

STOC ’22, June 20ś24, 2022, Rome, Italy Vaidehi Srinivas, David P. Woodruff, Ziyu Xu, and Samson Zhou

majority algorithms in subsequent work. There has also been work

designing other algorithms that achieve this regret bound, such

as follow the perturbed leader [40], that are less computationally

expensive. However, all of these algorithms rely on a paradigm of

keeping track of the cumulative cost of every expert, which requires

the algorithm to use Ω(𝑛) bits of memory on each day.

In this paper, we approach the online learning with experts prob-

lem from the angle of memory-bounded learning in the data stream

model, and analyze whether there exists a low-memory algorithm

that still performs reasonably well when compared to the best

expert. Specifically, we consider the memory, i.e., the space com-

plexity, in the streaming model. We first note that in the discrete

version of the prediction with experts problem, where there are

two possible answers, 0 and 1, and the cost of each decision is in

{0, 1} (0 for picking the correct answer, and 1 otherwise), a trivial

random guessing algorithm is correct on half of the days in expec-

tation. At the other extreme, the regret bound of𝑂

(√︃
log𝑛
𝑇

)
can be

achieved by storing 𝑂 (𝑛) words (i.e., the weight of each expert) in

memory and implementing the weighted majority algorithm. Thus

it is natural to ask:

What is the space/accuracy tradeoff of an algorithm for

the online learning with experts problem in the stream-

ing model?

Prior Work on the Experts Problem. The experts problem has been

studied in the discrete decision setting [46] and variants where

costs are determined by a loss function [36, 58ś61]. Consequently,

many different problems can be reframed into the experts problem

framework, including portfolio optimization [21, 22], boosting [27],

and forecasting [12]. For a complete reference on these results, see

[14]. More recent work has shown that the multiplicative weights

algorithm, a generalization of the weighted majority algorithm,

has a tight asymptotic regret bound of
√︃

ln𝑛
4𝑇 in the general case

[34]. Previous work has also addressed the computational efficiency

of an experts algorithm from the perspective of time complexity.

Efficient algorithms have been considered in instances where extra

assumptions can be made on the expert, such as imposing a tree

structure [39, 57], assuming the experts are threshold functions

[47], or assuming the experts have a certain linear structure [40].

Although many different algorithms have been developed in this

area for these problems, they all revolve around tracking the per-

formance of every expert, which requires at least Ω(𝑛) memory. To

the best of our knowledge, our work is the first that examines the

experts problem from a streaming perspective.

1.1 Setup of Online Learning with Experts

In the experts problem, there are 𝑛 experts and𝑇 days. On each day

𝑡 ∈ [𝑇] = {1, . . . ,𝑇 }, the 𝑖-th expert makes a prediction 𝑥
(𝑡)
𝑖 from

the answer set 𝐴, e.g., 𝐴 = {0, 1} in the discrete decision case. The

algorithm then receives feedback in the form of costs 𝑐
(𝑡)
𝑖 for the

𝑖-th expert on day 𝑡 , where we define 𝑐
(𝑡)
0 to be the cost incurred

by the prediction of the algorithm. In the discrete decision case,

the algorithm does not receive the feedback directly, but rather

receives the łcorrect answerž 𝑦 (𝑡) ∈ {0, 1} on day 𝑡 . We can model

this as a data stream that encompasses the following elements in

the prescribed order: 𝑥
(𝑡)
1 , . . . , 𝑥

(𝑡)
𝑛 , 𝑐

(𝑡)
0 , . . . , 𝑐

(𝑡)
𝑛 , where we see this

sequence first for 𝑡 = 1, then for 𝑡 = 2, and so on until 𝑡 = 𝑇 . In the

discrete decision case, for each 𝑡 we instead only see the sequence

𝑥
(𝑡)
1 , . . . , 𝑥

(𝑡)
𝑛 , 𝑦 (𝑡) . Further, in the discrete decision case, the costs

are determined by 𝑦 (𝑡) , and our algorithms do not need to see the

sequence of the 𝑐
(𝑡)
1 , . . . , 𝑐

(𝑡)
𝑛 , which is a useful property of our

algorithms. Our lower bounds, however, still hold in the discrete

decision case even if the algorithm is given 𝑐
(𝑡)
0 , . . . , 𝑐

(𝑡)
𝑛 .

For the majority of the paper, we will consider the setup where

our algorithm picks an answer made by an expert (equivalent to

picking an expert). We only consider the discrete decision case to

show that our bounds also hold when the expert explicitly picks an

answer. We use𝑀 ∈ N to denote an upper bound on the number of

mistakesmade by the best expert. Note that the streaming algorithm

sees these sequences in order of increasing 𝑡 , and cannot go back

to see predictions or correct answers from previous days; the only

information it has about such values is from what it stores in its

memory. Further, our upper bounds hold in a setting where the

expert predictions and feedback are considered distinct stream

elements, i.e., streaming memory is needed to store information

about the expert predictions of the current day (in addition to all of

its information from the past days), 𝑥
(𝑡)
1 , . . . , 𝑥

(𝑡)
𝑛 , before the costs

and correct answer of the current day are seen. Note that our lower

bounds hold even in the setting where 𝑥
(𝑡)
1 , . . . , 𝑥

(𝑡)
𝑛 and 𝑦 (𝑡) can

be viewed at the same time.

Random-Order Streaming Model. We frequently consider the ex-

perts problem in the random-order streaming model [35], where we

assume the days are permuted in a uniformly random order with re-

spect to the order the days arrive in the stream. This is equivalent to

saying that the input distribution over (𝑥 (1) , 𝑐 (1)), . . . , (𝑥 (𝑇) , 𝑐 (𝑇))
is exchangeable, i.e., any permutation on [𝑇] of the data is equally
likely in the input distribution. We note that this is slightly different

from the traditional notion of a random-order stream where the

permutation is over elements in the stream, whereas in the experts

problem, the permutation is over the pairs of expert predictions

and costs that are associated with a single day in the problem. Note

that the permutation only applies across the ordering of days Ð

the order of experts remains fixed and unchanged across the days.

In addition, the exchangeability assumption in the random order

model allows it to subsume the i.i.d. model, where (𝑥 (𝑡) , 𝑐 (𝑡)) ∼ 𝜇

for all 𝑡 ∈ [𝑇]. As a result, all upper bounds that hold in the random

order model also hold in the i.i.d. model.

1.2 Our Contributions

We initiate the study of the online learning with experts problem in

the streaming model. We consider streams where the order of days

and corresponding expert choices and outcomes may be either (1)

worst case streams, (2) random-order streams, where the order of

the days is assumed to be in a random order, or (3) i.i.d. streams,

where the expert choices and outcomes on each day are drawn

from a fixed distribution. We prove upper and lower bounds for the

experts problem in these different streaming models. We refer to a

word of memory as 𝑂 (log(𝑛𝑇)) bits, and we use the 𝑂 (·) notation
to suppress log𝑂 (1) (𝑛𝑇) factors.

1159

Memory Bounds for the Experts Problem STOC ’22, June 20ś24, 2022, Rome, Italy

Lower Bound for I.I.D., Random Order, and Arbitrary Streams.

We show that any algorithm which achieves a regret of 𝛿 with

constant probability in the streaming model must use Ω
(

𝑛
𝛿2𝑇

)
bits

of memory. This lower bound holds for both arbitrary and random-

order streams. In fact, the lower bound is valid even if the correct

answers and the predictions of each expert are i.i.d., which implies

validity of the lower bound in random order and arbitrary-order

settings.

Theorem 1. Let 𝛿 , 𝑝 <
1
2 be fixed constants, i.e., independent

of other input parameters. Any algorithm that achieves 𝛿 regret for

the experts problem with probability at least 1 − 𝑝 must use at least

Ω

(
𝑛

𝛿2𝑇

)
space. This lower bound holds even when the costs are binary

and expert predictions, as well as the correct answer, are constrained

to be i.i.d. across the days, albeit with different distributions across

the experts.

Note that for 𝛿 =

√︃
1
𝑇 , Theorem 1 implies that Ω(𝑛) space is

necessary. Thus, we should not expect to obtain the same regret

bounds as the best algorithms for online learning with experts, e.g.,

multiplicative weights, when the space is significantly smaller than

𝑛. In other words, Theorem 1 shows a separation for the online

learning with experts problem between the classical centralized

setting and the streaming model when only 𝑜
(

𝑛
log𝑛

)
space is per-

mitted, in which case the 𝑂

(√︃
log𝑛
𝑇

)
regret that is obtainable for

the classical centralized setting cannot be achieved by any stream-

ing algorithm with 𝑜
(

𝑛
log𝑛

)
space. Moreover, this separation holds

for random-order, i.i.d., and arbitrary-order streams.

Upper Bounds for Random-Order Streams. Wenext consider upper

bounds for the online learning with experts problem in the random-

order streaming model. We consider the case where the costs of the

decisions of each expert have value in [0, 𝜌] rather than in {0, 1},
where 𝜌 > 0 is called the width of the problem.

Theorem 2 (Informal). There exists an algorithm that takes a

target parameter 𝛿 >

√︃
16 log2 𝑛

𝑇 , uses 𝑂̃
(

𝑛
𝛿2𝑇

)
space, and achieves

an expected regret of 𝜌𝛿 in the random-order model, where 𝜌 is the

width of the problem.

When the width 𝜌 is normalized to 1, our space dependence

on the regret 𝛿 in Theorem 2 is tight, given the lower bound in

Theorem 1. We present the formal version of Theorem 2 as The-

orem 9 in Section 4. Our algorithm shows that there are indeed

natural tradeoffs between the memory required, the regret 𝛿 of

the streaming algorithm, the total number 𝑇 of days, and the total

number 𝑛 of experts.

Upper Bounds for Predictions on Arbitrary Streams. We next con-

sider the online learning with experts problem in the more general

adversarial streaming model. We propose an algorithm that is cor-

rect on a łlargež fraction of days that allows for a space-accuracy

tradeoff, even if the best expert makes a number of mistakes that is

almost linear in 𝑇 .

Theorem 3. (Informal) Given an upper bound𝑀 ∈
[
0, 𝛿2𝑇

1280 log2 𝑛

]

on the cost that the best expert incurs, and a target regret 𝛿 >

√︃
128 log2 𝑛

𝑇 , there exists a streaming algorithm that uses space𝑂
(
𝑛
𝛿𝑇

)

and with probability at least 4/5, has regret 𝜌𝛿 , where 𝜌 is the width

of the problem. The algorithm does not need to know𝑀 in advance.

Theorem 3 is interesting across multiple regimes of parameters

for arbitrary-order streams, i.e., worst-case streams. First, our algo-

rithm provides space-accuracy tradeoffs that can achieve a sublinear

number of mistakes. Specifically, the number of mistakes made by

our algorithm nearly matches the asymptotic regret bound of the

multiplicative weights algorithm [34] for corresponding values of

𝛿 = 𝑂

(√︃
log2 𝑛
𝑇

)
. For constant 𝑀 = 𝑂 (1), a natural algorithm can

achieve 𝛿 regret simply by iteratively choosing łpoolsž of𝑂
(𝑛
𝑇

)
ex-

perts for łroundsž until the best expert is identified, where a round

lasts until the pool becomes empty. Here, each expert is removed

immediately after an incorrect prediction, and throughout a round,

the algorithm makes a prediction by majority vote. We remark that

the space bound of Theorem 3 matches this natural algorithm in

the regime where𝑀 = 𝑂 (1), even when the algorithm is oblivious

to the value of 𝑀 , and generalizes to handle larger values of 𝑀 .

In contrast, the natural algorithm uses 𝑂̃
(
𝑀𝑛
𝛿𝑇

)
space to achieve 𝛿

regret for larger values of𝑀 . In particular for constant 𝛿 , our algo-

rithm guarantees correctness on a constant 1 − 𝛿 fraction of days

using𝑂
(𝑛
𝑇

)
space, even if the best expert is incorrect on𝑂

(
𝑇

log2 𝑛

)

days, i.e., the best expert makes almost a linear number of mistakes.

Notably, this worst-case upper bound remains agnostic to the num-

ber of possible answers in the discrete decision setting, where the

set of all possible answers is a finite set. Finally, we remark that

Theorem 3 uses less space than the lower bound of Theorem 1 (recall

that 𝛿 < 1), revealing that the hardness of Theorem 1 stems from

the best expert making a łlargež number of mistakes.

On the other hand, Theorem 3 requires that the best expert incurs

at most𝑂
(

𝑇
log2 𝑛

)
cost, even for a constant factor approximation. It

is an interesting open question what regret bounds are achievable

on arbitrary-order streams when the best expert is allowed to incur

a constant fraction of errors, i.e., cost 𝑂 (𝑇). We present the formal

version of Theorem 3 as Theorem 7 in Section 3.

We defer missing proofs to the full version of the paper.

1.3 Technical Preliminaries: Standard

Sequential Prediction Algorithms

At a high level, our memory-constrained algorithms for the experts

problem sample subsets or łpools" of the𝑛 experts, and use standard

sequential prediction techniques on these subsets. For the sake of

modularity, we will formulate this as a black-box call to a sequential

prediction algorithm (without memory constraints). In this section

we define the properties that we require from such a sequential

prediction algorithm, and suggest some candidate algorithms.

Definition 1 (Seqential prediction algorithm). We say

that an algorithm A is a valid sequential prediction algorithm if,

given an instance of the online learning with experts problem such that

the cost of expert 𝑖 on day 𝑡 , 𝑐
(𝑡)
𝑖 ∈ [0, 1] for all 𝑖 ∈ [𝑛]𝑎𝑛𝑑𝑡 ∈ [𝑇],

1160

STOC ’22, June 20ś24, 2022, Rome, Italy Vaidehi Srinivas, David P. Woodruff, Ziyu Xu, and Samson Zhou

and a target parameter 𝜀, we have that

E[cost of A] ≤ (1 + 𝜀)
[
𝑇∑︁

𝑡=1

𝑐
(𝑡)
𝑖

]
+ 𝛽 ln𝑛

𝜀
,

for some fixed constant 𝛽 , and A maintains 𝑂 (𝑛) words of memory.

Note that the constraint thatAmaintains𝑂 (𝑛) words ofmemory

is not very restrictive, as this allows A to maintain the running

total cost of each expert, which is all we need to run many of the

best possible algorithms for this problem.

Perhaps the most well-studied such algorithm is the multiplica-

tive weights algorithm. Here, we introduce this algorithm in the

formulation of [3] (Algorithm 1).

Theorem 4 (Theorem 2.1 in [3]). Suppose 𝑐
(𝑡)
𝑗 ∈ [0, 1] for all

𝑗 ∈ [𝑛], 𝑡 ∈ [𝑇] and 𝜀 ≤ 1
2 . Then the multiplicative weights algorithm

(Algorithm 1) satisfies for each 𝑖 ∈ [𝑛],

𝑇∑︁

𝑡=1

𝑛∑︁

𝑗=1

𝑐
(𝑡)
𝑗 𝑝
(𝑡)
𝑗 ≤ (1 + 𝜀)

[
𝑇∑︁

𝑡=1

𝑐
(𝑡)
𝑖

]
+ ln𝑛

𝜀
,

(where the left-hand side of this inequality is the expected cost of the

multiplicative weights algorithm, and the right-hand side is in terms

of the cost of some particular expert.)

Algorithm 1 The multiplicative weights algorithm.

Input: Number 𝑛 of experts, number 𝑇 of rounds, parameter 𝜀

1: Initialize𝑤
(1)
𝑖 = 1 for all 𝑖 ∈ [𝑛].

2: for 𝑡 ∈ [𝑇] do
3: 𝑝

(𝑡)
𝑖 ← 𝑤

(𝑡)
𝑖∑

𝑖∈[𝑛] 𝑤
(𝑡)
𝑖

4: Follow the advice of expert 𝑖 with probability 𝑝
(𝑡)
𝑖 .

5: Let 𝑐
(𝑡)
𝑖 be the cost for the decision of expert 𝑖 ∈ [𝑛].

6: 𝑤
(𝑡+1)
𝑖 ← 𝑤

(𝑡)
𝑖

(
1 − 𝜀𝑐 (𝑡)𝑖

)

7: end for

Another example of a sequential prediction algorithm is the

follow the perturbed leader algorithm due to [40] (Algorithm 2),

which maintains running totals of the cost incurred by each expert.

On each day, the algorithm randomly łperturbsž the costs, and then

follows the prediction of the expert with the lowest perturbed cost.

Theorem 5 (Theorem 1.1 in [40] applied to the experts prob-

lem). Suppose 𝑐
(𝑡)
𝑖 ∈ [0, 1] for all 𝑖 ∈ [𝑛], 𝑡 ∈ [𝑇], and 𝜀 ≤ 1. The

FPL* (Algorithm 2) satisfies for each 𝑖 ∈ [𝑛],

E [cost of FPL*(𝜀)] ≤ (1 + 𝜀)
[
𝑇∑︁

𝑡=1

𝑐
(𝑡)
𝑖

]
+ 8(1 + ln𝑛)

𝜀
.

For 𝑛 ≥ 3, this satisfies the conditions of Definition 1 for 𝛽 = 16.

Algorithm 2 The follow the perturbed leader algorithm (FPL*)

from [40], instantiated for the experts problem.

Input: Number 𝑛 of experts, number 𝑇 of rounds, parameter 𝜀

1: for 𝑡 ∈ [𝑇] do
2: for 𝑖 ∈ [𝑛] do
3: Draw 𝑟 from a standard exponential distribution, and set

𝑝
(𝑡)
𝑖 = 2𝑟/𝜀 with probability 1

2 , and 𝑝
(𝑡)
𝑖 = −2𝑟/𝜀 other-

wise

4: end for

5: Follow the expert 𝑖 for whom the sum of their total cost so

far and 𝑝
(𝑡)
𝑖 is the lowest

6: end for

1.4 Related Work on the Experts Problem

While the space complexity of the experts problem in the models

described above has not been previously studied, many related

problems have been studied in the streaming model, and there are

many results for the problem when space is not constrained. We

discuss how the hardness, proof techniques, and algorithms for

these problems relate to the space-constrained experts problem.

Identifying an Approximately Good Expert is Harder. A closely

related problem is the expert identification problem, where the algo-

rithm must output the index of an expert that does approximately

as well as the best expert at the end of the stream. A natural strategy

might be to use a heavy-hitter algorithm to identify the best expert.

The heavy hitters problem is a classical problem that has been well-

studied in the streaming model. In the 𝜀-heavy hitters problem, the

algorithm sees a stream of elements from [𝑛] = {1, 2, . . . , 𝑛}. At
the end of the stream, it must output any item that accounts for

at least an 𝜀 -fraction of the ℓ𝑝 norm, for some real value 𝑝 ≥ 1.

One can consider the experts problem as a data stream of insertions

to a vector 𝑉 ∈ N𝑛 , where the value at index 𝑖 is the number of

days the 𝑖-th expert has been correct. Running an ℓ𝑝 𝜀-heavy hitters

algorithm over this stream would return the experts that are cor-

rect on at least 𝜀 ∥𝑉 ∥𝑝 days (see, e.g., [6, 10, 11, 17, 19, 44] and the

references therein). Another variant of the heavy hitters problem

is the 𝜀-maximum problem, which outputs a value, rather than the

the index, that is within 𝜀 ∥𝑉 ∥1 of the true maximum element (see,

e.g., [6]). If we were to select an input where the best expert makes

no mistakes, while all other experts are correct on 𝑇 /2 + 1 days, 𝜀
would need to be on the order of 𝑂 (1/𝑛) to find the best expert,

and any heavy hitters algorithm for finding any good expert would

require Ω(𝑛) space, given that their memory usages depends at

least linearly on 1/𝜀.
More generally, we note that there is a reduction from the well-

studied two player set disjointness communication problem (see,

e.g., [5, 8, 16, 62]), in which Alice is given a set 𝑋 ∈ {0, 1}𝑛 and

Bob is given a set 𝑌 ∈ {0, 1}𝑛 and their goal is to distinguish

whether |𝑋 ∩ 𝑌 | = 0 or |𝑋 ∩ 𝑌 | = 1. Observe that Alice can create

a stream of 𝑛 days so only expert 𝑖 can be correct on day 𝑖 and

furthermore, expert 𝑖 is correct on day 𝑖 if and only if 𝑋𝑖 = 1. Bob

similarly creates a stream of 𝑛 days so that the best expert on their

combined stream is 𝑋 ∩ 𝑌 if |𝑋 ∩ 𝑌 | = 1, thus allowing Bob and

Alice to solve the set disjointness problem, by using another round

1161

Memory Bounds for the Experts Problem STOC ’22, June 20ś24, 2022, Rome, Italy

of communication to check whether the best expert is indeed in

both 𝑋 and 𝑌 . Note that we can extend this to 𝑇 days by copying

Alice 𝑇 /2 times and copying Bob 𝑇 /2 times, and placing all copies

of Alice before all copies of Bob. Since set disjointness requires total

communication Ω(𝑛) even for randomized protocols, this reduction

immediately implies there is an Ω(𝑛) lower bound for identifying

the best expert, even for randomized streaming algorithms and

even if the best expert makes no mistakes while any other expert

is correct on at most half of the total number of days. These results

show a distinction between the hardness of finding an expert that

does well, relative to the best expert, and the hardness of predicting

well relative to the best expert. We study the latter problem, and

break this Ω(𝑛) lower bound by obtaining an𝑂 (𝑛/𝑇) upper bound
for the setting of parameters above.

MultiplicativeWeights. Multiplicativeweights is ameta-algorithm

that maintains weights over a set of objects. On iteration 𝑖 + 1,
the algorithm sets the weight of item 𝑥 according to the update

rule𝑤
(𝑖+1)
𝑥 ← 𝑤

(𝑖)
𝑥

(
1 − 𝜀𝑃 (𝑖+1)𝑥

)
, where 𝜀 is the learning rate, and

𝑃
(𝑖+1)
𝑥 is some penalty applied to 𝑥 . Forms of the multiplicative

weights algorithm have been independently discovered for prob-

lems in many fields from as early as the 1950s [13]. Many of these

problems generalize to the discrete prediction with expert advice

problem, first analyzed by Littlestone andWarmuth [46], or the con-

tinuous online learning with expert advice problem, and for both

problems, the multiplicative weights algorithm achieves asymptoti-

cally optimal regret [20, 48]. Notable applications of the multiplica-

tive weights algorithms include AdaBoost [27] and approximately

solving zero-sum games [28]. Multiplicative weights can also be

used to efficiently approximate a wide class of linear programs and

semi-definite programs, which have given fast approximations for a

broad range ofNP-complete problems, including the traveling sales-

person problem, some scheduling problems, and multi-commodity

flow [30, 49]. Recent work has analyzed the multiplicative weights

algorithm for stochastic experts [1, 51, 54], and bounded the regret

in terms of the variance of the best expert [15, 38]. There has also

been much recent work in adaptively optimizing the learning rate

[18, 25, 43]. For a more complete overview of the history and ap-

plications of multiplicative weights, the reader is referred to the

surveys [3, 7, 14, 26].

Follow the Perturbed Leader. The follow the perturbed leader

(FPL) algorithm (Algorithm 2), due to Kalai and Vempala [40],

achieves similar guarantees to multiplicative weights for the ex-

perts problem, and can be efficiently generalized to a large set of

online problems. They define a linear generalization of these online

problems. Consider a set of possible decisions D ⊂ R𝑛 and a set

of possible events S ⊂ R𝑛 . On each day, the algorithm chooses a

decision 𝑑𝑡 ∈ D. Then the event of that day 𝑠𝑡 ∈ S is revealed, and

the algorithm incurs cost 𝑑𝑡 · 𝑠𝑡 . The total cost of the algorithm,∑
𝑡 𝑑𝑡 · 𝑠𝑡 , is evaluated against the best static decision in hindsight,

min𝑑∈D 𝑑 ·∑𝑡 𝑠𝑡 . We can model the standard experts problem as

an instance of this problem where 𝑛 is the number of experts, S
is made up of vectors with entries between 0 and 1, and D is the

set of vectors for which one index is 1, and all others are 0. For

each day 𝑡 , the FPL algorithm then calculates a random perturba-

tion vector 𝑝𝑡 ∈ R𝑛 . Then it follows the decision that optimizes

min𝑑∈D 𝑑 ·
(
𝑝𝑡 +

∑
𝑖≤𝑡 𝑠𝑖

)
. In the case of the standard experts

problem, this is generating a perturbation for each expert, and

then following the expert for whom the sum of their cost and their

perturbation is the smallest.

This linear generalization means that for some structured prob-

lems, this algorithm is computationally more efficient than multi-

plicative weights. However, like multiplicative weights, it requires

access to the running cost
∑
𝑡 𝑠𝑡 . For the general experts problem,

this is an 𝑛 dimensional vector, so this still requires Ω(𝑛) memory.

Online Convex Optimization. A common setting in online convex

optimization is to minimize the regret, defined by
∑𝑇
𝑡=1 𝑓𝑡 (𝑥𝑡) −

min𝑥 ∈𝑋
∑𝑇
𝑡=1 𝑓𝑡 (𝑥), where 𝑋 is some convex set and the functions

𝑓1, . . . , 𝑓𝑇 : 𝑋 → R are convex cost functions. A special case of on-

line convex optimization is when the goal is to minimize a convex

function 𝑓 over a convex domain 𝑋 . If the algorithm is given oracle

access to a noisy gradient, i.e., an oracle that outputs an unbiased

estimate to the gradient with łsmallž variance, then stochastic gra-

dient descent is known to have expected regret at most 𝑂 (1/
√
𝑇).

For a more precise statement, see [37, 55, 56].

Multi-Armed Bandits. Space complexity has been considered in

the related problem of multi-armed bandits. The multi-armed ban-

dits problem is a classic problem in reinforcement learning, in which

there are some number of arms and each arm has a fixed reward

distribution that can be sampled from at each time step. [45] has

shown that only constant space is required to achieve regret that is

within an 𝑂 (1/Δ) factor of the optimal regret, where Δ is the dif-

ference between the mean reward of the best and second best arms.

This space efficient algorithm for the bandits problem, however, is

not applicable to the experts problem, since it does not capture the

adversarial nature of sequential prediction, i.e., the performance of

an expert changes on a daily basis, while the reward distribution

of each arm is static in the standard streaming model. Nor does

it leverage the ability of the algorithm to view the results of all

experts on each day. Hence, expert algorithms are not comparable

to bandit algorithms, since an expert algorithm has information

about all łarmsž on each day. [4] analyze the problem of finding

the best arm with optimal sample complexity in the streaming arm

model, where the algorithm must save an arm to sample from it.

They prove a tight bound of requiring Θ(𝑘) arms of space to find

the top 𝑘 arms. These results show that solving the experts problem

is fundamentally harder than the multi-armed bandits problem,

since solving the bandits problem with low regret can be done in

constant space.

Learning in Streams. There has been a substantial amount of

work that analyzes the tradeoff between space and sample complex-

ity for statistical learning and estimation problems in the stream-

ing model, where the stream elements are assumed to be samples

drawn i.i.d. from a fixed distribution. A series of work has stud-

ied the problem of inferring the index of a row sampled from

a matrix [32, 33, 52], and the parity learning problem [42, 53].

More recent work has also analyzed distribution testing relevant

to cryptographic settings, such as lower bounds in the streaming

model for testing against Goldreich’s pseudorandom generator [31].

Other lines of work examine more specific learning problems in

the streaming model, such as finding correlations in multivariate

1162

STOC ’22, June 20ś24, 2022, Rome, Italy Vaidehi Srinivas, David P. Woodruff, Ziyu Xu, and Samson Zhou

data [24], collision probability estimation, finding the connectivity

of an undirected graph, and rank estimation [23]. In the distributed

setting, communication lower bounds have been analyzed for con-

vex optimization [2]. Our study of the experts problem, however,

makes no assumptions on the distributions each element in the

stream is drawn from, and is a prediction rather than an inference

problem. Space usage was considered by [41] in their analysis of

pairwise losses in online learning, but not in the general sense of

space complexity. They consider a modified form of regret under

the pairwise loss with respect to a finite buffer of previous stream

items rather than all previous items in the stream. This problem,

however, is very different from the experts setting of proving space

complexity bounds for any algorithm, while still comparing the

performance of the algorithm to that of the best expert.

1.5 Overview of our Techniques

1.5.1 Lower Bound by Reducing to Distributed Detection. We first

give an overview of the lower bounds that we present in Section 2.

We create a new problem that combines 𝑛 instances of the dis-

tributed detection problem [9], with each instance corresponding

to an expert Ð we call this new problem DiffDist. In essence,

DiffDist is the problem of distinguishing between:

(1) Every expert flips an independent fair coin to determine its

prediction, i.e., each expert predicts correctly with probabil-

ity 1
2 .

(2) A single expert predicts correctly with probability 1
2 +𝑂 (𝛿)

on each day, and every other expert predicts correctly with

probability 1
2 .

We note that the predictions of each expert form a separate instance

of the distributed detection problem, each of which has a random-

ized communication lower bound of Ω(1
𝛿2
). We then use a careful

combination of existing techniques, e.g., [9, 29, 50, 63] to show an

Ω

(
𝑛
𝛿2

)
randomized communication lower bound for the DiffDist

problem.

After having shown a randomized communication lower bound

for the DiffDist problem, one of our key ideas is then to introduce

a randomized reduction from the DiffDist problem, so that each

player corresponds to a day, and each expert prediction is the cor-

responding bit in the DiffDist problem. We would like to say that

the single expert with higher probability of correctness translates

to a separation in the cost of the algorithm for online learning with

expert advice. However, even if the experts are incorrect, it seems

possible that an algorithm could ignore the experts and still have

high accuracy. For example, if we let the the correct answer be 1

for every day, an experts algorithm could be perfectly accurate in

case (1) simply by predicting 1 everyday. Thus, we create a mask

for each day by setting it to be a random fair coin flip and we XOR

both the outcome of each day, as well as the output of each expert,

by the mask. Hence in case (1), the algorithm cannot have accuracy

significantly higher than 1
2 with constant probability, regardless of

its output sequence, since the expert predictions defined via our

masking, and the correct answer, all remain independent fair coin

flips. On the other hand, in case (2), the algorithm must be correct

on a good fraction of days to keep up with the best expert. This

results in a separation in performance between cases (1) and (2).

Our hard instance is inherently distributional, and the choice of

hard distribution is crucial to ensure that the algorithm has no

information in case (1) about the correct answer on a future day,

regardless of the past.

1.5.2 Upper Bound for Random-Order Streams. We first consider

upper bounds for the online learning with experts problem in

random-order streams, corresponding to the results in Section 4.

For simplicity, we will describe an overview of our algorithms and

proof techniques in the setting where the costs are restricted to

{0, 1}, i.e., an expert either makes a mistake or does not. Due to

space constraints on the algorithm, we can only afford to sample

a small number of experts in each round. Thus our algorithm (in

Algorithm 6) initializes a pool of 𝑘 = 𝑂
(
𝑛 log𝑛

𝛿2𝑇

)
different experts

from [𝑛] at the beginning of each round. We then run a standard

sequential prediction algorithm on this restricted pool of experts. If

this pool of experts makes too many total mistakes in expectation,

then we resample a new pool of experts and run the sequential

prediction algorithm on this new pool. Note that we can explicitly

compute the expectation of the pool, since we have access to the

expert predictions in the pool, their corresponding weights, and

the outcomes across each day over the duration of the round.

In the random-order model, we can show that if the best expert

does not make too many mistakes, then the sequential prediction

algorithm will perform well upon sampling the best expert. Thus, to

prove our algorithm has low expected regret, we must demonstrate

that one of two cases must be true: (1) the algorithm does not sample

the best expert because the algorithm has already been performing

well or (2) the algorithm samples the best expert łearlyž enough in

the stream and the best expert is not subsequently discarded. To

handle the first case, we observe that we only delete the pool of

experts if the sequential prediction algorithm is performing poorly,

so if the total number of rounds is low, there must be rounds with

significantly long duration and also sufficiently high expectation.

Thus the algorithm will perform well in expectation.

Analysis of Pool Selection Times. However, the second case fore-

shadows an issue in the analysis: if the best expert is never discarded

from the pool, then the best expert can only be added to the pool in

the last round. Thus, even if we condition on the entire algorithm

using 𝑅 rounds for some integer 𝑅 > 0, the probability that the

best expert is not added to the pool in round 𝑅 may be significantly

larger than the probability that the best expert is added to the pool

in round 𝑅. This issue is further compounded by the fact that once

a pool is selected, the day on which the next round begins is com-

pletely deterministic and possibly adversarial, so it does not suffice

to, for example, consider the probability the best expert is added to

the pool on a random day.

We overcome this challenge by łdecouplingž the number of

rounds from the sampling of the best expert. What we mean by

this is as follows. We consider the distribution of all days on which

new rounds begin. We can simulate the sampling process with

a sequence of times 𝑡1, 𝑡2, . . . so that each 𝑡𝑖 is drawn from the

distribution of possible times that round 𝑖 can end, conditioned on

the entire history of the process up to time 𝑡𝑖−1. Observe that this
is a well-defined sequential process for defining each term 𝑡𝑖 , in the

1163

Memory Bounds for the Experts Problem STOC ’22, June 20ś24, 2022, Rome, Italy

sense that to obtain 𝑡𝑖 , we can simply draw from a distribution of

possible durations for a round and then add the duration to 𝑡𝑖−1.
We observe that due to the distributional properties of the random-

order model, once the algorithm samples the best expert, then with

high probability the sequence of rounds will terminate. Moreover,

since the algorithm performs sampling with replacement between

rounds, the probability that the best expert is added to the pool

on each drawing of 𝑘 experts is the same across all rounds. Thus,

the probability distribution for the total number of rounds can be

related to a geometric distribution Ð if the algorithm uses 𝑅 rounds,

then the best expert cannot be sampled in the first 𝑅 − 1 rounds
with high probability. This allows us to show that if the algorithm

samples the best expert, there was likely a small number of rounds

and therefore the total cost of the algorithm is not too high.

Unknown Error for the Best Expert. It remains to remove the

assumption of knowing the error rate for the best expert, for which

we again use the promise of the random order streaming model,

which allows us to use short prefixes of days in order to obtain an

estimate of the error rate.

To that end, we note that it suffices to acquire a (1 + 𝑂 (𝛿))-
approximation to the number of mistakes made by the best expert,

since the regret will only be increased by 𝑂 (𝛿) if we have such

an estimate. To find a (1 + 𝑂 (𝛿))-approximation to the number

of mistakes of the best expert, we initialize our guess 𝛾 for the

mistakes to be 𝑇
2 . We then split the stream into epochs of length

𝑂

(
𝛿𝑇
log 1

𝛿

)
and perform a binary search by repeatedly updating 𝛾

depending on whether the current guess is too high or too low

based on the performance of the best expert in the epoch. Thus

by epoch 𝑘 , our guess 𝛾 is within a
(
1 + 1

2𝑘

)
-factor of the actual

number of mistakes made by the best expert. Hence it suffices to

use𝑂
(
log 1

𝛿

)
epochs to update 𝛾 , which can only increase the total

regret additively by 𝛿 , since each epoch has length 𝑂

(
𝛿𝑇
log 1

𝛿

)
.

1.5.3 Upper Bound for Arbitrary-Order Streams. We consider arbi-

trary order streams in Section 3. Unfortunately, when the stream no

longer arrives in a random order, then we again have no guarantees

on how the best expert will perform if it is sampled at any given

time. We observe that if the costs are {0, 1} for each day, then we

can attempt to emulate the simpler majority elimination algorithm

by removing all incorrect experts on a day on which the algorithm

is incorrect. Thus, our starting point is an algorithm that initializes

a pool of 𝑘 = 𝑂
(
𝑛 log𝑛
𝑇𝛿

)
different experts from [𝑛] at the beginning

of each round and removes incorrect experts on incorrect days until

the pool is depleted, at which point the next round begins and a

new pool of 𝑘 different experts from [𝑛] is initialized. On each day,

the algorithm outputs the majority vote of the experts in the pool.

However, removing all incorrect experts would significantly

increase the chance that the best expert is removed from the pool,

even over multiple rounds. For example, if the best expert makes a

constant number of mistakes, then it is possible that it only survives

a constant number of days before it is removed from the pool. If

all other experts perform poorly, then the algorithm could only be

correct on a constant number of days in every group of 𝑂
(
𝑇𝛿
log𝑛

)

days, which is subconstant even if 𝛿 is a constant. Therefore, we

should relax the conditions for removal of experts; a natural choice

is to only remove experts that have been incorrect for 𝛿
4 fraction of

the time since the pool has been initialized, regardless of the outcome

of each day. The intuition is that all experts make errors on at most

a 𝛿
4 fraction of the days in the pool, so the algorithm should make

errors on at most an 𝑂 (𝛿) fraction of the days over the pool.

Accumulation of Errors. However, this surprisingly fails because

it allows experts to łbuild-upž future errors by having good accuracy

on previous days. For example, suppose we have a pool of 100

experts and we choose to eliminate experts that are wrong on half

of the days since the pool has been initialized. Suppose all experts

are correct on the first 50 days but then from day 51 to day 100,

exactly half the experts are wrong on every single day. On day 100,

half of the experts are eliminated and the algorithm has made 50

mistakes, but the remaining experts have not made any mistakes.

Thus, even if half of the remaining 50 experts are wrong on every

single day from day 101 to day 200, they will not be eliminated

until day 200, which causes the algorithm to err on every single

day during that interval. We can continue this geometric approach

by allowing half of the experts to be wrong on an interval with

double the length, e.g., 13 of the remaining 25 experts are wrong

every single day from day 200 to day 400, so that the algorithm will

always be incorrect after the first 50 days, which clearly contradicts

the desired claim.

The key to the above counterexample is that experts that are

incorrect on later days can cause a larger number of incorrect

outputs by the algorithm because these experts were correct on

previous intervals. At a first glance, it seems we can avoid this issue

by instead resetting a timer for the remaining experts each time the

size of the pool roughly halves. Namely, suppose we define a timer

𝑢 to first demarcate the beginning of the round. Any expert that is

inaccurate for at least a 𝛿
4 fraction of the days since time𝑢 is deleted.

Each time the size of 𝑃 decreases by roughly half, the variable 𝑢 is

updated to the new time. As before, the current round ends when

the pool is completely depleted of experts, at which point the next

round begins and a new pool is chosen. However, this still does

not work because now the timer can be set adversarially to always

cause the best expert to be deleted.

Surprisingly, the issue is alleviated if we instead require an even

more stringent demand from the experts in the pool. Instead of

asking for experts to make errors on at most 𝛿
4 fraction of the

days in the pool, we instead ask experts to make errors on at most

𝑂
(

𝛿
log𝑛

)
fraction of the days in the pool. Since the timers are no

longer reset, it is once again possible for the best expert to not be

deleted. Moreover, the extra 𝑂 (log𝑛) factor allows us to overcome

to build-up of errors in the previous counterexample, because the

errors can only accumulate over 𝑂 (log𝑛) rounds.
The intuition for the algorithm is that one of two cases should

hold. Either there is a small number of rounds, which indicates that

the experts in some pool performed well over a large period of time,

or there is a large number of rounds, in which case it is likely that

the best expert is added to the pool in some round. We would like

to show that in the latter case, the best expert being added to the

pool compels the algorithm to perform well overall. The idea is that

1164

STOC ’22, June 20ś24, 2022, Rome, Italy Vaidehi Srinivas, David P. Woodruff, Ziyu Xu, and Samson Zhou

if we add the best expert to the pool on a random day, it is unlikely

that the best expert will ever be deleted from the pool and thus the

algorithm will have good accuracy.

Decoupling for Arbitrary-Order Streams. Whereas the random-

order model analysis crucially used the fact that the best expert

would not be deleted if it was sampled to the pool, this property

no longer holds for arbitrary-order streams. For instance, there

could be Ω(𝑀) consecutive days in which the best expert makes

a mistake, so that our algorithm will likely delete the best expert

during that time. Thus, we define łbadž times as days on which

the best expert would be deleted from the pool if it were sampled

on that day. Then we can upper bound the total number of rounds

by the sum of the number of rounds starting on bad times and the

number of rounds starting on good times. The number of rounds

beginning on bad times is upper bounded simply by the number

of bad times, which in turn cannot be too large by an averaging

argument. We then look to upper bounding the number of rounds

starting on good days. Note that if the best expert is sampled on

a good day, then it will never be deleted, which terminates the

sequence of resamplings. Thus, the number of rounds initiated on

good days follows a geometric distribution. Hence, we can show

that the number of rounds initiated on good days and thus the total

number of rounds is łlowž with good probability. It follows that

with good probability, the total number of mistakes by the algorithm

must therefore also be low since the algorithm only resamples if

its accuracy is poor. Thus, although these techniques may not be

as black box as those for random-order streams, our algorithm can

achieve high-probability bounds for arbitrary-order streams, while

we do not know if this is possible with random order streams.

2 LOWER BOUND FOR ALL STREAMING

MODELS

We will provide our lower bound in terms of 𝛿 , the regret the

algorithm incurs. We note that our lower bound is valid in the i.i.d.

setting for discrete prediction, and consequently is a lower bound in

all (adversarial, random order, i.i.d., and continuous costs) settings

we consider in the paper. Moreover, the lower bound holds even if

the algorithm still has access to all Ω(𝑛) predictions of the experts
when the outcome of the day is revealed (and loses access to the

predictions only when it receives the next day’s predictions).

Our lower bound is achieved by reducing the problem of discrete

prediction with expert advice to an 𝑛-fold version of the distributed

detection problem we call DiffDist.

Definition 2 (The 𝜀-DiffDist Problem). We have 𝑇 players,

each of whom holds 𝑛 bits, indexed from 1 to 𝑛. We must distinguish

between two cases, which we refer to as ł𝑉 = 0" and ł𝑉 = 1". Let 𝜇0
be a Bernoulli distribution with parameter 1

2 , i.e., a fair coin, and let

𝜇1 be a Bernoulli distribution with parameter 1
2 + 𝜀.

• (NO Case, ł𝑉 = 0") Every index for every player is drawn i.i.d.

from a fair coin, i.e., 𝜇0.

• (YES Case, ł𝑉 = 1") An index 𝐿 ∈ [𝑛] is selected arbitrarily

ś the 𝐿-th bit of each player is chosen i.i.d. from 𝜇1. All other

bits for every player are chosen i.i.d. from 𝜇0.

Intuitively, each player in the 𝜀-DiffDist problem corresponds

to a different day in the learning with experts problem. The 𝑛 bits

held by each player correspond to the 𝑛 expert predictions for

each day. Thus, in the NO case for the 𝜀-DiffDist problem, each

expert is correct on half of the days in expectation (and with high

probability) while in the YES case, there exists a single expert that is

correct on a 1
2 + 𝜀 fraction of the days in expectation (and with high

probability). We note that we consider an algorithm that solves the

𝜖-DiffDistproblem with probability 1 − 𝑝 , for some fixed constant

𝑝 ∈ [0, 1], where this probability is over both the randomness of

the input distribution, as well as the private randomness of the

algorithm.

2.1 Communication Lower Bound of the

𝜖-DiffDist Problem

We prove our lower bounds using the blackboard model, where each

element of the stream is treated as a party (for us, each party will

correspond to a day of predictions and corresponding outcome), and

an algorithm for computing on the stream is seen as a multiparty

communication protocol. Each of𝑇 parties has private randomness

and communicates by posting a message to the blackboard, and we

denote the transcript of all communication in a protocol by Π ∈
{0, 1}∗. The communication cost of a protocol is the maximum bit

length of the transcript, where the maximum is taken over all inputs

and all coin tosses of the protocol. The communication complexity

is the minimum communication cost of a correct protocol, where

we will consider distributional correctness, meaning that a protocol

is correct with failure probability 𝛾 if it fails with probability at

most 𝛾 , where the probability is taken over the joint distribution of

the inputs and the protocol’s private coins. We will take 𝛾 to be a

constant throughout, and will specify the input distributions we

consider. We will also allow the protocol to have its own private

coins, as we will need this when proving a direct sum theorem

for information cost, described below. In the streaming model, the

space complexity of an algorithm is the maximum amount of space

in bits used by the algorithm. Note that any lower bound 𝑆 on the

randomized communication complexity in the blackboard model

implies an 𝑆/𝑇 lower bound on the space complexity of a 1-pass

randomized streaming algorithm for solving the communication

problem, since one player must communicate at least 𝑆/𝑇 bits.

To prove a communication lower bound on the 𝜖-DiffDist prob-

lem, we prove an analogue of the direct sum theorem [5] that applies

to the 𝜖-distributed detection problem. The classic direct sum theo-

rem from [5] cannot be directly applied, since it is only applicable

to decision problems, where the correct answer can be solely deter-

mined from the inputs. In our case the goal is to correctly infer a

latent bit Ð the correct answer is not a deterministic function of

the input bits, but rather we are in a hypothesis testing scenario

where we must infer the latent bit correctly with good probability

under its respective posterior distribution.

Hence, we will use a technique that is an analogue of the direct

sum theorem in [5], but instead we directly show a lower bound on

the mutual information in the case 𝑉 = 0. The mutual information

𝐼 (𝑋 ;𝑌) between two variables 𝑋 and 𝑌 is equal to 𝐻 (𝑋) −𝐻 (𝑋 |𝑌),
or equivalently, 𝐻 (𝑌) − 𝐻 (𝑌 |𝑋), where for a random variable 𝑍 ,

𝐻 (𝑍) is the Shannon entropy of the distribution of 𝑍 . We refer the

reader to [5] for more background on information theory and the

information complexity that we use.

1165

Memory Bounds for the Experts Problem STOC ’22, June 20ś24, 2022, Rome, Italy

Lemma 1 (Decomposable lemma). Consider the distribution X ∼
𝜇𝑛0 under the NO case of the 𝜖-DiffDist problem. For any protocol

Π that solves the 𝜖-DiffDist problem with constant probability, the

following inequality holds: 𝐼 (X;Π) ≥
𝑛∑
𝑖=1

𝐼 (X𝑖 ;Π | 𝑉 = 0) under 𝜇𝑛0 .

To lower bound individual summands, we use the following

Lemma 2 (Reduction lemma). For a protocol Π that solves the

𝜖-DiffDist problem with probability at least 1−𝑝 , where 𝑝 ∈ [0, 0.5)
is a fixed constant, the following inequality holds in the NO case of the

𝜖-DiffDist problem: for every 𝑖 ∈ [𝑛], 𝐼 (X𝑖 ;Π | 𝑉 = 0) ≥ Ω(𝜖−2).
Note that the 𝜖-DiffDist problem is not solvable with 𝑜 (𝜖−2)

players (samples). We obtain the following randomized communica-

tion complexity lower bound for 𝜀-DiffDist, where recall correct-

ness is distributional, as described at the beginning of this section.

Lemma 3. The communication complexity of the 𝜀-DiffDist prob-

lem with a constant 1 − 𝑝 probability, for any fixed constant 𝑝 ∈
[0, 0.5), is Ω

(
𝑛
𝜀2

)
.

In our proof of this fact, we appeal to a lower bound on the

so-called Strong Data Processing Inequality (SDPI) constant for the

𝜖-distributed detection problem, which was shown in [63]. This

then allows us to use a theorem of [9] to lower bound the mutual

information even conditioned on 𝑉 = 0, which is referred to as the

min-information cost in that paper. This additional conditioning

on 𝑉 = 0 in the mutual information lower bound now allows us to

prove a direct sum theorem on the mutual information for the OR

of 𝑛 copies of the 𝜖-distirbuted detection problem by following the

framework of [5]. Finally, we use that randomized communication

complexity is lower bounded by this mutual information.

2.2 Reduction from DiffDist to the Experts

Problem

We can now show a lower bound for the discrete prediction experts

problem by reducing to it from the 𝜀-DiffDist problem. Define an

oracle algorithm,A, that achieves 𝛿 regret on the expert prediction

problem with constant probability more than 1
2 . Our goal is to show

that we can solve the 𝜀-DiffDist problemwith constant probability

more than 1
2 by using A. At a high level, we will treat each player

𝑖’s bit string as the predictions that a set of 𝑛 łexpertsž made on day

𝑖 . To provide intuition for our reduction, we first describe a simpler

reduction from 𝜀-DiffDist to the experts problem. The instance

of the experts problem we construct has 1 as the correct answer

on every day. We let each bit index correspond to an expert, and

consequently, the predictions of the experts on a day 𝑖 are the bits

of player 𝑖 .

In the YES case of 𝜀-DiffDist, there is an index, i.e. an expert,

which is correct on approximately 1
2 +𝑂 (𝛿) of the days. Thus, A

should also be correct 1
2 +𝑂 (𝛿) of the time with high probability.

On the other hand, in the NO case, the experts are predicting ran-

domly. Hence, the best expert does no better than a fair coin for its

prediction. Our goal is to have A have accuracy at least 1
2 + Θ(𝛿)

in the YES case and an Θ(𝛿) less fraction of days in the NO case.

However, while A ensures an upper bound on 𝛿 , it makes no

guarantees about the maximum accuracyA can achieve. For exam-

ple, an algorithm that simply predicts 1 on each day will achieve

100% accuracy in both cases. Thus, this reduction cannot łforcežA
to be sufficiently inaccurate in the NO case.

Masking in the Reduction. To remedy this issue, we introduce

a notion of łmaskingž, i.e., obfuscating the the correct answer of

each day in our construction so we can ensure an upper bound on

the accuracy ofA when in the NO case of the 𝜀-DiffDist problem.

In our actual reduction, formulated in Algorithm 3, we compute a

łmaskž for each day by sampling a random bit from an independent

fair coin. The mask XOR’ed with 1 will be the correct answer to the

experts problem on that day. In addition, we also XOR the mask

with the player’s bits corresponding to that day to produce the

experts predictions. This masking procedure ensures that all expert

predictions and true outcomes are mutually independent in the

NO case. That is, since the mask is drawn i.i.d. from a fair coin on

each day, and the expert predictions are also drawn i.i.d. from a fair

coin, the masked expert predictions remain distributed according

to i.i.d. fair coins. So, the true outcome on each day is distributed

according to a fair coin that is completely independent of the expert

predictions and past information provided to A. Thus, A can do

nothing to increase (or decrease) its probability of success on each

day from 1
2 . On the other hand, in the YES case, there still remains

an expert that is correct on a 1
2 + Θ(𝛿) fraction of days, so A will

still get a 1
2 + Ω(𝛿) fraction of days correct.

Algorithm 3 The following algorithm is a reduction from

𝜀-DiffDist to the experts problem whereA is an oracle algorithm

that solves the experts problem with 𝛿 regret and probability 1
2 . Let

𝑐 =
√︁
2 ln(24) and set 𝜀 = 𝛿 (𝑐 + 1), which we assume is less than

1/2. Let ⊕ be the XOR operation.

Input: {X(1) , . . . ,X(𝑇) }, where X(𝑡) ∈ {0, 1}𝑛 for each 𝑡 ∈ [𝑇].
Let state0 be the initial state of A.

for each 𝑡 ∈ [𝑇] do
Player 𝑡 does the following:

Sample mask𝑡 from an independent fair coin.

maskedX𝑡 ← X
(𝑡) ⊕ (mask𝑡)𝑛 .

Compute prediction and next state:

prediction𝑡 , state𝑡 ← A(state𝑡−1, maskedX𝑡)
A is correct on day 𝑡 iff prediction𝑡 ⊕ mask𝑡 = 1

if 𝑡 < 𝑇 then write state𝑡 to the blackboard

end for

Let 𝑆 be the fraction sample days that are correct (each player

communicates a bit indicating whether the algorithmwas correct

on each day).

if 𝑆 <
1+𝛿𝑐
2 then return 0 else return 1

Theorem 1. Let 𝛿 , 𝑝 <
1
2 be fixed constants, i.e., independent

of other input parameters. Any algorithm that achieves 𝛿 regret for

the experts problem with probability at least 1 − 𝑝 must use at least

Ω

(
𝑛

𝛿2𝑇

)
space. This lower bound holds even when the costs are binary

and expert predictions, as well as the correct answer, are constrained

to be i.i.d. across the days, albeit with different distributions across

the experts.

1166

STOC ’22, June 20ś24, 2022, Rome, Italy Vaidehi Srinivas, David P. Woodruff, Ziyu Xu, and Samson Zhou

3 PREDICTION WITH EXPERTS IN THE

STANDARD STREAMING MODEL

As a warm-up to our near-optimal algorithm for online learning

with experts in the random-order model, we show an algorithm

that can handle arbitrary-order streams. To build intuition, we first

consider the simpler discrete prediction with experts problem, and

then generalize our algorithm for general costs in [0, 1]. Recall that
in the discrete prediction problem, the cost of each decision is either

0 or 1. We first propose a space constrained version of the simplest

version of the majority elimination algorithm where experts that

are incorrect for a łsignificantž fraction of days are eliminated. The

algorithm uses the desired 𝑂̃
(𝑛
𝑇

)
space complexity for correctness

on a constant fraction of days, even when the best expert makes as

many as 𝑂 (𝑇 /log2 𝑛) mistakes. When errors on only a 𝛿 fraction

of days are permitted for some subconstant 𝛿 , the algorithm uses

𝑂̃
(
𝑛
𝑇𝛿

)
space but demands that the number of mistakes made by

the best expert be at most 𝑂
(

𝛿𝑇
log2 𝑛

)
.

3.1 Discrete Prediction in the Standard

Streaming Model

Our algorithm for this upper bound is to run the majority elimi-

nation algorithm in small chunks at a time. The typical majority

elimination algorithm (not in the space constrained setting) main-

tains a voting pool of experts, that starts by including all of the

experts. On each day, the algorithm predicts the majority vote of the

experts in the pool. When the outcome is revealed, the algorithm

removes any expert who made an incorrect prediction from the

pool. If the pool is empty, the algorithm resets by adding all of the

experts back into the pool. In this formulation, the algorithm makes

at most log𝑛 times as many mistakes as the best expert. We modify

this algorithm to use less space, and impose a laxer requirement on

the experts in our pool to achieve a better bound.

The algorithm proceeds in rounds. At the beginning of each

round, the algorithm initializes a pool, 𝑃 , of 𝑘 =
16𝑛 log2 𝑛

𝑇𝛿
different

experts and the variable 𝑢 to mark the time that the round begins.

On each day, the algorithm temporarily stores (for just the current

day) the predictions of the experts in the pool, and outputs their

majority vote. When, the correct answer for the day is revealed,

any expert that is inaccurate for at least a 𝛿
8 log𝑛

fraction of the

days since time 𝑢 is deleted. Once the pool 𝑃 is completely depleted

of experts, the current round ends and the next round begins. A

complete description is given in Algorithm 4.

We first bound the number of mistakes made by the algorithm in a

particular round.

Lemma 4. Fix a 𝛿 >
16 log2 𝑛

𝑇 , and suppose a pool, 𝑃 , of size 𝑘 =

16𝑛 log2 𝑛
𝑇𝛿

is initiated by Algorithm 4 at time 𝑡0 and 𝑃 ≠ ∅ before some

later time 𝑡 . Then the number of mistakes by the algorithm between

times 𝑡0 and 𝑡 is at most
(𝑡−𝑡0)𝛿

2 + 4 log𝑛.

Proof. Let 𝑢1, . . . , 𝑢𝑦 be a sequence of times defined so that 𝑢𝑖

is the first time at which at most 𝑘
2𝑖

experts remain in the pool.

Note that 𝑦 ≤ ⌈log𝑘⌉ by definition. Let 𝑛𝑖 be the total number of

mistakes the algorithm has made by time 𝑢𝑖 . We note that 𝑛𝑖+1 −𝑛𝑖

Algorithm 4 An expert algorithm that maintains a pool of experts

occupying 𝑂 (𝑛/𝑇𝛿) space, and eliminates an expert if its accuracy

drops below 1 − 𝛿
8 log𝑛

. This algorithm is a streaming analogue of

the typical majority elimination algorithm for experts.

Input: Number 𝑛 of experts, number 𝑇 of rounds, fraction 1 − 𝛿 of

mistakes

1: 𝑘 ← 16𝑛 log2 𝑛
𝑇𝛿

, 𝑢 ← 1

2: Let 𝑃 be a random set of 𝑘 unique indices of [𝑛].
3: for each time 𝑡 ∈ [𝑇] do
4: Store (for only the current day 𝑡) the predictions of the ex-

perts in 𝑃 .

5: Output the majority vote of the experts in 𝑃 .

6: Discard any experts in 𝑃 with lower than 1− 𝛿
8 log𝑛

accuracy

since time 𝑢.

7: if 𝑃 = ∅ then
8: Let 𝑃 be a random set of 𝑘 unique indices of [𝑛].
9: 𝑢 ← 𝑡

10: end if

11: end for

mistakes are made by the algorithm between times 𝑢𝑖 and 𝑢𝑖+1, and
each mistake requires at least 𝑘

2𝑖+2 mistakes across all experts, since

there at least 𝑘
2𝑖+1 experts before time 𝑢𝑖+1, and at least half of them

must be wrong for a mistake to be made. Consequently, the total

number of mistakes made by the experts between times 𝑢𝑖 and 𝑢𝑖+1
is at least (𝑛𝑖+1 −𝑛𝑖) · 𝑘

2𝑖+2 . We can also see that at most
⌈
(𝑢𝑖+1−𝑡0)𝛿
8 log𝑛

⌉

mistakes can be made by each of the 𝑘
2𝑖

experts that are not deleted

by time 𝑢𝑖 , so the total number of mistakes made by the experts

between times 𝑢𝑖 and 𝑢𝑖+1 is at most
⌈
(𝑢𝑖+1 − 𝑡0)𝛿

8 log𝑛

⌉
· 𝑘
2𝑖
≤ (𝑢𝑖+1 − 𝑡0)𝑘𝛿

8 · 2𝑖 log𝑛
+ 𝑘

2𝑖
.

Hence we have (𝑛𝑖+1 − 𝑛𝑖) · 𝑘
2𝑖+2 ≤

(𝑢𝑖+1−𝑡0)𝑘𝛿
8·2𝑖 log𝑛 +

𝑘
2𝑖

so that (𝑛𝑖+1 −

𝑛𝑖) ≤ (𝑢𝑖+1−𝑡0)𝛿2·log𝑛 + 4. Therefore,

𝑦−1∑︁

𝑖=1

(𝑛𝑖+1 − 𝑛𝑖) ≤
𝑦−1∑︁

𝑖=1

(
(𝑢𝑖+1 − 𝑡0)𝛿
2 · log𝑛 + 4

)
≤ (𝑡 − 𝑡0)𝛿

2
+ 4 log𝑘.

□

We now give the full guarantees for our algorithm.

Theorem 6. Fix a 𝛿 >
16 log2 𝑛

𝑇 , and suppose the best expert makes

at most 𝑀 ≤ 𝛿2𝑇
128 log2 𝑛

mistakes. Then Algorithm 4 for the discrete

prediction with experts problem uses𝑂
(
𝑛
𝛿𝑇

)
space and achieves regret

at most 𝛿 , with probability at least 1 − 1
𝑛 .

Proof. Algorithm 4 only makes more than 𝛿𝑇 total mistakes if

it completes at least 𝛿𝑇
8 log𝑛

rounds. This is because, by Lemma 4, the

bound on mistakes after 𝛿𝑇
8 log𝑛

rounds is 𝑇𝛿
2 +

𝑇𝛿
8 log𝑛

· 4 log𝑛 ≤ 𝑇𝛿 .
Thus our goal is to show that the probability that Algorithm 4

completes at least 𝛿𝑇
8 log𝑛

rounds is low. We would like to say that

conditioned on a large number of rounds, that the algorithm must

1167

Memory Bounds for the Experts Problem STOC ’22, June 20ś24, 2022, Rome, Italy

have sampled the best expert many times with high probability.

Unfortunately, the conditional event that the algorithm completes

a large number of rounds can significantly alter the distribution of

events, resulting in a more involved analysis.

We thus define a sequential procedure to analyze the distribution

for the total number of rounds. Let 𝑑0, 𝑑1, 𝑑2, . . . be the random

variables representing the times on which the pool of 𝑘 experts is

sampled, so that 𝑑𝑖 is the random variable for the time on which the

pool of experts is empty for the 𝑖-th time and thus resampled. We

construct a sequence 𝑡0, 𝑡1, 𝑡2, . . . of times so that the distribution

of 𝑡0, 𝑡1, 𝑡2, . . . will match the distribution of 𝑑0, 𝑑1, 𝑑2, Let 𝑡0 = 0

and for each 𝑖 > 0, let 𝑡𝑖 be drawn uniformly from the distribution

of possible times at which a new pool of 𝑘 experts drawn at time

𝑡𝑖−1 is completely removed from the pool. The sequence {𝑡𝑖 }𝑖 is
terminated if the experts drawn at time 𝑡𝑖−1 are not all removed

from the pool by time𝑇 . Note that the process inwhich the sequence

𝑡0, 𝑡1, . . . is generated matches the process in which the sequence

𝑑0, 𝑑1, . . . is determined, so that their distributions are identical so

we can instead work with the random sequence 𝑡0, 𝑡1,

Let Bad be the set of times on which the best expert would be

eliminated by the algorithm if it were added to the pool of experts on

a time 𝑡 ∈ Bad. Because the best expert makes at most𝑀 mistakes

and the algorithm deletes experts that have made mistakes on at

least 𝛿
8 log𝑛

fraction of the times since they have been in the pool,

then it follows that |Bad| ≤ 8𝑀 log𝑛
𝛿

.

Let𝑅 be the random variable that corresponds to the total number

of rounds in the algorithm. Let 𝐵 be the random variable that corre-

sponds to the total number of rounds in the algorithm that started

on days 𝑡 such that 𝑡 ∈ Bad. Let𝐺 be the random variable that cor-

responds to the total number of rounds in the algorithm that started

on days 𝑡 such that 𝑡 ∉ Bad. Observe that 𝐵 ≤ |Bad| ≤ 8𝑀 log𝑛
𝛿

and

𝑅 ≤ 𝐵+𝐺 ≤ 8𝑀 log𝑛
𝛿
+𝐺 . Since𝑀 ≤ 𝛿2𝑇

128 log2 𝑛
, then 𝑅 ≤ 𝛿𝑇

16 log𝑛
+𝐺.

Thus it remains to analyze the distribution of 𝐺 .

Observe that if the best expert is sampled on a time 𝑡 with 𝑡 ∉

Bad, then the best expert will not be deleted and thus there will

be no subsequent round. Hence, if𝐺 = 𝑗 for some 𝑗 ≥ 1, then the

best expert must not have been sampled into the first 𝑗 − 1 pools
that were sampled on times 𝑡1, . . . , 𝑡 𝑗−1 ∉ Bad. Thus, Pr [𝐺 ≥ 𝑗] ≤
(1 − 𝑘/𝑛) 𝑗−1 for each integer 𝑗 ≥ 1. Since 𝑘 =

16𝑛 log2 𝑛
𝑇𝛿

, we have

Pr

[
𝐺 ≥ 𝛿𝑇

16 log𝑛

]
≤

(
1 − 16𝑛 log2 𝑛

𝑇𝛿
· 1
𝑛

) 𝛿𝑇
16 log𝑛

≤
(
1 − 16 log2 𝑛

𝑇𝛿

) 𝑇𝛿

16 log2 𝑛
·log𝑛

≤ 𝑒− log𝑛 ≤ 1

𝑛

Therefore, Pr
[
𝑅 ≥ 𝛿𝑇

16 log𝑛
+ 𝛿𝑇

16 log𝑛

]
≤ 1

𝑛 and Pr
[
𝑅 <

𝛿𝑇
8 log𝑛

]
≥

1 − 1
𝑛 . Conditioned on the event that 𝑅 <

𝛿𝑇
8 log𝑛

, then by Lemma 4,

the total number of mistakes by the algorithm is at most

𝑇𝛿

2
+ 4𝑅 log𝑛 ≤ 𝑇𝛿

2
+ 𝑇𝛿

8 log𝑛
· 4 log𝑛 ≤ 𝑇𝛿.

The regret of the algorithm is defined as the difference between

the error rate of the algorithm and the optimal error rate (the error

rate of the best expert). This is upper bounded by the error rate of

the algorithm, which is at most 𝑇𝛿/𝑇 = 𝛿 . □

3.2 Online Prediction for General [0, 1] Costs in
the Standard Streaming Model

Now, we show that with a simple change, we can modify this

algorithm to work for general [0, 1] costs. The trouble with this

algorithm for [0, 1] costs is that it is no longer clear what it means to

take the łmajority prediction" on each day. However, there are other

sequential prediction algorithms that we could use, that work well

in the case of general costs. Thus, for [0, 1] costs, we can implement

Algorithm 5.

Algorithm 5 An expert algorithm that works for [0, 1] costs in the

standard streaming model.

Input: Number 𝑛 of experts, number 𝑇 of rounds, fraction 1 − 𝛿 of

mistakes, (black-box sequential prediction algorithm of

choice)

1: 𝑘 ← 16𝛽𝑛 ln𝑛 ln𝑇
𝑇𝛿

, 𝑢 ← 1

2: Let 𝑃 be a random set of 𝑘 unique indices of [𝑛].
3: Initialize a sequential prediction algorithm (Definition 1) for

the experts in 𝑃 with 𝜀 = 1
2

4: for each time 𝑡 ∈ [𝑇] do
5: Output prediction according to sequential prediction algo-

rithm running on 𝑃 .

6: if every expert in 𝑃 has an error rate higher than 𝛿
8 since

time 𝑢 then

7: Let 𝑃 be a random set of 𝑘 unique indices of [𝑛].
8: 𝑢 ← 𝑡

9: Re-initialize sequential prediction algorithm for experts

in 𝑃 with 𝜀 = 1
2

10: end if

11: end for

Our analysis follows the same structure as the one for discrete

costs. We can use the guarantee of the sequential prediction algo-

rithm (Definition 1) in place of Lemma 4. The bound on the number

of łbad days" that is used in Theorem 6 is now somewhat more

involved and is presented as its own lemma.

Lemma 5. Let Bad be the set of times on which the best expert

would be eliminated by the algorithm if it were added to a pool of

experts on a time 𝑡 ∈ Bad, and suppose the best expert incurs total

cost at most𝑀 . Then |Bad| ≤ 8𝑀
𝛿
.

Proof. We show this via amortized analysis. For convenience,

denote the threshold 𝐿 =
𝛿
8 and let𝑚𝑖 be the cost of the best expert

on day 𝑖 for each 𝑖 ∈ [𝑇]. Let {𝑡1, . . . , 𝑡𝑏 } be the days in Bad, so that
we would like to show that 𝑏 = |Bad| ≤ 8𝑀

𝛿
. For each 𝑡 𝑗 ∈ Bad

with 𝑗 ∈ [𝑏], i.e., the 𝑗-th bad day, let 𝑒 𝑗 be the day on which the

best expert would be deleted if it were sampled on day 𝑡 𝑗 , so that∑𝑒 𝑗
𝑖=𝑡 𝑗

𝑚𝑖 ≥ (𝑒 𝑗 − 𝑡 𝑗 + 1)𝐿.
We define a subsequence 𝑡𝑎1 , . . . , 𝑡𝑎𝑏′ of 𝑡1, . . . , 𝑡𝑏 as follows. Let

𝑎1 = 1 and for each 𝑘 > 1, let 𝑎𝑘 = min𝑖∈[𝑏] {𝑖 : 𝑡𝑖 > 𝑒𝑎𝑘−1 }. In

1168

STOC ’22, June 20ś24, 2022, Rome, Italy Vaidehi Srinivas, David P. Woodruff, Ziyu Xu, and Samson Zhou

other words, 𝑡𝑎𝑘 is the first bad day after the deletion of the (𝑘 − 1)-
th term in the subsequence. Thus the sequence 𝑡𝑎1 , . . . , 𝑡𝑎𝑏′ is a

subsequence of 𝑡1, . . . , 𝑡𝑏 and the intervals [𝑡𝑎1 , 𝑒𝑎1], . . . , [𝑡𝑎𝑏′ , 𝑒𝑎𝑏′]
are disjoint, so we have that

∑𝑇
𝑖=1𝑚𝑖 ≥

∑𝑏′
𝑗=1

∑𝑒𝑎𝑗
𝑖=𝑡𝑎𝑗

𝑚𝑖 . We also

know that each of the 𝑏 bad days is in one of these intervals, so∑𝑏′
𝑗=1 𝑒𝑎 𝑗 − 𝑡𝑎 𝑗 + 1 ≥ 𝑏. Therefore, we have

𝑀 =

𝑇∑︁

𝑖=1

𝑚𝑖 ≥
𝑏′∑︁

𝑗=1

𝑒𝑎𝑗∑︁

𝑖=𝑡𝑎𝑗

𝑚𝑖 ≥
𝑏′∑︁

𝑗=1

(𝑒𝑎 𝑗 − 𝑡𝑎 𝑗 + 1)𝐿 ≥ 𝑏𝐿.

It follows that 𝑏 ≤ 𝑀
𝐿 , where 𝑏 = |Bad| is the number of bad

days and 𝐿 =
𝛿
8 . Thus, |Bad| ≤

8𝑀
𝛿
. □

This allows us to give an algorithm for general costs.

Theorem 7. Fix any 𝛿 >
16𝛽 ln2 𝑛

𝑇 , and suppose the best expert

makes at most 𝑀 ≤ 𝛿2𝑇
128𝛽 ln𝑛

mistakes, where 𝛽 is a fixed constant

that depends on the black-box sequential prediction algorithm that is

used. Then Algorithm 5 for the online learning with experts problem

uses 𝑂
(
𝑛
𝛿𝑇

)
space and achieves regret at most 𝛿 in expectation,

4 GENERAL COSTS IN THE RANDOM-ORDER

STREAMING MODEL

In this section, we consider the online learning with experts prob-

lem, in which the cost of the decision of an expert on each day can

range from [0, 𝜌], where 𝜌 > 0 is the width of the problem. Without

loss of generality, we assume 𝜌 = 1 throughout this section and

instead incur a multiplicative factor in the regret in the guarantees

of our algorithms, i.e., our algorithms will have regret 𝜌𝛿 rather

than 𝛿 . Whereas the previous algorithm provided guarantees on

arbitrary streams, our main algorithm in this section will focus on

the random-order streaming model.

The main result in the previous section, for arbitrary-order

streams, relied on an assumption that the best expert incurred

sub-constant regret. This allowed us to conclude that there were

not too many łbad" days in the stream, where a łbad" day is one

where if we start a round with the best expert on that day, the best

expert will appear to do badly, causing the round to end.

For random-order streams, this is no longer a problem, because

the best expert will effectively do uniformly well across the entire

stream. This means that any day on which we sample the best

expert will likely be a łgood" day. This allows us to remove the

condition on the best expert.

We will first show an algorithm that achieves 𝛿 regret, if it knows

𝑀 , the number of mistakes made by the best expert. Then we show

how to modify the algorithm to include a searching phase which

allows us to estimate𝑀 and so the algorithm does not need to know

it in advance. The algorithm for arbitrary-order streams did not

need to know𝑀 in advance because we assumed an upper bound

on 𝑀 . However, for this algorithm, we remove this upper bound

assumption on𝑀 , though we will need to look at a prefix of days

to estimate𝑀 for use in our algorithm.

We first note that the best expert in the random-order model

cannot incur high cost. The following is Hoeffding’s bound.

Algorithm 6 An expert algorithm that maintains a pool of experts

occupying𝑂 (𝑛/(𝛿2𝑇)) space, and resamples the pool if its expected

cost is too high.

Input: Number 𝑛 of experts, number 𝑇 of rounds, regret 𝛿 ,

number𝑀 of mistakes of the best expert. We later show

how to instead estimate𝑀 .

1: 𝑢 ← 1, 𝑘 ← 𝑂
(
𝑛 log2 𝑛

𝛿2𝑇

)

2: Let 𝑃 be a random set of 𝑘 unique indices of [𝑛].
3: for each time 𝑡 ∈ [𝑇] do
4: Run a sequential prediction algorithm (Definition 1) with

𝜀 = 𝛿/2 for the experts in 𝑃 .

5: if the cost of every expert in the pool exceeds
𝑀
𝑇 (𝑡 − 𝑢) + 4

√︁
(𝑡 − 𝑢) log𝑇 since time 𝑢 then

6: Let 𝑃 be a random set of 𝑘 unique indices of [𝑛].
7: 𝑢 ← 𝑡

8: end if

9: end for

Lemma 6. Let 𝑋1, . . . , 𝑋𝑡 be independent random variables such

that 𝑋𝑖 ∈ [0, 1] with E[𝑋𝑖] = 𝛼 for all 𝑖 ∈ [𝑡] and let 𝑋 =
∑𝑡
𝑖=1 𝑋𝑖 .

Then for any 𝑇 > 1, Pr
[
|𝑋 − 𝛼𝑡 | ≥ 4

√︁
𝑡 log𝑇

]
≤ 1

𝑇 2 .

We can apply Lemma 6 in conjunction with the distributional

properties of random-order streams and a union bound to show that

with high probability, a pool with the best expert will be retained.

Corollary 1. In the random-order model, with prob. at least 1− 1
𝑇 ,

Algorithm 6 will not resample a pool including the best expert.

We now analyze Algorithm 6, which assumes that the cost𝑀 of

the best expert is given as input to the algorithm. We remove this

assumption afterwards.

Theorem 8. For any 𝛿 >

√︃
16 log2 𝑛

𝑇 , there exists an algorithm

that takes as input a number𝑀 , which is the cost of the best expert,

and achieves regret at most 𝛿 in expectation on random-order streams.

The algorithm uses 𝑂
(
𝑛 log2 𝑛

𝛿2𝑇

)
space.

Proof. Consider Algorithm 6 and suppose by way of contradic-

tion, that its expected cost is at least𝑀 + 𝛿𝑇 . Let 𝛼 =
𝑀
𝑇 . Suppose

the 𝑗-th pool of experts was run for time 𝑡 𝑗 . Then the best expert in

the pool has cost at most 𝛼𝑡 𝑗 + 4
√︁
𝑡 𝑗 log𝑛 + 1. Then by Definition 1

for 𝜀 = 𝛿
2 , the expected cost of running the sequential prediction

algorithm on the 𝑗-th pool of experts is at most
(
1 + 𝛿

2

) (
𝛼𝑡 𝑗 + 4

√︃
𝑡 𝑗 log𝑛 + 1

)
+ 2𝛽 ln𝑛

𝛿
,

for some fixed constant 𝛽 . Thus, if there are 𝑟 total rounds over time

𝑡 , the expected cost of the algorithm by linearity of expectation is

at most
(
1 + 𝛿

2

) (
𝛼𝑡 + 4

√︁
𝑟𝑡 log𝑛 + 𝑟

)
+ 2𝛽𝑟 ln𝑛

𝛿

= 𝛼𝑡 +𝑂
(
𝛿𝛼𝑡 +

√︁
𝑟𝑡 log𝑛 + 𝑟 log𝑛

𝛿

)
.

1169

Memory Bounds for the Experts Problem STOC ’22, June 20ś24, 2022, Rome, Italy

Hence, if the expected cost is at least𝑀 + 3𝛿𝑇
4 and 𝛿 >

√︃
16 log2 𝑛

𝑇 ,

then the algorithm must have used 𝑟 = Ω

(
𝛿2𝑇
log𝑛

)
rounds.

We now analyze the probability distribution for the number

of rounds that the algorithm uses. By Corollary 1, any pool that

includes the best expert will not be resampled in the random-order

model, with probability at least 1 − 1
𝑇 . Thus, conditioning on the

event that the first pool sampled that includes the best expert is

not resampled, then if the algorithm uses 𝑗 total rounds, the first

𝑗 − 1 rounds must have not sampled the best expert. Therefore,

if 𝑍 is a random variable that represents the number of rounds,

we have Pr [𝑍 ≥ 𝑗] ≤
(
1 − 𝑘

𝑛

) 𝑗−1
. Since 𝑘 = 𝑂

(
𝑛 log2 𝑛

𝛿2𝑇

)
with a

sufficiently large constant in the big-Oh, then Pr [𝑍 ≥ 𝑟] ≤ 1
poly(𝑇)

for 𝑟 = Ω

(
𝛿2𝑇
log𝑛

)
. Hence, we have that with probability at least 1− 2

𝑇 ,

the expected cost of the algorithm is at most𝑀 + 3𝛿𝑇
4 . Otherwise,

the cost of the algorithm is at most 𝑇 . Thus, the overall expected

cost of the algorithm is at most𝑀 + 𝛿𝑇 . □

Unknown cost of the best expert in the random-order model. We

remark that Algorithm 6 assumes the cost𝑀 incurred by the best

expert is known. We now describe how this assumption can be

easily removed in the random-order model. Note that since the

overall expected cost of Algorithm 6 is at most𝑀 + 𝛿𝑇 , then even if

we use a (1 +𝑂 (𝛿))-approximation of𝑀 as input to the algorithm,

then the overall expected cost is (1 +𝑂 (𝛿))𝑀 + 𝛿𝑇 = 𝑀 +𝑂 (𝛿𝑇),
which can be then adjusted to𝑀 + 𝛿𝑇 by a rescaling of 𝛿 . Thus, it

suffices to find a (1 +𝑂 (𝛿))-approximation to𝑀 .

Let 𝛾 be an estimate for the average cost 𝑀
𝑇 , and we initialize 𝛾 to

1
2 . Note that a (1 +𝑂 (𝛿))-approximation to 𝛾 corresponds to a (1 +
𝑂 (𝛿))-approximation to𝑀 . We obtain a (1 +𝑂 (𝛿))-approximation

to 𝛾 through a binary search. We proceed through ℓ := 2 log 1
𝛿

epochs so that in each epoch 𝑗 ∈ [ℓ], 𝛾 is a
(
1 + 1

2𝑗

)
-approximation

to 𝑀
𝑇 . Each epoch 𝑗 ∈ [ℓ] has length 𝛿𝑇

2 log 1
𝛿

. We run Algorithm 6

on this epoch with input 𝛾 · 𝛿𝑇
2 log 1

𝛿

as the estimate for the cost and

1
100 as the target regret. We can also track the average cost 𝛽 𝑗 of

the best expert in each epoch 𝑗 . If 𝛾 > (1 + 𝛿)𝛽 𝑗 , then we update

𝛾 ← 𝛾− 1
2𝑗+1 . Similarly if𝛾 < (1−𝛿)𝛽 𝑗 , then we update𝛾 ← 𝛾+ 1

2𝑗+1 .

After the ℓ epochs, we will fix 𝛾 as the estimated average cost for

the remainder of the stream and run Algorithm 6.

Theorem 9. For any 𝛿 >

√︃
16 log2 𝑛

𝑇 , there exists an algorithm that

achieves regret at most 𝛿 in expectation on random-order streams.

The algorithm uses 𝑂
(

𝑛
𝛿2𝑇

log2 𝑛
)
space.

Proof. It suffices to (1) show that 𝛾 converges to a (1 + 𝛿)-
approximation of the true average cost 𝑀

𝑇 by the best expert and

(2) analyze the regret induced by the procedure until 𝛾 converges.

The expected regret of the algorithm afterward is upper bounded

by Theorem 8.

To show that 𝛾 converges to a (1 + 𝛿)-approximation of the

true average cost 𝑀
𝑇 by the best expert, we consider casework on 𝛾 .

Suppose𝛾 > (1+𝛿)·𝑀𝑇 . Then by Lemma 6, no experts sampled by the

pool will achieve average cost 𝛾 in the random-order model. Thus 𝛾

will be decreased accordingly. On the other hand, if 𝛾 < (1−𝛿) · 𝑀𝑇 ,

then again by Lemma 6, the best expert will be sampled by the pool

and have average cost at least (1−𝛿) · 𝑀𝑇 in the random-order model

and then 𝛾 will be increased accordingly. Hence, with probability

at least 1 − 1
𝑇 , it holds that 𝛾 converges to a (1 + 𝛿)-approximation

of the true average cost 𝑀
𝑇 of the best expert.

On the other hand, since each epoch 𝑗 ∈ [ℓ] only has length
𝛿𝑇

2 log 1
𝛿

and ℓ = 2 log 1
𝛿
, then the total cost that can be incurred across

the ℓ epochs is only 𝛿𝑇 . Hence the regret can only be increased by

an additive 𝛿 due to not knowing the average cost of the best expert.

Finally, to analyze the space complexity, recall that each epoch has

length 𝛿𝑇
2 log 1

𝛿

and 1
100 is the target regret. With high probability, the

best expert makes at least 𝛿𝑀
200 log 1

𝛿

mistakes in each epoch. Thus

by Theorem 8, it suffices to use 𝑂
(

𝑛
𝛿2𝑇

log2 𝑛
)
space. □

ACKNOWLEDGEMENTS

We thank Santosh Vempala for pointing out the connection to follow

the perturbed leader. D.P.W. and S.Z. were supported by a Simons

Investigator Award and by the NSF Grant No. CCF-1815840. V.S.

was partially supported by NSF Grant No. CCF-1652491. Z.X. was

partially supported by a PricewaterhouseCoopers Research Grant.

REFERENCES
[1] Idan Amir, Idan Attias, Tomer Koren, YishayMansour, and Roi Livni. 2020. Predic-

tion with Corrupted Expert Advice. In Advances in Neural Information Processing
Systems, Vol. 33. Curran Associates, Inc., 14315ś14325. https://proceedings.
neurips.cc/paper/2020/file/a512294422de868f8474d22344636f16-Paper.pdf

[2] Yossi Arjevani andOhad Shamir. 2015. Communication Complexity of Distributed
Convex Learning and Optimization. In Advances in Neural Information Processing
Systems 28. 1756ś1764.

[3] Sanjeev Arora, Elad Hazan, and Satyen Kale. 2012. The multiplicative weights
update method: a meta-algorithm and applications. Theory of Computing 8, 1
(2012), 121ś164.

[4] Sepehr Assadi and Chen Wang. 2020. Exploration with Limited Memory: Stream-
ing Algorithms for Coin Tossing, Noisy Comparisons, and Multi-Armed Bandits.
In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Com-
puting (STOC 2020). 1237ś1250.

[5] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, and D Sivakumar. 2004. An information
statistics approach to data stream and communication complexity. J. Comput.
System Sci. 68, 4 (2004), 702ś732.

[6] Arnab Bhattacharyya, Palash Dey, and David P Woodruff. 2018. An optimal
algorithm for ℓ1-heavy hitters in insertion streams and related problems. ACM
Transactions on Algorithms (TALG) 15, 1 (2018), 1ś27.

[7] Avrim Blum. 1998. On-Line Algorithms in Machine Learning. In Online Algo-
rithms. Vol. 1442. Springer Berlin Heidelberg, 306ś325.

[8] Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikun-
tanathan. 2013. A tight bound for set disjointness in the message-passing model.
In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science. 668ś
677.

[9] Mark Braverman, Ankit Garg, Tengyu Ma, Huy L Nguyen, and David P Woodruff.
2016. Communication lower bounds for statistical estimation problems via a
distributed data processing inequality. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing. 1011ś1020.

[10] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu
Wang, and David P Woodruff. 2017. BPTree: an ℓ2 heavy hitters algorithm
using constant memory. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. 361ś376.

[11] Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, and David P Woodruff.
2016. Beating countsketch for heavy hitters in insertion streams. In Proceedings
of the forty-eighth annual ACM symposium on Theory of Computing. 740ś753.

[12] David Brayshaw, Paula Gonzalez, and Florian Ziel. 2020. A new approach to
subseasonal multi-model forecasting: Online prediction with expert advice. In
EGU General Assembly Conference Abstracts. 17663.

[13] George W. Brown. 1951. Iterative solution of games by fictitious play. In Analysis
of Production and Allocation. Wiley, 374ś376.

1170

STOC ’22, June 20ś24, 2022, Rome, Italy Vaidehi Srinivas, David P. Woodruff, Ziyu Xu, and Samson Zhou

[14] Nicolò Cesa-Bianchi and Gábor Lugosi. 2006. Prediction, learning, and games.
Cambridge university press.

[15] Nicolò Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. 2005. Improved Second-
Order Bounds for Prediction with Expert Advice. In Learning Theory. 217ś232.

[16] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. 2003. Near-optimal lower
bounds on the multi-party communication complexity of set disjointness. In
18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings.
107ś117.

[17] Moses Charikar, Kevin C. Chen, andMartin Farach-Colton. 2004. Finding frequent
items in data streams. Theor. Comput. Sci. 312, 1 (2004), 3ś15.

[18] Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu,
Rong Jin, and Shenghuo Zhu. 2012. Online Optimization with Gradual Variations.
In Proceedings of the 25th Annual Conference on Learning Theory. 6.1ś6.20.

[19] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-
mary: the count-min sketch and its applications. J. Algorithms 55, 1 (2005),
58ś75.

[20] T.M. Cover. 1996. Universal data compression and portfolio selection. In
Proceedings of 37th Conference on Foundations of Computer Science. 534ś538.
https://doi.org/10.1109/SFCS.1996.548512

[21] Thomas M Cover. 2011. Universal portfolios. In The Kelly Capital Growth
Investment Criterion: Theory and Practice. World Scientific, 181ś209.

[22] Thomas M Cover and Erik Ordentlich. 1996. Universal portfolios with side
information. IEEE Transactions on Information Theory 42, 2 (1996), 348ś363.

[23] Michael Crouch, Andrew McGregor, Gregory Valiant, and David P. Woodruff.
2016. Stochastic Streams: Sample Complexity vs. Space Complexity. In 24th
Annual European Symposium on Algorithms (ESA 2016). 32:1ś32:15.

[24] Yuval Dagan and Ohad Shamir. 2018. Detecting Correlations with Little Memory
and Communication. CoRR abs/1803.01420 (2018). arXiv:1803.01420 http://arxiv.
org/abs/1803.01420

[25] Dylan J Foster, Alexander Rakhlin, and Karthik Sridharan. 2015. Adap-
tive Online Learning. In Advances in Neural Information Processing Systems,
Vol. 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/file/
19de10adbaa1b2ee13f77f679fa1483a-Paper.pdf

[26] Dean P. Foster and Rakesh Vohra. 1999. Regret in the On-Line Decision Problem.
Games and Economic Behavior 29, 1 (1999), 7ś35. https://doi.org/10.1006/game.
1999.0740

[27] Yoav Freund and Robert E Schapire. 1997. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and system
sciences 55, 1 (1997), 119ś139.

[28] Yoav Freund and Robert E Schapire. 1999. Adaptive game playing using multi-
plicative weights. Games and Economic Behavior 29, 1-2 (1999), 79ś103.

[29] Ankit Garg, Tengyu Ma, and Huy L. Nguyen. 2014. On Communication Cost
of Distributed Statistical Estimation and Dimensionality. In Advances in Neural
Information Processing Systems 27. 2726ś2734.

[30] Naveen Garg and Jochen Könemann. 2007. Faster and Simpler Algorithms for
Multicommodity Flow and Other Fractional Packing Problems. SIAM J. Comput.
37 (01 2007), 630ś652. https://doi.org/10.1109/SFCS.1998.743463

[31] Sumegha Garg, Pravesh K Kothari, and Ran Raz. 2020. Time-Space Tradeoffs for
Distinguishing Distributions and Applications to Security of Goldreich’s PRG.
arXiv preprint arXiv:2002.07235 (2020).

[32] Sumegha Garg, Ran Raz, and Avishay Tal. 2017. Extractor-based time-space
tradeoffs for learning. Manuscript. July (2017).

[33] Sumegha Garg, Ran Raz, and Avishay Tal. 2019. Time-space lower bounds for
two-pass learning. In 34th Computational Complexity Conference (CCC 2019).

[34] Nick Gravin, Yuval Peres, and Balasubramanian Sivan. 2017. Tight Lower Bounds
for Multiplicative Weights Algorithmic Families. In 44th International Colloquium
on Automata, Languages, and Programming (ICALP 2017).

[35] Sudipto Guha and Andrew McGregor. 2009. Stream order and order statistics:
Quantile estimation in random-order streams. SIAM J. Comput. 38, 5 (2009),
2044ś2059.

[36] David Haussler, Jyrki Kivinen, and Manfred K. Warmuth. 1995. Tight Worst-
Case Loss Bounds for Predicting with Expert Advice. In Computational Learning
Theory (Lecture Notes in Computer Science). Springer, 69ś83.

[37] Elad Hazan. 2016. Introduction to Online Convex Optimization. Found. Trends
Optim. 2, 3-4 (2016), 157ś325.

[38] Elad Hazan and Satyen Kale. 2010. Extracting certainty from uncertainty: regret
bounded by variation in costs. Mach. Learn. 80, 2-3 (2010), 165ś188.

[39] David P Helmbold and Robert E Schapire. 1997. Predicting nearly as well as the
best pruning of a decision tree. Machine Learning 27, 1 (1997), 51ś68.

[40] Adam Kalai and Santosh Vempala. 2005. Efficient algorithms for online decision
problems. J. Comput. System Sci. 71, 3 (2005), 291ś307. https://doi.org/10.1016/j.
jcss.2004.10.016 Learning Theory 2003.

[41] Purushottam Kar, Bharath K. Sriperumbudur, Prateek Jain, and Harish C. Karnick.
2013. On the Generalization Ability of Online Learning Algorithms for Pairwise
Loss Functions. arXiv:1305.2505 [cs, stat] (May 2013). arXiv:1305.2505 [cs, stat]

[42] Gillat Kol, Ran Raz, and Avishay Tal. 2017. Time-Space Hardness of Learning
Sparse Parities. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing (STOC 2017). 1067ś1080.

[43] Wouter M Koolen, Tim van Erven, and Peter Grünwald. 2014. Learning the
Learning Rate for Prediction with Expert Advice. In Advances in Neural Informa-
tion Processing Systems, Vol. 27. https://proceedings.neurips.cc/paper/2014/file/
3f67fd97162d20e6fe27748b5b372509-Paper.pdf

[44] Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. 2016.
Heavy Hitters via Cluster-Preserving Clustering. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency,
New Brunswick, New Jersey, USA. IEEE Computer Society, 61ś70.

[45] David Liau, Zhao Song, Eric Price, and Ger Yang. 2018. Stochastic Multi-armed
Bandits in Constant Space. In International Conference on Artificial Intelligence
and Statistics. 386ś394.

[46] N. Littlestone and M. K. Warmuth. 1989. The Weighted Majority Algorithm. In
Proceedings of the 30th Annual Symposium on Foundations of Computer Science
(SFCS ’89). 256ś261. https://doi.org/10.1109/SFCS.1989.63487

[47] Wolfgang Maass and Manfred K Warmuth. 1998. Efficient learning with virtual
threshold gates. Information and Computation 141, 1 (1998), 66ś83.

[48] Erik Ordentlich and Thomas M. Cover. 1998. The Cost of Achieving the Best
Portfolio in Hindsight. Mathematics of Operations Research 23, 4 (1998), 960ś982.

[49] S.A. Plotkin, D.B. Shmoys, and E. Tardos. 1991. Fast approximation algorithms
for fractional packing and covering problems. In [1991] Proceedings 32nd Annual
Symposium of Foundations of Computer Science. 495ś504. https://doi.org/10.1109/
SFCS.1991.185411

[50] Maxim Raginsky. 2016. Strong Data Processing Inequalities and Φ-Sobolev
Inequalities for Discrete Channels. IEEE Trans. Inf. Theory 62, 6 (2016), 3355ś
3389.

[51] Alexander Rakhlin andKarthik Sridharan. 2012. Online LearningWith Predictable
Sequences. Journal of Machine Learning Research 30 (08 2012).

[52] Ran Raz. 2017. A time-space lower bound for a large class of learning problems.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 732ś742.

[53] Ran Raz. 2018. Fast learning requires good memory: A time-space lower bound
for parity learning. Journal of the ACM (JACM) 66, 1 (2018), 1ś18.

[54] Amir Sani, Gergely Neu, and Alessandro Lazaric. 2014. Exploiting
easy data in online optimization. In Advances in Neural Information Pro-
cessing Systems, Vol. 27. https://proceedings.neurips.cc/paper/2014/file/
01f78be6f7cad02658508fe4616098a9-Paper.pdf

[55] Ohad Shamir. 2016. Without-Replacement Sampling for Stochastic Gradient
Methods: Convergence Results and Application to Distributed Optimization.
CoRR abs/1603.00570 (2016).

[56] Kai Sheng Tai, Vatsal Sharan, Peter Bailis, and Gregory Valiant. 2018. Sketching
Linear Classifiers over Data Streams. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD. 757ś772.

[57] Eiji Takimoto, Akira Maruoka, and Volodya Vovk. 2001. Predicting nearly as well
as the best pruning of a decision tree through dynamic programming scheme.
Theoretical Computer Science 261, 1 (2001), 179ś209.

[58] Vladimir Vovk. 1990. Aggregating Strategies. In Proceedings of the Third Annual
Workshop on Computational Learning Theory, COLT. 371ś386.

[59] Vladimir Vovk. 1998. A Game of Prediction with Expert Advice. J. Comput. Syst.
Sci. 56, 2 (1998), 153ś173.

[60] Vladimir Vovk. 1999. Derandomizing stochastic prediction strategies. Machine
Learning 35, 3 (1999), 247ś282.

[61] Vladimir Vovk. 2005. Defensive prediction with expert advice. In International
Conference on Algorithmic Learning Theory. Springer, 444ś458.

[62] Omri Weinstein and David P Woodruff. 2015. The simultaneous communication
of disjointness with applications to data streams. In International Colloquium on
Automata, Languages, and Programming. Springer, 1082ś1093.

[63] Yuchen Zhang, John Duchi, Michael I Jordan, and Martin J Wainwright. 2013.
Information-Theoretic Lower Bounds for Distributed Statistical Estimation with
Communication Constraints. In Advances in Neural Information Processing Sys-
tems, Vol. 26.

1171

	Abstract
	1 Introduction
	1.1 Setup of Online Learning with Experts
	1.2 Our Contributions
	1.3 Technical Preliminaries: Standard Sequential Prediction Algorithms
	1.4 Related Work on the Experts Problem
	1.5 Overview of our Techniques

	2 Lower Bound for All Streaming Models
	2.1 Communication Lower Bound of the Epsilon-DiffDist Problem
	2.2 Reduction from DiffDist to the Experts Problem

	3 Prediction with Experts in the Standard Streaming Model
	3.1 Discrete Prediction in the Standard Streaming Model
	3.2 Online Prediction for General [0,1] Costs in the Standard Streaming Model

	4 General Costs in the Random-Order Streaming Model
	References

