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Abstract

Heatwaves are increasing in frequency, duration, and intensity in the atmosphere and
marine environment with rapid changes to ecosystems occurring as a result. However, heatwaves
in estuarine ecosystems have received little attention despite the effects of high temperatures on
biogeochemical cycling and fisheries and the susceptibility of estuaries to heatwaves given their
low volume. Likewise, estuarine heatwave co-occurrence with extremes in water quality
variables such as dissolved oxygen (DO) and pH have not been considered and would represent
periods of enhanced stress. This study analyzed 1,440 station years of high-frequency data from
the National Estuarine Research Reserve System (NERRS) to assess trends in the frequency,
duration, and severity of estuarine heatwaves and their co-occurrences with atmospheric
heatwaves, low DO, and low pH events between 1996-2019. Estuaries are warming faster than
the open and coastal ocean, with an estuarine heatwave mean annual occurrence of 2 + 2 events,
ranging up to 10 events per year, and lasting up to 44 days (mean duration = 8 days). Estuarine
heatwaves co-occur with an atmospheric heatwave 6-71% of the time, depending on location,
with an average estuarine heatwave lag range of 0-2 days. Similarly, low DO or low pH events
co-occur with an estuarine heatwave 2-45% and 0-18% of the time, respectively, with an average
low DO lag of 3 £ 2 days and low pH lag of 4 + 2 days. Triple co-occurrence of an estuarine
heatwave with a low DO and low pH event was rare, ranging between 0-7% of all estuarine
heatwaves. Amongst all the stations, there have been significant reductions in the frequency,
intensity, duration, and rate of low DO event onset and decline over time. Likewise, low pH
events have decreased in frequency, duration, and intensity over the study period, driven in part

by reductions in all severity classifications of low pH events. This study provides the first
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baseline assessment of estuarine heatwave events and their co-occurrence with deleterious water
quality conditions for a large set of estuaries distributed throughout the U.S.
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Introduction

Greenhouse gas concentrations are expected to continue to increase in the atmosphere
throughout the first half of the 21 century, which will lead to climate warming and an increase
in water temperatures (Hoegh-Guldberg et al. 2014). As aquatic systems absorb excess heat, a
higher frequency, duration, intensity, and spatial extent of discrete extreme warm-water periods
known as heatwaves is expected (Frolicher et al. 2018; Oliver et al. 2018; Collins et al. 2019;
Oliver et al. 2021). Many physiological, ecological, and biogeochemical processes are
temperature-dependent, so extremes in temperature, especially at the higher end, can compound
other stressors within aquatic ecosystems. The solubility of dissolved gasses is inversely related
to temperature, such that as temperature increases, dissolved oxygen (DO) concentration
decreases. Furthermore, ecosystem respiration is a temperature-dependent process that consumes
DO and produces carbon dioxide (CO2) which when mixed with water forms carbonic acid,
potentially resulting in lower pH depending on buffering conditions. Aquatic heatwaves push
organisms past their thermal tolerance (Madeira et al. 2012) and may trigger multiple stressors in
aquatic ecosystems such as low DO and low pH events, which are known to cause local
population extinction (Llanso 1992, Baird et al. 2004), regional mass mortality (Garrabou et al.
2009), and trophic cascades (Piatt et al. 2020).

While many studies have reported positive temperature trends for aquatic environments,
only recently have studies examined extremes in water temperature referred to in coastal and
oceanic environments as marine heatwaves. Marine heatwaves (MHWs) have a standardized
definition as discrete periods when water temperature is above a seasonally referenced 90™
percentile for five or more consecutive days (Hobday et al. 2016). These relatively short-lived,

extreme events have attracted research interest, in part because of their potential for
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disproportionate impacts on ecosystems (Easterling et al. 2000, Jentsch et al. 2007) and because
future warming is likely to increase the frequency, intensity, duration, and spatial extent of
heatwaves. MHWs cause shifts in habitat-forming keystone species (e.g., seagrass, salt marshes,
and mangroves), non-native species invasions, and regime shifts (Lima and Wethey 2012; Marba
and Duarte 2010; Osland et al. 2013; Smale and Wernberg 2013; Sorte et al. 2013; Wernberg et
al. 2016; Aoki et al. 2021). Relative to coastal and oceanic ecosystems, little attention has been
given to heatwaves within estuaries despite their vulnerability due to lower water volume and
greater heat exchange by tidal, atmospheric, and fluvial forces.

Many organisms use habitat in the river-estuary-coastal ocean continuum and are
sensitive to seasonal extremes in these different locations. This variation among habitats requires
better understanding of when, where, and how aquatic heatwaves are changing with implications
for species distributions, fisheries management, and conservation. Prior studies of MHWSs have
relied on satellite-derived sea surface temperature (SST) for broad-scale analysis however,
satellite-derived SST measures have limitations. Remotely sensed SST measures are collected at
daily to monthly time intervals, are limited by cloud cover, and have low spatial resolution (1-50
km) limiting their use to large bodies of water with low land contamination (i.e., land cover
within pixel < 50%; Lima and Wethey 2012). Direct measurements of temperature using in-situ
thermistors provide another approach for measuring heatwaves and have the benefit of high
temporal resolution (minutes to hours) that allow study of site-specific changes in smaller
waterways that would otherwise be contaminated by land using satellite observations, are
measured in conjunction with other water quality variables, and can be extrapolated to broad
scales through monitoring networks. This study 1) provides a baseline assessment of estuarine

heatwaves (EHWs) using in-situ water temperature measurements from the last 24 years (1996-
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2019) made at U.S. National Estuarine Research Reserve Sites, 2) examines temporal
relationships between atmospheric heatwaves (AHWs) and EHWs, and 3) examines the degree
to which EHWs and extremes of low DO and pH co-occur.
Methods
Study Sites

The U.S. National Oceanic and Atmospheric Administration’s (NOAA) National
Estuarine Research Reserve System (NERRS) maintains a system-wide monitoring program that
measures meteorological and water quality conditions using high-frequency automated sensors
throughout North America. Of the 29 reserves managed by NERRS, we identified 12 reserves
(Figure 1) with the longest and most complete meteorological station and water quality station
records, beginning in 2002 and 1996, respectively (NOAA 2020). The selected reserves occur on
both coasts of the contiguous U.S., including the Gulf of Mexico and Puerto Rico and represent
five distinct estuarine habitat types (open water, submerged aquatic vegetation (SAV), upland,
marsh, and mangrove) as described in earlier NERRS publications (Wenner et al. 2001; Sanger
et al. 2002). Each reserve maintains a minimum of four water quality monitoring stations; within
the 12 reserves, we identified 17 water quality monitoring stations with water temperature,
dissolved oxygen, and pH records from 1996-2019 that had relatively few missing data (max
data gap < 4.2% of timeseries; Table 1). Each reserve follows standard operating procedures and
QAQC protocols that allow for comparison across the reserve system. Automated atmospheric
and water quality stations collect samples at 30-minute (prior to 2007) and 15-minute intervals
(post 2007). YSI water quality sondes (model 6600 until 2013, EXO2 thereafter) are calibrated

every 1-4 weeks depending on site and season to reduce sensor drift and cleaned to reduce data
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loss due to biofouling. All data were accessed using the NERRS Centralized Data Management
Office’s Advanced Query System (http://cdmo.baruch.sc.edu/).
Extreme Event Detection

Atmospheric and water quality data flagged during the QC protocol as outside sensor
range, missing, rejected, or suspect were removed from the analysis. Tidal and diurnal signals in
the high-frequency water quality data were removed using Fourier transform (aka transform
filter) as a low-pass filter (Walters and Heston 1982; Thomson and Emery 2014). This was done
to account for advective fluxes from tidal processes that may impact the water quality time
series. Gibbs’ phenomenon was suppressed using a three-point taper between the pass-band and
stop-band (Forbes 1988; Thomson and Emery 2014). Inspection for Gibbs’ phenomena
contamination in the filtered data did not reveal any obvious introduced spurious oscillations.
Daily averages for each parameter were then calculated from the low-pass filtered, high-
frequency data if > 75% of a day’s high-frequency observations were present using the R
package ‘openair’ version 2.8-3 (Carslaw and Ropkins 2012). The resulting 216 station years of
daily average air temperature and 408 station years of daily average water temperature, DO
concentration, and pH were then used to identify extreme events using the R package
‘heatwaveR’ version 0.4.4 (Schlegel and Smit 2018; R Core Team 2020). While the datasets
used in our analysis do not provide the recommended 30 consecutive years of data suggested for
this sort of analysis (Hobday et al. 2016), the data are the best available source of high-frequency
measures of several estuarine water quality variables for over two-decades across broad
geographic regions. In addition, Schlegel et al. (2019) presented a sensitivity analysis of the
heatwave algorithm which demonstrated that time series as short as 10-years provided event

duration and intensity measures similar to 30-year time series.
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Estuarine heatwaves followed the Hobday et al. (2016) definition of marine heatwaves as
those times when the daily mean water temperatures exceeded the seasonally adjusted 90™
percentile threshold (e.g., the upper-tail of the water temperature distribution) for a period > 5
days without a drop below the threshold for > 2 days. Extreme low DO and pH events followed
the same definition as estuarine heatwaves, with the exception that these extremes were those
times when DO or pH were below the 10" percentile. We identified low pH (i.e., more acidic)
rather than high pH conditions of interest given future projections of ocean acidification (Doney
et al. 2020). Atmospheric heatwaves were defined similar to estuarine heatwaves, with the
exception that atmospheric heat waves last for a period > 3 consecutive days (i.e., no daily gaps
below the seasonal threshold during an event; Perkins and Alexander 2013) relative to EHW
which last > 5 days and that allow for < 2 gap days below the seasonal threshold during an event
(Hobday et al. 2016). These definitions follow convention in the two fields and are related to the
greater atmospheric temperature variability relative to water. An EHW was classified as co-
occurring with an AHW when the EHW event started while there was an active AHW event
occurring. Similarly, low DO and low pH events co-occurred with an EHW if they started while
there was an active EHW. Our approach to identifying co-occurrence is conservative given the
potential for lags among the variables, but in using this approach we avoided the problem of
specifying lags, which likely vary. Since the AHW timeseries was shorter relative to the EHW’s,
the co-occurrence and lag analyses were assessed between 2002-2019. As EHW and extreme
water quality conditions had the same timeseries length, their co-occurrence and lag analyses
spanned the entire 1996-2019 timeseries. Severity classification (moderate, strong, severe,

extreme) of each extreme event followed the Hobday et al. (2018) method which is based on
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event peak intensity and multiples of the 90" percentile difference from the seasonally adjusted
mean.
Statistical Analysis

When extreme events were identified, we also quantified event duration, cumulative
intensity above the 90" percentile (or below the 10™ percentile for DO and pH), rate of event
onset, and event decline rate. Event frequency, defined here as the annual sum of events per
station, was derived to examine long-term changes in extreme events. Events were further
categorized based on reserve region, season (winter = Dec-Feb, spring = March-May, summer =
June-Aug, fall = Sept-Nov), and mean salinity during the event (freshwater = 0-0.5 g kg™!,
oligohaline = 0.5-5 g kg'!, mesohaline = 5-18 g kg™!, polyhaline = 18-30 g kg!, seawater = 30+ g
kg!) to identify spatial, seasonal, and salinity-based patterns. While these seasonal definitions
may have limitations given differences in season length between regions, they represent
Northern hemisphere meteorological seasons (NOAA 2016) and have been used in estuarine and
atmospheric studies of a similar spatial scale (Caffrey 2004; Lau and Nath 2012). Annual trends
among events with regard to category and variable of interest were calculated using the non-
parametric Mann-Kendall trend test with Sen’s slope estimator, which are robust against outliers
and non-normally distributed data, and have been used in other long-term trend analyses (Hirsch
et al. 1982; Webb and Nobilis 1995; Kaushal et al. 2010; Perkins and Alexander 2013). For
reserves with two stations, we present averages and associated range. Due to the multiple
comparisons, a 10% False Discovery Rate (FDR, also referred to as Benjamini-Hochberg
correction) was applied to reduce type 1 errors upon statistical inference (Benjamini and

Hochberg 1995). All analyses were performed in the R environment for statistical computing (R
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Core Team 2020) with code available on GitHub (https://github.com/spencer-
tassone/EstuarineHeatwaves).
Results
Co-Occurrence and Lag-Time of Events

Relatively low intensity, low duration AHW events are able to produce EHWs when
water temperature is near its 90" percentile threshold (Figure 2a,b). Estuaries can retain this
excess heat and, in some cases, trigger the co-occurrence of a low DO event (Figure 2¢) and low
pH event (Figure 2d). The proportion of triple co-occurrence of stressful water quality conditions
where there was a low DO event and low pH event that began during an EHW was rare,
occurring on average (= SD) in only 2 + 2% of EHWs but ranging up to 7% at some stations.
The proportion of EHW that co-occurred during an active AHW event averaged 36% across all
stations and ranged between 6-71% (Figure 3). The Mid-Atlantic and Northeast regions had the
greatest proportional co-occurrences of atmospheric and estuarine heatwaves, averaging 51 + 3%
and 39 + 21%, respectively. On average, 17 + 11% of EHWs had co-occurring low DO events,
and 6 = 5% of EHWs had co-occurring low pH events (Figure 3). Amongst co-occurring events,
the average lag-time between an AHW and the onset of an EHW ranged between 0-2 days
(Figure 4). Similarly, the average lag-time between co-occurring EHW and the onset of both low
DO and low pH events was 3 &+ 2 and 4 + 2 days respectively.
Atmospheric Heatwaves (AHW:s)

Between 2002-2019, across NERRS reserves the number of AHW events did not increase
over time. During the 18 years observed, the 12 NERRS reserves had a total of 899 AHW events,
with a mean reserve total of 75 + 11 AHWSs (Figure 5). Similarly, during the 2002-2019 period,

there was a larger number of AHW than EHW or low DO and low pH events. The 18-year mean
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air temperature trend among the reserves ranged from -0.10 to 0.12 °C year! with 8 of the 12
reserves having positive trends. The trend in annual standard deviation was lower than that of
the mean air temperature, ranging from -0.03 to 0.05 ‘C year!' with 6 of the 12 reserves having
positive increases (SI Figure 1a).
Estuarine Heatwaves (EHW3)

Among the 17 water quality stations, there was a total of 900 EHW events between 1996-
2019 (Table 1) with a mean station total number of EHWs of 53 + 8 (Table 1). The mean annual
frequency and duration of EHWs ranged between 1-4 events year! and 6-12 days respectively.
The average onset rate of EHWs declined by -0.01 °C day™! year™! (p-value = 0.001; Table 2)
among the NERRS stations. There has been no significant trend in severity classification of
EHW events (Figure 6a), although there has been a non-significant increasing trend in the total
number of EHW days (Figure 6d). The 24-year mean water temperature trend among the
reserves ranged between -0.07-0.09 °C year! which was greater than the trend in the annual
standard deviation (-0.02-0.04 °C year’'; SI Figure 1b). Patterns in mean EHW duration, total
number of events, and event frequency as a function of mean depth, mean tidal range, and habitat
type were non-significant (SI Figure 2).
Low Dissolved Oxygen Events

The frequency (-0.05 events year™!, p-value = 0.008), average cumulative intensity (-0.20 mg

L' days year™!, p-value = 0.031), average duration (-0.12 days year', p-value = 0.003), onset and
decline rates (-0.01 mg L' day™! year™!, p-value = 0.003, -0.02 mg L™ day! year™!, p-value =
0.003 respectively) of low DO events decreased over time throughout the NERRS stations (Table
2). There has been a decrease in the total number of low DO events driven by reductions in the

strong, severe, and extreme severity classifications (Figure 6b). Similarly, there has been a
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significant reduction in total low DO days, decreasing by 11.9 days year™ (Figure 6e).
Regionally, the Northeast had significant declines in average cumulative intensity (-0.37 mg L™!
days year!, p-value = 0.001) and event duration (-0.20 days year™, p-value = 0.004). Likewise,
the Northeast and Mid-Atlantic had decreased average onset (both -0.01 mg L™ day! year, p-
value < 0.012) and decline rates of low DO events (-0.02 mg L™ day™! year™!, p-value = 0.011, -
0.04 mg L day! year™!, p-value < 0.001 respectively). The frequency (-0.03 events year™, p-
value < 0.001), average duration (-0.14 days year™!, p-value = 0.005), and average decline rate (-
0.02 pH days™! year, p-value = 0.012) declined significantly throughout the summer. Patterns in
mean low DO duration, total number of events, and event frequency as a function of mean depth,
mean tidal range, and habitat type were mostly non-significant (SI Figure 3).
Low pH Events

The frequency (-0.09 events year™!, p-value < 0.001), average duration (-0.13 days year™, p-
value = 0.04), and average cumulative intensity (-0.07 pH days year™, p-value = 0.006) of low
pH events significantly decreased over time (Table 2). Likewise, there has been a decrease in the
total number of low pH events driven by significant reductions in all categories of extreme event
classification (Figure 6¢). Similarly, there has been a significant reduction in total low pH days,
decreasing by 24.9 days year! (Figure 6f). All seasons had declines in the frequency of low pH
events, with spring and summer reduced by -0.03 events year™ (p-values < 0.008) and fall and
winter reduced by -0.02 events year™! (p-values < 0.012). Furthermore, the average cumulative
intensity (-0.12 pH days year™!, p-value = 0.001) and duration (-0.29 days year!, p-value =
0.004) of low pH events decreased in the Spring. The onset rate of low pH events was reduced in
the fall (-0.004 pH day™! year’!, p-value = 0.016). Among salinity gradients, the frequency of low

pH events declined at the salinity end-members (tidal fresh = -0.08 events year™!, p-value =
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0.009; Seawater = -0.10 events year™!, p-value = 0.003). Mesohaline, polyhaline, and seawater
segments had significant declines in the average cumulative intensity of low pH events (slopes
between -0.11 and -0.08 pH days year™, p-values < 0.011). Furthermore, the average duration (-
0.27 days year!, p-value = 0.027) and decline rate (-0.004 pH day™' year™, p-value = 0.007) of
low pH events were reduced in the seawater end-member. Regionally, the West coast (-0.20
events year™'), Northeast, Mid-Atlantic (both slopes = -0.10 events year™), and Southeast (-0.09
events year'') had significant reductions in low pH event frequency (all p-values < 0.03).
Similarly, the West coast, Northeast, and Southeast regions had reduced average cumulative
intensity (slopes between -0.10 and -0.06 pH days year™!, p-values < 0.027) and average decline
rates (slopes between -0.01 and -0.002 pH day™! year!, p-values < 0.014). The Northeast region
was the only region to have reduced average low pH event onset rate (-0.002 pH day! year™, p-
value = 0.027). Patterns in mean low pH duration, total number of events, and event frequency as
a function of mean depth, mean tidal range, and habitat type were non-significant (SI Figure 4).
Discussion

The co-occurrence of and lag-time between extreme events (i.e., EHW, low DO, and low
pH) potentially compounds the stressful conditions that a single event may cause. Atmospheric
and estuarine heatwaves had the greatest proportion of co-occurrence (6-71%; Figure 3) and
shortest lag-time (average = 1 =+ 1 day; Figure 4), suggesting that AHW can push estuaries into
heatwave conditions rapidly. Given the relatively high proportion of co-occurrence of AHW and
EHW and their short lag times, estuarine heatwaves may interact nonlinearly with ecosystem
processes as has been observed in other aquatic ecosystems (Stenseth and Mysterud 2002;
Caissie 2006; Wilhelm and Adrian 2008). Estuarine heatwave and low DO co-occurrence were

twice as likely throughout the Atlantic coast (average = 20 + 9%) relative to the Pacific, Gulf of
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Mexico, and Caribbean (average = 8 + 2%; Figure 3). Estuarine heatwave and low pH co-
occurrence were relatively low and similar across all regions (6 + 4%). Warm water temperatures
stimulate metabolic activity that can cause diel fluctuations in pH (Duarte et al. 2013) however
watershed inputs of bicarbonate alkalinity have been increasing in many rivers (Kaushal et al.
2013), increasing the buffering capacity of receiving water bodies against low pH events
including those brought on by relatively short-lived extreme EHW events. Likewise, increased
production during periods of elevated water temperature could reduce low pH stress in estuaries
that are experiencing increased loading of acidic waters, or reduced watershed loading via
drought or water withdrawals. The average lag-time between an EHW and low DO or low pH
was 3 + 2 days and 4 + 2 days respectively, suggesting a possible connection between extreme
warm water conditions and ecosystem respiration. The triple co-occurrence of an estuarine
heatwave, low DO, and low pH event was low amongst most stations, averaging 2 + 2%,
however Tivoli South Bay, Hudson River, NY had a 7% rate of triple co-occurrence. The
relatively high co-occurrence of EHW and low pH events, as well as triple co-occurrences at
Tivoli South Bay are likely due this station being connected to a tidal freshwater swamp. The co-
occurrence of low DO and low pH appears to have both additive and synergistic negative effects
on fish and bivalves (Gobler and Baumann 2016; Chan et al. 2019). These low DO and low pH
conditions have become more common in stratified coastal zones due in part to rising water
temperature (Gruber 2011; Doney et al. 2012). The NERRS datasets do not allow us to
determine if stratification is present in these shallow estuaries (mean water column depth range
between 0.68-5.51 meters) as measurements are collected at a single fixed position in the water
column. The water quality data produced by NERRS come from ‘bottom waters’ as the water

quality sondes are fixed in elevation above the sediment surface between 0.15-1.0 meters
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depending on station (1.7 m for APAES which is the lone ‘surface water’ station). If
stratification were present, the AHW-EHW co-occurrence results presented herein are likely
conservative estimates given the position of the thermistor sensor in the water column.
Stratification may also cause the EHW and low DO/pH events to be conservative estimates again
due to sensor position as surface and bottom waters are not exchanged (i.e., surface water
experiencing an EHW while bottom water is not). Nonetheless, our results represent observed
estuarine water quality conditions where the triple co-occurrence of extreme events was not
frequent at most stations. However, these relatively rare periods represent times of enhanced
stress where potentially large and enduring changes may occur.

Heating and cooling trends of annual estuarine water temperature were observed
throughout the 408 station years available. Of the 17 stations examined in this analysis, 10
showed positive trends in annual water temperature with four being significant (p-value < 0.05)
ranging from 0.03-0.09 “C year!. These warming rates are similar to what others have observed
in streams, rivers, and lakes throughout the U.S. (Kaushal et al. 2010; Ding and Elmore 2015;
O’Reilly et al. 2015) and greater than warming rates observed in coastal and open ocean studies
(Burrows et al. 2011; Lima and Wethey 2012). This suggests that inland aquatic ecosystems,
including estuaries, are among the most vulnerable to warming and extreme temperature events
which can cause shifts in habitat-forming keystone species (e.g., seagrass, salt marshes, and
mangroves), possibly alter greenhouse gas production, local extinction events, non-native species
invasions, and regime shifts (Borges et al. 2016; Lima and Wethey 2012; Marba and Duarte
2010; Marotta et al. 2014; Osland et al. 2013; Smale and Werberg 2013; Bartosiewicz et al.
2016; Wernberg et al. 2016; Kendrick et al. 2019). The standard deviation in annual estuarine

water temperature increased at 13 of the 17 stations (SI Figure 1b), suggesting that water
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temperature variability is increasing at the upper-tail of the water temperature distribution (i.e.,
distribution width increasing). Reserves in the lower Northeast, Mid-Atlantic, and Northern West
coast had trends in annual water temperature standard deviation increasing quicker than the
mean. Similar results have been observed for atmospheric heatwaves in Europe (Schir et al.
2004). Throughout the U.S., estuaries will continue to experience extremely high water
temperatures, driven in part by projected increases in atmospheric and marine heatwave
frequency, intensity, duration, and spatial extent (Lau and Nath 2012, Collins et al. 2019).
Additional long-term data from additional sites are needed to refine quantitative relationships
between habitats, heatwaves, and water quality variables. The NERRS dataset provides a
valuable long-term record and a baseline for future analyses of extreme temperature impacts on
these ecosystems.

All significant trends in extreme low DO events were negative, suggesting an
improvement in estuarine water quality. Low DO events in estuaries are, in general, decreasing
in frequency, mean cumulative intensity, mean duration, and rates of onset and decline (Table 2).
There has been a significant reduction in the total number of annual low DO events (Figure 6b)
and the number of low DO days (Figure 6e) with significant reductions in strong, severe, and
extreme classifications of low DO events. Significant management improvements in total
nitrogen runoff and wastewater treatment have been attributed to improvements in water quality
including rising DO concentrations (Tomaso and Najjar 2015; Whitney and Vlahos 2021);
however, climate forecasts indicate these improvements in DO will be reduced given lower
oxygen solubility and increased respiration under warming estuarine conditions (Whitney and
Vlahos 2021). Of the 846 low DO events that were observed in our analysis, 54.7% reached

hypoxia (< 2.0 mg L) with oxygen dropping to essentially zero (< 0.01 mg L) in some cases.
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Similarly, the mean low DO event duration was 9 days but ranged up to 52 days. While extreme
low DO events in estuaries are becoming less frequent, intense and shorter in duration, they co-
occur with EHWs in some cases. Improvements in water quality conditions might be reversed in
the future if water temperature continues to increase leading to more co-occurring extremes.
Likewise, if projections of increase precipitation led to increased freshwater run-off and salinity
stratification, then low DO events could become more frequent in bottom water sites increasing
the probability of co-occurring water quality extremes.

Similar to the trends in low DO events, all significant trends related to low pH events
were negative thereby providing further evidence of improvements in estuarine water quality. In
general, low pH events are decreasing in frequency, duration, and intensity over time within U.S.
estuaries with frequencies being reduced during all seasons (Table 2). Furthermore, there have
been significant reductions in all severity classifications of low pH events (Figure 6¢) and a
significant reduction in the total number of low pH days (Figure 6f). However, there is regional
heterogeneity in low pH frequency with all regions except the Gulf of Mexico showing
significant reductions. Similarly, the West coast, Northeast, and Southeast were the only regions
to have significant annual declines in mean cumulative intensity and mean decline rate while the
Northeast was the only region to have reduced mean low pH event onset rates. Of the 815 low
pH events observed in our analysis 46.4% had a pH < 7.0, with some reaching a pH of 6.0, and
lasting up to 97 days (mean duration = 12 days). While atmospheric CO; emissions continue to
push pH in the marine environment lower (Doney et al. 2009), estuarine pH is controlled by
many complex interactions, including watershed export of alkalinity (via carbonate lithology,
acid deposition, topography, land use/cover, and wastewater effluent), organic matter, CO2,

nutrient inputs, stratification, and metabolic rates of production and respiration (Cai et al. 2011;
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Kaushal et al. 2013; Duarte et al. 2013). We show that EHWs co-occur with extreme low pH
conditions relatively rarely (< 13% of EHWs) for most NERRS stations, but not for all (max co-
occurrence = 18% for Tivoli South Bay, Hudson River, NY). Our results provide evidence of
improvements in estuarine water quality via reductions in the frequency, duration, and severity
of low pH (i.e., acidic) conditions on a broad scale.

Atmospheric heatwaves at the NERRS reserves had no significant trends in heatwave
characteristics (Table 2). However, there were 899 AHWs observed between 2002-2019 at the
12 NERRS reserves, with West coast and Gulf of Mexico reserves having the greatest number of
AHWs relative to the number of reserves in those regions (88 and 82 events reserve!). AHW
events were relatively frequent, with a mean annual occurrence of 4 + 3 events, ranging up to 18
events year, and lasting up to 15 days (mean duration = 4 days). Seasonally, AHW were on
average most frequent in the summer and least frequent in the winter however, winter cumulative
intensity was greater on average than summer cumulative intensity (2.14 and 1.28 °C days
respectively). Likewise, simple linear regression of mean annual air temperature did show
significant increases in air temperature, with positive slopes at 8 of the 12 reserves (SI Figure
l1a). These findings follow prior studies of North American atmospheric temperature trends that
have shown a lengthening of the growing season driven in part by warming fall temperatures
since the mid-twentieth century (Piao et al. 2008; Burrows et al. 2011; Barichivich et al. 2012).
A warming atmosphere will increase diffusive thermal fluxes across the atmosphere-surface
water boundary leading to increased temperature stress within estuaries.

Estuarine heatwaves had no significant trends in EHW characteristics across a broad
scale with the exception of reduced average onset rate (Table 2). This lack of significant trends is

in contrast to studies of the coastal and open oceans that have reported increasing frequencies
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and durations of marine heatwaves (Lima and Wethey 2012; Frolicher et al. 2018; Oliver et al.
2018). Nonetheless, EHWs occurred relatively frequently, with a mean annual occurrence of 2 +
2 events, ranging up to 10 events year!, and lasting up to 44 days (average duration = 8 days).
Trends in estuarine heatwaves along salinity gradients were non-significant however, there were
between 81-268 total events among the salinity segments over the study period with an average
duration spanning 7-9 days. Several complex interactions between estuarine attributes (i.e.,
freshwater discharge, oceanic exchange, depth, residence time, geomorphology, latitude,
salinity), catchment characteristics (i.e., riparian cover, impervious surface area, wastewater
effluent), and regional climate (i.e., cloud cover, precipitation regime) influence the thermal
properties of estuaries, which lead to estuarine segments experiencing differential thermal
conditions (Scanes et al. 2020). The onset rate of estuarine heatwaves declined over the study
period, suggesting that estuarine heatwaves are reaching peak heatwave intensity less rapidly.
This reduction in event onset rate may benefit organisms as it suggests the change from non-
heatwave conditions to peak heatwave conditions is becoming more gradual (i.e., less abrupt
change). Estuarine heatwaves will likely accelerate due to increased diffusive air-water boundary
heat flux and horizontal advective thermal fluxes from a warming coastal ocean and fluvial
discharge. This will have cascading impacts on estuarine ecosystem function and services,
including ecologically and commercially important organisms.

This study provides the first baseline assessment of estuarine heatwaves and their co-
occurrence with low DO and pH for the NERRS sites with the longest records. Future studies
should consider the three-dimensional structure of aquatic heatwave events as studies have been
limited to surface waters (i.e., satellite data) or fixed water depths (i.e., current study).

Understanding the depth profile and the spatial areal extent of these disturbance events would
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help resolve their impacts on species’ movement and range dynamics, as extreme events can
cause barriers to migration if they extend through the whole water column (Major and Mighell
1967, Cairns 1971) and eliminate or severely limit thermal refuges. Similarly, water circulation
(i.e., residence time) and stratification are known to influence water quality conditions. Further
analysis of EHWs should consider estuary specific residence time and salinity stratification as
potential drivers of EHW characteristics. Likewise, this study considered a single tidal filtering
approach however, further analyses should consider other tidal filters (i.e., weighted regression)
that could be applied to high frequency estuarine measures (Beck et al. 2015). Additionally,
benthic sediments are considered thermally stable relative to the overlying water column;
however, benthic respiration increases with temperature, and it remains unclear if EHWs
increase sediment temperature possibly affecting carbon storage. Developing a thorough
understanding of depth profiles during heatwaves would benefit resource managers working to
restore aquatic ecosystems, conserve fisheries, limit non-native species introductions, and model
carbon sources and sinks from shallow aquatic ecosystems (Caissie 2006; Aoki et al. 2021).
Furthermore, water temperatures are increasing in streams and rivers driven in part by a warming
climate, discharge regulation, and increased impervious surface area (Webb and Nobilis 1995;
Kaushal et al. 2010; Ding and Elmore 2015), yet there is a lack of understanding regarding the
frequency, intensity, and duration of aquatic heatwaves in these inland lotic ecosystems that
affect thermal inputs to estuaries. Lastly, comparisons among in-situ studies and those utilizing
satellite-derived SST may provide an opportunity for a thorough characterization of aquatic
heatwaves events in space and time as heatwaves are often short-lived, intense, and occurring at

varying spatial scales. Combining in-situ and satellite temperature offers the opportunity to
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440  document more events with coordinated study of impacts as the heating of estuaries increases in

441  the future.
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Figures

Table 1. NERRS reserve and station descriptions. Total number of estuarine heatwave (EHW) events, low dissolved oxygen (DO) and

low pH events, mean salinity, mean depth and mean tidal range reflect the time period 1996-2019. Habitat type was characterized by

Wenner et al. 2001 and Sanger et al. 2002.

Mean

Total  Total Mean Tidal

Reserve Station Total Low Low Salinity (+ Mean Range
Estuary Region Code ID EHW DO pH  Habitat Type SD,gkg!) Depth(m)  (m)

Wells, ME Northeast WEL IN 48 55 46 SAV 30.8+1.9 4.08 1.82
Great Bay, NH GRB GB 45 43 37 SAV 23.6+5.6 5.51 1.40
Hudson River, NY HUD SK 38 40 31 Upland 0.2+0.0 1.04 0.01
TS 43 40 44 Marsh 0.1£0.0 1.55 0.80

Narragansett Bay, RI NAR PC 44 30 41 Open Water 285+ 1.9 2.80 0.38
Delaware, DE Mid-Atlantic DEL BL 57 60 59 Marsh 20+2.1 1.67 0.87
SL 60 60 47 Marsh 10.8+£6.9 1.71 0.82

Chesapeake Bay, VA CBV TC 55 51 47 Marsh 10.6 +4.5 1.61 0.29
North Carolina, NC Southeast NOC EC 46 49 52 Marsh 22.1+6.7 1.13 0.76
RC 55 43 44 Marsh 30.1+4.3 1.55 0.88

ACE Basin, SC ACE SP 62 61 55 Marsh 29.0+4.5 2.47 1.20
Jobos Bay, PR JOB 09 56 61 52 Mangrove 36.5+2.7 1.03 0.02
Apalachicola, FL Gulf of Mexico APA EB 60 51 51 Open Water 11.0£8.5 2.16 0.12
ES 61 47 55 Open Water 9.7+7.9 2.16 0.12

Padilla Bay, WA West PDB BY 63 43 45 SAV 29.0+1.1 3.36 0.84
Elkhorn Slough, CA ELK AP 46 54 52 Marsh 31.5+4.6 0.68 0.06
SM 61 58 57 Marsh 31.8+£2.7 1.79 0.71
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656  Table 2. Results of Mann-Kendall and Sen’s slope (MK-SS) analysis related to atmospheric and
657  estuarine heatwaves (AHW and EHW respectively), low DO and low pH events. Total tests run
658 indicates the number of MK-SS analyses for each test (AHW = 5 variables*5 regions + 5

659  variables*4 seasons + 5 variables*(1)time = 50 total tests run; additionally EHW, low DO and
660  low pH included 5 variables*5 salinity classes = 75 total tests run). Only statistically significant
661  tests are presented.

662

Test Total Tests  Test Variable Category Slope MK 10%
Run Type p-value FDR
AHW 50 - - - - - -
EHW 75 Time Avg. Onset Rate -0.01 0.001 0.020
Low DO 75 Time Avg. Onset Rate -0.01 0.003 0.020
Avg. Decline Rate -0.02 0.003 0.060
Avg. Duration -0.12 0.003 0.040
Avg. Cumulative Intensity -0.20 0.031 0.100
Frequency -0.05 0.008 0.080
Season Frequency Summer -0.03 <0.001 0.005
Avg. Duration -0.14 0.005 0.010
Avg. Decline Rate -0.02 0.012 0.015
Avg. Cumulative Intensity Fall -0.20 0.016 0.020
Region Avg. Cumulative Intensity NE -0.37 0.001 0.008
Avg. Duration -0.20 0.004 0.012
Avg. Onset Rate NE -0.01 0.012 0.024
Mid-Atlantic -0.01 0.005 0.016
Avg. Decline Rate NE -0.02 0.011 0.020
Mid-Atlantic -0.04 <0.001 0.004
Low pH 75 Time Frequency -0.10 <0.001 0.020
Avg. Duration -0.13 0.040 0.060
Avg. Cumulative Intensity -0.07 0.006 0.040
Season Frequency Winter -0.02 0.002 0.015
Spring -0.03 0.008 0.025
Summer -0.03 <0.001 0.005
Fall -0.02 0.012 0.030
Avg. Onset Rate -0.004 0.016 0.035
Avg. Duration Spring -0.29 0.004 0.020
Avg. Cumulative Intensity -0.12 0.001 0.010
Salinity Frequency Tidal Fresh -0.08 0.009 0.020
Seawater -0.10 0.003 0.004
Avg. Decline Rate -0.004 0.007 0.016
Avg. Duration -0.27 0.027 0.028
Avg. Cumulative Intensity -0.10 0.003 0.008
Polyhaline -0.11 0.011 0.024
Mesohaline -0.08 0.006 0.012
Region Frequency West -0.20 0.002 0.004
NE -0.10 0.004 0.008
Mid-Atlantic -0.10 0.026 0.032
SE -0.09 0.030 0.044
Avg. Cumulative Intensity West -0.06 0.024 0.028
NE -0.10 0.014 0.024
SE -0.07 0.027 0.036
Avg. Decline Rate West -0.004 0.007 0.016
NE -0.002 0.014 0.020
SE -0.01 0.007 0.012
Avg. Onset Rate NE -0.002 0.027 0.040
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Figure 1. NERRS Reserve locations used for this analysis included all continuous water quality stations with records from 1996-2019.
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Figure 2. Example of atmospheric heatwaves (a), estuarine heatwaves (b), low dissolved oxygen
(c), and low pH (d) events. The shaded bars in each figure are an example of a time when an
estuarine heatwave co-occurred with an atmospheric heatwave, which co-occurred with a low
DO and low pH event. Extreme events in the four variables are highlighted in dark grey.
Seasonal refers to the predicted seasonal average value, while threshold refers to the position of
the 90%-tile; both are based on a 24-year reference period for the water quality variables and a
18-year reference period for air temperature. Data come from Hudson River, NY — Tivoli South
Bay (HUDTS) NERR.
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674  Figure 3. Proportion of co-occurrences between atmospheric & estuarine heatwaves (AHW and
675 EHW, respectively), EHW & low DO events, EHW & low pH events, and EHW, low DO & low
676  pH events. Error bars represent the range between multiple stations within a reserve.
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Supplemental Information

SI Table 1. Linear regression trends for 24-years of annual total duration (days year™! + SE) of estuarine heatwaves (EHW), low DO,
and low pH events and associated p-values (p-val.). Statistically significant (p-value < 0.05) trends are bolded and italicized.

Reserve Station

Estuary Region Code 1D EHW p-val. Low DO p-val. Low pH p-val.

Wells, ME Northeast WEL IN 1.77+1.12  0.138 -3.61+293 0.249 -252+245 0.325
Great Bay, NH GRB GB 0.56+0.57 0346 -0.83+0.81 0.323 0.01+1.13 0.990
Hudson River, NY HUD SK 0.82+0.59 0.185 0.67+0.56 0251 -1.56+091 0.114
TS -0.63+095 0518 -049+0.92 0.606 -1.53+0.47 0.004

Narragansett Bay, RI NAR PC 1.37+0.85 0.127 -2.08+0.81 0.028 -3.65+2.16 0.120
Delaware, DE Mid-Atlantic DEL BL 0.20+0.30 0510 -0.94+0.43 0.042 -149=+1.01 0.159
SL -0.20+0.37 0584 0.13+0.66 0.843 -2.41+1.08 0.038

Chesapeake Bay, VA CBV TC -0.13+0.31 0.687 -0.82+0.58 0.176 -0.25+0.93 0.792
North Carolina, NC Southeast NOC EC 0.05+0.36 0.884 0.14+0.61 0817 024+0.85 0.778
RC 0.34+0.61 0.585 -0.42+091 0.648 0.01+1.01 0.994

ACE Basin, SC ACE SP 0.59+0.61 0349 -0.50=+0.77 0.527 -237+1.16 0.062
Jobos Bay, PR JOB 09 1.23+0.47 0.018 -3.04+1.53 0.070 -0.75+0.74 0.329
Apalachicola, FL Gulf of Mexico ~ APA EB -0.66 +0.51 0212 0.25+0.63 0.697 -0.04+0.63 0.952
ES -0.21+0.57 0.715 -049+041 0258 0.13+0.60 0.833

Padilla Bay, WA West PDB BY 0.86+0.63 0.190 0.06+0.44 0.885 -2.59+1.61 0.132
Elkhorn Slough, CA ELK AP 0.07+0.73 0927 -1.14+0.44 0.019 -4.07+1.45 0.015
SM -0.43+0.82 0.607 -0.58+0.59 0.338 -3.03+1.20 0.022
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691  SIFigure 1. Slope of the linear regression between mean annual air (a) and water (b) temperature (white columns) and annual standard
692  deviation (black columns) for each NERRS reserve. Error bars represent the range between multiple stations within a reserve.
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SI Figure 3. Linear regression and boxplot results for low DO event characteristics as a function
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699  SI Figure 4. Linear regression and boxplot results for low pH event characteristics as a function
700  of NERRS station mean depth, mean tidal range (top and middle row respectively), and estuarine
701  habitat type (bottom row).



