
Computational Science
Laboratory Report CSL-TR-21-3

December 22, 2021

S. González-Pinto, D. Hernández-Abreu,
M. S. Pérez-Rodŕıguez, A. Sarshar, S.

Roberts, A. Sandu

“A unified formulation of
splitting-based implicit time integration

schemes”

Computational Science Laboratory
“Compute the Future!”

Department of Computer Science
Virginia Tech

Blacksburg, VA 24060
Phone: (540) 231-2193

Fax: (540) 231-6075
Email: sandu@cs.vt.edu

Web: https://csl.cs.vt.edu

.

ar
X

iv
:2

10
3.

00
75

7v
4

 [m
at

h.
N

A
]

20
 D

ec
 2

02
1

A unified formulation of splitting-based
implicit time integration schemes

Severiano González-Pintoa,1, Domingo Hernández-Abreua,1, Maria S.
Pérez-Rodŕıgueza,1, Arash Sarsharb,2, Steven Robertsb,2,∗, Adrian Sandub,2

aDepartamento de Análisis Matemático, Universidad de La Laguna, 38200-La Laguna,
Spain

bComputational Science Laboratory, Department of Computer Science, Virginia Tech,
Blacksburg, VA 24060

Abstract

Splitting-based time integration approaches such as fractional step, alternating
direction implicit, operator splitting, and locally one dimensional methods par-
tition the system of interest into components, and solve individual components
implicitly in a cost-effective way. This work proposes a unified formulation of
splitting time integration schemes in the framework of general-structure addi-
tive Runge–Kutta (GARK) methods. Specifically, we develop implicit-implicit
(IMIM) GARK schemes, provide the order conditions for this class, and explain
their application to partitioned systems of ordinary differential equations. We
show that classical splitting methods belong to the IMIM GARK family, and
therefore can be studied in this unified framework. New IMIM-GARK splitting
methods are developed and tested using parabolic systems.

Keywords: general-structure additive Runge–Kutta methods, alternating
direction implicit, implicit-explicit, implicit-implicit methods
2020 MSC: 65L05, 65L07, 65L020

∗Corresponding author
Email addresses: spinto@ull.edu.es (Severiano González-Pinto), dhabreu@ull.edu.es

(Domingo Hernández-Abreu), sperezr@ull.edu.es (Maria S. Pérez-Rodŕıguez),
sarshar@vt.edu (Arash Sarshar), steven94@vt.edu (Steven Roberts), sandu@cs.vt.edu
(Adrian Sandu)

1The work of these authors has been partially supported by University of La Laguna,
Canary Islands.

2The work of Sandu, Sarshar, and Roberts has been supported in part by NSF through
awards NSF ACI–1709727, NSF CDS&E–MSS 1953113, DOE ASCR DE–SC0021313, and by
the Computational Science Laboratory at Virginia Tech.

Preprint submitted to Journal of Computational Physics December 22, 2021

1. Introduction

Many applications require the solution of partitioned initial value problems

y′ = f(t, y) =
N∑

m=1

f{m}(t, y), y(t0) = y0 ∈ Rd, (1)

where the right-hand side function f : Rd → Rd is additively split into N parts.
The partitioning may be informed by spatial dimensions, physical processes,
stiffness, linearity, time-scales, or computational costs. Additive partitioning
also includes the special case of component partitioning where the state vector
y is split into disjoint sets [49].

The earliest approaches to efficiently tackle partitioned problems (1) involve
solving the individual component systems one at a time, in an alternating fash-
ion. This idea led to several closely connected families of schemes including
fractional step methods, alternating direction implicit (ADI) methods, operator
splitting methods, and locally one dimensional (LOD) methods. An early survey
of fractional step methods is given in Yanenko’s monograph [62]. ADI methods
for the heat equation were proposed by Douglas [18], Douglas and Rachford
[19], and Peaceman and Rachford [40]; the idea is to solve multidimensional
partial differential equation via a sequence of one-dimensional problems, each
aligned to a different spatial dimension. Recent theoretical results on stabilibity
and convergence for this kind of methods are obtained in [20, 21, 25]. These
splittings are further explored in [57–59] for efficient time-stepping of Maxwell’s
equations with special interest in reducing right-hand side function evaluations.
Bujanda and Jorge [8, 9] propose fractional step Runge–Kutta methods (FSRK)
for solving multidimensional parabolic PDEs, by means of linearly implicit time
integration processes. They extend these methods to semi-linear parabolic prob-
lems in an IMEX/ARK fashion [10, 12] where a FSRK implicit method used
to solve the linear non-homogeneous terms is paired with an explicit Runge–
Kutta method for solving nonlinear terms. An extension of ADI strategies for
parabolic problems to general linear methods is discussed in [51]. The tradi-
tional first order operator splitting method [62] was extended to a symmetric,
second order splitting approach by Strang [56], and to higher order splitting
approaches by Yoshida [63].

The development of Runge–Kutta methods that are tailored to the parti-
tioned system (1) started with the early work of Rice [43]. Hairer [29] developed
the concept of P-trees and laid the foundation for the modern order conditions
theory for partitioned Runge–Kutta methods. The investigation of practical
partitioned Runge–Kutta methods with implicit and explicit components was
revitalized by the work of Ascher, Ruuth, and Spiteri [2]. The Additive Runge–
Kutta framework [16, 42] has served as the foundation for numerous later works
on implicit-explicit Runge–Kutta methods [5, 6, 35]. Some partitioning strate-
gies have been discussed by Weiner et al. [61]. IMEX extrapolation meth-
ods [13–15, 52] and IMEX general linear methods [7, 47, 53–55, 65, 67] are
some of the latest examples in this area. Sandu and Günther have proposed

2

a generalized-structure for additively partitioned Runge–Kutta (GARK) meth-
ods in [49]. This framework provides a unifying theory for the creation and
analysis of partitioned Runge–Kutta methods in various applications such as
multirate [28, 50], multirate infinitesimal [45, 46], differential-algebraic [27], and
linearly implicit [48] integration methods; research implementations are avail-
able in [3, 64]. An alternative approach to efficiently solving (1) is to em-
ploy splitting at a linear algebra level, rather than splitting the system or its
discretization; this led to approximate matrix factorization (AMF) family of
schemes [4, 20, 22–24, 26, 66].

This paper proposes a unified formulation of implicit integration schemes
based on splitting (fractional step, alternating direction implicit, operator split-
ting, and locally one dimensional methods) in the framework of general-structure
additive Runge–Kutta (GARK) methods. The framework allows for the con-
struction of new schemes of higher classical order suited for serial and parallel
partitioned integration.

The remainder of the paper is organized as follows. In Section 2, practical
structures for implicit integration are introduced, and section 3 provides insights
into the stability of these methods. Sections 4 to 6 are dedicated to deriving
GARK formulations of classical ADI schemes, operator splitting schemes and
fractional step Runge–Kutta methods. The order condition theory for implicit-
implicit GARK methods is discussed in section 7, and two new methods are
derived. Finally we present some numerical tests for the new methods in Sec-
tion 8.

2. Implicit-implicit GARK schemes

We start by considering an N-way partitioned GARK method [49] to solve
(1):

Y
{q}
i = yn + h

N∑
m=1

s{m}∑
j=1

a
{q,m}
i,j f

{m}
j , (2a)

q = 1, . . . ,N, i = 1, . . . , s{q},

yn+1 = yn + h
N∑
q=1

s{m}∑
i=1

b
{q}
i f

{q}
i , (2b)

where we denote

f
{m}
j := f{m}

(
tn + c

{m}
j h, Y

{m}
j

)
, j = 1, . . . , s{m}.

3

The GARK method (2) is represented by the Butcher tableau

A

bT
:=

A{1,1} A{1,2} . . . A{1,N}

A{2,1} A{2,2} . . . A{2,N}

...
...

...

A{N,1} A{N,2} . . . A{N,N}

b{1}T b{2}T . . . b{N}T
, (3)

where A{q,m} ∈ Rs{q}×s{m} and b{q}, c{q} ∈ Rs{q} for q,m = 1, . . . ,N. Thus,
A ∈ Rs×s and b ∈ Rs, where s =

∑N
m=1 s

{m}. The diagonal blocks of the
tableau correspond to the “base” methods which are traditional Runge–Kutta

schemes with coefficients
(
A{q,q}, b{q}, c{q}

)
.

The GARK order conditions up to order four are given in (A.1) following
[49]. The GARK scheme (3) is internally consistent [49] if

A{q,1}1s{1} = · · · = A{q,N}1s{N} = c{q}. (4)

Internal consistency greatly simplifies the number of coupling order conditions
(A.1) [49].

The GARK scheme (3) is called stiffly accurate [49] if its coefficients satisfy

bT = eTs A ⇔ b{m}T = eTs{N} A
{N,m}, for m = 1, . . . ,N, (5)

where ei ∈ RN is the ith column of identity matrix IN×N. In cases where the
dimension is ambiguous, we write this as ei,N . Stiffly accurate GARK methods
have favorable stability properties [49] and simpler order conditions for differ-
ential algebraic equations [60]. Note in some cases, a GARK method may not
satisfy (5), but a permutation of stages can yield an equivalent formulation that
does. More formally, denote a permutation matrix by P ∈ Rs×s. Reordering
the stage numbers accordingly leads to permuted coefficients and a rearranged
Butcher tableau (3)

Ã

b̃
T

:=
PAPT

bT PT
. (6)

We are now ready to define implicit-implicit GARK schemes.

Definition 1 (Implicit-implicit GARK schemes). A GARK scheme (3) is
implicit-implicit (IMIM-GARK) if there exists a permutation P ∈ Rs×s such

that the tableau Ã = PAPT (6) is lower triangular.

The calculation of the stage vectors (2a), carried out in the order defined by
the permutation matrix P, is done in an implicit-decoupled manner, i.e., any

implicit stage calculation involves a single unknown stage vector Y
{q}
i . There

are no nonlinear equations that require solving for multiple stage vectors simul-

4

taneously.

Remark 1 (Dependency graph for GARK tableau). For the GARK scheme
(3), take A to be the adjacency matrix for a weighted, directed graph G. Cycles
in G indicate implicitness, and vertices in a cycle correspond to a stage values
that must be solved simultaneously. Therefore, the IMIM property is equivalent
to all cycles in G being loops (cycles with only one edge that start and end at
same vertex).

2.1. Implicit-implicit GARK methods with a special coupling structure

Of special interest in this work are IMIM-GARK methods where the Butcher
tableau (3) uses the same coefficients within the lower triangular, diagonal, and
upper triangular blocks:

A

bT
:=

A{d} A{u} . . . A{u}

A{l} A{d} . . . A{u}

...
...

...

A{l} A{l} . . . A{d}

b{d}T b{d}T . . . b{d}T
. (7)

This structure requires A{u},A{d},A{l} ∈ Rs{d}×s{d} where s{d} := s{1} =
. . . s{N}. The blocks in (7) correspond to explicit and diagonally implicit Runge–
Kutta schemes, as follows:

• A{u} is a strictly lower triangular matrix (a
{u}
i,j = 0 for i ≤ j) correspond-

ing to an explicit Runge–Kutta scheme (A{u}, b{d}, c{d});

• A{d} is a lower triangular matrix (a
{d}
i,j = 0 for i < j) corresponding to a

diagonally implicit Runge–Kutta scheme (A{d}, b{d}, c{d}); and

• A{l} is a lower triangular matrix (a
{l}
i,j = 0 for i < j) corresponding to ei-

ther an explicit or a diagonally implicit Runge–Kutta scheme (A{l}, b{d}, c{d}).

Note that the internal consistency property (4) and the explicit nature of A{u}

require that A{d} and A{l} have an explicit first stage (e.g., correspond to
ESDIRK schemes). The stiff accuracy property (5) is equivalent to:

b{d}T = eTs A{l} = eTs A{d}.

The method (7) advances the solution using the following computational

5

process:

for i = 1, . . . , s{d} do:

Y
{q}
i = yn + h

∑
m<q

i∑
j=1

a
{l}
i,j f

{m}
j + h

i∑
j=1

a
{d}
i,j f

{q}
j

+ h
∑
m>q

i−1∑
j=1

a
{u}
i,j f

{m}
j , q = 1, . . . ,N;

(8a)

yn+1 = yn + h
N∑
q=1

s{d}∑
i=1

b
{d}
i f

{q}
i . (8b)

The method computes the first stage Y
{q}
1 for all components in the order

q = 1, . . . ,N. Then the method computes Y
{q}
i , i ≥ 2, using the previous

stages Y
{m}
1 . . . Y

{m}
i−1 for all components m, and the already computed stages

Y
{1}
i . . . Y

{q−1}
i . The lower triangular structure of A{d} implies that Y

{q}
i is

computed implicitly in a SDIRK-like manner when a
{d}
i,i > 0, and explicitly

when a
{d}
i,i = 0. The order in which stages are evaluated in (8) corresponds to

the permutation

P =

N∑
i=1

eTi,N ⊗ Is×s ⊗ ei,N =

s∑
i=1

ei,s ⊗ IN×N ⊗ eTi,s, (9)

which is known as the vec-permutation matrix [31].
We consider two subclasses of IMIM-GARK schemes, ADI-GARK and par-

allel ADI-GARK, for their practical appeal.

Definition 2 (ADI-GARK). An Alternating Direction Implicit GARK (ADI-

GARK) scheme is an IMIM-GARK method with the structure (7) where A{l} =

A{d} = A{i}, A{u} = A{e}, b{d} = b{i}, and c{d} = c{i}.

We note that an ADI-GARK method is stiffly accurate (5) iff the implicit com-

ponent (A{i}, b{i}, c{i}) is stiffly accurate in the Runge–Kutta sense.

Definition 3 (Parallel ADI-GARK). A parallel ADI-GARK scheme is an

IMIM-GARK method with the structure (7) where A{l} = A{u} = A{e},

A{d} = A{i}, b{d} = b{i}, and c{d} = c{i}. The nonlinear systems for stages

Y
{q}
i (8a) are solved in parallel for a given i for all components q = 1, . . . ,N.

Remark 2. Owing to their structure, the order conditions of ADI-GARK and
parallel ADI-GARK schemes are much simpler than the general GARK con-
ditions (A.1) [49]. These order conditions depend on the underlying implicit
and explicit methods and are the same for both ADI-GARK and parallel ADI-
GARK schemes; the difference between the methods is given by the way these
blocks are assembled in the Butcher tableau (7).

6

In section 7, we provide the coefficients of new ADI-GARK and parallel
ADI-GARK schemes of orders three and four.

3. Linear stability analysis

Consider an IMIM-GARK method (7) and the corresponding permuted
tableau (6) using the permutation matrix (9). We apply this method to the
linear, partitioned system

y′ =
N∑

m=1

λ{m} y, (10)

where λ{m} ∈ C. We employ the helpful notation

z :=
[
z{1} . . . z{N}

]T
, Ẑ := diag

(
z{1}, . . . , z{N}

)
,

Zs := Ẑ⊗ Is×s, Z̃s := Is×s ⊗ Ẑ,

where z{m} := hλ{m}. From [49], it is known that

yn+1 = R(z) yn,

where the stability function R(z) can be written compactly as

R(z) = 1 + bT Zs (INs×Ns −AZs)
−1

1Ns

= 1 + bT
(
Z−1s −A

)−1
1Ns

= 1 + b̃
T
(
Z̃−1s − Ã

)−1
1Ns.

(11)

For stiffly accurate methods, this simplifies to

R(z) = eTNs (INs×Ns −AZs)
−1

1Ns,

and in the case where A is invertible, it holds that [49]

lim
z{N}→−∞

R(z) = 1− b̃
T
Ã
−1
1Ns = 1− bTA−11Ns. (12)

These results hold for the broad class of IMIM-GARK methods and the
many special subclasses. Further stability results for GARK methods applied
to scalar and 2 × 2 linear test problems can be found in [44]. Notably, the
decoupled nature of IMIM-GARK methods prevents them from achieving A-
stability for 2× 2, linear ODEs [44, Theorem 3.4].

4. Classical LOD and ADI methods in the GARK framework

This section is devoted to showing that classical Locally One-Dimensional
(LOD) and Alternating Direction Implicit (ADI) schemes appearing in the liter-

7

ature can be formulated within the IMIM-GARK framework. In particular, the
consistency of such methods can be treated in a unified way within the GARK
formalism. To this end we consider the non-autonomous ODE problem (1). We
shall deal with GARK methods of the form (3). The consistency order of the
following methods can be checked by using the order conditions indicated in
Appendix A at the end of the manuscript.

4.1. LOD-Backward Euler method

The LOD-Backward Euler method [34, page 348] reads

v0 = yn,

vq = vq−1 + h f{q}(tn+1, vq), q = 1, . . . ,N,

yn+1 = vN.

(13)

We rewrite (13) in GARK notation with the stages Y {q} := vq:

Y {q} = yn + h

q∑
m=1

f{m}
(
tn+1, Y

{m}
)
, q = 1, . . . ,N,

yn+1 = Y {N} = yn + h
N∑

m=1

f{m}
(
tn+1, Y

{m}
)
.

(14)

This method has order of consistency one, and it is stiffly accurate but is not
internally consistent. It has the form (7) and further is an ADI-GARK method
with the coefficients

A{q,m} = A{i} =
[
1
]
, for m ≤ q, A{q,m} = A{e} =

[
0
]
, for m > q,

b{q} = b{i} =
[
1
]
, c{q} = c{i} =

[
1
]
,

for q,m = 1, . . . ,N.

4.2. Yanenko’s LOD-Crank-Nicolson method

Yanenko’s LOD-Crank-Nicolson method [34, page 351] reads

v0 = yn,

vq = vq−1 +
h

2

(
f{q}(tn + cq−1 h, vq−1) + f{q}(tn + cq h, vq)

)
,

q = 1, . . . ,N,

yn+1 = vN,

(15)

with c0 = 0, cN = 1, and cq = 1/2 for q = 1, . . . ,N − 1. Iterating the stage
values in (15) leads to the following formula:

vq = yn +
h

2

q∑
m=1

(
f{m}(tn + cm−1 h, vm−1) + f{m}(tn + cm h, vm)

)
.

8

The method is cast in the GARK form (3) by defining the stages

Y {1} :=

[
v0
v1

]
, . . . Y {q} :=

[
vq−1
vq

]
, . . . Y {N} :=

[
vN−1
vN

]
.

Note that Y
{q}
1 = Y

{q−1}
2 for q ≥ 2. We rewrite (15) in GARK notation as

follows:

Y
{q}
1 = yn +

h

2

q−1∑
m=1

(
f{m}

(
tn + cm−1 h, Y

{m}
1

)
+ f{m}

(
tn + cm h, Y

{m}
2

))
,

Y
{q}
2 = yn +

h

2

q∑
m=1

(
f{m}

(
tn + cm−1 h, Y

{m}
1

)
+ f{m}

(
tn + cm h, Y

{m}
2

))
,

yn+1 = Y
{N}
2 .

(16)

The GARK Butcher tableau (7) is defined by the coefficient matrices:

A{q,m} = A{l} =

[
1
2

1
2

1
2

1
2

]
, for m < q, A{q,q} = A{d} =

[
0 0
1
2

1
2

]
,

A{q,m} = A{u} =

[
0 0

0 0

]
, for m > q, b{q} = b{d} =

[
1
2
1
2

]
,

c{q} = c{d} =

[
cq−1
cq

]
, m, q = 1, . . . ,N.

We then immediately observe that (16) is only order one. Furthermore, it is
stiffly accurate and not internally consistent. On the other hand, the matrix A

is already in lower triangular form since the stages values Y
{q}
i are displayed in

the same way they are actually computed.

Remark 3. Symmetric and parallel versions of the method (15) are known to
provide respective second order methods at the expense of doubling the compu-
tational cost [34, page 351-352]. Both methods can also be expressed as GARK
methods. First, the symmetric Yanenko’s LOD-Crank-Nicolson method [34,

9

page 351] is given by

v0 = yn,

vq = vq−1 +
h

4

(
f{q}

(
tn +

cq−1
2

h, vq−1) + f{q}(tn +
cq
2
h, vq

))
,

q = 1, . . . ,N,

w0 = vN,

wq = wq−1 +
h

4

(
f{N+1−q}

(
tn +

1 + cq−1
2

h,wq−1

)
+f{N+1−q}

(
tn +

1 + cq
2

h,wq

))
, q = 1, . . . ,N,

yn+1 = wN.

(17)

This computational process is mapped to GARK stages by

Y {1} :=


v0
v1

wN−1
wN

 , . . . Y {q} :=


vq−1
vq

wN−q
wN+1−q

 , . . . Y {N} :=


vN−1
vN
w0

w1

 . (18)

Now, (17) can be formulated in the GARK framework as follows:

Y
{q}
1 = yn +

h

4

q−1∑
m=1

(
f{m}

(
tn +

cm−1
2

h, Y
{m}
1

)
+ f{m}

(
tn +

cm
2
h, Y

{m}
2

))
,

Y
{q}
2 = Y

{q+1}
1 , q = 1, . . . ,N,

Y
{q}
3 = yn +

h

4

N∑
m=1

(
f{m}

(
tn +

cm−1
2

h, Y
{m}
1

)
+ f{m}

(
tn +

cm
2
h, Y

{m}
2

))
+
h

4

N∑
m=q+1

(
f{m}

(
tn +

1 + cN−m
2

h, Y
{m}
3

)
+f{m}

(
tn +

1 + cN+1−m

2
h, Y

{m}
4

))
,

Y
{q}
4 = Y

{q−1}
3 , q = N, . . . , 1,

yn+1 = Y
{1}
4 .

(19)

10

The corresponding coefficient matrices are then defined by

A{q,m} = A{l} =


1
4

1
4 0 0

1
4

1
4 0 0

1
4

1
4 0 0

1
4

1
4 0 0

 , for m < q,

A{q,q} = A{d} =


0 0 0 0
1
4

1
4 0 0

1
4

1
4 0 0

1
4

1
4

1
4

1
4

 ,

A{q,m} = A{u} =


0 0 0 0

0 0 0 0
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

 , for m > q,

b{q}T = b{d}T=
[
1
4

1
4

1
4

1
4

]
,

c{q}T = c{d}T=
[
cq−1

2
cq
2

1+cN−q
2

1+cN+1−q
2

]
,

for q,m = 1, . . . ,N. Now it is readily checked that (19) reaches order two.
Furthermore, observe that the method expressed this way does not satisfy the
stiff accuracy condition (5). However, the stages can be reordered into a lower
triangular form that is stiffly accurate. The permuted tableau (6) is given by

f
{1}
1 f

{1}
2 . . . f

{N}
1 f

{N}
2 f

{N}
3 f

{N}
4 . . . f

{1}
3 f

{1}
4

Y
{1}
1 0 0 . . . 0 0 0 0 . . . 0 0

Y
{1}
2

1
4

1
4 . . . 0 0 0 0 . . . 0 0

...
...

...
. . .

...
...

...
...

. . .
...

...

Y
{N}
1

1
4

1
4 . . . 0 0 0 0 . . . 0 0

Y
{N}
2

1
4

1
4 . . . 1

4
1
4 0 0 . . . 0 0

Y
{N}
3

1
4

1
4 . . . 1

4
1
4 0 0 . . . 0 0

Y
{N}
4

1
4

1
4 . . . 1

4
1
4

1
4

1
4 . . . 0 0

...
...

...
. . .

...
...

...
...

. . .
...

...

Y
{1}
3

1
4

1
4 . . . 1

4
1
4

1
4

1
4 . . . 0 0

Y
{1}
4

1
4

1
4 . . . 1

4
1
4

1
4

1
4 . . . 1

4
1
4

yn+1
1
4

1
4 . . . 1

4
1
4

1
4

1
4 . . . 1

4
1
4

,

and in this form, the stiff accuracy is evident.
Secondly, for the parallel Yanenko’s LOD-Crank-Nicolson method [34, page

11

352]

v0 = yn,

vq = vq−1 +
h

2

(
f{q}(tn + cq−1 h, vq−1) + f{q}(tn + cq h, vq)

)
,

q = 1, . . . ,N,

w0 = yn,

wq = wq−1 +
h

2

(
f{N+1−q}(tn + cq−1 h,wq−1) + f{N+1−q}(tn + cq h,wq)

)
,

q = 1, . . . ,N,

yn+1 =
1

2
(vN + wN),

(20)

we similarly consider the stages (18) and rewrite (20) in GARK notation as

Y
{q}
1 = yn +

h

2

q−1∑
m=1

(
f{m}

(
tn + cm−1 h, Y

{m}
1

)
+ f{m}

(
tn + cm h, Y

{m}
2

))
,

Y
{q}
2 = Y

{q+1}
1 , q = 1, . . . ,N,

Y
{q}
3 = yn +

h

4

N∑
m=q+1

(
f{m}

(
tn + cN−m h, Y

{m}
3

)
+f{m}

(
tn + cN+1−m h, Y

{m}
4

))
,

Y
{q}
4 = Y

{q−1}
3 , q = N, . . . , 1,

yn+1 =
1

2

(
Y
{N}
2 + Y

{1}
4

)
.

(21)

Its GARK Butcher tableau (7) is then defined by the following coefficient ma-

12

trices:

A{q,m} = A{l} =


1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0

0 0 0 0

 , for m < q,

A{q,q} = A{d} =


0 0 0 0
1
2

1
2 0 0

0 0 0 0

0 0 1
2

1
2

 ,

A{q,m} = A{u} =


0 0 0 0

0 0 0 0

0 0 1
2

1
2

0 0 1
2

1
2

 , for m > q,

b{q}T = b{d} =
[
1
4

1
4

1
4

1
4

]
,

c{q}T = c{d}T=
[
cq−1 cq cN−q cN+1−q

]
.

From here, it is readily checked that (21) reaches order two.

4.3. Trapezoidal Splitting

The Trapezoidal Splitting scheme [34, page 359] reads

v0 = yn,

vq = vq−1 +
h

2
f{q}(tn, vq−1), q = 1, . . . ,N,

vN+q = vN+q−1 +
h

2
f{N+1−q}(tn+1, vN+q), q = 1, . . . ,N,

yn+1 = v2N.

(22)

The method is cast in the GARK form (3) by defining the stages

Y {1} :=

[
v0
v2N

]
, . . . Y {q} :=

[
vq−1

v2N−q+1

]
, . . . Y {N} :=

[
vN−1
vN+1

]
.

13

Iterating the stages (22) leads to

Y
{q}
1 = yn +

h

2

q−1∑
m=1

f{m}
(
tn, Y

{m}
1

)
,

Y
{q}
2 = yn +

h

2

N∑
m=1

f{m}
(
tn, Y

{m}
1

)
+
h

2

N∑
m=q

f{m}
(
tn+1, Y

{m}
2

)
,

q = N, . . . , 1

yn+1 = Y
{1}
2 ,

(23)

and the coefficient matrices

A{q,m} = A{l} =

[
1
2 0
1
2 0

]
, for m < q, b{q} = b{d} =

[
1
2
1
2

]
,

A{q,m} = A{d} = A{u} =

[
0 0
1
2

1
2

]
, for m ≥ q, c{q} = c{d} =

[
0

1

]
.

From (A.1), it is observed that (23) is a second order method and is not inter-
nally consistent. The method (23) also admits the following lower triangular
formulation where the stage values are presented in the way they are solved:

f
{1}
1 f

{2}
1 . . . f

{N}
1 f

{N}
2 f

{N−1}
2 . . . f

{1}
2

Y
{1}
1 0 0 . . . 0 0 0 . . . 0

Y
{2}
1

1
2 0 . . . 0 0 0 . . . 0

...
...

... . . .
...

...
... . . .

...

Y
{N}
1

1
2

1
2 . . . 0 0 0 . . . 0

Y
{N}
2

1
2

1
2 . . . 1

2
1
2 0 . . . 0

Y
{N−1}
2

1
2

1
2 . . . 1

2
1
2

1
2 . . . 0

...
...

... . . .
...

...
... . . .

...

Y
{1}
2

1
2

1
2 . . . 1

2
1
2

1
2 . . . 1

2

yn+1
1
2

1
2 . . . 1

2
1
2

1
2 . . . 1

2

In this permuted form, the stiff accuracy condition holds.

4.4. Douglas method

We now consider the partitioned system

y′ = f(t, y) =
N∑

m=0

f{m}(t, y). (24)

14

Compared to (1), there is the additional partition f{0}, which is nonstiff and
can be treated explicitly. The Douglas splitting scheme [34, page 373] applied
to (24) reads

v0 = yn + h f(tn, yn),

vq = vq−1 + θ h
(
f{q}(tn+1, vq)− f{q}(tn, yn)

)
, q = 1, . . . ,N,

yn+1 = vN.

(25)

Note that an explicit Euler step for the entire system is followed by stabilizing
corrections, which are implicit stages in only one component at a time. The
method (25) is cast in the GARK formulation by defining the stages

Y
{q}
1 = yn, q = 0, . . . ,N,

Y
{q}
2 = yn + h f{0}

(
tn, Y

{0}
1

)
+ (1− θ)h

q∑
m=1

f{m}
(
tn, Y

{m}
1

)
+ h

N∑
m=q+1

f{m}
(
tn, Y

{m}
1

)
+ θ h

q∑
m=1

f{m}
(
tn+1, Y

{m}
2

)
, q = 1, . . . ,N,

yn+1 = Y
{N}
2 .

From here, we can see this corresponds to an ADI-GARK scheme with coefficient
matrices

A{q,m} = A{i} =

[
0 0

1− θ θ

]
, for m ≤ q, b{q} = b{i} =

[
1− θ
θ

]
,

A{q,m} = A{e} =

[
0 0
1 0

]
, for m > q, c{q} = c{i} =

[
0
1

]
,

(26a)

for q,m = 1, . . . ,N. The nonstiff partition f{0} prepends the coefficients

A{0,0} = c{0} =
[
0
]
, A{q,0} =

[
0
1

]
, A{0,q} =

[
0 0

]
, b{0} =

[
1
]
, (26b)

to the tableau, with q = 1, . . . ,N. We observe that the method is internally
consistent and stiffly accurate. Considering (A.1), we immediately check that
(26) is a first order method for arbitrary f{0} and all θ ∈ R. In fact, the method
reaches order two iff f{0} ≡ 0 and θ = 1

2 .

Remark 4. Modified versions of the Douglas scheme (25) have been considered
in [1, 33] in such a way that these modifications provide second order approx-
imation when θ = 1

2 regardless of the splitting term f{0}. A first modified
Douglas method is obtained by introducing an initial stabilizing correction for

15

f{0} performed as

v̂0 = yn + h f(tn, yn)

v0 = v̂0 + θ h
(
f{0}(tn+1, v̂0)− f{0}(tn, yn)

)
,

vq = vq−1 + θ h
(
f{q}(tn+1, vq)− f{q}(tn, yn)

)
, q = 1, . . . ,N,

yn+1 = vN.

(27)

The method (27) has GARK stages

Y
{q}
1 = yn, q = 0, . . . ,N,

Y
{0}
2 = yn + h

N∑
m=0

f{m}
(
tn, Y

{m}
1

)
,

Y
{q}
2 = yn + (1− θ)h

q∑
m=0

f{m}
(
tn, Y

{m}
1

)
+ h

N∑
m=q+1

f{m}
(
tn, Y

{m}
1

)
+ θ h

q∑
m=0

f{m}
(
tn+1, Y

{m}
2

)
, q = 1, . . . ,N,

yn+1 = Y
{N}
2 .

The coefficient matrices for partitions 1 to N are identical to the original Douglas
splitting coefficients (26a). For partition f{0}, however, we replace (26b) with

A{0,0} = A{0,q} =

[
0 0
1 0

]
, A{q,0} =

[
0 0

1− θ θ

]
,

b{0}T =
[
1− θ θ

]
, c{0}T =

[
0 1

]
,

for q = 1, . . . ,N. From here, (27) is a first order method for arbitrary f{0} and
all θ ∈ R. Moreover, the method reaches order two iff θ = 1

2 , regardless of f{0}.
On the other hand, a second modification of the Douglas method (25) is

obtained by introducing a stabilizing correction for f{0} performed at the end
of a step:

v0 = yn + h f(tn, yn)

vq = vq−1 + θ h
(
f{q}(tn+1, vq)− f{q}(tn, yn)

)
, q = 1, . . . ,N,

yn+1 = vN + θ h
(
f{0}(tn+1, vN)− f{0}(tn, yn)

)
.

(28)

16

The corresponding stages are

Y
{q}
1 = yn, q = 0, . . . ,N,

Y
{q}
2 = yn + h f{0}

(
tn, Y

{0}
1

)
+ (1− θ)h

q∑
m=1

f{m}
(
tn, Y

{m}
1

)
+ h

N∑
m=q+1

f{m}
(
tn, Y

{m}
1

)
+ θ h

q∑
m=1

f{m}
(
tn+1, Y

{m}
2

)
, q = 1, . . . ,N,

Y
{0}
2 = yn + h f{0}

(
tn, Y

{0}
1

)
+ h

N∑
m=1

(
(1− θ) f{m}

(
tn, Y

{m}
1

)
+ θ f{m}

(
tn+1, Y

{m}
2

))
,

yn+1 = yn + h
N∑

m=0

(
(1− θ) f{m}

(
tn, Y

{m}
1

)
+ θ f{m}

(
tn+1, Y

{m}
2

))
.

Once again, the coefficient matrices for partitions 1 to N coincide with (26a),
and partition f{0} has the coefficients

A{0,0} = A{q,0} =

[
0 0
1 0

]
, A{0,q} =

[
0 0

1− θ θ

]
,

b{0}T =
[
1− θ θ

]
, c{0}T =

[
0 1

]
,

for q = 1, . . . ,N. We observe that in this case the method (28) is not stiffly
accurate. Anyway, it is a first order method for arbitrary f{0} and all θ ∈ R,
and it reaches order two iff θ = 1

2 , regardless of f{0}.

4.5. Modified Craig-Sneyd scheme

We consider the split system (24) with one non-stiff component f{0}. The
second order Modified Craig-Sneyd scheme [32] reads:

v0 = yn + h f(tn, yn),

vq = vq−1 + θ h
(
f{q}(tn+1, vq)− f{q}(tn, yn)

)
, q = 1, . . . ,N,

v̂0 = v0 + σ h
(
f{0}(tn+1, vN)− f{0}(tn, yn)

)
,

w0 = v̂0 + µh (f(tn+1, vN)− f(tn, yn)) ,

wq = wq−1 + θ h
(
f{q}(tn+1, wq)− f{q}(tn, yn)

)
, q = 1, . . . ,N,

yn+1 = wN.

(29)

Equation (29) is order two iff σ = θ and µ = 1
2 − θ. In the special case µ = 0,

we recover the so called Craig-Sneyd scheme [17].

17

The method is cast in the GARK form (3) by defining the stages

Y {0} :=

[
yn
vN

]
, Y {q} :=


yn
vq
vN
wq

 , for q = 1, . . . ,N. (30)

The coefficients correspond to that of an ADI-GARK method:

A{q,m} = A{i} =


0 0 0 0

1− θ θ 0 0
1− θ θ 0 0

1− µ− θ 0 µ θ

 , for m ≤ q,

A{q,m} = A{e} =


0 0 0 0
1 0 0 0

1− θ θ 0 0
1− µ 0 µ 0

 , for m > q,

b{q}T = b{i}T =
[
1− µ− θ 0 µ θ

]
, c{q}T = c{i}T =

[
0 1 1 1

]
.

The nonstiff partition introduces the following additional coefficients:

A{0,0} =

[
0 0
1 0

]
, A{0,q} =

[
0 0 0 0

1− θ θ 0 0

]
,

A{q,0} =


0 0
1 0
1 0

1− σ − µ σ + µ

 , b{0} =

[
1− σ − µ
σ + µ

]
, c{0} =

[
0
1

]
.

4.6. Hundsdorfer–Verwer scheme

We consider the split system (24) with one non-stiff component f{0}. The
Hundsdorfer–Verwer scheme [32] reads:

v0 = yn + h f(tn, yn),

vq = vq−1 + θ h
(
f{q}(tn+1, vq)− f{q}(tn, yn)

)
, q = 1, . . . ,N,

w0 = v0 + µh
(
f(tn+1, vN)− f(tn, yn)

)
,

wq = wq−1 + θ h
(
f{q}(tn+1, wq)− f{q}(tn+1, vN)

)
, q = 1, . . . ,N,

yn+1 = wN.

(31)

18

The method is cast in the GARK form (3) using the same stages as (30) and
the coefficient matrices

A{q,m} = A{i} =


0 0 0 0

1− θ θ 0 0
1− θ θ 0 0
1− µ 0 µ− θ θ

 , for m ≤ q;

A{q,m} = A{e} =


0 0 0 0
1 0 0 0

1− θ θ 0 0
1− µ 0 µ 0

 , for m > q,

b{q}T = b{i}T =
[
1− µ 0 µ− θ θ

]
, c{q}T = c{i}T =

[
0 1 1 1

]
,

together with

A{0,0} =

[
0 0
1 0

]
, A{0,q} =

[
0 0 0 0

1− θ θ 0 0

]
, A{q,0} =


0 0
1 0
1 0

1− µ µ

 ,
b{0} =

[
1− µ
µ

]
, c{0} =

[
0
1

]
.

The Hundsdorfer–Verwer Splitting method (31) is an ADI-GARK scheme, is
stiffly accurate, and has order two iff µ = 1

2 .

5. Classical operator splitting methods in the GARK framework

We next describe how classical operator splitting schemes appearing in the
literature can be formulated within the GARK framework.

5.1. The second order Strang splitting scheme

A Strang splitting [56] integrates individual sub-systems in sequence, a sym-
metrical order. For an arbitrary number N of partitions, the Strang split for-
mulation [56] is

v0 = yn

v′q = f{q}(t, vq), vq(tn) = vq−1
(
tn + h

2

)
, tn ≤ t ≤ tn + h

2 ,

q = 1, . . . ,N,

w0 = vN,

w′q = f{N−q+1}(t, wq), wq
(
tn + h

2

)
= wq−1(tn + h), tn + h

2 ≤ t ≤ tn + h,

q = 1, . . . ,N,

yn+1 = wN(tn + h).

19

Assume that each integration is carried out by one step of an arbitrary, s stage
Runge–Kutta scheme (A, b, c). The method is cast in the GARK form (3) by
defining the stages

Y {q} =

[
Y
{q}
1:s (from integration of vq)

Y
{q}
s+1:2s (from integration of wN−q+1)

]
.

The Butcher tableau is of the form (7) with the coefficient matrices

A{q,m} = A{l} =

[
1
2 1 b

T 0
1
2 1 b

T 0

]
, for m < q,

A{q,q} = A{d} =

[
1
2 A 0

1
2 1 b

T 1
2 A

]
, b{q} = b{d} =

[
1
2b
1
2b

]
,

A{q,m} = A{u} =

[
0 0

1
2 1 b

T 1
2 1 b

T

]
, for m > q.

5.2. High order Yoshida splitting schemes

Yoshida proposed high order splitting schemes [63] that require backward-in-
time integration. Let yn+1 = Sh yn denote formally the Strang splitting solution
operator. Then Yoshida’s fourth order splitting is obtained by a repeated ap-
plication of Strang solutions:

yn+1 = Sθh S(1−2θ)h Sθh yn, θ =
1

2− 21/3
≈ 1.35121. (32)

General Yoshida schemes applied to a two-way partitioned system read

v`(tn + cα`−1 h) =

{
yn ` = 1

w`−1(tn + cβ`−1 h), otherwise

v′` = f{1}(v`), tn + cα`−1 h ≤ t ≤ tn + cα` h,

w`(tn + cβ`−1 h) = v`(tn + cα` h),

w′` = f{2}(w`), tn + cβ`−1 h ≤ t ≤ tn + cβ` h,

` = 1, . . . , L

yn+1 = wL(tn + h),

where

cα0 = 0, cβ0 = 0, cα` =
∑̀
i=1

αi, cβ` =
∑̀
i=1

βi, cαL = 1, cβL = 1.

20

The scheme of order four (32) uses L = 4 and the coefficients

α1 = α4 =
1

2 (2− 21/3)
, α2 = α3 =

1− 21/3

2 (2− 21/3)
,

β1 = β3 =
1

2− 21/3
, β2 = − 21/3

2− 21/3
, β4 = 0.

Assume that each integration is carried out with a s stage Runge–Kutta
scheme (A, b, c). Then, we can define the GARK stages

Y {1} =


Y
{1}
1:s (from integration of v1)

...

Y
{1}
(L−1)s+1:Ls (from integration of vL)

 ,

Y {2} =


Y
{2}
1:s (from integration of w1)

...

Y
{2}
(L−1)s+1:Ls (from integration of wL)

 .
The GARK tableau (3) for (32) reads

cα0 1 + α1 c α1A

cα1 1 + α2 c α1 1 b
T α2A β1 1 b

T

cα2 1 + α3 c α1 1 b
T α2 1 b

T α3A β1 1 b
T β2 1 b

T

cα3 1 + α4 c α1 1 b
T α2 1 b

T α3 1 b
T α4A β1 1 b

T β2 1 b
T β3 1 b

T

cβ0 1 + β1 c α1 1 b
T β1A

cβ1 1 + β2 c α1 1 b
T α2 1 b

T β1 1 b
T β2A

cβ2 1 + β3 c α1 1 b
T α2 1 b

T α3 1 b
T β1 1 b

T β2 1 b
T β3A

cβ3 1 + β4 c α1 1 b
T α2 1 b

T α3 1 b
T α4 1 b

T β1 1 b
T β2 1 b

T β3 1 b
T β4A

α1 b
T α2 b

T α3 b
T α4 b

T β1 b
T β2 b

T β3 b
T β4 b

T

.

6. Fractional step Runge–Kutta methods in the GARK framework

Consider the additively split ODE (24) where the first N components are
one-dimensional split linear operators, and the last partition is a nonlinear term:

y′ = f(t, y) =
N∑

m=1

(
L{m}(t) y + φ{m}(t)

)
+ g(t, y). (33)

Specifically, L{m}(t) represents the diffusion operator in the m spatial direction,
φ{m}(t) the corresponding directional boundary conditions and source terms,
and g(t, y) is a nonlinear term.

Fractional step Runge–Kutta (FSRK) methods [9–12] solve (33) in the al-

21

ternating implicit fashion

Yi = yn + h
i∑

j=1

a
{mj}
i,j

(
L{mj}(Tj)Yj + φ{mj}(Tj)

)
+ h

i−1∑
j=1

a
{0}
i,j g(Tj , Yj),

yn+1 = yn + h
s∑
j=1

b
{mj}
j

(
L{mj}(Tj)Yj + φ{mj}(Tj)

)
+ h

s∑
j=1

b
{0}
j g(Tj , Yj),

where Tj = tn + c
{mj}
j . We note that only one dimension mj is associated with

each stage j, and that each stage solution requires solving a linear system cor-
responding to a one-dimensional problem. As stated in [9], FSRK are a special
case of the additive Runge–Kutta (ARK) method. The GARK formulation pro-
vides a simpler and more compact representation. First, let us define the index
sets

Sq = {` ∈ {1, . . . , s} | m` = q} =
{
`q,1, . . . , `q,s{q}

}
, q = 1, . . . ,N. (34)

This provides a way to map stage i ∈ {1, . . . , s} of a FSRK method to a stage
j ∈ {1, . . . , s{q}} in partition q of a GARK method. Now the GARK coefficients
can be expressed as

A{q,m} =
[
a
{m}
`q,i,`m,j

]j=1,...,s{m}

i=1,...,s{q}
, b{q} =

[
b
{q}
`q,i

]
i=1,...,s{q}

, q,m = 1, . . . ,N,

(35)
with partition zero using the coefficients

A{0,0} =
[
a
{0}
i,j

]j=1,...,s

i=1,...,s
, A{0,q} =

[
a
{0}
i,`q,j

]j=1,...,s{q}

i=1,...,s
,

A{q,0} =
[
a
{0}
`q,i,j

]j=1,...,s

i=1,...,s{q}
, b{0} =

[
b
{0}
i

]
i=1,...,s

, q = 1, . . . ,N.

Example 1. Consider the second order FSRK used in [41, Section 5.1] with
coefficients

A{1} =

0 0 0
0 1

2 0
0 1 0

 , A{2} =

0 0 0
1
2 0 0
1
2 0 1

2

 ,
b{1}T =

[
0 1 0

]
, b{2}T =

[
1
2 0 1

2

]
.

This method is for system with N = 2 partitions, and we will ignore partition
zero, i.e., g(t, y) = 0. There are s = 3 stages which map to partition 1 or 2 by

mj =

{
1, j = 2,

2, j = 1 or 3.

To cast this scheme into the GARK framework, we compute the index sets

22

(34):
S1 = {`1,1} = {2}, S2 = {`2,1, `2,2} = {1, 3}.

Thus, s{1} = |S1| = 1 and s{2} = |S2| = 2. By (35), the GARK tableau is given
by

1
2

1
2 0

0 0 0

1 1
2

1
2

1 1
2

1
2

Note that the FSRK formulation requires columns of zeros in A{1} and A{2},
whereas the GARK formulation is more compact. By reading the diagonal
blocks of the GARK tableau, we can immediately see this method couples the
implicit midpoint method with the implicit trapezoidal method.

7. High-order ADI-GARK methods

In this section we develop two new ADI-GARK methods (Definition 2) of
order three and four. The GARK order conditions (A.1) particularized to an
IMIM-GARK method with structure (7) lead to the following result.

Theorem 1 (Order conditions for the special class of IMIM-GARK).
Consider an IMIM-GARK method of type (7) that satisfies the internal consis-
tency condition (4). Then we have the following:

• The method has order p ∈ {1, 2, 3} iff each component Runge–Kutta method

(A{d}, b{d}, c{d}), (A{l}, b{d}, c{d}), and (A{u}, b{d}, c{d}) has order at
least p.

• The method has order p = 4 iff each component Runge–Kutta method
(A{d}, b), (A{l}, b{d}), and (A{u}, b{d}) has order at least 4, and, in ad-
dition, the following coupling order conditions are satisfied:

b{d}TA{d}A{u}c{d} =
1

24
, b{d}TA{u}A{d}c{d} =

1

24
, (36a)

b{d}TA{l}A{u}c{d} =
1

24
, b{d}TA{u}A{l}c{d} =

1

24
, (36b)

b{d}TA{d}A{l}c{d} =
1

24
, b{d}TA{l}A{d}c{d} =

1

24
. (36c)

Proof. We set b{σ} = b{d} and A{σ,µ}1s{µ} = c{d} for all σ, µ ∈ {L,D,U}
in (A.1). If the base methods satisfy their own order conditions, no third or-
der coupling conditions remain. At order four, the only remaining coupling
conditions are listed in (36). �

Remark 5. The order conditions for ADI-GARK methods of Definition 2, as
well as those for parallel ADI-GARK methods of Definition 3, reduce to (36a),
since (36b) and (36c) are redundant.

23

7.1. (Parallel) ADI-GARK method of order 3

For the derivation of a third order ADI-GARK method, we start by selecting
an implicit scheme. We use the optimal, L-stable, 4 stage ESDIRK method
described in [36, Section 5.1.1]. For the explicit counterpart, it must use the

b{i} and c{i} coefficients, leaving A{e} as free parameters. Theorem 1 requires
the explicit method to satisfy classical order conditions up to order three, and we
also impose the simplifying assumption D(1) [30, page 208]. The one remaining

parameter in A{e} is determined by

b{i}TA{e}A{e}c{i} =
5

268
.

This ensures the linear stability function satisfies |R([z, z])| ≤ 1 for all z in
the left-half plane. This stability region is plotted in fig. 1a, and the method
coefficients are listed in table 1. By remark 2, the coefficients also define a third
order parallel ADI-GARK method.

A{i} =


0 0 0 0
γ γ 0 0

215γ+424
2624−1536γ

264−841γ
1536γ+448 γ 0

2γ+1
4γ+8

31−14γ
352−900γ

320γ+224
575−477γ γ

 ,

A{e} =


0 0 0 0

2γ 0 0 0
12526987γ+655304
8876160γ+7175968

15(215γ+152)
2144(92γ−9) 0 0

2370311γ−563481
134(17071γ+921)

380783−137789γ
134(17727γ−15511)

1000−304γ
1371γ+379 0

 ,
b{i}T =

[
2γ+1
4γ+8

31−14γ
352−900γ

320γ+224
575−477γ γ

]
,

c{i}T =
[
0 2γ γ+2

4 1
]
.

Table 1: Coefficients of the new third order (parallel) ADI-GARK method. Here γ ≈
0.43586652150845900 is the middle root of the polynomial 0 = −1 + 9γ − 18γ2 + 6γ3.

7.2. (Parallel) ADI-GARK method of order 4

We follow a similar method derivation process for a fourth order ADI-GARK
method. The implicit part is the L-stable method ESDIRK4(3)6L[2]SA from [36,
Table 16]. This must be paired with a six stage explicit Runge–Kutta method of
order four. Again, we enforce the first column simplifying assumption D(1) but
now need the coupling conditions (36). This leaves four unspecified coefficients
that we use to control the stability. We minimize the value of |R([z, z])| at a
sample of points along the imaginary axis so that it is stable in the entire left-half
plane. Table 2 gives the resulting coefficients, and fig. 1b plots its stability.

24

A
{i
}

=

         

0
0

0
0

0
0

1 4
1 4

0
0

0
0

1
−
√
2

8
1
−
√
2

8
1 4

0
0

0

5
−
7
√
2

6
4

5
−
7
√
2

6
4

7
(√

2
+
1
)

3
2

1 4
0

0

−
5
4
5
3
9
√
2
−
1
3
7
9
6

1
2
5
0
0
0

−
5
4
5
3
9
√
2
−
1
3
7
9
6

1
2
5
0
0
0

1
3
2
1
0
9
√
2
+
5
0
6
6
0
5

4
3
7
5
0
0

1
6
6
(3

7
6
√
2
−
9
7
)

1
0
9
3
7
5

1 4
0

1
1
8
1
−
9
8
7
√
2

1
3
7
8
2

1
1
8
1
−
9
8
7
√
2

1
3
7
8
2

4
7
(1

7
8
3
√
2
−
2
6
7
)

2
7
3
3
4
3

1
6
(−

3
5
2
5
√
2
+
2
2
9
2
2
)

5
7
1
9
5
3

1
5
6
2
5
(−

3
7
6
√
2
−
9
7
)

9
0
7
4
9
8
7
6

1 4

         ,

A
{e
}

=

        

0
0

0
0

0
0

1 2
0

0
0

0
0

4 7
−

1
2
√
2

−
1 1
4

0
0

0
0

1
9
2
4
4
0
3
5
1
√
2
+
2
4
5
2
5
5
7
7
7

1
0
9
0
4
4
6
2
2
4

1
0
5
9
3
8
5
2
4
1
−
1
9
2
4
4
0
3
5
1
√
2

1
0
9
0
4
4
6
2
2
4

−
4 7

0
0

0
3
2
4
6
1
0
3
3
5
8
8
1
5
8
7
9
√
2
−
4
0
7
4
4
6
1
4
5
8
7
5
2
6
9
4

1
9
1
1
6
8
8
5
3
6
4
5
0
0
0
0

1
5
0
3
1
5
6
1
4
6
0
1
2
5
0
1
2
−
1
1
0
8
8
3
1
1
2
6
2
8
2
8
0
7
3
√
2

1
9
1
1
6
8
8
5
3
6
4
5
0
0
0
0

1
3
0
7
0
3
4
6
5
0
6
6
8
6
9
9
√
2
−
1
7
0
0
9
8
6
4
7
6
4
6
9
0
5
3

3
1
8
6
1
4
7
5
6
0
7
5
0
0
0

1
1

1
7

0
0

2
3
5
7
1
2
3
9
7
6
1
0
2
8
4
9
1
1
8
−
3
3
5
5
3
2
7
4
0
6
3
4
9
6
3
4
9
5
5
√
2

1
9
8
2
6
9
1
4
0
1
5
2
5
2
4
5
4
8
8

4
8
1
5
7
1
7
1
0
8
7
9
8
8
7
7
1
5
7
√
2
−
9
8
1
7
3
4
0
2
7
3
6
9
3
3
9
8
3
0
8

1
9
8
2
6
9
1
4
0
1
5
2
5
2
4
5
4
8
8

3
7
2
2
4
3
5
2
4
1
4
6
5
1
2
7
1
9
5
−
7
5
9
9
3
7
2
5
4
8
9
6
1
2
0
3
0
1
√
2

9
9
1
3
4
5
7
0
0
7
6
2
6
2
2
7
4
4

7
5
7
6
4
0
0
√
2
+
3
8
7
6
4
1
5
2
3

3
8
5
6
8
6
9
7
3

6
2
5
(3

7
6
√
2
+
9
7
)

2
2
6
8
7
4
6
9

0        ,

b
{i
}

=
[1

1
8
1
−
9
8
7
√
2

1
3
7
8
2

1
1
8
1
−
9
8
7
√
2

1
3
7
8
2

4
7
(1

7
8
3
√
2
−
2
6
7
)

2
7
3
3
4
3

1
6
(−

3
5
2
5
√
2
+
2
2
9
2
2
)

5
7
1
9
5
3

1
5
6
2
5
(−

3
7
6
√
2
−
9
7
)

9
0
7
4
9
8
7
6

1 4

] ,

c
{i
}

=
[0

1 2
2
−
√
2

4
5 8

2
6

2
5

1
] .

T
a
b

le
2
:

C
o
effi

ci
en

ts
o
f

th
e

n
ew

fo
u

rt
h

o
rd

er
(p

a
ra

ll
el

)
A

D
I-

G
A

R
K

m
et

h
o
d

.

25

(a) Order 3 ADI-GARK method from table 1 (b) Order 4 ADI-GARK method from table 2

Figure 1: The linear stability regions for new ADI-GARK methods applied to a two-way
partitioned system with partitions of equal stiffness. That is, the z ∈ C such that |R([z, z])| ≤
1.

8. Numerical experiments

We test the accuracy of the newly developed ADI-GARK methods on two
parabolic PDEs from [51, Section 7]. The first is the two-dimensional problem

ut = uxx + uyy + h(x, y, t)

h(x, y, t) = et(1− x)x(1− y)y + et
((
x+ 1

3

)2
+
(
y + 1

4

)2 − 4
)

+ 2et(1− x)x+ 2et(1− y)y,

(37)

posed on the unit square [0, 1] × [0, 1]. Boundary and initial conditions come
from the exact solution

u(x, y, t) = et(1− x)x(1− y)y + et
((
x+ 1

3

)2
+
(
y + 1

4

)2)
.

The second problem is three-dimensional and reads

ut = uxx + uyy + uzz + g(x, y, z, t),

g(x, y, z, t) = et(1− x)x(1− y)y(1− z)z + 2et(1− x)x(1− y)y

+ 2et(1− x)x(1− z)z + 2et(1− y)y(1− z)z − 6et

+ et
((
x+ 1

3

)2
+
(
y + 1

4

)2
+
(
z + 1

2

)2)
,

(38)

on the unit cube [0, 1]× [0, 1]× [0, 1]. For (38) the exact solution is

u(x, y, z, t) = et(1− x)x(1− y)y(1− z)z

+ et
((
x+ 1

3

)2
+
(
y + 1

4

)2
+
(
z + 1

2

)2)
.

26

For both (37) and (38), we discretize spatial derivatives with second order central
finite differences on a uniform mesh with Np points in each direction. Given
the exact solutions are quadratic in space, this ensures there are no spatial
errors. The 2D problem is partitioned such that f{1} is the discretization of
the directional derivative along the x-axis and f{2} discretizes uyy + h(x, y, t).
Similarly, in the 3D problem, f{1} and f{2} are finite difference operators for
uxx and uyy, respectively, while f{3} represents the remaining terms uzz +
g(x, y, z, t). The integration timespan is [0, 1], and temporal error is measured
in the `2 norm with respect to the exact solution at t = 1 evaluated at the mesh
points.

Figures 2 and 3 show convergence plots for the methods documented in sec-
tion 7 applied to the 2D and 3D problems respectively when the ADI structure
in definition 2 is considered. The uniform mesh and the singly-diagonally im-
plicit structure of the method allows us to use the same matrix factorization
when computing different directional stages. For small values of Np the methods
work at their nominal order of convergence. However, numerical convergence
rates in figs. 2a, 2b and 3b indicate that as the mesh size gets smaller, the
problem becomes stiffer and numerical order reduction is observed. An order
reduction in the classical convergence order of one-step methods when applied
to PDE problems with time dependent boundary conditions is generally present.
This can be seen in the papers by Ostermann and Roche [39] and by Lubich
and Ostermann [37, 38], where it is shown that for Runge–Kutta methods and
Rosenbrock-type methods an order reduction takes place even in the case of
time-independent boundary conditions. The order reduction is more dramatic
for the case of time-dependent BCs. Besides in case of splitting methods (e.g.
the GARK methods here considered) the effects of the order reduction are quite
often more pronounced due to the effect of the additional errors introduced in
the splitting terms. See, e.g. [20], where some convergence results about the
PDE-order (in several Lp norms) of some splitting W-methods are given.

Figure 4 shows convergence results for methods of orders 3 and 4 when the
parallel ADI scheme described in definition 3 is used on the 2D problem (37).
This scheme has the added computational benefit that directional stages at the
same time argument tn + cih can be computed in parallel. For the set of mesh
sizes used in this experiment, we observe the classical order of convergence for
the methods.

We perform efficiency experiments using the new methods in section 7. We
compare the runtime and the error of the final solution against GLM-ADI meth-
ods reported in [51]. In order to highlight the benefits of design strategies uti-
lized for creating the new methods, we also compare them with a generic fourth
order IMEX method from [49, Example 3] used in ADI mode. Figure 5 shows the
error versus cputime for Np ∈ {16, 32} on the 2D test problem (37). We observe
good performance for the ADI-GARK methods, only being outperformed by the
GLM-ADI 4. We also note that, owing to its optimized error, the ADI-GARK
3 method shows performance close to that of the IMEX-RK 4 method.

27

103.8 104 104.2 104.4

10−12

10−11

10−10

10−9

Steps

E
rr
o
r

Np = 16 Order 3.0

Np = 32 Order 2.9

Np = 64 Order 2.6

(a) Order 3 method

103.5 104 104.5

10−14

10−13

10−12

10−11

10−10

Steps
E
rr
o
r

Np = 16 Order 4.0

Np = 32 Order 3.9

Np = 64 Order 3.6

(b) Order 4 method

Figure 2: Convergence plots for ADI-GARK methods on the 2D test problem (37).

103.6 103.8 104
10−8

10−7

10−6

10−5

10−4

3

Steps

E
rr
o
r

Np = 8 Order 3.0

Np = 16 Order 3.0

Np = 32 Order 3.0

(a) Order 3 method

103.6 103.8 104
10−10

10−8

10−6

Steps

E
rr
o
r

Np = 8 Order 3.9

Np = 16 Order 3.7

Np = 32 Order 3.2

(b) Order 4 method

Figure 3: Convergence plots for ADI-GARK methods on the 3D test problem (38).

28

104 104.2 104.4 104.6

10−12

10−11

10−10

Steps

E
rr
o
r

Np = 16 Order 3.0

Np = 32 Order 3.0

Np = 64 Order 2.9

(a) Order 3 method

103.5 104 104.5
10−15

10−14

10−13

10−12

10−11

Steps
E
rr
o
r

Np = 16 Order 4.0

Np = 32 Order 3.9

Np = 64 Order 4.0

(b) Order 4 method

Figure 4: Convergence plots for parallel ADI-GARK methods on the 2D test problem (37).

GLM ADI 3 GLM ADI 4 IMEX-RK 4

ADI-GARK 4 ADI-GARK 3

100 101
10−13

10−12

10−11

10−10

10−9

10−8

Cputime [s]

E
rr
o
r

(a) Np = 16

101 102
10−12

10−10

10−8

10−6

Cputime [s]

E
rr
o
r

(b) Np = 32

Figure 5: Error versus cputime for ADI-GARK methods on the 2D test problem (37) compared
to GLM ADI methods from [51] and an ADI method created from the IMEX pair reported in
[49, Example 3].

29

9. Conclusions

This work introduces the implicit-implicit GARK family of methods in the
general-structure additive Runge–Kutta framework. The IMIM-GARK family
is of interest since it provides the general computational template for implicit
time integration based on splitting. Existing partitioned approaches such as
fractional step, alternating direction implicit integration, operator splitting, and
locally one dimensional integration, are formulated as IMIM-GARK methods.
All these methods can be studied in a unified way using the order conditions and
stability analyses provided herein. New splitting methods of (classical) order
three and four with optimized stability and error constants are developed using
the IMIM-GARK framework. Numerical experiments verify the accuracy and
the efficiency of these new schemes.

References

[1] A. Arrarás, K.J. in ’t Hout, W. Hundsdorfer, L. Portero, Modified Douglas
splitting methods for reaction–diffusion equations, BIT Numerical Mathe-
matics 57 (2017) 261–285.

[2] U. Ascher, S. Ruuth, R. Spiteri, Implicit-explicit Runge–Kutta methods
for time-dependent partial differential equations, Applied Numerical Math-
ematics 25 (1997) 151–167.

[3] A. Augustine, A. Sandu, MATLODE: A Matlab suite for ODE integration
and sensitivity analysis, Submitted to ACM TOMS (2017).

[4] R.M. Beam, R.F. Warming, An implicit finite-difference algorithm for
hyperbolic systems in conservation-law form, Journal of Computational
Physics 22 (1976) 87–110.

[5] S. Boscarino, Error analysis of IMEX Runge–Kutta methods derived from
differential-algebraic systems, SIAM Journal on Numerical Analysis (2007).

[6] S. Boscarino, On an accurate third order implicit-explicit Runge–Kutta
method for stiff problems, Applied Numerical Mathematics 59 (2009) 1515–
1528.

[7] M. Braś, G. Izzo, Z. Jackiewicz, Accurate Implicit–Explicit General Linear
Methods with Inherent Runge–Kutta Stability, Journal of Scientific Com-
puting 70 (2017) 1105–1143.

[8] B. Bujanda, J. Jorge, Stability results for fractional-step discretizations
of time dependent coefficient evolutionary problems, Applied Numerical
Mathematics 38 (2001) 69–86.

[9] B. Bujanda, J. Jorge, Fractional-step Runge–Kutta methods for time de-
pendent coefficient parabolic problems, Applied Numerical Mathematics 45
(2003) 99–122.

30

[10] B. Bujanda, J. Jorge, Efficient linearly implicit methods for nonlinear mul-
tidimensional parabolic problems, Journal of Computational and Applied
Mathematics 164/165 (2004) 159–174.

[11] B. Bujanda, J. Jorge, Stability results for linearly implicit fractional-step
discretizations of nonlinear time dependent parabolic problems, Applied
Numerical Mathematics 56 (2006) 1061–1076.

[12] B. Bujanda, J. Jorge, Order conditions for linearly implicit fractional step
Runge–Kutta methods, IMA Journal of Numerical Analysis 27 (2007) 781–
797.

[13] A. Cardone, Z. Jackiewicz, A. Sandu, H. Zhang, Extrapolated IMEX
Runge–Kutta methods, Mathematical Modelling and Analysis 19 (2014)
18–43.

[14] A. Cardone, Z. Jackiewicz, A. Sandu, H. Zhang, Extrapolation-based
implicit-explicit general linear methods, Numerical Algorithms 65 (2014)
377–399.

[15] E. Constantinescu, A. Sandu, Extrapolated implicit-explicit time stepping,
SIAM Journal on Scientific Computing 31 (2010) 4452–4477.

[16] G. Cooper, A. Sayfy, Additive Runge–Kutta methods for stiff ordinary
differential equations, Mathematics of Computation 40 (1983) 207–218.

[17] I.J.D. Craig, A.D. Sneyd, An alternating-direction implicit scheme for
parabolic equations with mixed derivatives, Computational and Applied
Mathematics 16 (1988) 341–350.

[18] J. Douglas, On the numerical integration of ux,x + uy,y = ut by implicit
methods, SIAM 3 (1955) 42–65.

[19] J. Douglas, H.H. Rachford, On the numerical solution of heat conduction
problems in two and three space variables, Transactions of the American
Mathematical Society 82 (1956) 421–439.

[20] S. González-Pinto, E. Hairer, D. Hernández-Abreu, Convergence in `2 and
`∞ norm of one-stage AMF-W-methods for parabolic problems, SIAM
Journal on Numerical Analysis 58 (2020) 1117–1137.

[21] S. González-Pinto, E. Hairer, D. Hernández-Abreu, Power boundedness in
the maximum norm of stability matrices for adi methods, BIT Numerical
Mathematics 61 (2021) 805–827.

[22] S. González-Pinto, E. Hairer, D. Hernández-Abreu, S. Pérez-Rodŕıguez,
AMF-type W-methods for parabolic problems with mixed derivatives,
SIAM Journal on Scientific Computing 40 (2018) A2905–A2929.

31

[23] S. González-Pinto, E. Hairer, D. Hernández-Abreu, S. Pérez-Rodŕıguez,
PDE-W-methods for parabolic problems with mixed derivatives, Numerical
Algorithms 78(3) (2018) 957–981.

[24] S. González-Pinto, D. Hernández-Abreu, Splitting-methods based on ap-
proximate matrix factorization and Radau-IIA formulas for the time inte-
gration of advection diffusion reaction PDEs, Applied Numerical Mathe-
matics 104 (2016) 166–181.

[25] S. González-Pinto, D. Hernández-Abreu, Convergence in the maximum
norm of ADI-type methods for parabolic problems, Applied Numerical
Mathematics. https://doi.org/10.1016/j.apnum.2021.09.007 (2021).

[26] S. González-Pinto, D. Hernández-Abreu, S. Pérez-Rodŕıguez, AMFR-W-
methods for parabolic problems with mixed derivates. applications to the
Heston model, Journal of Computational and Applied Mathematics 387
(2021) 112518.

[27] M. Günther, C. Hachtel, A. Sandu, Multirate GARK schemes for multi-
physics problems, in: 10th International Conference on Scientific Comput-
ing in Electrical Engineering.

[28] M. Günther, A. Sandu, Multirate generalized additive Runge–Kutta meth-
ods, Numerische Mathematik 133 (2016) 497–524.

[29] E. Hairer, Order conditions for numerical methods for partitioned ordinary
differential equations, Numerische Mathematik 36 (1981) 431–445.

[30] E. Hairer, G. Wanner, S.P. Nørsett, Solving Ordinary Differential Equa-
tions I: Nonstiff Problems, number 8 in Springer Series in Computational
Mathematics, Springer–Verlag Berlin Heidelberg, 2nd edition, 1993.

[31] H.V. Henderson, S.R. Searle, The vec-permutation matrix, the vec operator
and Kronecker products: a review, Linear and Multilinear Algebra 9 (1981)
271–288.

[32] K.J. in ’t Hout, B.D. Welfert, Unconditional stability of second-order
ADI schemes applied to multi-dimensional diffusion equations with mixed
derivative terms., Appl. Numer. Math. 59(3-4) (2009) 677–692.

[33] W. Hundsdorfer, Accuracy and stability of splitting with stabilizing cor-
rections, Applied Numerical Mathematics 42 (2002) 213 – 233. Numerical
Solution of Differential and Differential-Algebraic Equations, 4-9 Septem-
ber 2000, Halle, Germany.

[34] W. Hundsdorfer, J. Verwer, Numerical solution of time-dependent
advection-diffusion-reaction equations, volume 33 of Springer Series in
Computational Mathematics, Springer-Verlag, Berlin, 2003.

32

[35] C.A. Kennedy, M.H. Carpenter, Additive Runge–Kutta schemes for
convection–diffusion–reaction equations, Appl. Numer. Math. 44 (2003)
139–181.

[36] C.A. Kennedy, M.H. Carpenter, Diagonally implicit Runge–Kutta methods
for ordinary differential equations. A review, Technical Report NASA/TM-
2016-219173, NASA, 2016.

[37] C. Lubich, A. Ostermann, Linearly implicit time discretization of non-linear
parabolic equations, IMA Journal of Numerical Analysis 15 (1995) 555–583.

[38] C. Lubich, A. Ostermann, Runge-Kutta approximation of quasi-linear
parabolic equations, Mathematics of Computation 64 (1995) 601–627.

[39] A. Ostermann, M. Roche, Runge–Kutta methods for partial differential
equations and fractional orders of convergence, Mathematics of Computa-
tion 59 (1992) 403–420.

[40] D. Peaceman, H. Rachford, The numerical solution of parabolic and el-
liptic differential equations, Journal of Society for Indistril and Applied
Mathematics 3 (1955) 28–42.

[41] L. Portero, J.C. Jorge, B. Bujanda, Avoiding order reduction of frac-
tional step Runge–Kutta discretizations for linear time dependent coeffi-
cient parabolic problems, Appl. Numer. Math. 48 (2004) 409–424.

[42] P. Rentrop, Partitioned Runge–Kutta methods with stepsize control and
stiffness detection, Numerische Mathematik 47 (1985) 545–564.

[43] J. Rice, Split Runge-Kutta methods for simultaneous equations, Journal of
Research of the National Institute of Standards and Technology 64 (1960).

[44] S. Roberts, J. Loffeld, A. Sarshar, C.S. Woodward, A. Sandu, Implicit
multirate GARK methods, Journal of Scientific Computing 87 (2021) 4.

[45] S. Roberts, A. Sarshar, A. Sandu, Coupled multirate infinitesimal GARK
methods for stiff differential equations with multiple time scales, SIAM
Journal on Scientific Computing 42 (2020) A1609–A1638.

[46] A. Sandu, A class of multirate infinitesimal GARK methods, SIAM Journal
on Numerical Analysis 57 (2019) 2300–2327.

[47] A. Sandu, Convergence results for implicit-explicit general linear methods,
Applied Numerical Mathematics 156 (2020).

[48] A. Sandu, M. Guenther, S. Roberts, Linearly implicit GARK schemes,
Applied Numerical Mathematics 161 (2021) 286–310.

[49] A. Sandu, M. Günther, A generalized-structure approach to additive
Runge–Kutta methods, SIAM Journal on Numerical Analysis 53 (2015)
17–42.

33

[50] A. Sarshar, S. Roberts, A. Sandu, Design of high-order decoupled multirate
GARK schemes, SIAM Journal on Scientific Computing 41 (2019) A816–
A847.

[51] A. Sarshar, S. Roberts, A. Sandu, Alternating directions implicit integra-
tion in a general linear method framework, Journal of Computational and
Applied Mathematics 387 (2021) 112619. Numerical Solution of Differential
and Differential-Algebraic Equations. Selected Papers from NUMDIFF-15.

[52] M. Schneider, J. Lang, W. Hundsdorfer, Extrapolation-based super-
convergent implicit-explicit peer methods with A-stable implicit part, Jour-
nal of Computational Physics 367 (2018) 121–133.

[53] M. Schneider, J. Lang, R. Weiner, Super-convergent implicit–explicit peer
methods with variable step sizes, Journal of Computational and Applied
Mathematics 387 (2021) 112501. Numerical Solution of Differential and
Differential-Algebraic Equations. Selected Papers from NUMDIFF-15.

[54] B. Soleimani, O. Knoth, R. Weiner, IMEX peer methods for fast-wave–
slow-wave problems, Applied Numerical Mathematics 118 (2017) 221–237.

[55] B. Soleimani, R. Weiner, Superconvergent IMEX peer methods, Applied
Numerical Mathematics 130 (2018) 70–85.

[56] G. Strang, On the construction and comparison of difference schemes,
SIAM Journal on Numerical Analysis 5 (1968) 506–517.

[57] E.L. Tan, Unconditionally stable LOD–FDTD method for 3-D Maxwell’s
equations, IEEE Microwave and Wireless Components Letters 17 (2007)
85–87.

[58] E.L. Tan, Fundamental schemes for efficient unconditionally stable implicit
finite-difference time-domain methods, IEEE Transactions on Antennas
and Propagation 56 (2008) 170–177.

[59] E.L. Tan, Fundamental implicit FDTD schemes for computational elec-
tromagnetics and educational mobile apps, Progress In Electromagnetics
Research 168 (2020) 39–59.

[60] G.M. Tanner, Generalized additive Runge–Kutta methods for stiff odes,
Ph.D. thesis, University of Iowa, 2018.

[61] R. Weiner, M. Arnold, P. Rentrop, K. Strehmel, Partitioning strategies in
Runge–Kutta type methods, IMA Journal on Numerical Analysis 13 (1993)
303–319.

[62] N. Yanenko, The Method of Fractional-Steps, Springer, Berlin Heidelberg
NewYork, 1971.

[63] H. Yoshida, Construction of higher order symplectic integrators, Physics
Letters 150 (1990) 262–268.

34

[64] H. Zhang, A. Sandu, FATODE: A library for forward, adjoint and tangent
linear integration of stiff systems, SIAM Journal on Scientific Computing
36 (2014) C504–C523.

[65] H. Zhang, A. Sandu, S. Blaise, Partitioned and implicit-explicit general lin-
ear methods for ordinary differential equations, Journal of Scientific Com-
puting 61 (2014) 119–144.

[66] H. Zhang, A. Sandu, P. Tranquilli, Application of approximate matrix fac-
torization to high-order linearly-implicit Runge–Kutta methods, Journal of
Computational and Applied Mathematics 286 (2015) 196–210.

[67] E. Zharovsky, A. Sandu, H. Zhang, A class of IMEX two-step Runge–Kutta
methods, SIAM Journal on Numerical Analysis 53 (2015) 321–341.

Appendix A. GARK order conditions

General order conditions for partitioned GARK methods (2) are described
in [49, Theorem 2.6]. Let

A{σ,ν}1s{ν} = c{σ,ν} ∀σ, ν,

and assume c{σ} = c{σ,σ} for σ = 1, . . .N. This is weaker than the internal
consistency condition (4). Then the order condition up to order four are

b{σ}T1s{σ} = 1 ∀σ, (order 1) (A.1a)

b{σ}T c{σ,ν} =
1

2
, ∀σ, ν, (order 2) (A.1b)

b{σ}T
(
c{σ,ν} × c{σ,µ}

)
=

1

3
, ∀σ, ν, µ, (order 3) (A.1c)

b{σ}TA{σ,ν}c{ν,µ} =
1

6
, ∀σ, ν, µ, (order 3) (A.1d)

b{σ}T
(
c{σ,λ} × c{σ,µ} × c{σ,ν}

)
=

1

4
, ∀λ, σ, ν, µ, (order 4) (A.1e)(

b{σ} × c{σ,µ}
)T

A{σ,ν}c{ν,λ} =
1

8
, ∀λ, σ, ν, µ, (order 4) (A.1f)

b{σ}TA{σ,λ}
(
c{λ,µ} × c{λ,ν}

)
=

1

12
, ∀λ, σ, ν, µ, (order 4) (A.1g)

b{σ}TA{σ,λ}A{λ,ν}c{ν,µ} =
1

24
, ∀λ, σ, ν, µ, (order 4) (A.1h)

where λ, σ, ν, µ ∈ {1, 2, . . . ,N}.

35

	1 Introduction
	2 Implicit-implicit GARK schemes
	2.1 Implicit-implicit GARK methods with a special coupling structure

	3 [id=2]Linear stability analysis
	4 [id=2]Classical LOD and ADI methods in the GARK framework
	4.1 LOD-Backward Euler method
	4.2 Yanenko's LOD-Crank-Nicolson method
	4.3 Trapezoidal Splitting
	4.4 Douglas method
	4.5 Modified Craig-Sneyd scheme
	4.6 Hundsdorfer–Verwer scheme

	5 Classical operator splitting methods in the GARK framework
	5.1 The second order Strang splitting scheme
	5.2 High order Yoshida splitting schemes

	6 Fractional step Runge–Kutta methods in the GARK framework
	7 High-order ADI-GARK methods
	7.1 [id=1](Parallel) ADI-GARK method of order 3
	7.2 [id=1](Parallel) ADI-GARK method of order 4

	8 Numerical experiments
	9 Conclusions
	Appendix A GARK order conditions

