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ABSTRACT

Online learning with expert advice is a fundamental problem of
sequential prediction. In this problem, the algorithm has access to
a set of n “experts” who make predictions on each day. The goal
on each day is to process these predictions, and make a prediction
with the minimum cost. After making a prediction, the algorithm
sees the actual outcome on that day, updates its state, and then
moves on to the next day. An algorithm is judged by how well it
does compared to the best expert in the set.

The classical algorithm for this problem is the multiplicative
weights algorithm, which has been well-studied in many fields
since as early as the 1950s. Variations of this algorithm have been
applied to and optimized for a broad range of problems, including
boosting an ensemble of weak-learners in machine learning, and
approximately solving linear and semi-definite programs. However,
every application, to our knowledge, relies on storing weights for
every expert, and uses Q(n) memory. There is little work on un-
derstanding the memory required to solve the online learning with
expert advice problem (or to run standard sequential prediction
algorithms, such as multiplicative weights) in natural streaming
models, which is especially important when the number of experts
and number of days are both large.

We initiate the study of the learning with expert advice problem
in the streaming setting, and show lower and upper bounds. Our
lower bound for i.i.d., random order, and adversarial order streams
uses a reduction to a custom-built problem with a novel masking
technique, to show a smooth trade-off for regret versus memory.
Our upper bounds show new ways to run standard sequential
prediction algorithms in rounds on small “pools” of experts, thus
reducing the necessary memory. For random-order streams, we
show that our upper bound is tight up to low order terms. We
hope that these results and techniques will have broad applications
in online learning, and can inspire algorithms based on standard
sequential prediction techniques, like multiplicative weights, for a
wide range of other problems in the memory-constrained setting.
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1 INTRODUCTION

The online learning with experts problem forms a general frame-
work for sequential forecasting. On each day, the algorithm must
make a prediction about an outcome, based on the predictions of
a set of “experts.” In the online learning with experts problem, we
let n be the number of experts, and the algorithm is tasked with
making predictions for T days. For each day, the algorithm is pro-
vided with the predictions of each expert in [n] = {1,2,...,n}, and
then produces its own prediction based on all the information it
has received in the previous days and the experts’ predictions from
the current day. The algorithm is provided with feedback on its
prediction in the form of the cost of its prediction and the costs of
all expert predictions on the current day. This process repeats for
each day the algorithm makes predictions. The costs are restricted
to be in the range [0, p] for some parameter p > 0.

The online learning with experts problem has been primarily
studied with respect to achieving the optimal regret, i.e., the ad-
ditional total cost the algorithm incurs over the best performing
expert in hindsight (expert that incurs the least cumulative cost),
divided by the number of days. The well-known weighted majority
algorithm was derived in [46] for solving the discrete prediction
with experts problem (where the set of possible predictions is re-
stricted to a finite set, and the cost is 1 if the prediction is correct,
and 0 otherwise) with O(M + log n) total mistakes, where M is the
number of mistakes the best expert makes. Optimizations to the
weighted majority algorithm, such as the randomized weighted

majority algorithm, achieve regret O ( 10%”

. There have been

many improvements to the weighted and randomized weighted
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majority algorithms in subsequent work. There has also been work
designing other algorithms that achieve this regret bound, such
as follow the perturbed leader [40], that are less computationally
expensive. However, all of these algorithms rely on a paradigm of
keeping track of the cumulative cost of every expert, which requires
the algorithm to use Q(n) bits of memory on each day.

In this paper, we approach the online learning with experts prob-
lem from the angle of memory-bounded learning in the data stream
model, and analyze whether there exists a low-memory algorithm
that still performs reasonably well when compared to the best
expert. Specifically, we consider the memory, i.e., the space com-
plexity, in the streaming model. We first note that in the discrete
version of the prediction with experts problem, where there are
two possible answers, 0 and 1, and the cost of each decision is in
{0, 1} (0 for picking the correct answer, and 1 otherwise), a trivial
random guessing algorithm is correct on half of the days in expec-

logn

7— | can be

tation. At the other extreme, the regret bound of O (

achieved by storing O(n) words (i.e., the weight of each expert) in
memory and implementing the weighted majority algorithm. Thus
it is natural to ask:

What is the space/accuracy tradeoff of an algorithm for
the online learning with experts problem in the stream-
ing model?

Prior Work on the Experts Problem. The experts problem has been
studied in the discrete decision setting [46] and variants where
costs are determined by a loss function [36, 58-61]. Consequently,
many different problems can be reframed into the experts problem
framework, including portfolio optimization [21, 22], boosting [27],
and forecasting [12]. For a complete reference on these results, see
[14]. More recent work has shown that the multiplicative weights
algorithm, a generalization of the weighted majority algorithm,

has a tight asymptotic regret bound of \/% in the general case
[34]. Previous work has also addressed the computational efficiency
of an experts algorithm from the perspective of time complexity.
Efficient algorithms have been considered in instances where extra
assumptions can be made on the expert, such as imposing a tree
structure [39, 57], assuming the experts are threshold functions
[47], or assuming the experts have a certain linear structure [40].
Although many different algorithms have been developed in this
area for these problems, they all revolve around tracking the per-
formance of every expert, which requires at least Q(n) memory. To
the best of our knowledge, our work is the first that examines the
experts problem from a streaming perspective.

1.1 Setup of Online Learning with Experts

In the experts problem, there are n experts and T days. On each day
t € [T] ={1,...,T}, the i-th expert makes a prediction xi(t) from
the answer set A, e.g., A = {0, 1} in the discrete decision case. The
algorithm then receives feedback in the form of costs cl.(t) for the
i-th expert on day t, where we define cét) to be the cost incurred
by the prediction of the algorithm. In the discrete decision case,
the algorithm does not receive the feedback directly, but rather

receives the “correct answer” y(t) € {0,1} on day t. We can model
this as a data stream that encompasses the following elements in
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the prescribed order: x{t), el x,(lt), cét) c,(lt) , where we see this

sequence first for t = 1, then for t = 2, and so on until t = T. In the
discrete decision case, for each t we instead only see the sequence

(¥) (1)
XXy,

e ey

y(t). Further, in the discrete decision case, the costs
are determined by y(’), and our algorithms do not need to see the

sequence of the c{t), s c,(.lt), which is a useful property of our
algorithms. Our lower bounds, however, still hold in the discrete

decision case even if the algorithm is given c(()t) c,(f).

For the majority of the paper, we will consider the setup where
our algorithm picks an answer made by an expert (equivalent to
picking an expert). We only consider the discrete decision case to
show that our bounds also hold when the expert explicitly picks an
answer. We use M € N to denote an upper bound on the number of
mistakes made by the best expert. Note that the streaming algorithm
sees these sequences in order of increasing ¢, and cannot go back
to see predictions or correct answers from previous days; the only
information it has about such values is from what it stores in its
memory. Further, our upper bounds hold in a setting where the
expert predictions and feedback are considered distinct stream
elements, i.e., streaming memory is needed to store information
about the expert predictions of the current day (in addition to all of
its information from the past days), xft)

and correct answer of the current day are seen. Note that our lower
(2)
1

yeeny

e, x,(,t), before the costs
bounds hold even in the setting where x;"/, ..., x,(lt) and y(t) can
be viewed at the same time.

Random-Order Streaming Model. We frequently consider the ex-
perts problem in the random-order streaming model [35], where we
assume the days are permuted in a uniformly random order with re-
spect to the order the days arrive in the stream. This is equivalent to
saying that the input distribution over (M, ¢y - (xD, (D)
is exchangeable, i.e., any permutation on [T] of the data is equally
likely in the input distribution. We note that this is slightly different
from the traditional notion of a random-order stream where the
permutation is over elements in the stream, whereas in the experts
problem, the permutation is over the pairs of expert predictions
and costs that are associated with a single day in the problem. Note
that the permutation only applies across the ordering of days —
the order of experts remains fixed and unchanged across the days.
In addition, the exchangeability assumption in the random order
model allows it to subsume the i.i.d. model, where (x(9), c(9) ~ JT;
forallt € [T]. As aresult, all upper bounds that hold in the random
order model also hold in the i.i.d. model.

1.2 Our Contributions

We initiate the study of the online learning with experts problem in
the streaming model. We consider streams where the order of days
and corresponding expert choices and outcomes may be either (1)
worst case streams, (2) random-order streams, where the order of
the days is assumed to be in a random order, or (3) i.i.d. streams,
where the expert choices and outcomes on each day are drawn
from a fixed distribution. We prove upper and lower bounds for the
experts problem in these different streaming models. We refer to a
word of memory as O(log(nT)) bits, and we use the O(-) notation
to suppress logo(l) (nT) factors.
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Lower Bound for LLD., Random Order, and Arbitrary Streams.
We show that any algorithm which achieves a regret of § with
constant probability in the streaming model must use Q (57'}) bits
of memory. This lower bound holds for both arbitrary and random-
order streams. In fact, the lower bound is valid even if the correct
answers and the predictions of each expert are i.i.d., which implies
validity of the lower bound in random order and arbitrary-order
settings.

THEOREM 1. Let §, p < % be fixed constants, i.e., independent
of other input parameters. Any algorithm that achieves § regret for
the experts problem with probability at least 1 — p must use at least

Q (ﬁ) space. This lower bound holds even when the costs are binary

and expert predictions, as well as the correct answer, are constrained
to be i.i.d. across the days, albeit with different distributions across
the experts.

Note that for § =
necessary. Thus, we should not expect to obtain the same regret
bounds as the best algorithms for online learning with experts, e.g.,
multiplicative weights, when the space is significantly smaller than
n. In other words, Theorem 1 shows a separation for the online
learning with experts problem between the classical centralized

\/;, Theorem 1 implies that Q(n) space is

setting and the streaming model when only o (ﬁ) space is per-

mitted, in which case the O |4/ 10%" regret that is obtainable for

the classical centralized setting cannot be achieved by any stream-
ing algorithm with o (@) space. Moreover, this separation holds

for random-order, i.i.d., and arbitrary-order streams.

Upper Bounds for Random-Order Streams. We next consider upper
bounds for the online learning with experts problem in the random-
order streaming model. We consider the case where the costs of the
decisions of each expert have value in [0, p] rather than in {0, 1},
where p > 0 is called the width of the problem.

THEOREM 2 (INFORMAL). There exists an algorithm that takes a

z «
target parameter § > 1610#, uses O (%) space, and achieves

an expected regret of pd in the random-order model, where p is the

width of the problem.

When the width p is normalized to 1, our space dependence
on the regret § in Theorem 2 is tight, given the lower bound in
Theorem 1. We present the formal version of Theorem 2 as The-
orem 9 in Section 4. Our algorithm shows that there are indeed
natural tradeoffs between the memory required, the regret § of
the streaming algorithm, the total number T of days, and the total
number n of experts.

Upper Bounds for Predictions on Arbitrary Streams. We next con-
sider the online learning with experts problem in the more general
adversarial streaming model. We propose an algorithm that is cor-
rect on a “large” fraction of days that allows for a space-accuracy
tradeofl, even if the best expert makes a number of mistakes that is
almost linear in T.

8°T ]
> 12801og® n

on the cost that the best expert incurs, and a target regret § >

THEOREM 3. (Informal) Given an upper bound M € [0
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2281081 41 e exists a streaming algorithm that o
T, ereexisitsas reammg a gorl m at uses space (S_T

and with probability at least 4/5, has regret pS, where p is the width
of the problem. The algorithm does not need to know M in advance.

Theorem 3 is interesting across multiple regimes of parameters
for arbitrary-order streams, i.e., worst-case streams. First, our algo-
rithm provides space-accuracy tradeoffs that can achieve a sublinear
number of mistakes. Specifically, the number of mistakes made by
our algorithm nearly matches the asymptotic regret bound of the
multiplicative weights algorithm [34] for corresponding values of
5=0|

log?n
T

). For constant M = O(1), a natural algorithm can

achieve & regret simply by iteratively choosing “pools” of O (%) ex-
perts for “rounds” until the best expert is identified, where a round
lasts until the pool becomes empty. Here, each expert is removed
immediately after an incorrect prediction, and throughout a round,
the algorithm makes a prediction by majority vote. We remark that
the space bound of Theorem 3 matches this natural algorithm in
the regime where M = O(1), even when the algorithm is oblivious
to the value of M, and generalizes to handle larger values of M.

In contrast, the natural algorithm uses O (%) space to achieve §

regret for larger values of M. In particular for constant §, our algo-
rithm guarantees correctness on a constant 1 — § fraction of days
T

log? n )
days, i.e., the best expert makes almost a linear number of mistakes.
Notably, this worst-case upper bound remains agnostic to the num-
ber of possible answers in the discrete decision setting, where the
set of all possible answers is a finite set. Finally, we remark that
Theorem 3 uses less space than the lower bound of Theorem 1 (recall
that § < 1), revealing that the hardness of Theorem 1 stems from
the best expert making a “large” number of mistakes.

On the other hand, Theorem 3 requires that the best expert incurs

at most O ( L

log“n
is an interesting open question what regret bounds are achievable
on arbitrary-order streams when the best expert is allowed to incur
a constant fraction of errors, i.e., cost O(T). We present the formal
version of Theorem 3 as Theorem 7 in Section 3.

We defer missing proofs to the full version of the paper.

using O (%) space, even if the best expert is incorrect on O (

) cost, even for a constant factor approximation. It

1.3 Technical Preliminaries: Standard
Sequential Prediction Algorithms

At a high level, our memory-constrained algorithms for the experts
problem sample subsets or “pools” of the n experts, and use standard
sequential prediction techniques on these subsets. For the sake of
modularity, we will formulate this as a black-box call to a sequential
prediction algorithm (without memory constraints). In this section
we define the properties that we require from such a sequential
prediction algorithm, and suggest some candidate algorithms.

DEFINITION 1 (SEQUENTIAL PREDICTION ALGORITHM). We say
that an algorithm A is a valid sequential prediction algorithm if;
given an instance of the online learning with experts problem such that

the cost of expert i on day t, cl.m € [0,1] foralli € [n]andt € [T],
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and a target parameter ¢, we have that Algorithm 2 The follow the perturbed leader algorithm (FPL*)
from [40], instantiated for the experts problem.
E[cost of A] < (1+¢) ZT: cl(t) N plnn , Input: Number n of experts, number T of rounds, parameter ¢
= £ 1: fort € [T] do
2. forie€ [n] do
for some fixed constant f, and A maintains O(n) words of memory. 3 Draw r from a standard exponential distribution, and set

plm = 2r/e with probability % and p
wise

4  end for

5. Follow the expert i for whom the sum of their total cost so

(0 _

i

—2r/¢ other-
Note that the constraint that A maintains O(n) words of memory /

is not very restrictive, as this allows A to maintain the running
total cost of each expert, which is all we need to run many of the

best possible algorithms for this problem. ) .
far and p;"’ is the lowest

Perhaps the most well-studied such algorithm is the multiplica- df i
tive weights algorithm. Here, we introduce this algorithm in the 6: end for
formulation of [3] (Algorithm 1).

THEOREM 4 (THEOREM 2.1 IN [3]). Suppose c;t) € [0,1] for all 1.4 Related Work on the Experts Problem
j€[n],t €[T] ande < % Then the multiplicative weights algorithm While the space complexity of the experts problem in the models
(Algorithm 1) satisfies for each i € [n], described above has not been previously studied, many related

problems have been studied in the streaming model, and there are

L& &) (1) L )|  Inn many results for the problem when space is not constrained. We

; Zl; ¢ P = (1+¢) ; A discuss how the hardness, proof techniques, and algorithms for
=1 j= -

these problems relate to the space-constrained experts problem.

(where the left-hand side of this inequality is the expected cost of the
multiplicative weights algorithm, and the right-hand side is in terms
of the cost of some particular expert.)

Identifying an Approximately Good Expert is Harder. A closely
related problem is the expert identification problem, where the algo-
rithm must output the index of an expert that does approximately
as well as the best expert at the end of the stream. A natural strategy
might be to use a heavy-hitter algorithm to identify the best expert.
The heavy hitters problem is a classical problem that has been well-
studied in the streaming model. In the e-heavy hitters problem, the

Algorithm 1 The multiplicative weights algorithm.

Input: Number n of experts, number T of rounds, parameter ¢

o ) . algorithm sees a stream of elements from [n] = {1,2,...,n}. At

1: Initialize w; ™ =1 for all i € [n]. the end of the stream, it must output any item that accounts for
2 for t € [T] do o at least an ¢ -fraction of the £, norm, for some real value p > 1.
3 pi(‘ ) Wz—([) One can consider the experts problem as a data stream of insertions
Dieln] W; to a vector V € N" where the value at index i is the number of

4 Follow the advice of expert i with probability pl.(t). days the i-th expert has been correct. Running an £, e-heavy hitters
s Let Cl(t) be the cost for the decision of expert i € [n]. algorithm over this stream would return the experts that are cor-
R S ) (1 B gcm) rect on at least £.||V||p days (see,.e.g., [6, 10, 11, 17, 1A9, 44] and the
i i references therein). Another variant of the heavy hitters problem

7: end for is the e-maximum problem, which outputs a value, rather than the

the index, that is within ¢ ||V||; of the true maximum element (see,
e.g., [6]). If we were to select an input where the best expert makes

Another example of a sequential prediction algorithm is the no mistakes, while all other experts are correct on T/2 + 1 days, ¢
follow the perturbed leader algorithm due to [40] (Algorithm 2), would need to be on the order of O(1/n) to find the best expert,
which maintains running totals of the cost incurred by each expert. and any heavy hitters algorithm for finding any good expert would
On each day, the algorithm randomly “perturbs” the costs, and then require Q(n) space, given that their memory usages depends at
follows the prediction of the expert with the lowest perturbed cost. least linearly on 1/e.

More generally, we note that there is a reduction from the well-

THEOREM 5 (THEOREM 1.1 IN [40] APPLIED TO THE EXPERTS PROB- studied two player set disjointness communication problem (see,

¢ .
LEM). Suppose Ci( ) e [0,1] foralli € [n],t € [T], and ¢ < 1. The e.g., [5, 8, 16, 62]), in which Alice is given a set X € {0,1}" and
FPL* (Algorithm 2) satisfies for each i € [n], Bob is given a set Y € {0,1}" and their goal is to distinguish
T whether |[X N'Y| =0 or |X NY| = 1. Observe that Alice can create
% (|, 8(1+Inn) a stream of n days so only expert i can be correct on day i and
E t of FPL <(1+ e
[cost of @] <1+ [; i } furthermore, expert i is correct on day i if and only if X; = 1. Bob

similarly creates a stream of n days so that the best expert on their
For n > 3, this satisfies the conditions of Definition 1 for § = 16. combined stream is X N Y if |[X N Y| = 1, thus allowing Bob and
Alice to solve the set disjointness problem, by using another round
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of communication to check whether the best expert is indeed in
both X and Y. Note that we can extend this to T days by copying
Alice T/2 times and copying Bob T/2 times, and placing all copies
of Alice before all copies of Bob. Since set disjointness requires total
communication Q(n) even for randomized protocols, this reduction
immediately implies there is an Q(n) lower bound for identifying
the best expert, even for randomized streaming algorithms and
even if the best expert makes no mistakes while any other expert
is correct on at most half of the total number of days. These results
show a distinction between the hardness of finding an expert that
does well, relative to the best expert, and the hardness of predicting
well relative to the best expert. We study the latter problem, and
break this Q(n) lower bound by obtaining an O(n/T) upper bound
for the setting of parameters above.

Multiplicative Weights. Multiplicative weights is a meta-algorithm
that maintains weights over a set of objects. On iteration i + 1,
the algorithm sets the weight of item x according to the update

( (D)

1 i+1)
rule wy — wy

PJ(Ci+1)

(1 - fP,((iH)), where ¢ is the learning rate, and

is some penalty applied to x. Forms of the multiplicative
weights algorithm have been independently discovered for prob-
lems in many fields from as early as the 1950s [13]. Many of these
problems generalize to the discrete prediction with expert advice
problem, first analyzed by Littlestone and Warmuth [46], or the con-
tinuous online learning with expert advice problem, and for both
problems, the multiplicative weights algorithm achieves asymptoti-
cally optimal regret [20, 48]. Notable applications of the multiplica-
tive weights algorithms include AdaBoost [27] and approximately
solving zero-sum games [28]. Multiplicative weights can also be
used to efficiently approximate a wide class of linear programs and
semi-definite programs, which have given fast approximations for a
broad range of NP-complete problems, including the traveling sales-
person problem, some scheduling problems, and multi-commodity
flow [30, 49]. Recent work has analyzed the multiplicative weights
algorithm for stochastic experts [1, 51, 54], and bounded the regret
in terms of the variance of the best expert [15, 38]. There has also
been much recent work in adaptively optimizing the learning rate
[18, 25, 43]. For a more complete overview of the history and ap-
plications of multiplicative weights, the reader is referred to the
surveys [3, 7, 14, 26].

Follow the Perturbed Leader. The follow the perturbed leader
(FPL) algorithm (Algorithm 2), due to Kalai and Vempala [40],
achieves similar guarantees to multiplicative weights for the ex-
perts problem, and can be efficiently generalized to a large set of
online problems. They define a linear generalization of these online
problems. Consider a set of possible decisions D c R" and a set
of possible events S C R™. On each day, the algorithm chooses a
decision d; € D. Then the event of that day s; € S is revealed, and
the algorithm incurs cost d; - s;. The total cost of the algorithm,
>+ dr - st, is evaluated against the best static decision in hindsight,
mingep d - 3, s;. We can model the standard experts problem as
an instance of this problem where n is the number of experts, S
is made up of vectors with entries between 0 and 1, and D is the
set of vectors for which one index is 1, and all others are 0. For
each day t, the FPL algorithm then calculates a random perturba-
tion vector p; € R™. Then it follows the decision that optimizes
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mingepy d- (pr+ Xi<s si). In the case of the standard experts
problem, this is generating a perturbation for each expert, and
then following the expert for whom the sum of their cost and their
perturbation is the smallest.

This linear generalization means that for some structured prob-
lems, this algorithm is computationally more efficient than multi-
plicative weights. However, like multiplicative weights, it requires
access to the running cost }; s;. For the general experts problem,
this is an n dimensional vector, so this still requires Q(n) memory.

Online Convex Optimization. A common setting in online convex
optimization is to minimize the regret, defined by ZtT:l fi(xe) —
minyex Zthl fi(x), where X is some convex set and the functions
fi..... fr : X = R are convex cost functions. A special case of on-
line convex optimization is when the goal is to minimize a convex
function f over a convex domain X. If the algorithm is given oracle
access to a noisy gradient, i.e., an oracle that outputs an unbiased
estimate to the gradient with “small” variance, then stochastic gra-
dient descent is known to have expected regret at most O(1/ VT).
For a more precise statement, see [37, 55, 56].

Multi-Armed Bandits. Space complexity has been considered in
the related problem of multi-armed bandits. The multi-armed ban-
dits problem is a classic problem in reinforcement learning, in which
there are some number of arms and each arm has a fixed reward
distribution that can be sampled from at each time step. [45] has
shown that only constant space is required to achieve regret that is
within an O(1/A) factor of the optimal regret, where A is the dif-
ference between the mean reward of the best and second best arms.
This space efficient algorithm for the bandits problem, however, is
not applicable to the experts problem, since it does not capture the
adversarial nature of sequential prediction, i.e., the performance of
an expert changes on a daily basis, while the reward distribution
of each arm is static in the standard streaming model. Nor does
it leverage the ability of the algorithm to view the results of all
experts on each day. Hence, expert algorithms are not comparable
to bandit algorithms, since an expert algorithm has information
about all “arms” on each day. [4] analyze the problem of finding
the best arm with optimal sample complexity in the streaming arm
model, where the algorithm must save an arm to sample from it.
They prove a tight bound of requiring ©(k) arms of space to find
the top k arms. These results show that solving the experts problem
is fundamentally harder than the multi-armed bandits problem,
since solving the bandits problem with low regret can be done in
constant space.

Learning in Streams. There has been a substantial amount of
work that analyzes the tradeoff between space and sample complex-
ity for statistical learning and estimation problems in the stream-
ing model, where the stream elements are assumed to be samples
drawn ii.d. from a fixed distribution. A series of work has stud-
ied the problem of inferring the index of a row sampled from
a matrix [32, 33, 52], and the parity learning problem [42, 53].
More recent work has also analyzed distribution testing relevant
to cryptographic settings, such as lower bounds in the streaming
model for testing against Goldreich’s pseudorandom generator [31].
Other lines of work examine more specific learning problems in
the streaming model, such as finding correlations in multivariate
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data [24], collision probability estimation, finding the connectivity
of an undirected graph, and rank estimation [23]. In the distributed
setting, communication lower bounds have been analyzed for con-
vex optimization [2]. Our study of the experts problem, however,
makes no assumptions on the distributions each element in the
stream is drawn from, and is a prediction rather than an inference
problem. Space usage was considered by [41] in their analysis of
pairwise losses in online learning, but not in the general sense of
space complexity. They consider a modified form of regret under
the pairwise loss with respect to a finite buffer of previous stream
items rather than all previous items in the stream. This problem,
however, is very different from the experts setting of proving space
complexity bounds for any algorithm, while still comparing the
performance of the algorithm to that of the best expert.

1.5 Overview of our Techniques

1.5.1 Lower Bound by Reducing to Distributed Detection. We first
give an overview of the lower bounds that we present in Section 2.
We create a new problem that combines n instances of the dis-
tributed detection problem [9], with each instance corresponding
to an expert — we call this new problem DIrrDisT. In essence,
Di1rrDisT is the problem of distinguishing between:

(1) Every expert flips an independent fair coin to determine its
prediction, i.e., each expert predicts correctly with probabil-
ity %

(2) A single expert predicts correctly with probability % +0(d)
on each day, and every other expert predicts correctly with
probability %

We note that the predictions of each expert form a separate instance
of the distributed detection problem, each of which has a random-
ized communication lower bound of Q(é) We then use a careful
combination of existing techniques, e.g., [9, 29, 50, 63] to show an

Q (%) randomized communication lower bound for the DirrDIsT

problem.

After having shown a randomized communication lower bound
for the DIFrDIST problem, one of our key ideas is then to introduce
a randomized reduction from the DIFrDIST problem, so that each
player corresponds to a day, and each expert prediction is the cor-
responding bit in the D1FFDi1sT problem. We would like to say that
the single expert with higher probability of correctness translates
to a separation in the cost of the algorithm for online learning with
expert advice. However, even if the experts are incorrect, it seems
possible that an algorithm could ignore the experts and still have
high accuracy. For example, if we let the the correct answer be 1
for every day, an experts algorithm could be perfectly accurate in
case (1) simply by predicting 1 everyday. Thus, we create a mask
for each day by setting it to be a random fair coin flip and we XOR
both the outcome of each day, as well as the output of each expert,
by the mask. Hence in case (1), the algorithm cannot have accuracy
significantly higher than % with constant probability, regardless of
its output sequence, since the expert predictions defined via our
masking, and the correct answer, all remain independent fair coin
flips. On the other hand, in case (2), the algorithm must be correct
on a good fraction of days to keep up with the best expert. This
results in a separation in performance between cases (1) and (2).
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Our hard instance is inherently distributional, and the choice of
hard distribution is crucial to ensure that the algorithm has no
information in case (1) about the correct answer on a future day,
regardless of the past.

1.5.2  Upper Bound for Random-Order Streams. We first consider
upper bounds for the online learning with experts problem in
random-order streams, corresponding to the results in Section 4.
For simplicity, we will describe an overview of our algorithms and
proof techniques in the setting where the costs are restricted to
{0,1}, i.e., an expert either makes a mistake or does not. Due to
space constraints on the algorithm, we can only afford to sample
a small number of experts in each round. Thus our algorithm (in

Algorithm 6) initializes a pool of k = O ("é‘;@;”
from [n] at the beginning of each round. We then run a standard
sequential prediction algorithm on this restricted pool of experts. If
this pool of experts makes too many total mistakes in expectation,
then we resample a new pool of experts and run the sequential
prediction algorithm on this new pool. Note that we can explicitly
compute the expectation of the pool, since we have access to the
expert predictions in the pool, their corresponding weights, and
the outcomes across each day over the duration of the round.

In the random-order model, we can show that if the best expert
does not make too many mistakes, then the sequential prediction
algorithm will perform well upon sampling the best expert. Thus, to
prove our algorithm has low expected regret, we must demonstrate
that one of two cases must be true: (1) the algorithm does not sample
the best expert because the algorithm has already been performing
well or (2) the algorithm samples the best expert “early” enough in
the stream and the best expert is not subsequently discarded. To
handle the first case, we observe that we only delete the pool of
experts if the sequential prediction algorithm is performing poorly,
so if the total number of rounds is low, there must be rounds with
significantly long duration and also sufficiently high expectation.
Thus the algorithm will perform well in expectation.

) different experts

Analysis of Pool Selection Times. However, the second case fore-
shadows an issue in the analysis: if the best expert is never discarded
from the pool, then the best expert can only be added to the pool in
the last round. Thus, even if we condition on the entire algorithm
using R rounds for some integer R > 0, the probability that the
best expert is not added to the pool in round R may be significantly
larger than the probability that the best expert is added to the pool
in round R. This issue is further compounded by the fact that once
a pool is selected, the day on which the next round begins is com-
pletely deterministic and possibly adversarial, so it does not suffice
to, for example, consider the probability the best expert is added to
the pool on a random day.

We overcome this challenge by “decoupling” the number of
rounds from the sampling of the best expert. What we mean by
this is as follows. We consider the distribution of all days on which
new rounds begin. We can simulate the sampling process with
a sequence of times t1, f2,... so that each t; is drawn from the
distribution of possible times that round i can end, conditioned on
the entire history of the process up to time #;—;. Observe that this
is a well-defined sequential process for defining each term ¢;, in the
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sense that to obtain t;, we can simply draw from a distribution of
possible durations for a round and then add the duration to t;_.
We observe that due to the distributional properties of the random-

order model, once the algorithm samples the best expert, then with
high probability the sequence of rounds will terminate. Moreover,
since the algorithm performs sampling with replacement between
rounds, the probability that the best expert is added to the pool
on each drawing of k experts is the same across all rounds. Thus,
the probability distribution for the total number of rounds can be
related to a geometric distribution — if the algorithm uses R rounds,
then the best expert cannot be sampled in the first R — 1 rounds
with high probability. This allows us to show that if the algorithm
samples the best expert, there was likely a small number of rounds
and therefore the total cost of the algorithm is not too high.

Unknown Error for the Best Expert. It remains to remove the
assumption of knowing the error rate for the best expert, for which
we again use the promise of the random order streaming model,
which allows us to use short prefixes of days in order to obtain an
estimate of the error rate.

To that end, we note that it suffices to acquire a (1 + O(J))-
approximation to the number of mistakes made by the best expert,
since the regret will only be increased by O(9) if we have such
an estimate. To find a (1 + O(§))-approximation to the number
of mistakes of the best expert, we initialize our guess y for the
mistakes to be % We then split the stream into epochs of length

@) (105%) and perform a binary search by repeatedly updating y
5

depending on whether the current guess is too high or too low

based on the performance of the best expert in the epoch. Thus

by epoch k, our guess y is within a (1 + Zlk)—factor of the actual
number of mistakes made by the best expert. Hence it suffices to

use O (log %) epochs to update y, which can only increase the total

regret additively by &, since each epoch has length O (105;1 )
5

1.5.3  Upper Bound for Arbitrary-Order Streams. We consider arbi-
trary order streams in Section 3. Unfortunately, when the stream no
longer arrives in a random order, then we again have no guarantees
on how the best expert will perform if it is sampled at any given
time. We observe that if the costs are {0, 1} for each day, then we
can attempt to emulate the simpler majority elimination algorithm
by removing all incorrect experts on a day on which the algorithm

is incorrect. Thus, our starting point is an algorithm that initializes

apoolofk =0 ("lﬁ%) different experts from [n] at the beginning

of each round and removes incorrect experts on incorrect days until
the pool is depleted, at which point the next round begins and a
new pool of k different experts from [n] is initialized. On each day,
the algorithm outputs the majority vote of the experts in the pool.

However, removing all incorrect experts would significantly
increase the chance that the best expert is removed from the pool,
even over multiple rounds. For example, if the best expert makes a
constant number of mistakes, then it is possible that it only survives
a constant number of days before it is removed from the pool. If
all other experts perform poorly, then the algorithm could only be

: TS
correct on a constant number of days in every group of O (lo . n)
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days, which is subconstant even if § is a constant. Therefore, we
should relax the conditions for removal of experts; a natural choice
is to only remove experts that have been incorrect for g fraction of
the time since the pool has been initialized, regardless of the outcome
of each day. The intuition is that all experts make errors on at most
a g fraction of the days in the pool, so the algorithm should make
errors on at most an O(J) fraction of the days over the pool.

Accumulation of Errors. However, this surprisingly fails because
itallows experts to “build-up” future errors by having good accuracy
on previous days. For example, suppose we have a pool of 100
experts and we choose to eliminate experts that are wrong on half
of the days since the pool has been initialized. Suppose all experts
are correct on the first 50 days but then from day 51 to day 100,
exactly half the experts are wrong on every single day. On day 100,
half of the experts are eliminated and the algorithm has made 50
mistakes, but the remaining experts have not made any mistakes.
Thus, even if half of the remaining 50 experts are wrong on every
single day from day 101 to day 200, they will not be eliminated
until day 200, which causes the algorithm to err on every single
day during that interval. We can continue this geometric approach
by allowing half of the experts to be wrong on an interval with
double the length, e.g., 13 of the remaining 25 experts are wrong
every single day from day 200 to day 400, so that the algorithm will
always be incorrect after the first 50 days, which clearly contradicts
the desired claim.

The key to the above counterexample is that experts that are
incorrect on later days can cause a larger number of incorrect
outputs by the algorithm because these experts were correct on
previous intervals. At a first glance, it seems we can avoid this issue
by instead resetting a timer for the remaining experts each time the
size of the pool roughly halves. Namely, suppose we define a timer
u to first demarcate the beginning of the round. Any expert that is
inaccurate for at least a g fraction of the days since time u is deleted.
Each time the size of P decreases by roughly half, the variable u is
updated to the new time. As before, the current round ends when
the pool is completely depleted of experts, at which point the next
round begins and a new pool is chosen. However, this still does
not work because now the timer can be set adversarially to always
cause the best expert to be deleted.

Surprisingly, the issue is alleviated if we instead require an even
more stringent demand from the experts in the pool. Instead of
asking for experts to make errors on at most % fraction of the
days in the pool, we instead ask experts to make errors on at most

logn
longegr reset, it is once again possible for the best expert to not be
deleted. Moreover, the extra O(log n) factor allows us to overcome
to build-up of errors in the previous counterexample, because the
errors can only accumulate over O(log n) rounds.

The intuition for the algorithm is that one of two cases should
hold. Either there is a small number of rounds, which indicates that
the experts in some pool performed well over a large period of time,
or there is a large number of rounds, in which case it is likely that
the best expert is added to the pool in some round. We would like
to show that in the latter case, the best expert being added to the
pool compels the algorithm to perform well overall. The idea is that

o ( J ) fraction of the days in the pool. Since the timers are no
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if we add the best expert to the pool on a random day, it is unlikely
that the best expert will ever be deleted from the pool and thus the
algorithm will have good accuracy.

Decoupling for Arbitrary-Order Streams. Whereas the random-
order model analysis crucially used the fact that the best expert
would not be deleted if it was sampled to the pool, this property
no longer holds for arbitrary-order streams. For instance, there
could be Q(M) consecutive days in which the best expert makes
a mistake, so that our algorithm will likely delete the best expert
during that time. Thus, we define “bad” times as days on which
the best expert would be deleted from the pool if it were sampled
on that day. Then we can upper bound the total number of rounds
by the sum of the number of rounds starting on bad times and the
number of rounds starting on good times. The number of rounds
beginning on bad times is upper bounded simply by the number
of bad times, which in turn cannot be too large by an averaging
argument. We then look to upper bounding the number of rounds
starting on good days. Note that if the best expert is sampled on
a good day, then it will never be deleted, which terminates the
sequence of resamplings. Thus, the number of rounds initiated on
good days follows a geometric distribution. Hence, we can show
that the number of rounds initiated on good days and thus the total
number of rounds is “low” with good probability. It follows that
with good probability, the total number of mistakes by the algorithm
must therefore also be low since the algorithm only resamples if
its accuracy is poor. Thus, although these techniques may not be
as black box as those for random-order streams, our algorithm can
achieve high-probability bounds for arbitrary-order streams, while
we do not know if this is possible with random order streams.

2 LOWER BOUND FOR ALL STREAMING
MODELS

We will provide our lower bound in terms of J, the regret the
algorithm incurs. We note that our lower bound is valid in the ii.d.
setting for discrete prediction, and consequently is a lower bound in
all (adversarial, random order, i.i.d., and continuous costs) settings
we consider in the paper. Moreover, the lower bound holds even if
the algorithm still has access to all Q(n) predictions of the experts
when the outcome of the day is revealed (and loses access to the
predictions only when it receives the next day’s predictions).

Our lower bound is achieved by reducing the problem of discrete
prediction with expert advice to an n-fold version of the distributed
detection problem we call DIFFDIST.

DEFINITION 2 (THE e-DIFFDIST PROBLEM). We have T players,
each of whom holds n bits, indexed from 1 to n. We must distinguish
between two cases, which we refer to as “V =0"and “V = 1". Let pg
be a Bernoulli distribution with parameter % i.e., a fair coin, and let

1
§+£.

11 be a Bernoulli distribution with parameter

o (NO Case, “V = 0") Every index for every player is drawn i.i.d.
from a fair coin, i.e., yp.

o (YES Case, “V = 1") An index L € [n] is selected arbitrarily

— the L-th bit of each player is chosen i.i.d. from 1. All other

bits for every player are chosen i.i.d. from .

Intuitively, each player in the e-D1rrDisT problem corresponds
to a different day in the learning with experts problem. The n bits
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held by each player correspond to the n expert predictions for
each day. Thus, in the NO case for the e-DIrrDIsST problem, each
expert is correct on half of the days in expectation (and with high
probability) while in the YES case, there exists a single expert that is
correct on a % + ¢ fraction of the days in expectation (and with high
probability). We note that we consider an algorithm that solves the
e-D1rrDisTproblem with probability 1 — p, for some fixed constant
p € [0, 1], where this probability is over both the randomness of
the input distribution, as well as the private randomness of the
algorithm.

2.1 Communication Lower Bound of the
e-D1FrDi1sT Problem

We prove our lower bounds using the blackboard model, where each
element of the stream is treated as a party (for us, each party will
correspond to a day of predictions and corresponding outcome), and
an algorithm for computing on the stream is seen as a multiparty
communication protocol. Each of T parties has private randomness
and communicates by posting a message to the blackboard, and we
denote the transcript of all communication in a protocol by IT €
{0, 1}*. The communication cost of a protocol is the maximum bit
length of the transcript, where the maximum is taken over all inputs
and all coin tosses of the protocol. The communication complexity
is the minimum communication cost of a correct protocol, where
we will consider distributional correctness, meaning that a protocol
is correct with failure probability y if it fails with probability at
most y, where the probability is taken over the joint distribution of
the inputs and the protocol’s private coins. We will take y to be a
constant throughout, and will specify the input distributions we
consider. We will also allow the protocol to have its own private
coins, as we will need this when proving a direct sum theorem
for information cost, described below. In the streaming model, the
space complexity of an algorithm is the maximum amount of space
in bits used by the algorithm. Note that any lower bound S on the
randomized communication complexity in the blackboard model
implies an S/T lower bound on the space complexity of a 1-pass
randomized streaming algorithm for solving the communication
problem, since one player must communicate at least S/T bits.

To prove a communication lower bound on the e-DIFFDIST prob-
lem, we prove an analogue of the direct sum theorem [5] that applies
to the e-distributed detection problem. The classic direct sum theo-
rem from [5] cannot be directly applied, since it is only applicable
to decision problems, where the correct answer can be solely deter-
mined from the inputs. In our case the goal is to correctly infer a
latent bit — the correct answer is not a deterministic function of
the input bits, but rather we are in a hypothesis testing scenario
where we must infer the latent bit correctly with good probability
under its respective posterior distribution.

Hence, we will use a technique that is an analogue of the direct
sum theorem in [5], but instead we directly show a lower bound on
the mutual information in the case V = 0. The mutual information
I(X;Y) between two variables X and Y is equal to H(X) — H(X|Y),
or equivalently, H(Y) — H(Y|X), where for a random variable Z,
H(Z) is the Shannon entropy of the distribution of Z. We refer the
reader to [5] for more background on information theory and the
information complexity that we use.
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LEMMA 1 (DECOMPOSABLE LEMMA). Consider the distribution X ~
g under the NO case of the e-DIFrDIST problem. For any protocol
11 that solves the e-DIFrDIST problem with constant probability, the

n
following inequality holds: I(X;IT) > .ZII(Xi;H | V =0) under p.
i=

To lower bound individual summands, we use the following

LEMMA 2 (REDUCTION LEMMA). For a protocol II that solves the
€-DIFrDIST problem with probability at least 1 — p, where p € [0,0.5)
is a fixed constant, the following inequality holds in the NO case of the
e-DIFFDIST problem: for every i € [n], [(X;;11| V = 0) > Q(e72).

Note that the e-DIFrDIsT problem is not solvable with o(e~2)
players (samples). We obtain the following randomized communica-
tion complexity lower bound for e-D1rrDisT, where recall correct-
ness is distributional, as described at the beginning of this section.

LEmMA 3. The communication complexity of the e-DIFFDIST prob-
lem with a constant 1 — p probability, for any fixed constant p €

[0,05), 159 ().

In our proof of this fact, we appeal to a lower bound on the
so-called Strong Data Processing Inequality (SDPI) constant for the
e-distributed detection problem, which was shown in [63]. This
then allows us to use a theorem of [9] to lower bound the mutual
information even conditioned on V = 0, which is referred to as the
min-information cost in that paper. This additional conditioning
on V = 0 in the mutual information lower bound now allows us to
prove a direct sum theorem on the mutual information for the OR
of n copies of the e-distirbuted detection problem by following the
framework of [5]. Finally, we use that randomized communication
complexity is lower bounded by this mutual information.

2.2 Reduction from D1rrDisT to the Experts
Problem

We can now show a lower bound for the discrete prediction experts
problem by reducing to it from the e-D1FFDIST problem. Define an
oracle algorithm, A, that achieves  regret on the expert prediction
problem with constant probability more than % Our goal is to show
that we can solve the e-DIFFDIST problem with constant probability
more than % by using A. At a high level, we will treat each player
i’s bit string as the predictions that a set of n “experts” made on day
i. To provide intuition for our reduction, we first describe a simpler
reduction from e-DI1FrDIST to the experts problem. The instance
of the experts problem we construct has 1 as the correct answer
on every day. We let each bit index correspond to an expert, and
consequently, the predictions of the experts on a day i are the bits
of player i.

In the YES case of e-D1rrDIsT, there is an index, i.e. an expert,
which is correct on approximately % + O(9) of the days. Thus, A
should also be correct % + O(9) of the time with high probability.
On the other hand, in the NO case, the experts are predicting ran-
domly. Hence, the best expert does no better than a fair coin for its
prediction. Our goal is to have A have accuracy at least % +0(95)
in the YES case and an ©(9) less fraction of days in the NO case.

However, while A ensures an upper bound on §, it makes no
guarantees about the maximum accuracy A can achieve. For exam-
ple, an algorithm that simply predicts 1 on each day will achieve
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100% accuracy in both cases. Thus, this reduction cannot “force” A
to be sufficiently inaccurate in the NO case.

Masking in the Reduction. To remedy this issue, we introduce
a notion of “masking”, i.e., obfuscating the the correct answer of
each day in our construction so we can ensure an upper bound on
the accuracy of A when in the NO case of the e-DIFFDIST problem.
In our actual reduction, formulated in Algorithm 3, we compute a
“mask” for each day by sampling a random bit from an independent
fair coin. The mask XOR’ed with 1 will be the correct answer to the
experts problem on that day. In addition, we also XOR the mask
with the player’s bits corresponding to that day to produce the
experts predictions. This masking procedure ensures that all expert
predictions and true outcomes are mutually independent in the
NO case. That is, since the mask is drawn i.i.d. from a fair coin on
each day, and the expert predictions are also drawn i.i.d. from a fair
coin, the masked expert predictions remain distributed according
to 1.i.d. fair coins. So, the true outcome on each day is distributed
according to a fair coin that is completely independent of the expert
predictions and past information provided to A. Thus, A can do
nothing to increase (or decrease) its probability of success on each
day from % On the other hand, in the YES case, there still remains
an expert that is correct on a % + O(9) fraction of days, so A will
still get a % + Q(9) fraction of days correct.

Algorithm 3 The following algorithm is a reduction from
&-DIFFDIST to the experts problem where (A is an oracle algorithm
that solves the experts problem with § regret and probability % Let
¢ = 4/2In(24) and set ¢ = §(c + 1), which we assume is less than
1/2. Let & be the XOR operation.
Input: (x®, . XM} where X € {0,1}" for each € [T].
Let stateg be the initial state of A.
for eacht € [T] do
Player t does the following:
Sample mask; from an independent fair coin.
maskedX; — X & (mask;)".
Compute prediction and next
prediction;, state; « A(state;—1, maskedXy)
A is correct on day ¢t iff prediction; @ mask; =1
if t < T then write state; to the blackboard
end for
Let S be the fraction sample days that are correct (each player
communicates a bit indicating whether the algorithm was correct
on each day).

. 1+6¢
if $ < =5

state:

then return 0 else return 1

THEOREM 1. Let §, p < % be fixed constants, i.e., independent
of other input parameters. Any algorithm that achieves § regret for
the experts problem with probability at least 1 — p must use at least

Q (%) space. This lower bound holds even when the costs are binary

and expert predictions, as well as the correct answer, are constrained
to be i.i.d. across the days, albeit with different distributions across
the experts.
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3 PREDICTION WITH EXPERTS IN THE
STANDARD STREAMING MODEL

As a warm-up to our near-optimal algorithm for online learning
with experts in the random-order model, we show an algorithm
that can handle arbitrary-order streams. To build intuition, we first
consider the simpler discrete prediction with experts problem, and
then generalize our algorithm for general costs in [0, 1]. Recall that
in the discrete prediction problem, the cost of each decision is either
0 or 1. We first propose a space constrained version of the simplest
version of the majority elimination algorithm where experts that
are incorrect for a “significant” fraction of days are eliminated. The
algorithm uses the desired O (%) space complexity for correctness
on a constant fraction of days, even when the best expert makes as
many as O(T/log? n) mistakes. When errors on only a & fraction
of days are permitted for some subconstant §, the algorithm uses

0] (Tia) space but demands that the number of mistakes made by
3.1 Discrete Prediction in the Standard
Streaming Model

Our algorithm for this upper bound is to run the majority elimi-
nation algorithm in small chunks at a time. The typical majority
elimination algorithm (not in the space constrained setting) main-
tains a voting pool of experts, that starts by including all of the
experts. On each day, the algorithm predicts the majority vote of the
experts in the pool. When the outcome is revealed, the algorithm
removes any expert who made an incorrect prediction from the
pool. If the pool is empty, the algorithm resets by adding all of the
experts back into the pool. In this formulation, the algorithm makes
at most log n times as many mistakes as the best expert. We modify
this algorithm to use less space, and impose a laxer requirement on
the experts in our pool to achieve a better bound.

The algorithm proceeds in rounds. At the beginning of each

. el 1. l6nlog’n .
round, the algorithm initializes a pool, P, of k = s different

experts and the variable u to mark the time that the round begins.
On each day, the algorithm temporarily stores (for just the current
day) the predictions of the experts in the pool, and outputs their
majority vote. When, the correct answer for the day is revealed,
any expert that is inaccurate for at least a

the best expert be at most O (1 oT

og®n

ﬁ fraction of the
days since time u is deleted. Once the pool P is completely depleted
of experts, the current round ends and the next round begins. A
complete description is given in Algorithm 4.

We first bound the number of mistakes made by the algorithm in a
particular round.

16log® n

T

is initiated by Algorithm 4 at time ty and P # 0 before some

later time t. Then the number of mistakes by the algorithm between
(t-10) to)5

LEMMA 4. Fixad >
16nlog? n

, and suppose a pool, P, of size k =

times ty and t is at most +4logn.

ProoF. Let uy,...,uy be a sequence of times defined so that u;
is the first time at which at most ﬁl experts remain in the pool.
Note that y < [log k] by definition. Let n; be the total number of

mistakes the algorithm has made by time u;. We note that nj+1 — n;
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Algorithm 4 An expert algorithm that maintains a pool of experts
occupying O(n/Td) space, and eliminates an expert if its accuracy
drops below 1 — %. This algorithm is a streaming analogue of
the typical majority elimination algorithm for experts.

Input: Number n of experts, number T of rounds, fraction 1 — § of

mistakes

16nlog
Lk e 6nlog”n

Ju—1

2: Let P be a random set of k unique indices of [n].

3. for each time t € [T] do

4. Store (for only the current day t) the predictions of the ex-
perts in P.

Output the majority vote of the experts in P.

Discard any experts in P with lower than 1 —

8105g . accuracy
since time u.
if P = () then
Let P be a random set of k unique indices of [n].
9: U<t
10:  endif
11: end for

7:
8:

mistakes are made by the algorithm between times u; and u;41, and
each mistake requires at least ﬁ mistakes across all experts, since

there at least 2% experts before time u;41, and at least half of them
must be wrong for a mistake to be made. Consequently, the total

number of mistakes made by the experts between times u; and ;41
(ui+1—to)5-‘

8logn
o7 experts that are not deleted
by time u;, so the total number of mistakes made by the experts
between times u; and u;41 is at most

(uis1 —00)S] k < (uis1 — to)kd +£
8logn 20 7 g.2llogn 2t

is at least (nj4+1 —n;) - 2”2 We can also see that at most [

mistakes can be made by each of the £

—to)kS
Hence we have (nj4+1 — n;) - 2“2 < % + 57 so that (nijs1 —
ni) < % + 4. Therefore,
(uir1 — )9 (t—t)s
E ni+1 — nj) < E —————— 44| < ——— +4logk.
(i1 = ni) < — ( 2-logn 2 &
m}

We now give the full guarantees for our algorithm.

2
THEOREM 6. Fixad > 161(’#, and suppose the best expert makes
2
at most M < mzﬁﬁ mistakes. Then Algorithm 4 for the discrete

prediction with experts problem uses 0 (%) space and achieves regret

at most §, with probability at least 1 — %

Proor. Algorithm 4 only makes more than ST total mistakes if

3 leT ~ rounds. This is because, by Lemma 4, the

_oT T Té
Flogn = +810gn-4lognsT6.
Thus our goal is to show that the probability that Algorithm 4

completes at least rounds is low. We would like to say that

it completes at least

bound on mistakes after rounds is

8 log n
conditioned on a large number of rounds, that the algorithm must
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have sampled the best expert many times with high probability.
Unfortunately, the conditional event that the algorithm completes
a large number of rounds can significantly alter the distribution of
events, resulting in a more involved analysis.

We thus define a sequential procedure to analyze the distribution
for the total number of rounds. Let dy, dy,d>, ... be the random
variables representing the times on which the pool of k experts is
sampled, so that d; is the random variable for the time on which the
pool of experts is empty for the i-th time and thus resampled. We
construct a sequence ty, t1, tz, . . . of times so that the distribution
of ty, t1, ta, . . . will match the distribution of dy, d1,d>, . ... Let tp = 0
and for each i > 0, let t; be drawn uniformly from the distribution
of possible times at which a new pool of k experts drawn at time
ti—1 is completely removed from the pool. The sequence {¢;}; is
terminated if the experts drawn at time t;_; are not all removed
from the pool by time T. Note that the process in which the sequence
to, t1, ... is generated matches the process in which the sequence
do, d1, ... is determined, so that their distributions are identical so
we can instead work with the random sequence ty, t1, . . ..

Let BAD be the set of times on which the best expert would be
eliminated by the algorithm if it were added to the pool of experts on
a time ¢ € BAD. Because the best expert makes at most M mistakes
and the algorithm deletes experts that have made mistakes on at
least -7>— fraction of the times since they have been in the pool,

8 log
then it follows that [Bap| < 1087,

Let R be the random variable that corresponds to the total number
of rounds in the algorithm. Let B be the random variable that corre-
sponds to the total number of rounds in the algorithm that started
on days ¢ such that t € BAD. Let G be the random variable that cor-
responds to the total number of rounds in the algorithm that started

on days t such that t ¢ BAD. Observe that B < |BAD| < Wl% and
R<B+G < 8Mg’gn+G Since M < LTZ thenR < —9L_4G.
1281log? n 16logn

Thus it remains to analyze the distribution of G.

Observe that if the best expert is sampled on a time t with t ¢
BAD, then the best expert will not be deleted and thus there will
be no subsequent round. Hence, if G = j for some j > 1, then the
best expert must not have been sampled into the first j — 1 pools
that were sampled on times t1,...,tj—1 € Bap. Thus, Pr [G > j] <

. 2
1 —k/n)/~1 for each integer j > 1. Since k = M,we have
ger j TS
5T
oT l6nlog?n 1)Tken
Pr|G > <|l1-—.=
16logn TS n
TS
16log? n TeiogZn 087
<(1-—=2—
TS
<o logn < 1
n
_ 8T ST
Therefore, Pr |R > T6logn + lélogn] < ﬁandPr [R < 810gn] >

1- E' Conditioned on the event that R <

815 , then by Lemma 4,
n
the total number of mistakes by the algorithm is at most

T T
?5+4Rlogns—5+ -4logn < T4.

2 8logn
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The regret of the algorithm is defined as the difference between
the error rate of the algorithm and the optimal error rate (the error
rate of the best expert). This is upper bounded by the error rate of
the algorithm, which is at most T6/T = 6. O

3.2 Online Prediction for General [0, 1] Costs in
the Standard Streaming Model

Now, we show that with a simple change, we can modify this
algorithm to work for general [0, 1] costs. The trouble with this
algorithm for [0, 1] costs is that it is no longer clear what it means to
take the “majority prediction” on each day. However, there are other
sequential prediction algorithms that we could use, that work well
in the case of general costs. Thus, for [0, 1] costs, we can implement
Algorithm 5.

Algorithm 5 An expert algorithm that works for [0, 1] costs in the
standard streaming model.

Input: Number n of experts, number T of rounds, fraction 1 — § of
mistakes, (black-box sequential prediction algorithm of
choice)

Lk e 16fnlnninT

2: Let P be a random set of k unique indices of [n].

3. Initialize a sequential prediction algorithm (Definition 1) for
the experts in P with ¢ = %

4: for each time t € [T] do

5. Output prediction according to sequential prediction algo-

rithm running on P.

if every expert in P has an error rate higher than g

time u then
Let P be a random set of k unique indices of [n].
u<—t
Re-initialize sequential prediction algorithm for experts
in P with ¢ = %

10:  endif

11: end for

,u«—1

since

Our analysis follows the same structure as the one for discrete
costs. We can use the guarantee of the sequential prediction algo-
rithm (Definition 1) in place of Lemma 4. The bound on the number
of “bad days" that is used in Theorem 6 is now somewhat more
involved and is presented as its own lemma.

LEMMA 5. Let BAD be the set of times on which the best expert
would be eliminated by the algorithm if it were added to a pool of
experts on a time t € BAD, and suppose the best expert incurs total
cost at most M. Then |BAD| < 8M

Proor. We show this via amortized analysis. For convenience,
denote the threshold L = % and let m; be the cost of the best expert
onday i foreachi € [T].Let{t1,...,t,} be the days in BAD, so that
we would like to show that b = |Bap| < %. For each tj € BAD
with j € [b], i.e, the j-th bad day, let e; be the day on which the
best expert would be deleted if it were sampled on day ¢}, so that
szt m; > (ej —tj+ 1)L,

We define a subsequence 4, .. ., tay ofty,...,
ar = 1 and for each k > 1, let ax = min;eppp{i :

tp, as follows. Let
i > ellk—l}' In
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other words, t,, is the first bad day after the deletion of the (k —1)-
th term in the subsequence. Thus the sequence tg4,,...,t4,, is a
subsequence of t1, .. ., t, and the intervals [t4,,€q,], ..., [tab,, eab,]

7 €.
are disjoint, so we have that ZzT—l m; > Z?—l Zlf; m;. We also
= =1 &ij=t,,
j

know that each of the b bad days is in one of these intervals, so

Z?,:l €a; —la; +12 b. Therefore, we have
T b 4
M=Zmi zz Z mi ZZ(eaj—taj+l)L2bL.
i=1 JER= =

It follows that b < % where b = |Bap| is the number of bad
daysand L = %. Thus, |Bap| < 85\344 O

This allows us to give an algorithm for general costs.

2
THEOREM 7. Fix any§ > w, and suppose the best expert

52T ; .
makes at most M < 28fInn mistakes, where f is a fixed constant

that depends on the black-box sequential prediction algorithm that is
used. Then Algorithm 5 for the online learning with experts problem

uses O (5%) space and achieves regret at most § in expectation,

4 GENERAL COSTS IN THE RANDOM-ORDER
STREAMING MODEL

In this section, we consider the online learning with experts prob-
lem, in which the cost of the decision of an expert on each day can
range from [0, p], where p > 0 is the width of the problem. Without
loss of generality, we assume p = 1 throughout this section and
instead incur a multiplicative factor in the regret in the guarantees
of our algorithms, i.e., our algorithms will have regret pd rather
than §. Whereas the previous algorithm provided guarantees on
arbitrary streams, our main algorithm in this section will focus on
the random-order streaming model.

The main result in the previous section, for arbitrary-order
streams, relied on an assumption that the best expert incurred
sub-constant regret. This allowed us to conclude that there were
not too many “bad" days in the stream, where a “bad" day is one
where if we start a round with the best expert on that day, the best
expert will appear to do badly, causing the round to end.

For random-order streams, this is no longer a problem, because
the best expert will effectively do uniformly well across the entire
stream. This means that any day on which we sample the best
expert will likely be a “good" day. This allows us to remove the
condition on the best expert.

We will first show an algorithm that achieves 6 regret, if it knows
M, the number of mistakes made by the best expert. Then we show
how to modify the algorithm to include a searching phase which
allows us to estimate M and so the algorithm does not need to know
it in advance. The algorithm for arbitrary-order streams did not
need to know M in advance because we assumed an upper bound
on M. However, for this algorithm, we remove this upper bound
assumption on M, though we will need to look at a prefix of days
to estimate M for use in our algorithm.

We first note that the best expert in the random-order model
cannot incur high cost. The following is Hoeffding’s bound.
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Algorithm 6 An expert algorithm that maintains a pool of experts
occupying O(n/(82T)) space, and resamples the pool if its expected
cost is too high.

Input: Number n of experts, number T of rounds, regret 6,
number M of mistakes of the best expert. We later show
how to instead estimate M.
cue ke ofmeEn)
2: Let P be a random set of k unique indices of [n].
3. for each time t € [T] do
4 Run a sequential prediction algorithm (Definition 1) with
& = §/2 for the experts in P.
if the cost of every expert in the pool exceeds
%(t —u) +4+/(t — u) log T since time u then
Let P be a random set of k unique indices of [n].
u—t
end if
end for

6
7
8:
9:

LEMMA 6. Let X1,...,X; be independent random variables such
that X; € [0,1] with E[X;] = « foralli € [t] and let X = Zf.zl Xi.

Then for any T > 1, Pr [|X— at| > 4\/t10gT] < %

We can apply Lemma 6 in conjunction with the distributional
properties of random-order streams and a union bound to show that
with high probability, a pool with the best expert will be retained.

COROLLARY 1. In the random-order model, with prob. at least 1— %
Algorithm 6 will not resample a pool including the best expert.

We now analyze Algorithm 6, which assumes that the cost M of
the best expert is given as input to the algorithm. We remove this
assumption afterwards.
16log’ n . .
THEOREM 8. For any § > | —==—, there exists an algorithm
that takes as input a number M, which is the cost of the best expert,
and achieves regret at most § in expectation on random-order streams.

2
The algorithm uses O ( n 150ng n) space.

Proor. Consider Algorithm 6 and suppose by way of contradic-
tion, that its expected cost is at least M + 8T. Let a = % Suppose
the j-th pool of experts was run for time ¢;. Then the best expert in
the pool has cost at most at; + 4+/tj log n + 1. Then by Definition 1
fore = g, the expected cost of running the sequential prediction
algorithm on the j-th pool of experts is at most

6
(1 + 5) (atj +41/tj logn + 1) +

for some fixed constant f. Thus, if there are r total rounds over time
t, the expected cost of the algorithm by linearity of expectation is
at most

2fInn
5

2frinn

5).

(1+§) (at+4 rtlogn+r)+

=at+0 (Sat +4/rtlogn+

rlogn
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Hence, if the expected cost is at least M + 3'5—T and § >

5 T
logn

We now analyze the probability distribution for the number
of rounds that the algorithm uses. By Corollary 1, any pool that
includes the best expert will not be resampled in the random-order
model, with probability at least 1 — % Thus, conditioning on the
event that the first pool sampled that includes the best expert is
not resampled, then if the algorithm uses j total rounds, the first
j — 1 rounds must have not sampled the best expert. Therefore,
if Z is a random variable that represents the number of rounds,

nlog?n

j-1
we have Pr[Z > j] < (1— %) . Since k = O( 5T )Witha
sufficiently large constant in the big-Oh, then Pr [Z > r] <
forr =Q (

[161og® n
T £

) rounds.

then the algorithm must have used r = Q (

_1__
poly(T)
) Hence, we have that with probability at least 1— %,

logn
the expected cost of the algorithm is at most M + 25~ 35T . Otherwise,
the cost of the algorithm is at most T. Thus, the overall expected
cost of the algorithm is at most M + 6T. O

Unknown cost of the best expert in the random-order model. We
remark that Algorithm 6 assumes the cost M incurred by the best
expert is known. We now describe how this assumption can be
easily removed in the random-order model. Note that since the
overall expected cost of Algorithm 6 is at most M + T, then even if
we use a (1 + O(5))-approximation of M as input to the algorithm,
then the overall expected cost is (1 + O(5))M + 6T = M + O(6T),
which can be then adjusted to M + 8T by a rescaling of §. Thus, it
suffices to find a (1 + O(J))-approximation to M.

Let y be an estimate for the average cost % and we initialize y to
%. Note that a (1 + O(5))-approximation to y corresponds to a (1 +
O(98))-approximation to M. We obtain a (1 + O(J))-approximation
to y through a binary search. We proceed through ¢ := 2log %

epochs so that in each epoch j € [£],yisa (1 + %)—approximation

o M. Each epoch j € [#] has lengt

as the estlmate for the cost and

on this epoch with input y - g 1
ﬁ as the target regret. We can also track the average cost f§; of
the best expert in each epoch j. If y > (1 + 6)f;, then we update
Yyevy— 21” Similarly if y < (1-6);, then we update y < y+ 77 21”

After the ¢ epochs, we will fix y as the estimated average cost for
the remainder of the stream and run Algorithm 6.

[1610g? . .
THEOREM 9. Foranyd > #, there exists an algorithm that
achieves regret at most § in expectation on random-order streams.

The algorithm uses O (52T log? n) space.

Proor. It suffices to (1) show that y converges to a (1 + §)-
approximation of the true average cost A—T/I by the best expert and
(2) analyze the regret induced by the procedure until y converges.
The expected regret of the algorithm afterward is upper bounded
by Theorem 8.

To show that y converges to a (1 + §)-approximation of the

true average cost % by the best expert, we consider casework on y.

Supposey > (146)- A—T/I . Then by Lemma 6, no experts sampled by the
pool will achieve average cost y in the random-order model. Thus y
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will be decreased accordingly. On the other hand, if y < (1-0) - A—T/I
then again by Lemma 6, the best expert will be sampled by the pool
and have average cost at least (1— 5) in the random-order model
and then y will be increased accordlngly. Hence, with probability
at least 1 — % it holds that y converges to a (1 + §)-approximation
of the true average cost % of the best expert.

On the other hand, since each epoch j € [f] only has length
5 lig T and ¢ = 2log % then the total cost that can be incurred across
the ¢ epochs is only 6T. Hence the regret can only be increased by
an additive & due to not knowing the average cost of the best expert.
Finally, to analyze the space complexity, recall that each epoch has
length 1 and 155 00 is the target regret. With high probability, the

best expert makes at least mistakes in each epoch. Thus

_ oM
2001og

500 1ng L
gs
by Theorem 8, it suffices to use O ( O

T log? n) space.
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