan between
333 each of the four treatment groups (Fig. 2C). As expected, sugar-fed control mosquitoes reared in
334 short-day, diapause-inducing conditions lived significantly longer than those reared in long-day,
335 diapause-averting conditions ($p < 0.001$). The median survival time of long day-reared females that
336 consumed sugar water was eight weeks of age, while 50% of sugar water-fed females survived to
337 fifteen weeks of age in short day conditions (Fig. 2C). However, the opposite was observed with
338 female mosquitoes that consumed royal jelly; those reared in long-day conditions lived significantly
339 longer than those in short day-conditions ($p < 0.001$). The median survival time of short day-reared
340 females that consumed royal jelly was three weeks, while 50% of long day-reared females that
341 consumed royal jelly survived to seven weeks of age. Within long and short-day conditions, female
342 mosquitoes that consumed sugar water lived significantly longer than those that consumed royal
343 jelly ($p = 0.03$ and $p < 0.001$, respectively).

344

345 3.3. Characterizing the effects of royal jelly on the metabolomic profile of long and short day-reared
346 mosquitoes

347 A Principal Component Analysis (PCA) reveals that both the photoperiodic conditions and
348 consuming royal jelly affects the metabolism of female mosquitoes (Fig. S2). General linear models
349 revealed that 168 spectral signals significantly changed in response to at least one of the diet, day
350 length, and the interaction terms (Table S1). Fig. 3 shows a heatmap of all significantly changing
351 signals. Notably, nondiapausing mosquitoes that consumed sugar water exhibit strong metabolic
352 differences compared to diapausing mosquitoes that also consumed sugar water. However,
353 mosquitoes reared under long-day, diapause-averting conditions switch to a “diapause” metabolic

354 profile when consuming royal jelly. In contrast, females reared under short-day, diapause-inducing
355 conditions switched to a “non-diapause” metabolic state when consuming royal jelly (Fig. 3).
356 Among the significant signals, five metabolites could be unambiguously identified (Table S1). These
357 metabolites are pimelic acid, L-alanine, asparagine, histidine, choline, and glycogen. Short day-
358 reared, diapausing mosquitoes on that consumed sugar water and long day-reared mosquitoes that
359 consumed royal jelly had higher levels of pimelic acid, asparagine, and choline. In contrast, short
360 day-reared, diapausing mosquitoes that consumed sugar water and long day-reared mosquitoes
361 that consumed royal jelly had significantly lower levels of L-alanine, histidine, and glycogen.

362

363 3.4. Effects of *MRJP1* dsRNA on mosquito diapause status and longevity

364 A knockdown confirmation analysis was performed to determine if *MRJP1* dsRNA
365 significantly reduced the abundance of *MRJP1* transcripts. No significant differences in mRNA
366 abundance between *MRJP1* dsRNA and β -gal dsRNA-injected controls were observed in 2
367 independent injection trials (Fig. 4A; S3A), although there were still significant downstream effects
368 on egg follicle length and lifespan measurements. Females reared in long day conditions treated
369 with dsRNA for *MRJP1* had a mean relative mRNA abundance of 0.00557 ± 0.000942 s.e.m., while
370 those treated with dsRNA for β -gal had 0.00532 ± 0.000947 s.e.m. ($p = 0.86$). For females reared in
371 short day conditions, those treated with dsRNA for *MRJP1* had a slightly, but not significantly, lower
372 relative mRNA abundance (Fig. 4A; 0.00470 ± 0.00116 s.e.m.) compared to those treated with
373 dsRNA for β -gal (0.00545 ± 0.00107 s.e.m.; $p = 0.25$). A second round of independent injections
374 also failed to change the levels of *MRJP1* abundance (Fig. S3A).

375

376 All females reared in long-day conditions that were injected β -gal and *MRJP1* dsRNA were in
377 a clear non-diapause state, such that the average egg follicle length of β -gal dsRNA-injected ($100.7 \pm$
378 0.5 μ m s.e.m.) and *MRJP1* dsRNA-injected mosquitoes (98.1 ± 2.5 μ m s.e.m.) were not significantly
379 different (Fig. 4B; $p = 0.76$). Females reared in short-day conditions that were injected with β -gal
380 dsRNA were in a clear diapause state, with an average egg follicle length of 53.3 ± 0.4 μ m s.e.m..
381 However, the average egg follicle length of females reared in short-day conditions that were
382 injected with *MRJP1* dsRNA was 70.7 ± 2.7 μ m s.e.m., and females were found to be in a mixture of
383 diapause (70%), intermediate (25%), and non-diapause (5%) states. Overall, dsRNA directed
384 against *MRJP1* significantly increased egg follicle length in short day-reared females ($p < 0.001$).

385

386 Injecting dsRNA against *MRJP1* did not significantly affect fat content (Fig. S3B). Females
387 reared in long day conditions and treated with dsRNA for *β-gal* had an average fat content of $6.45 \pm$
388 0.78% s.e.m., while those that were injected with *MRJP1* dsRNA had $10.97 \pm 0.40\%$ s.e.m. ($p =$
389 0.18). Injecting *β-gal* or *MRJP1* dsRNA also had no effect on the fat content of short day-reared
390 mosquitoes (Fig. S3B; *β-gal* dsRNA: $11.35 \pm 2.46\%$ s.e.m.; *MRJP1* dsRNA: $11.59 \pm 0.83\%$ s.e.m.; $p =$
391 0.99). Females reared in long day conditions and treated with dsRNA for *β-gal* had significantly less
392 fat content compared to the other three treatment combinations ($p = 0.04$).
393

394 We also investigated how injection with *MRJP1* dsRNA affected the lifespan of long and
395 short day-reared females relative to *β-gal*-injected controls (Fig. 4C). Females reared in short-day
396 conditions that were treated with dsRNA for both *β-gal* and *MRJP1* lived significantly longer than
397 long-day reared, dsRNA injected females ($p < 0.001$ and $p < 0.001$, respectively). For *β-gal* dsRNA-
398 injected females, 50% of long-day reared females survived until six weeks of age while 50% of
399 short-day reared females survived to eleven weeks of age. For *MRJP1*-injected females, 50% of long-
400 day reared females survived until four weeks of age while 50% of short-day reared females
401 survived until nine weeks of age. While dsRNA against *MRJP1* did not significantly affect the lifespan
402 of females reared in long-day conditions relative to *β-gal* injected controls, females reared in short-
403 day conditions that were treated with dsRNA for *MRJP1* had significantly longer overall lifespans
404 than *β-gal* dsRNA-injected controls (Fig. 4C; $p = 0.0187$), such that the median lifespan of *MRJP1*
405 dsRNA-injected females was 2 weeks longer than *β-gal* dsRNA-injected controls in short day
406 conditions. (Fig. 4C).
407

408 4. Discussion

409 Our results demonstrate that consuming royal jelly reverses seasonal phenotypes in female
410 mosquitoes. Specifically, female mosquitoes reared in long-day, diapause-averting conditions that
411 consumed royal jelly enter a diapause-like state with small egg follicles (Fig. 2B). In contrast,
412 consuming royal jelly significantly reduced the lifespan of females reared in short day, diapause-
413 inducing conditions (Fig. 2C). While consuming royal jelly does not cause significant differences in
414 fat content within long or short day-reared mosquitoes (Fig. S1A), it alters the metabolic profile of
415 mosquitoes (Fig. 3, S2, Table S1). Specifically, long-day reared mosquitoes that consumed royal jelly
416 were metabolically more similar to diapausing controls, while short day-reared mosquitoes that
417 consumed royal jelly were metabolically similar to nondiapausing controls. Although it is currently
418 not clear how royal jelly might be mediating these effects, it is likely that they are induced in large

419 part through the action of MRJP1. This is because short day-reared female mosquitoes treated with
420 dsRNA against *MRJP1* had significantly larger egg follicles (Fig. 4B) and lived significantly longer
421 than β -gal dsRNA-injected controls (Fig. 4C).

422

423 MRJP1, a primary component of royal jelly, was upregulated in diapausing females (Sim et
424 al., 2015). Additionally, previous studies demonstrate that consuming royal jelly increases the
425 likelihood that alfalfa leaf cutting bees would enter diapause (Fischman et al. 2017). Therefore, we
426 hypothesized that consuming royal jelly, and thereby artificially increasing the levels of MRJP1
427 within mosquitoes, would induce diapause phenotypes in long-day reared mosquitoes. Indeed, we
428 found that consuming royal jelly significantly reduced the egg follicle lengths of long day-reared
429 females (Fig. 2B). This finding indicates that feeding females royal jelly in conditions that typically
430 prevent diapause causes them to arrest reproductive development. However, in contrast to our
431 results, consuming royal jelly promotes reproductive development in honey bee queens (Page and
432 Peng, 2001) and fruit flies (Xin et al., 2016). As other species also become more virile and fecund
433 upon consuming royal jelly (El-Hanoun et al., 2014; Xin et al., 2016), there must be a separate,
434 unique pathway in which MRJP1 acts in *Cx. pipiens* to confer reproductive arrest.

435

436 Reproductive arrest is not the only indicator of diapause, as diapausing females of *Cx.*
437 *pipiens* also display an increase in fat content. We do observe a trend where long day-reared
438 females that consumed royal jelly have a slightly higher fat content than females that consumed
439 sucrose solution (Fig. S1A). However, due to high variation within our samples, the fat content is
440 not significantly different between rearing conditions or food source in this experiment. Typically,
441 the increase in fat content is a consequence of the feeding habits of female mosquitoes; short day-
442 reared females gorge on nectar that is rich in sugar (Bowen et al., 1988; Robich and Denlinger,
443 2005; Sim and Denlinger, 2009). Although it is unclear why we did not observe significant increases
444 in the fat content of diapausing relative to nondiapausing sugar-fed controls, we may not have
445 observed any difference in fat content between feeding treatments because royal jelly does not
446 necessarily have a high proportion of sugar or fat, rather it is a rich source of protein (Drapeau et
447 al., 2006).

448

449 Considering the composition of royal jelly, we chose to examine whether protein content
450 changed between females that consumed royal jelly relative to those who fed on sucrose (Fig. S1B).
451 Although consuming royal jelly did not affect the protein content of long day or short day-reared

452 mosquitoes, we do find that females reared in long-day conditions have significantly greater protein
453 content than those reared in short-day conditions. Early in diapause, females of *Cx. pipiens* produce
454 fewer proteins than they do upon diapause termination (Zhang et al., 2019). Furthermore,
455 diapausing female mosquitoes are relatively inactive and take refuge in protected shelters
456 (Eldridge, 1987), so they would not require as much protein to power their flight muscles.

457

458 In addition to determining how supplementing the diet of mosquitoes with royal jelly would
459 affect seasonal phenotypes, we used RNAi to elucidate the functional role of *MRJP1* in diapausing
460 females of *Cx. pipiens*. Injecting *MRJP1* dsRNA in females reared in short-day, diapause-inducing
461 conditions significant increased egg follicle length such that approximately 30% of the females
462 sampled were considered to be in an intermediate or non-diapause state (Fig. 4B). Thus, RNAi
463 against *MRJP1* causes short day-reared females to avert diapause, and again suggests that the gene
464 encoding *MRJP1* plays a critical role in arresting egg follicle development during diapause induction
465 in females of *Cx. pipiens*.

466

467 RNAi against *MRJP1* does not lead to a significant change in fat content of females reared in
468 short day conditions (Fig. S3B), although, we do observe a trend in which the long day-reared
469 females that were injected with *MRJP1* dsRNA have a greater fat content compared to those injected
470 with dsRNA for β -gal. This is a surprising trend, seeing as *MRJP1* mRNA is upregulated in
471 diapausing mosquitoes that acquired high levels of fat (Sim et al., 2015), but we found that the fat
472 content slightly increased when *MRJP1* was targeted with RNAi. However, this trend was not
473 statistically significantly and likely not biologically meaningful. Overall, the female mosquitoes that
474 were injected with *MRJP1* or β -gal dsRNA had lower levels of fat (Fig. S3B) than the female
475 mosquitoes that were not injected and allowed to consume sugar water in the initial dietary
476 experiment (Fig. S1A). We conclude that injecting the mosquitoes likely injured the mosquitoes and
477 interfered with their ability to consume the sucrose source that was within their cage. These
478 results, combined with the effects of consuming royal jelly, suggest that *MRJP1* may not be directly
479 involved in accumulating fat during diapause and rather that this protein regulates reproductive
480 development and longevity.

481

482 Consuming royal jelly significantly reduced the median survival time of both long and short
483 day-reared mosquitoes, relative to sugar-fed controls (Fig. 2C). The decrease in lifespan was most
484 dramatic and pronounced in mosquitoes reared in short-day, diapause-inducing conditions where

485 consuming royal jelly reduced the median lifespan by 12 weeks. This is a surprising result, seeing as
486 royal jelly increases the lifespan of honey bees and fruit flies (Drapeau et al., 2006; Xin et al., 2016).
487 Additionally, in short-day conditions, there was a significant difference in the longevity of female
488 mosquitoes treated with *MRJP1* dsRNA relative to β -gal controls (Fig. 4C). Although *MRJP1* dsRNA-
489 injected mosquitoes initially died sooner and had a lower median survival time than β -gal dsRNA
490 injected controls, dsRNA against *MRJP1* extended the total lifespan of short day-reared mosquitoes
491 by four weeks. Taken together, our data suggest that a factor within royal jelly, and possibly *MRJP1*,
492 may reduce the lifespan of diapausing mosquitoes in a dose and time-dependent manner.

493

494 We found several metabolites that were differentially abundant between diapausing and
495 nondiapausing mosquitoes as well as those that had consumed royal jelly (Table S1), and many of
496 these metabolites have been associated with diapause and/or related phenotypes in other insects.
497 Pimelic acid was upregulated during diapause and in long day-reared mosquitoes that consumed
498 royal jelly. This compound is referred to as a survival hormone in honey bees, decreasing stress
499 responses and suppressing lipid metabolism in honey bees that are socially isolated and that
500 normally die quickly (Jorand et al., 1989). Although pimelic acid has not been associated with
501 diapause in other insects, it is possible that this compound may preserve the fat content and/or
502 promote the longevity of diapausing mosquitoes. Asparagine was also upregulated in diapausing
503 mosquitoes, but is less abundant in diapausing larvae of the parasitoid *N. vitripennis* (Li et al.,
504 2015). Additionally, asparagine is the most abundant free amino acid in the cotton bollworm,
505 *Heliothis armigera* (Hübner), although its abundance does not significantly change during diapause
506 (Boctor 1980). Concentrations of free amino acids, including asparagine, increase in the diapausing
507 pupae of the moth, *Antherea pernyi* (Guérin-Méneville) (Mansingh 1967). The role of asparagine in
508 diapause is unclear, but it may confer increased cold tolerance, especially as levels of asparagine
509 were higher in cold-acclimated granary weevils, *Sitophilus granaries* (L.), and rusty grain beetles,
510 *Cryptolettes ferrugineus* (Stephens) (Fields et al. 1998). Additionally, we found choline is
511 upregulated in diapausing mosquitoes. Choline is predicted to function as a cryoprotectant derived
512 from the diet (Moos et al., 2022), which would serve a critical role in withstanding the low
513 temperatures associated with winter.

514

515 L-alanine and histidine were downregulated in diapausing *Cx. pipiens* and long day-reared
516 mosquitoes that consumed royal jelly. Alanine is also downregulated in diapausing *N. vitripennis* (Li
517 et al., 2015), consistent with our findings, but is more abundant in diapausing flesh flies (Michaud

518 and Denlinger, 2007). Alanine can serve as a cryoprotectant, its likely role in diapausing flesh flies
519 (Michaud and Denlinger, 2007), as well as a byproduct of pyruvate metabolism. Our finding that
520 alanine is less abundant in diapausing mosquitoes suggests that its primary role is likely in
521 pyruvate metabolism as these mosquitoes, like diapausing wasps, are less metabolically active.
522 Histidine is also less abundant in diapausing mosquitoes, which is consistent with findings in
523 diapause-destined larvae of the corn earworm, *Heliothis armigera* (Zhang et al., 2013). In pre-
524 diapausing corn earworms, down-regulating histidine likely leads to lower levels of its byproduct
525 histamine, an inhibitory neurotransmitter, that may alter the photoperiodic responses necessary
526 for diapause induction (Zhang et al. 2013). However, histidine is upregulated in diapausing *N.*
527 *vitripennis* (Li et al. 2015), and has been associated with increased cold tolerance in selected lines of
528 *D. melanogaster* (Williams et al. 2014). As histidine combats oxidative damage (Wade and Tucker,
529 1998; Lemire et al. 2010), increases in histidine in *N. vitripennis* and *D. melanogaster* are likely
530 critical for cold tolerance. It is somewhat surprising, therefore, that histidine was less abundant in
531 diapausing *Cx. pipiens* as these females, unlike pre-diapausing *H. armigera*, have already initiated
532 diapause and are no longer photosensitive (Sanburg and Larsen, 1973). Moreover, earlier studies
533 have shown that diapausing *Cx. pipiens* are more cold tolerant than diapausing mosquitoes
534 (Rinehart et al. 2006). However, previous studies have demonstrated that histidine-independent
535 pathways that combat oxidative damage are upregulated in diapausing *Cx. pipiens* (Sim and
536 Denlinger, 2011; King et al. 2021), which can explain why this amino acid can be downregulated in
537 diapausing *Cx. pipiens* without compromising cold tolerance or resistance to oxidative damage.
538

539 Lastly, our findings show that glycogen was less abundant in diapausing mosquitoes and in
540 long-day reared mosquitoes that consumed jelly. A previous study reports metabolic flux of moving
541 dietary glucose toward glycogen in diapausing *Cx. pipiens* (King et al. 2020). However, that study
542 did not analyze glycogen in non-diapausing animals and can thus not be directly compared to our
543 data. Zhou and Miesfeld (2009) found that glycogen content decreases during the first weeks of
544 diapause in *Cx. pipiens* as compared to nondiapausing animals, with a simultaneous increase in
545 body fat. Our finding show suggest that consuming royal jelly early in diapause prevented glycogen
546 catabolism, which likely contributed to the lower levels of body fat observed in these animals (Fig.
547 S1A).

548

549 A quite exciting finding is that consuming royal jelly caused large scale changes in whole
550 mosquito metabolomes that reversed the seasonal phenotypes of the mosquitoes (Figs 3 and S2).

551 Specifically, we found that the regression coefficients of most of the significant metabolite signals is
552 almost identical for diapausing controls and long day-reared mosquitoes that consumed royal jelly
553 (Table S1). In contrast, the regression coefficients of the interaction between short day, diapause-
554 inducing photoperiods and royal jelly consumption are opposite in direction and meet or exceed
555 the sum of the diapause and royal jelly coefficients (Table S1). These results suggest that consuming
556 royal jelly causes mosquitoes that were reared in long-day, diapause-averting conditions to display
557 a metabolic profile that is highly similar to diapause. More impressive still, mosquitoes reared in
558 short-day, diapause-inducing conditions that consumed royal jelly had a metabolic profile that was
559 very similar to nondiapausing mosquitoes. These metabolic results are consistent with the
560 phenotypes we observed, where royal jelly both induced diapause phenotypes in long day-reared
561 mosquitoes (e.g. reduce egg follicle length) and caused short day-reared females to exhibit
562 nondiapause phenotypes (e.g. shorten lifespan).

563

564 This the first time that a single substance has been found to reverse both long and short day
565 seasonal phenotypes in an animal. How royal jelly switches seasonal responses is currently unclear,
566 but we can conclude that this effect on diapause was mediated at least in part by *MRJP1*. This is
567 because RNAi against *MRJP1* caused females who were reared in short-day, diapause-inducing
568 conditions to avert diapause and develop significantly larger egg follicles. In contrast, *MRJP1*
569 dsRNA-injected females had significantly longer lifespans. Since females in diapause do not bite
570 humans and animals (Bowen et al. 1988), they do not transmit debilitating diseases. Future work
571 should investigate whether it would be possible to develop control measures that use royal jelly to
572 induce diapause in female mosquitoes during the long days of summer to reduce disease
573 transmission (Eldridge 1987). Additionally, future work should be done to elucidate how *MRJP1*
574 and other components of royal jelly induce reproductive arrest, cause metabolic shifts and alter
575 mosquito lifespan. Such studies will not only uncover the underpinnings of the interesting
576 phenotypic results we observed in this study, but also lead to exciting insights on the molecular
577 regulation of seasonal responses in other insects and mammals.

578

579 **Acknowledgements**

580 We thank Lydia Fyie for assistance with survival and other data analyses, and Derek Huck
581 for providing guidance and protocols on mosquito metabolomics, and additional members of the
582 Meuti and Klein laboratories for their input and support in the design and execution of the
583 experiments. We would also like to thank the CCIC NMR facility for their support.

584

585 **Competing Interest**

586 No competing interests declared.

587

588 **Funding**

589 This work was supported by state and federal funds appropriated to The Ohio State
590 University, College of Food, Agricultural, and Environmental Sciences, Ohio Agricultural Research
591 and Development Center through an Undergraduate SEEDS Grant (2020-061) awarded to OB, as
592 well as an NSF Grant (IOS 1944324) awarded to MM and MK. MK was also supported by the Foods
593 for Health Discovery Theme.

594

595 **Data Availability**

596 Upon publication, all data from the NMR metabolomics assay will be published on Dryad.

597 **References**

598 **Amini, S., Masoumi, R., Rostami, B., Shahir, M. H., Taghilou, P. and Arslan, H. O.** (2019). Effects
599 of supplementation of Tris-egg yolk extender with royal jelly on chilled and frozen-thawed
600 ram semen characteristics. *Cryobiology* **88**, 75–80.

601 **Asadi, N., Kheradmand, A., Gholami, M., Saidi, S. H. and Mirhadi, S. A.** (2019). Effect of royal jelly
602 on testicular antioxidant enzymes activity, MDA level and spermatogenesis in rat experimental
603 Varicocele model. *Tissue Cell* **57**, 70–77.

604 **Bailey, C. L., Eldridge, B. F., Hayes, D. E., Watts, D. M., Tammarieillo, R. F. and Dalrymple, J. M.**
605 (1978). Isolation of St. Louis encephalitis virus from overwintering *Culex pipiens* mosquitoes.
606 *Science* **199**, 1346– 1349.

607 **Batz, Z. A. and Armbruster, P. A.** (2018). Diapause-associated changes in the lipid and metabolite
608 profiles of the Asian tiger mosquito, *Aedes albopictus*. *J. Exp. Biol.* **221**, jeb189480.

609 **Benjamini, Y. and Hochberg, Y.** (1995). Controlling the false discovery rate: a practical and
610 powerful approach to multiple testing. *J. R. Stat. Soc. B Met.* **57**, 289-300.

611 **Bowen, M. F., Davis, E. E. and Haggart, D. A.** (1988). A Behavioural and Sensory Analysis of Host-
612 Seeking Behaviour in the Diapausing Mosquito *Culex pipiens*. *J. Insect Physiol.* **34**, 805-813.

613 **Bradford, M. M.** (1976). A rapid and sensitive method for the quantitation of microgram quantities
614 of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* **72**, 248–254.

615 **Brugman, V. A., Hernández-Triana, L. M., Medlock, J. M., Fooks, A. R., Carpenter, S. and**
616 **Johnson, N.** (2018). The role of *Culex pipiens* L. (Diptera: Culicidae) in virus transmission in
617 Europe. *Int. J. Environ. Res. Public Health* **15**, 389.

618 **Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan,**
619 **T., Pfaffl, M. W., Shipley, G. L., et al.** (2009). The MIQE guidelines: Minimum information for
620 publication of quantitative real-time PCR experiments. *Clin. Chem.* **55**, 611–622.

621 **Cancrini, G., Scaramozzino, P., Gabrielli, S., Paolo, M. Di, Toma, L. and Romi, R.** (2007). *Aedes*
622 *albopictus* and *Culex pipiens* Implicated as Natural Vectors of *Dirofilaria repens* in Central Italy .
623 *J. Med. Entomol.* **44**, 1064–1066.

624 **Chang, V. and Meuti, M. E.** (2020). Circadian transcription factors differentially regulate features of
625 the adult overwintering diapause in the Northern house mosquito, *Culex pipiens*. *Insect*
626 *Biochem. Mol. Biol.* **121**, 103365.

627 **Colhoun, E. H. and Smith, M. V** (1960). Neurohormonal Properties of Royal Jelly. *Nature* **188**, 854–
628 855.

629 **Denlinger, D. L. and Armbruster, P. A.** (2014). Mosquito Diapause. *Annu. Rev. Entomol.* **59**, 73–93.

630 **Drapeau, M. D., Albert, S., Kucharski, R., Prusko, C. and Maleszka, R.** (2006). Evolution of the
631 Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees.
632 *Genome Res.* **16**, 1385–1394.

633 **El-Hanoun, A. M., Elkomy, A. E., Fares, W. A. and Shahien, E. H.** (2014). Impact of royal jelly to
634 improve reproductive performance of male rabbits under hot summer conditions. *World Rabbit
635 Sci.* **22**, 241–248.

636 **Eldridge, B. F.** (1968). The Effect of Temperature and Photoperiod on Blood-Feeding and Ovarian
637 Development in Mosquitoes of the *Culex Pipiens* Complex. *Am. J. Trop. Med. Hyg.* **17**, 133–140.

638 **Eldridge, B. F.** (1987). Diapause and Related Phenomena in *Culex* Mosquitoes: Their Relation to
639 Arbovirus Disease Ecology. In *Current Topics in Vector Research: Volume 4* (ed. Harris, K. F.),
640 pp. 1–28. New York, NY: Springer New York.

641 **Farajollahi, A., Fonseca, D. M., Kramer, L. D. and Marm Kilpatrick, A.** (2011). “Bird biting”
642 mosquitoes and human disease: A review of the role of *Culex pipiens* complex mosquitoes in
643 epidemiology. *Infect. Genet. Evol.* **11**, 1577–1585.

644 **Fischman, B.J., Pitts-Singer, T.L. and Robinson, G.E.** (2017). Nutritional regulation of phenotypic
645 plasticity in a solitary bee (Hymenoptera: Megachilidae). *Envir. Ent.* **46**, 1070–1079.

646 **Fontana, R., Mendes, M. A., De Souza, B. M., Konno, K., César, L. M. M., Malaspina, O. and Palma,
647 M. S.** (2004). Jelleines: A family of antimicrobial peptides from the Royal Jelly of honeybees
648 (*Apis mellifera*). *Peptides* **25**, 919–928.

649 **Hamer, G. L., Kitron, U. D., Brawn, J. D., Loss, S. R., Ruiz, M. O., Goldberg, T. L. and Walker, E. D.**
650 (2008). *Culex pipiens* (Diptera: Culicidae): A Bridge Vector of West Nile Virus to Humans. *J.
651 Med. Entomol.* **45**, 125–128.

652 **Hay, S. I., Myers, M. F., Burke, D. S., Vaughn, D. W., Endy, T., Ananda, N., Shanks, G. D., Snow, R.
653 W. and Rogers, D. J.** (2000). Etiology of interepidemic periods of mosquito-borne disease.
654 *Proc. Natl. Acad. Sci. U. S. A.* **97**, 9335–9339.

655 **Honda, Y., Fujita, Y., Maruyama, H., Araki, Y., Ichihara, K., Sato, A., Kojima, T., Tanaka, M.,
656 Nozawa, Y., Ito, M., et al.** (2011). Lifespan-extending effects of royal jelly and its related
657 substances on the nematode *Caenorhabditis elegans*. *PLoS One* **6**, 1–10.

658 **Huck, D.T., Klein, M.S. and Meuti, M.E.** (2021). Determining the effects of nutrition on the
659 reproductive physiology of male mosquitoes. *J. Insect Physiol.* **129**, 104191.

660 **Jorand, J. P., Bounias, M. and Chauvin, R.** (1989). The “survival hormones”: Azelaic and pimelic
661 acids, suppress the stress elicited by isolation conditions on the steroids and phospholipids of
662 adult worker honeybees. *Horm. Metab. Res.* **21**, 553–557.

663 **King, B., Li, S., Liu, C., Kim, S. J. and Sim, C.** (2020). Suppression of glycogen synthase expression
664 reduces glycogen and lipid storage during mosquito overwintering diapause. *J. Insect Physiol.*
665 **120**, 103971.

666 **King, B., Ikenga, A., Larsen, M. and Sim, C.** (2021). Suppressed expression of oxidoreductin-like
667 protein, Oxidor, increases follicle degeneration and decreases survival during the
668 overwintering diapause of the mosquito *Culex pipiens*. *Comp. Biochem. Phys. A.* **257**, 110959.

669 **Klein, M.S., Dorn, C., Saugspier, M., Hellerbrand, C., Oefner, P.J. and Gronwald, W.** (2011).
670 Discrimination of steatosis and NASH in mice using nuclear magnetic resonance
671 spectroscopy. *Metabolomics*, **7**, 237-246.

672 **Lemire, J., Milandu, Y., Auger, C., Bignucolo, A., Appanna, V.P. and Appanna, V.D.** (2010).
673 Histidine is a source of the antioxidant, α -ketoglutarate, in *Pseudomonas fluorescens* challenged
674 by oxidative stress. *FEMS Microbiol. Let.* **309**, 170-177.

675 **Li, Y., Zhang, L., Chen, H., Koštál, V., Simek, P., Moos, M. and Denlinger, D. L.** (2015). Shifts in
676 metabolomic profiles of the parasitoid *Nasonia vitripennis* associated with elevated cold
677 tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with
678 proline. *Insect Biochem. Mol. Biol.* **63**, 34-46.

679 **Meuti, M. E., Stone, M., Ikeno, T. and Denlinger, D. L.** (2015a). Functional circadian clock genes
680 are essential for the overwintering diapause of the Northern house mosquito, *Culex pipiens*. *J.*
681 *Exp. Biol.* **218**, 412-422.

682 **Meuti, M. E., Short, C. A. and Denlinger, D. L.** (2015b). Mom matters: Diapause characteristics of
683 *Culex pipiens*-*Culex quinquefasciatus* (Diptera: Culicidae) hybrid mosquitoes. *J. Med. Entomol.*
684 **52**, 131-137.

685 **Michaud, M. R. and Denlinger, D. L.** (2007). Shifts in the carbohydrate, polyol, and amino acid
686 pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies
687 (*Sarcophaga crassipalpis*): A metabolomic comparison. *J. Comp. Physiol. B Biochem. Syst.*
688 *Environ. Physiol.* **177**, 753-763.

689 **Mitchell, C. J. and Briegel, H.** (1989). Fate of the blood meal in force-fed, diapausing *Culex pipiens*
690 (Diptera: Culicidae). *J. Med. Entomol.* **26**, 332-341.

691 **Moos, M., Korbelová, J., Štětina, T., Opekar, S., Šimek, P., Grgac, R. and Koštál, V.** (2022).
692 Cryoprotective Metabolites Are Sourced from Both External Diet and Internal Macromolecular
693 Reserves during Metabolic Reprogramming for Freeze Tolerance in Drosophilid Fly,
694 *Chymomyza costata*. *Metabolites* **12**, 1-18.

695 **Newell, C., Sabouny, R., Hittel, D., Shutt, T.E., Khan, A., Klein, M.S. and Shearer, J.** (2018).

696 Mesenchymal stem cells shift mitochondrial dynamics and enhance oxidative phosphorylation
697 in recipient cells. *Front. Physiol.* **9**, 1572.

698 **Ohashi, K., Natori, S. and Kubo, T.** (1997). Change in the mode of gene expression of the
699 hypopharyngeal gland cells with an age-dependent role change of the worker honeybee *Apis*
700 *mellifera* L. *Eur. J. Biochem.* **249**, 797–802.

701 **Page, R. E. and Peng, C. Y. S.** (2001). Aging and development in social insects with emphasis on the
702 honey bee, *Apis mellifera* L. *Exp. Gerontol.* **36**, 695–711.

703 **Pasupuleti, V. R., Sammugam, L., Ramesh, N. and Gan, S. H.** (2017). Honey, Propolis, and Royal
704 Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. *Oxid. Med. Cell.*
705 *Longev.* **2017**.

706 **R Core Team** (2017). The R Project for Statistical Computing. *R Found.*

707 **Rinehart, J.P., Robich, R.M. and Denlinger, D.L.** (2006). Enhanced cold and desiccation tolerance
708 in diapausing adults of *Culex pipiens*, and a role for Hsp70 in response to cold shock but not as
709 a component of the diapause program. *J. Med. Entomol.* **43**, 713–722.

710 **Robich, R. M. and Denlinger, D. L.** (2005). Diapause in the mosquito *Culex pipiens* evokes a
711 metabolic switch from blood feeding to sugar gluttony. *Proc. Natl. Acad. Sci. U. S. A.* **102**,
712 15912–15917.

713 **Rozen, S. and Skaletsky, H.** (1999). Primer3 on the WWW for General Users and for Biologist
714 Programmers. In *Bioinformatics Methods and Protocols* (ed. Misener, S.) and Krawetz, S. A.), pp.
715 365–386. Totowa, NJ: Humana Press.

716 **Sanburg, L.L. and Larsen, J.R.** 1973. Effect of photoperiod and temperature on ovarian
717 development in *Culex pipiens pipiens*. *J. Insect Physiol.* **19**, 1173–1190.

718 **Sim, C. and Denlinger, D. L.** (2009). Transcription profiling and regulation of fat metabolism genes
719 in diapausing adults of the mosquito *Culex pipiens*. *Physiol. Genomics* **39**, 202–209.

720 **Sim, C. and Denlinger, D.L.** (2011). Catalase and superoxide dismutase-2 enhance survival and
721 protect ovaries during overwintering diapause in the mosquito *Culex pipiens*. *J. Insect*
722 *Physiol.* **57**, 628–634.

723 **Sim, C., Kang, D. S., Kim, S., Bai, X. and Denlinger, D. L.** (2015). Identification of FOXO targets that
724 generate diverse features of the diapause phenotype in the mosquito *Culex pipiens*. *Proc. Natl.*
725 *Acad. Sci. U. S. A.* **112**, 3811–3816.

726 **Spielman, A. and Wong, J.** (1973). Environmental control of ovarian diapause in *Culex pipiens*. *Ann.*
727 *Entomol. Soc. Am.* **66**, 905–907.

728 **Therneau, T. M.** (2020). A Package for Survival Analysis in R.

729 **Therneau, T. M. and Grambsch, P. M.** (2000). *Modeling Survival Data: Extending the Cox Model*.
730 New York: Springer.

731 **Tian, W., Li, M., Guo, H., Peng, W., Xue, X., Hu, Y., Liu, Y., Zhao, Y., Fang, X., Wang, K. and Li, X.**
732 (2018). Architecture of the native major royal jelly protein 1 oligomer. *Nature Commun.* **9**, 1-
733 12.

734 **Van Handel, E.** (1985). Rapid determination of total lipids in mosquitoes. *J. Am. Mosq. Control Assoc.*
735 **1**, 302-304.

736 **Wade, A.M. and Tucker, H.N.** (1998). Antioxidant characteristics of L-histidine. *J. of Nutrit.*
737 *Biochem.* **9**, 308-315.

738 **Williams, C.M., Watanabe, M., Guerracino, M.R., Ferraro, M.B., Edison, A.S., Morgan, T.J.,**
739 **Boroujerdi, A.F. and Hahn, D.A.** (2014). Cold adaptation shapes the robustness of metabolic
740 networks in *Drosophila melanogaster*. *Evolution* **68**, 3505-3523.

741 **Wu, H., Southam, A.D., Hines, A. and Viant, M.R.** (2008). High-throughput tissue extraction
742 protocol for NMR-and MS-based metabolomics. *Anal. Biochem.* **372**, 204-212.

743 **Xin, X. X., Chen, Y., Chen, D., Xiao, F., Parnell, L. D., Zhao, J., Liu, L., Ordovas, J. M., Lai, C. Q. and**
744 **Shen, L. R.** (2016). Supplementation with Major Royal-Jelly Proteins Increases Lifespan,
745 Feeding, and Fecundity in *Drosophila*. *J. Agric. Food Chem.* **64**, 5803-5812.

746 **Zhang, Q., Lu, Y.-X. and Xu, W.-H.** (2013). Proteomic and metabolomic profiles of larval
747 hemolymph associated with diapause in the cotton bollworm, *Helicoverpa armigera*. *BMC*
748 *Genomics* **14**, 1-13.

749 **Zhang, C., Wei, D., Shi, G., Huang, X., Cheng, P., Liu, G., Guo, X., Liu, L., Wang, H., Miao, F., et al.**
750 (2019). Understanding the regulation of overwintering diapause molecular mechanisms in
751 *Culex pipiens pallens* through comparative proteomics. *Sci. Rep.* **9**, 1-12.

752 **Zhou, G. and Miesfeld, R.L.** (2009). Energy metabolism during diapause in *Culex pipiens*
753 mosquitoes. *J. Insect Physiol.* **55**, 40-46.

754

755

756

757

758

759

760

761

762

763

764

765 **Figure Legends**

766

767 **Fig. 1: Diapausing and nondiapausing mosquitoes have different metabolic profiles.** Shown is
768 a Principal Component Analysis of whole mosquito extracts measured by ^1H Nuclear Magnetic
769 Resonance spectroscopy.

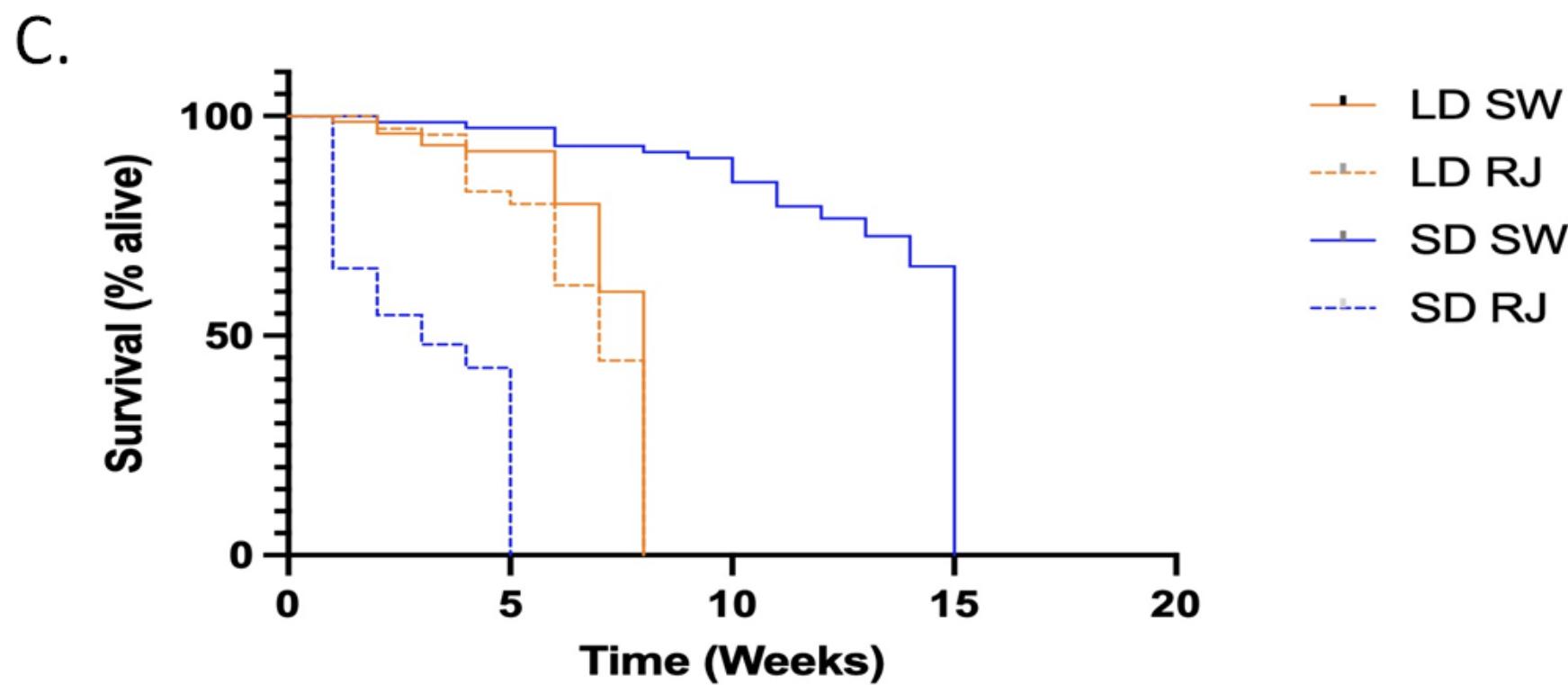
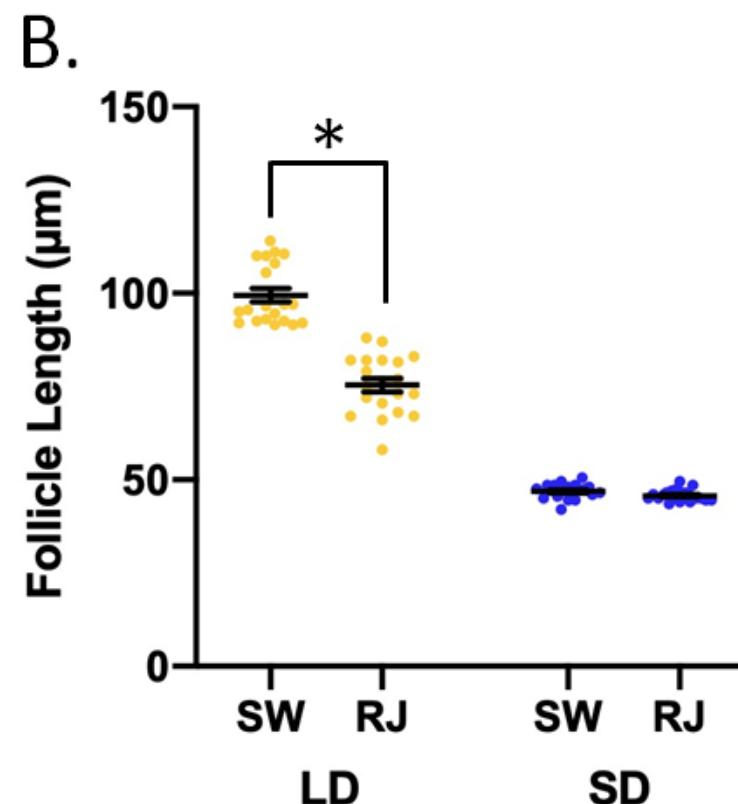
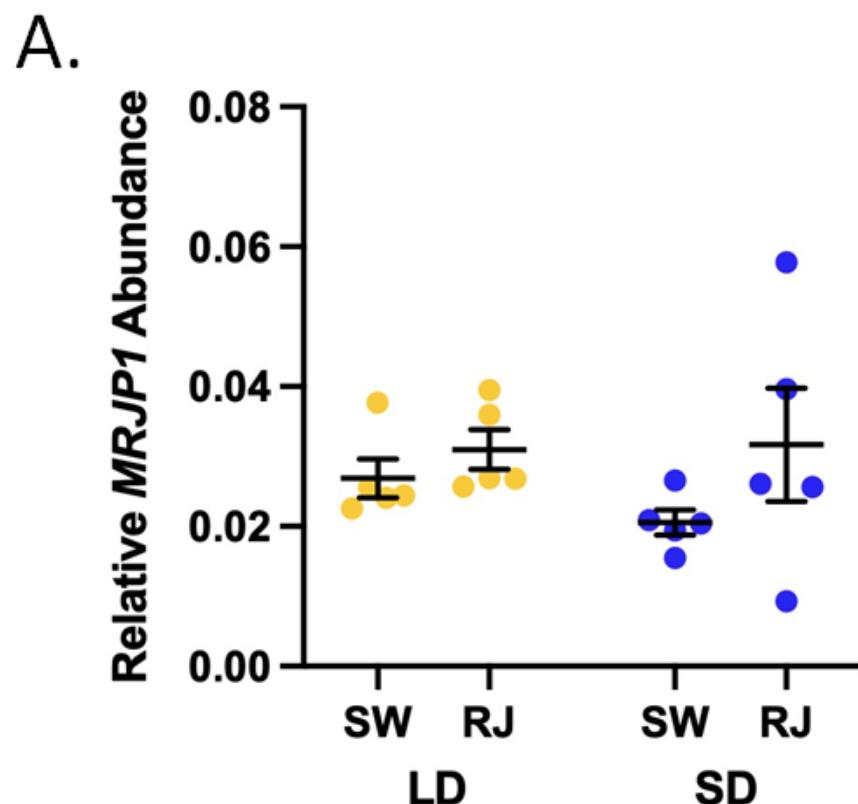
770

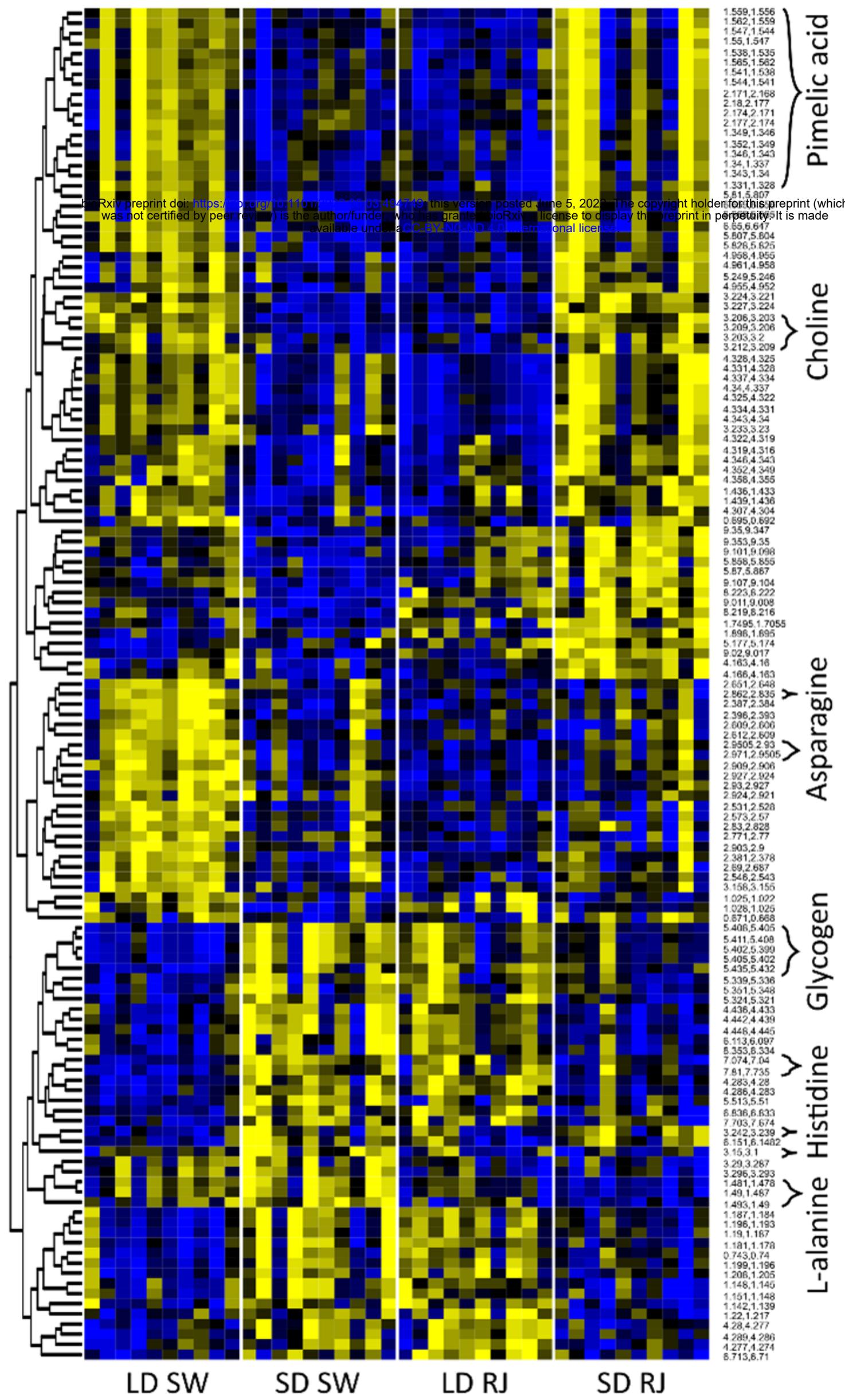
771 **Fig. 2: Phenotypic effects of consuming royal jelly (RJ) in mosquitoes.** A.) Consuming RJ did not
772 have any significant effect on relative *MRJP1* mRNA abundance in long day (LD) or short day (SD)
773 reared mosquitoes. B.) Consuming RJ significantly decreases egg follicle length in long day (LD)
774 mosquitoes. Significant difference denoted by * ($p < 0.001$). C.) The lifespan of female mosquitoes
775 was significantly different between long day (LD) and short day (SD) mosquitoes. The consumption
776 of royal jelly (RJ) by mosquitoes in both rearing conditions led to a significant decrease in lifespan.
777 Significant differences denoted by *** (SD RJ to SD SW; $p < 0.001$), ** (LD SW to SD SW; $p < 0.001$)
778 and * (LD RJ to LD SW; $p = 0.03$).

779

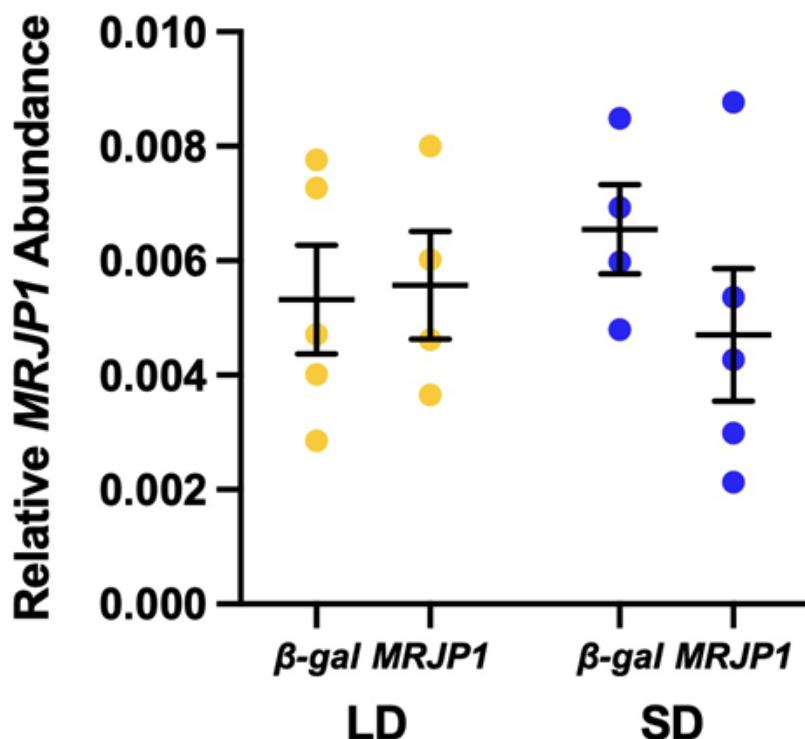
780 **Fig. 3: Consuming royal jelly reverses seasonal differences in the mosquito metabolome.** This
781 heat map shows regions of the NMR spectra that were significantly different between treatment
782 groups. Signals that were unambiguously identified are labeled with the respective metabolite
783 name. The color yellow represents metabolites that were highly abundant, while the color blue
784 represents metabolites that were less abundant. RJ = royal jelly; SW = sugar water; SD = short-day,
785 diapause-inducing conditions; LD = long-day, diapause-averting conditions.

786

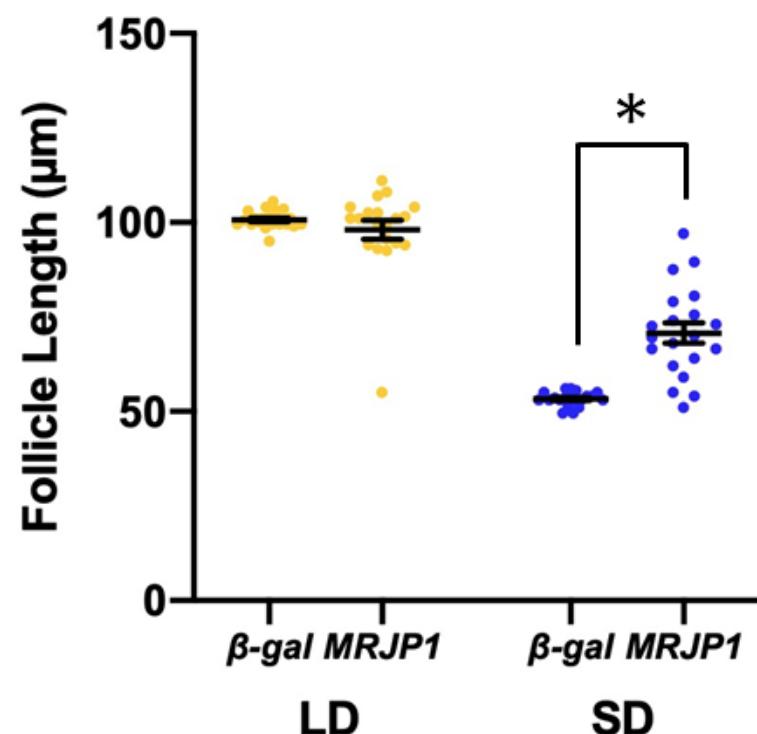



787 **Fig. 4: dsRNA against *MRJP1* affects seasonal phenotypes in mosquitoes.** A.) Treatment with
788 dsRNA for β -gal or *MRJP1* did not significantly affect relative *MRJP1* mRNA abundance in long day
789 (LD) or short day (SD) mosquitoes. B.) dsRNA against *MRJP1* caused a significant increase in egg
790 follicle length in short day (SD) mosquitoes. Significant difference denoted by * ($p < 0.001$). C.)
791 dsRNA against *MRJP1* significantly affected the lifespan of (SD) conditions. Significant differences
792 denoted by *** (LD β -gal to SD β -gal; $p < 0.001$), ** (LD *MRJP1* to SD *MRJP1*; $p < 0.001$) and * (SD β -
793 *gal* to SD *MRJP1*; $p = 0.0187$).

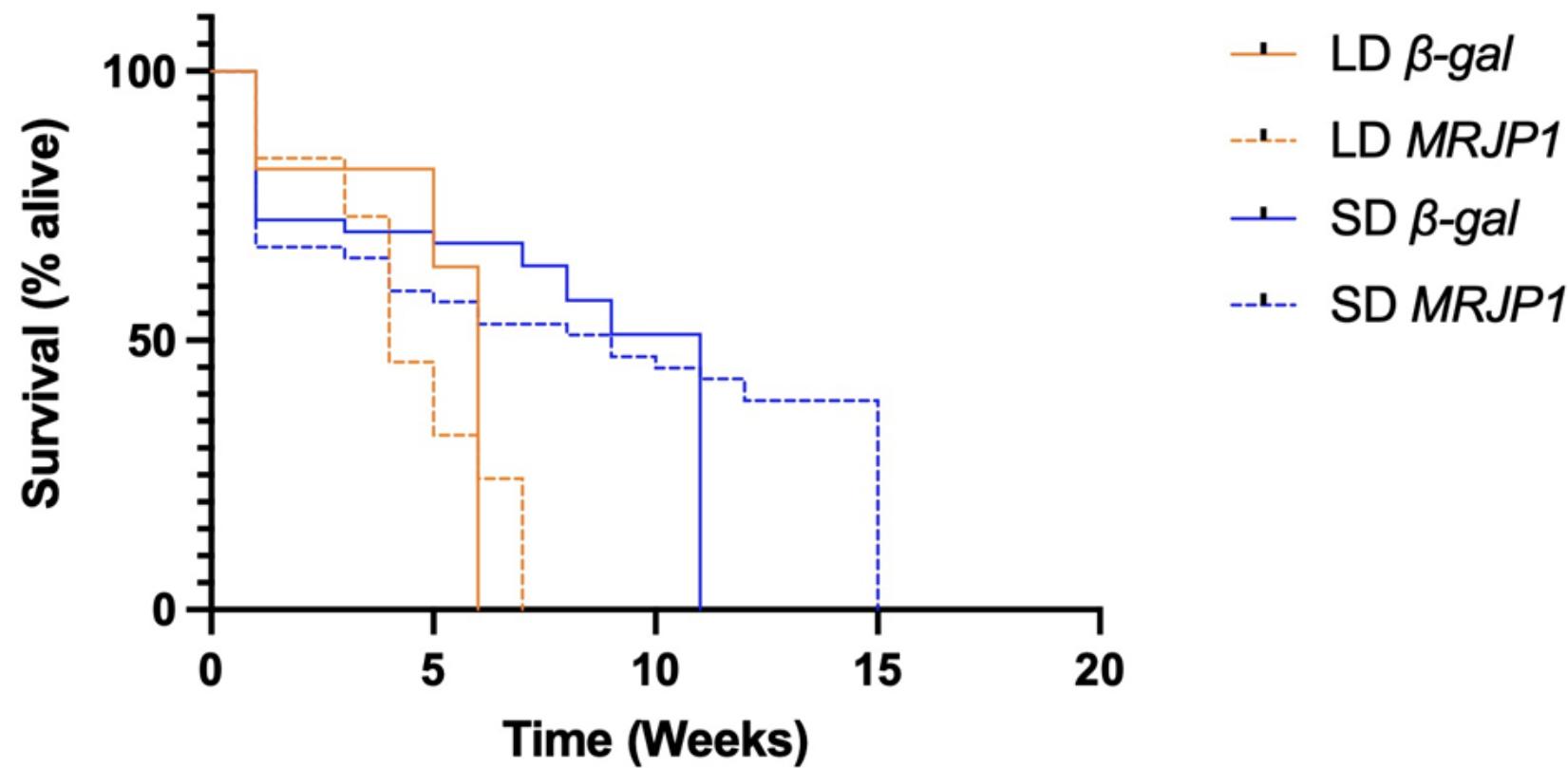

794

PC2 24.1 %


PC1 47.1 %

● Nondiapausing
▲ Diapausing




A.

B.

C.

