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The Ensemble Kalman Filters (EnKF) employ a Monte-Carlo approach to represent co-

variance information, and are affected by sampling errors in operational settings where the

number of model realizations is much smaller than the model state dimension. To allevi-

ate the effects of these errors EnKF relies on model-specific heuristics such as covariance

localization, which takes advantage of the spatial locality of correlations among the model

variables. This work proposes an approach to alleviate sampling errors that utilizes a locally

averaged-in-time dynamics of the model, described in terms of a climatological covariance of

the dynamical system. We use this covariance as the target matrix in covariance shrinkage

methods, and develop a stochastic covariance shrinkage approach where synthetic ensemble

members are drawn to enrich both the ensemble subspace and the ensemble transformation.

We additionally provide for a way in which this methodology can be localized similar to

the state-of-the-art LETKF method, and that for a certain model setup, our methodology

significantly outperforms it.

1. INTRODUCTION

The ensemble Kalman filter [7, 12, 13], one of the most widely applied data assimilation al-

gorithms [4, 24, 38], uses a Monte Carlo approach to provide a non-linear approximation to the

Kalman filter [22]. In the typical case of an undersampled ensemble the algorithm requires cor-

rection procedures such as inflation [1], localization [2, 19, 31, 33, 35, 45], and ensemble subspace
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enrichment [30, 32, 40].

Hybrid data assimilation [18] is typically an umbrella term for assimilation techniques that

combine both offline-estimated climatological covariances with their online-estimated statistical

counterparts. These methods are often thought of as heuristic corrections, but in fact stem from

statistically rigorous covariance shrinkage techniques.

This work is based on enriching the ensemble subspace through the use of climatological co-

variances. Previous work [30, 32] proposed augmenting the covariance estimates derived from the

ensemble by a full rank shrinkage covariance matrix approximation. In this work we consider aug-

menting the physical ensemble with synthetic members drawn from a normal distribution with a

possibly low rank covariance matrix derived from a priori information such a climatological infor-

mation or method of snapshots. We show that this is equivalent to a stochastic implementation

of the shrinkage covariance matrix estimate proposed in [30, 32], and therefore augmenting the

physical ensemble with synthetic members enriches the rank of the covariance matrix, and nudges

the resulting covariance estimate toward the true covariance.

2. BACKGROUND

Our aim is to understand the behavior of an evolving natural phenomenon. The evolution of

the natural phenomenon is approximated by an imperfect dynamical model:

Xi =Mi−1,i(Xi−1) + ξi, (2.1)

where Xi−1 is a random variable (RV) whose distribution represents our uncertainty in the state of

the system at time i− 1,Mi−1,i is the (imperfect) dynamical model, ξi is a RV whose distribution

represents our uncertainty in the additive modeling error, and Xi is the RV whose distribution

represents our uncertainty in the (forecasted) state at time i.

One collects noisy observations of the truth:

yo
i = Hi(x

t
i) + ηi, (2.2)

where xt represents the true state of nature represented in model space, Hi is the (potentially

non-linear) observation operator, ηi is a RV whose distribution represents our uncertainty in the

observations, and yo
i are the observation values, assumed to be realizations of an observation RV

Yi. Take n to be the dimension of the state-space, and m to be the dimension of the observation
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space.

The goal of data assimilation is to find the a posteriori estimate of the state given the observa-

tions, which is typically achieved through Bayes’ theorem. At time i we have:

π(Xi|Yi) ∝ π(Yi|Xi)π(Xi). (2.3)

In typical Kalman filtering the assumption of Gaussianity is made, whereby the states at all times,

as well as the additive model and observation errors, are assumed to be Gaussian and independently

distributed. Specifically one assumes ξi ∼ N (0,Qi) and ηi ∼ N (0,Ri).

In what follows we use the following notation. The a priori estimates at all times are represented

with the superscript �f, for forecast (as from the imperfect model), and the a posteriori estimates

are represented with the superscript �a, for analysis (through a DA algorithm).

2.1. Ensemble Transform Kalman Filter

Forecasting with an ensemble of coarse models has proven to be a more robust methodology than

forecasting with a single fine model [23]. Ensemble Kalman filtering aims to utilize the ensemble

of forecasted states to construct empirical moments and use them to implement the Kalman filter

formula. The Ensemble Transform Kalman Filter (ETKF) [5] computes an optimal transformation

of the prior ensemble member states to the posterior member states; for Gaussian distributions the

optimal transform is described by a symmetric transform matrix.

We now describe the standard ETKF. Let Xa
i−1 = [x

(1),a
i−1 , . . .x

(N),a
i−1 ] represent the N–members

analysis ensemble at time i− 1. The forecast step is:

x
(k),f
i =Mi−1,i(x

(k),a
i−1 ) + ξ

(k)
i , k = 1, . . . , N, (2.4)

where ξ
(k)
i is a random draw from N (0,Qi).

The ETKF analysis step reads:

Aa
i = Af

i Ti, (2.5a)

x̄a = x̄f + Aa
i Za,T R−1 di, (2.5b)
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where

Ti =
(
I− Zf,T

i S−1i Zf
i

) 1
2
, (2.6a)

Si = Zf
i Z

f,T
i + Ri, (2.6b)

Af
i =

1√
N − 1

(
Xf

i − xf
i 1

T
)
, (2.6c)

Zf
i =

1√
N − 1

(
H(Xf)−H(Xf) 1T

)
, (2.6d)

di = yo
i −H(Xf

i), (2.6e)

xf
i =

1

N

N∑
k=1

X
f,(k)
i , (2.6f)

H(Xf
i) =

1

N

N∑
k=1

H(X
f,(k)
i ). (2.6g)

Here the unique symmetric square root of the matrix is used, as there is evidence of that option

being the most numerically stable [42].

The empirical forecast covariance estimate

Σ̃Xf
iX

f
i

= Af
i A

f,T
i (2.7)

is inexact due to a multitude of deficiencies. One method to improve the empirical covariance

estimate is inflation [1], which is applied to the ensemble anomalies,

Af
i ← αAf

i, (2.8)

before any other computation is performed (meaning that it is also applied to the observation

anomalies, Zf
i as well). The inflation parameter α > 1 is known to be a requirement for the EnKF

to converge for linear models [37].

2.2. Covariance localization

Traditional state-space localization of the empirical covariance (2.7) is done by tapering, i.e.,

by using a Schur product of the empirical covariance with a localization matrix ρi:

Bf
i = ρi ◦ Σ̃Xf

iX
f
i
, (2.9)
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where ρi contains entries that are progressively smaller as the (physically-relevant) distance between

the corresponding variables increases.

The localized ETKF (LETKF) [19] is an efficient implementation of localization for ETKF. The

LETKF and its variants are considered to be one of the state-of-the-art EnKF methods. In the

state-space approach to the LETKF, the j-th state space variable xi,[j] is assimilated independently

of all others, with the observation space error covariance inverse replaced by

R−1i ←− ρi,[j] ◦R−1i , (2.10)

where ρi,[j] is a diagonal matrix, with diagonal entries representing the decorrelation factors be-

tween all observation space variables and the j-th state space variable. Each diagonal element rep-

resents a tapering factor, and is often chosen to be a function of the distance from the state-space

variablexi,[j] being assimilated and the corresponding observation-space variable. The implicit as-

sumption is that all observations are independent of each other, in both the observation error (Ri

is diagonal), and forecast error (ZfZf,T is assumed to be diagonal).

2.3. Covariance shrinkage

In the statistical literature [8–10, 25] covariance shrinkage refers to the methodology under

which an empirical covariance is made to approach the “true” covariance from which the set

of samples is derived. For the vast majority of statistical applications, there is no additional

apriori knowledge about the distribution of the samples, thus assumptions such as Gaussianity

and sphericity are made. In data assimilation applications, however, climatological estimates of

covariance are commonplace.

Assume that one has access to a target covariance matrix P that represents the a priori knowl-

edge about the error covariances. This matrix can be a climatological estimate of the covariance,

or can be chosen through some ergodic assumption (with localization) using previous data. In

existing data assimilation algorithms, such estimates most often exist for 4D-Var methods, and

take the form of a static known background covariance that is an independent estimate from the

current state.

We seek to combine this offline estimate of the covariance containing prior knowledge with the

online estimate of the covariance obtained from the EnKF ensemble. In this paper we focus on an

additive shrinkage covariance structure which is a linear combination of the the target covariance
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matrix and the empirical covariance (2.7):

Bf
i = γi µi P + (1− γi) Σ̃Xf

iX
f
i
, (2.11)

with γi represents the shrinkage factor (the linear combination coefficient) and µi represents a

scaling factor. The choice of γi is extremely important. In contemporary data assimilation liter-

ature (e.g., see [4]) this factor is taken as a hyper-parameter whose optimal tuning could lead to

significant reduction in error; however, the empirical tuning by trial and error is costly, and poor

choices can offset possible improvements.

By employing a general invertible target matrix P, and optimizing for a 2-norm distance over

the “true” covariance, a closed-form expression to compute the shrinkage factor γi is proposed in

[44, 46]. In this derivation, weights are computed as follows:

γi = min

 1
N2

∑N
k=1

∥∥x(k),f
i − xf

i

∥∥4 − 1
N

∥∥Σ̃Xf
iX

f
i

∥∥2∥∥Σ̃Xf
iX

f
i
−P

∥∥2 , 1

 . (2.12)

Since the estimate (2.12) is expensive to compute in an operational setting, here we will settle for a

more computationally inexpensive method. No assumptions about the structure of P are made to

compute γi. The general form (2.11) can be reduced to a standard form where the target matrix

is the (scaled) identity by defining:

Ci := P−
1
2 Σ̃Xf

iX
f
i
P−

1
2 , µi =

tr(Ci)

n
, (2.13)

where the new target matrix µi In×n represents a spherical climatological assumption on Ci. Equiv-

alently we can write

P−
1
2 Bf

iP
− 1

2 = γi µi In×n + (1− γi) Ci. (2.14)

As is traditional with Kalman type methods, we make the assumption that all our samples are

drawn from an underlying Gaussian distribution. This assumption allows for a simpler computation

of γi. The Rao-Blackwellized Ledoit-Wolf (RBLW) estimator [9] [31, equation (9)]:

γi,RBLW = min

[
N − 2

N(N + 2)
+

(n+ 1)N − 2

ÛiN(N + 2)(n− 1)
, 1

]
, (2.15)

is the optimal estimate of the covariance shrinkage factor under Gaussian assumptions. The com-
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putationally dominant (and interesting) term in (2.15) is the sphericity factor

Ûi =
1

n− 1

(
n tr(C2

i )

[tr(Ci)]2
− 1

)
, (2.16)

which measures how similar the correlation structures of the sample and the target covariance

are. For example if the both the target matrix P and the empirical covariance matrix Σ̃Xf
iX

f
i

are

diagonal (Ci is diagonal in (2.14)), then Ûi = 0 in (2.16), meaning that the RBLW estimate (2.15)

would be γi,RBLW = 1. If, on the other hand, there is a large difference between the structures of

P and Σ̃Xf
iX

f
i

(Ci has large off-diagonal elements in (2.14)), then the sphericity factor is close to

1, forcing the RBLW estimate to be small (e.g., for n = 1010 and N = 50, with Ûi = 1, one has

γi,RBLW = 0.038).

Note that if our samples are also used to calculate the sample mean, the effective sample size

of the sample covariance is smaller by one, therefore for most practical applications one replaces

N by N − 1 in (2.15).

A drawback of the RBLW estimate is its reliance on the Gaussian assumption. A second

drawback is that it is only valid for an over sampled ensemble with N > n, meaning that in the

typical undersampled regime of EnKF with N � n, the factor is technically not well-defined. It is

nonetheless still useful, in a similar fashion to ill-defined covariance estimates in the EnKF.

Aside from the inherent issues with the RBLW estimator, there are two major issues with its

application in the EnKF, both related to its reliance on the sphericity of Ci. First, when operating

in the undersampled regime N � n, the estimate Ci (2.13) is also undersampled, and the problem

of “spurious correlations” will affect the measure of sphericity (2.16). The second related issue

regards the climatological estimate P. Unless the climatological estimate accurately measures the

correlation structure of the sample covariance, the shrinkage estimate (2.11) could potentially not

be representative of our current uncertainty. The long-term accuracy of the climatological estimate

to the covariance is thus of great importance.

Note that there are alternatives for non-invertible P. Commonly, a reduced spectral version

of P is known, P = U LU∗, with the L being a diagonal matrix of r � n spectral coefficients,

and U being an n× r matrix of orthonormal coefficients. The canonical symmetric pseudo-inverse

square-root of P would therefore be P−
1
2 = U L−

1
2 U∗. If σk is the k-th singular value of P−1/2Af,

then the traces appearing in (2.16) can be computed as follows:

tr (Ci) =

N−1∑
k=1

σ2k, tr
(
C2

i

)
=

N−1∑
k=1

σ4k.
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Note that only the first N−1 singular values are required for computation, even if n� r � N−1.

The choice of a suitable target matrix P is very much an open question, and depends entirely

on the problem at hand and on the available data. Some of the possible options include:

• matrices that are used in variational data assimilation methods,

• localized (through (2.9)) estimates from historical data, such as from a previous cycle in

quasi-periodic models, and

• estimates derived from more long-term models (such as climate models).

The above is a non-exhaustive list, and it would be up to the practitioner to decide the validity

of one estimate over another. The mismatch of the target covariance with the covariance estimate

derived from the dynamical ensemble through the sphericity factor (2.16) could also be used in an

online manner to determine the utility of the target P, as a poor choice of the target matrix could

significantly decrease the overall accuracy of the method, in the author’s experience.

3. ETKF IMPLEMENTATION WITH STOCHASTIC SHRINKAGE COVARIANCE

ESTIMATES

In ensemble-based methods our uncertainty is represented by an ensemble of samples of the

underlying probability distribution. We wish to augment this representation of our uncertainty by

augmenting the ensemble of samples with historical (climatological) samples of said information,

as the application of Bayes’ rule requires that all available information is used [20].

A naive approach to augmenting the ensemble would simply involve sampling from some known

climatological distribution, for example sampling synthetic anomalies from a mean-zero Gaussian

with known covariance, and appending this ensemble to our existing dynamical ensemble. This

would, however, not be statistically sound, as the coupling between the two distributions would

not be explicitly utilized. We therefore attempt to make use of the covariance shrinkage estimate

(2.11) to the covariance in order to couple the dynamical and synthetic ensembles correctly.

We build on previous work by Nino-Ruiz and Sandu [30, 32] who proposed to replace the

empirical covariance in EnKF with a shrinkage covariance estimator (2.11). They showed that this

considerably improves the analysis at a modest additional computational cost. Additional, it was

shown that synthetic ensemble members drawn from a normal distribution with covariance Bf are

used to decrease the sampling errors.
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In this work we develop an implementation of ETKF with a stochastic shrinkage covariance

estimator (2.11). Rather than computing the covariance estimate (2.11), we build a synthetic

ensemble by sampling directly from a distribution with covariance µiP. The anomalies of this

synthetic ensemble are independent of the anomalies of the forecast EnKF ensemble.

Our approach works in a similar manner, but instead of simply augmenting the ensemble in

a naive manner, we attempt to augment the ensemble in a statistically consistent manner by

utilizing the theory behind optimal shrinkage estimators. If the dynamical system is locally (in

time) stationary, climatologies about the local time roughly describe a measure of averaged-in-space

uncertainty.

To be specific, let X f ∈ Rn×M be a synthetic ensemble with M members (as opposed to the

dynamic ensemble Xf
i with N members) drawn from a climatological probability density. We

denote the variables related to the synthetic ensemble by calligraphic letters.

An important issue is the choice of the climatological distribution. As sampling from the

dynamical manifold is impractical, heuristic assumptions are made about the distributions involved.

A useful known heuristic is the principle of maximum entropy (PME) [20]. Assume that the mean

and covariance of the distribution are known (through sampling), and that the distribution is

supported over all of Rn. The synthetic ensemble distribution of maximum entropy consistent

with these assumptions is Gaussian:

X f
i ∼ N (x̄f

i, µi P). (3.1)

The synthetic ensemble anomalies in the state and observation spaces are:

X f
i =

1√
M − 1

(
X f
i −X

f
i 1T

M

)
∈ Rn×M ,

Z f
i =

1√
M − 1

(
H(X f

i )−H(X f
i ) 1T

M

)
∈ Rm×M .

(3.2)

The shrinkage estimator (2.11) of the forecast error covariance for Bf
i is represented in terms of

synthetic and forecast anomalies as follows:

B̃
f

i = γiAf
iA

f,T
i + (1− γi) Af

i A
f,T
i . (3.3)

The Kalman filter formulation [22] yields the following analysis covariance matrix:

B̃
a

i = B̃
f

i − B̃
f

i H
T
i S−1i Hi B̃

f

i, (3.4)
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where Si will be discussed later.

Using the forecast error covariance estimate (3.3) in (3.4) leads to the following analysis covari-

ance:

B̃
a

i = γiAf
iA

f,T
i + (1− γi) Af

i A
f,T
i

−
(
γiAf

iZ
f,T
i + (1− γi) Af

i Z
f,T
i

)
S−1i

(
γiZ f

i A
f,T
i + (1− γi) Zf

i A
f,T
i

)
,

(goal-cov)

which we refer to as the “goal” analysis covariance formula. Where in this paper the factor the

factor γi is chosen to be the RBLW estimate in (2.15), unless otherwise specified.

The ensemble goal of our modified ensemble Kalman filter is to construct an N -member analysis

ensemble such that the anomalies Aa
i (2.5a) represent the (goal-cov) analysis covariance as well as

possible:

Find Aa
i ∈ Rn×N such that : Aa

i Aa,T
i ≈ B̃

a

i . (goal-an)

In the proposed method, we enrich our forecast ensemble in a way that closely approximates the

shrinkage covariance (2.11).

3.1. The stochastic shrinkage implementation

We enrich the ensembles of forecast anomalies with synthetic anomalies (3.2):

A f
i =

[√
1− γi Af

i
√
γiAf

i

]
∈ Rn×(N+M),

Zf
i =

[√
1− γi Zf

i
√
γiZ f

i

]
∈ Rm×(N+M).

(3.5)

Next, we define a transform matrix (2.5a) that is applied to the enriched ensemble (3.5), and leads

to an analysis ensemble that represents the target analysis covariance (goal-an). Specifically, we

search for a transform matrix Ti such that:

B̃
a

i = A f
i Ti T T

i A f,T
i . (3.6)

Using the extended ensembles (3.6) the (goal-cov) becomes

B̃
a

i = A f
i

(
I(N+M)×(N+M) − Zf,T

i S−1i Zf
i

)
A f,T
i , (3.7)
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where, from (2.6b),

Si = Zf
i Zf,T

i + Ri. (3.8)

The transform matrix (2.6a) is a square root of (3.6):

Ti =
(
I(N+M)×(N+M) − Zf,T

i S−1i Zf
i

) 1
2
. (3.9)

We compute the analysis mean using the shrinkage covariance estimate. From (2.5b):

x̄a
i = x̄f

i + A f
i Ti T T

i Zf,T
i R−1i di, (3.10)

where the full analysis covariance estimate (3.7) is used. In addition, we achieve the (goal-an) by

keeping the first N members of the transformed extended ensemble, or equivalently, the first N

columns of the symmetric square root (3.9). From (2.5a) we have:

Aa
i =

1√
1− γi

[
A f
i Ti
]
:,1:N

=
1√

1− γi
A f
i T̆i, T̆i = [Ti]:,1:N . (3.11)

An alternative approach to achieve the (goal-an) is to look for a low-rank, approximate square root

instead of the symmetric square root (3.9). Specifically, we seek a transformation matrix T̂i such

that:

T̂i ∈ R(N+M)×N , T̂i T̂ T
i ≈ I(N+M)×(N+M) − Zf,T

i S−1i Zf
i. (3.12)

The calculation of the symmetric square root (3.9) requires an SVD of the right hand side matrix.

With the same computational effort one can compute the low rank transformation:

U Σ UT =
(
I− Zf,T

i S−1i Zf
i

)
, U,Σ ∈ R(N+M)×(N+M);

T̆i = U Σ1/2 [U1:N,:]
T ∈ R(N+M)×N (symmetric square root (3.9));

T̂i = U:,1:N Σ
1/2
1:N,1:N ∈ R(N+M)×N (low rank square root (3.12)).

(3.13)

The mean calculation (3.10) is the same. The ensemble transform produces N transformed ensem-

ble members that contain “mixed” information from both the physical and the synthetic ensembles:

Aa
i =

1√
1− γi

A f
i T̂i.
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3.2. Localization

It is possible to combine the proposed stochastic shrinkage approach with traditional local-

ization. The LETKF implementation [19] computes transform matrices for subsets of variables,

corresponding to localized spatial domains. In a similar vein one can combine our shrinkage algo-

rithm with classical localization, as follows. Subsets of variables of the enriched ensembles (3.5) are

used to compute local transform matrices (3.9) or (3.12), which are then applied to transform the

corresponding local subsets, i.e. to compute the corresponding rows in equations (3.11) or (3.11),

respectively. Utilizing the Sherman-Morrison-Woodbury identity [34], it is possible to decompose

the inverse of (3.8) into,

S−1i = R−1i −R−1i Zi

(
ZT
i R−1i Zi + IN+M

)
ZT
i R−1i , (3.14)

where the inverse observation covariance is replaced by the localized variant in (2.10).

4. NUMERICAL EXPERIMENTS

In the numerical experiments we aim to assess the performance of the methodology in three

different regimes: (i) a small scale model (Lorenz ’96) to empirically test the performance of

the optimally estimate the covariance shrinkage factors γ (2.15) constants against hand-picked

values, (ii) a medium scale model (Quasi-geostrophic equations) with small observation errors to

test the unlocalized shrinkage covariance methodology against the state-of-the-art LETKF, (iii) a

geophysical model (shallow water on the sphere) with large observation errors to test our localized

methodology against the LETKF.

All test problem implementations are available in the ‘ODE Test Problems’ suite [11, 39].

4.1. The Lorenz’96 model (L96)

We first consider the 40-variable Lorenz ’96 problem [26],

[y]′i = − [y]i−1
(
[y]i−2 − [y]i+1

)
− [y]i + F, i = 1, . . . , 40, F = 8. (4.1)

Assuming (4.1) is ergodic (thus having a constant spatio-temporal measure of uncertainty on the

manifold of the attractor), we compute the target covariance matrix P as the empirical covariance
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FIG. 1: Results for the L96 problem with dynamic ensembles sizes of N = 5 and N = 14,
inflation factor α = 1.1, and different synthetic ensemble sizes M . We compute the KL

divergence of the rank histogram (4.2) and the RMSE (4.3) for the methods. Error bars show two
standard deviations.

from 10, 000 independent ensemble members run over 225 days in the system (where 0.05 time units

corresponds to 6 hours), with an interval of 6 hours between snapshots. This system is known to

have 13 positive Lyapunov exponents, with a Kaplan-Yorke dimension of about 27.1 [36].

The time between consecutive assimilation steps is ∆t = 0.05 units, corresponding to six hours

in the system. All variables are observed directly with an observation error covariance matrix of

Ri = I40. The time integration of the model is performed with RK4 the fourth order Runge-Kutta

scheme RK4 [16] with a step size h = ∆t. The problem is run over 2200 assimilation steps. The

first 200 are discarded to account for model spinup. Twenty independent model realizations are

performed in order to glean statistical information thereof.
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FIG. 2: Results for the L96 problem. The left panel presents the analysis RMSE for various
values of the dynamic and synthetic ensemble sizes. The right panel presents the shrinkage factor
γ (2.15) for a synthetic ensemble size of M = 100 over a number of assimilation steps, with error

bars showing two standard deviations.

4.2. L96 assimilation results

We assess the quality of the analysis ensembles using a rank histogram [17], cumulative over 20

independent runs. For a quantitative metric we compute the KL divergence from Q to P ,

DKL (P ||Q) = −
∑
k

Pi log

(
Pk

Qk

)
, (4.2)

where P is the uniform distribution and Q is our ensemble rank histogram, and Pk & Qk are the

discrete probabilites associated with each bin. A low KL divergence would indicate that our rank

histogram is close to uniform, and thus the ensemble is representative of the truth.

Additionally, for testing the accuracy of all our methods we compute the spatio-temporal anal-

ysis RMSE,

√√√√ 1

Kn

K∑
i=1

n∑
j=1

[xai − xti ]
2
j , (4.3)

with K representing the amount of snapshots at which the analysis is computed, and [xi]j is the

jth component of the state variable at time i.

For the given settings of a severely undersampled ensemble (N = 5) and mild inflation (α =

1.1), we compare the Gaussian sampling methodology coupled to the RBLW formulation for the

shrinkage factor γ (2.15), with the optimal static γ = 0.85 shrinkage factor. For a dynamic ensemble

that captures the positive error growth modes (N = 14) will will compare the RBLW estimator

with the optimal static γ = 0.1. We will compare the mean and variance of the KL divergence of
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the rank histogram of the variable [y]17 from the uniform, and the statistics of the spatio-temporal

RMSE.

The results are reported in Figure 1. For both an undersampled and sufficient ensemble, the

optimal shrinkage factor has a smaller mean error, and a smaller KL divergence with less variance

(top left, top middle, bottom left, and bottom middle panels). In the undersampled case, the

RBLW estimator induces more variance into the RMSE (top middle panel). For the sufficiently

sampled ensemble, however, the optimal static shrinkage value induced significantly more variance

into the error, with the RBLW estimator reducing the error significantly (bottom middle panel).

It is possible that a better estimator than RBLW may get the ‘best of both worlds’ and induce

low error with low variance, though this is as-of-yet out of reach. This is to be expected as the

RBLW estimate is only accurate in the limit of ensemble size, and there is no theory about its

accuracy in the undersampled case. In the authors’ experience other estimators such as OAS,

while having the theoretically desired properties, perform empirically worse in conjunction with

ensemble methods. Currently, for a modest reduction in accuracy, one of the hyperparameters can

be estimated online by the methodology.

For the second round of experiments with Lorenz ’96, reported in Figure 2, we compare analysis

errors when the synthetic and dynamic ensemble sizes are modified (left panel). It is evident that

increases in both dynamic and synthetic ensemble size lead to lower error. In the right panel we

also compare dynamic ensemble size to the values of γ that are produced. It is clear that an

increase in dynamic ensemble size decreases the need for shrinkage.

4.3. The Quasi-Geostrophic model (QG)

We follow the QG formulations given in [28, 43]. We discretize the equation

ωt + J(ψ, ω)−Ro−1 ψx = Re−1 ∆ω +Ro−1 F,

J(ψ, ω) ≡ ψy ωx − ψx ωy,
(4.4)

where ω stands for the vorticity, ψ stands for the stream function, Re is the Reynolds number, Ro

is the Rossby number, J is the Jacobian term, and F is a constant (in time) forcing term.

The relationship between stream and vorticity, ω = −∆ψ is explicitly enforced in the evaluation

of the ODE. The forcing term is a symmetric double gyre,

F = sin (π(y − 1)) . (4.5)
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FIG. 3: Analysis RMSE results for the QG model. The experiments use a synthetic ensemble size
M = 100 and Gaussian samples. Results are compared against LETKF with the Gaspari-Cohn

decorrelation function (GC)

Homogeneous Dirichlet boundary conditions are enforced on the spatial domain [0, 1]× [0, 2]. The

spatial discretization is a second order central finite difference for the first derivatives, and the

Laplacian, with the Arakawa approximation [3] (a pseudo finite element scheme [21]) used for

computing the Jacobian term. All spatial discretizations exclude the trivial boundary points from

explicit computation.

The matrix P is approximated from 700 snapshots of the solution about 283 hours apart each,

with Gaspari-Cohn localization applied, so as to keep the matrix sparse. The true model is run

outside of time of the snapshots so as to not pollute the results. Nature utilizes a 255× 511 spatial

discretization, and the model a 63 × 127 spatial discretization. Observations are first relaxed

into the model space via multigridding [47], then 150 distinct spatial points (using an observation

operator similar to [41]) from the non-linear observation operator,

H(ψ) =
√
ψ2
x + ψ2

y , (4.6)

representing zonal wind magnitude, are taken. The observation error is unbiased, with covariance

R = 4I150. The number of synthetic ensemble members is fixed at a constant M = 100, as to be

more than the number of full model run ensemble members, but significantly less than the rank of

the covariance. Observations are taken ∆t = 0.010886 time units (representing one day in model

space) apart. We run a total of 350 assimilation steps, taking the first 50 as spinup. Results are

averaged over 5 model runs (with the same nature run, but different initializations of the dynamic

ensemble), with diverging runs treated as de-facto infinite error.
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4.4. QG assimilation results

Figure 3 reports the results with the QG model. Comparing our methodology to the LETKF

with an optimally tuned Gaspari-Cohn (GC) [15] localization (such that both error and stability

are prioritized), we see that GC significantly decreases the error for larger values of N and α, but

is not stable for more operational under-sampled dynamic ensemble sizes and low inflation factors,

as opposed to our shrinkage method. Possible sources of error are both the nonlinear observations

and the coarse approximation to the covariance estimate.

These results lend additional support to the argument that shrinkage alone is not enough.

Localization is still required in operational settings, and combining both might yield a positive

result.

The quasi-geostrophic results indicate that our methodology holds promise to be of use for

practical data assimilation systems, and that the methodology can handle observations that are

non-linear transformations of the state representation. However, the methodology needs to be

refined with more optimal shrinkage factors for operational undersampled empirical covariances.

An operational implementation of the LETKF requires m×N linear solves and m matrix square

roots, while our stochastic shrinkage algorithm requires N+M linear solves and one matrix square

root. Thus as the number of observations grows, the stochastic shrinkage methodology becomes a

lot more compelling.

4.5. Shallow water on a sphere (SWS)

The last round of experiments aims at validating the Localized Shrinkage ETKF on a different

geophysical problem of interest. To that end we employ the shallow water equations [14, 29] on

the sphere, which represent an approximation of the atmospheric dynamic over Earth. We use a

modification of the Cartesian shallow water equations,

ht = −∇ · (h · u), (4.7)

ut = −(u · ∇)u− f(p× u)− g∇h, (4.8)

under the constraint that the flow is confined to a spherical approximation to the Earth; the radius

of the sphere is one spatial unit. Here, f is the Coriolis force, g is gravity, h is the height of the

water, and p and u are the x, y, and z positions and velocities, respectively. We follow the radial

basis function formulation in [14] for the spatial discretization with 100 points, for a total state
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FIG. 4: Left panel: initial condition of the water height with blue represented lower than average
and yellow representing higher than average, and observation locations (red points). Right panel:

analysis RMSE for the localized shrinkage ETKF, and the localized ETKF with the
Gaspari-Cohn decorrelation function, with the error bars representing two standard deviations.

space dimension of n = 400. We take the order three Buhmann function [6] with a Cartesian

radius of r = 2 on the unit sphere (representing full coverage). We use a third order adaptive

strong stability preserving method [27] for time integration of this system.

We observe the height at ten locations over the domain; the velocities are unobserved. Obser-

vations are taken every ∆t = 1 day over the assimilation window. The observation covariance is

R = 100 I10, to simulate a noisy observation scenario.

We compare the localized variant of the stochastic shrinkage approach (see section 3.2), which

we term the L-Shr-ETKF, against LETKF. We select a synthetic ensemble size M = 250. For

localization, we use a great circle radius of r = π/5 spatial units, with the Gaspari-Cohn decorre-

lation function, as this was found to be approximately optimal for the LETKF by manual tuning.

The best inflation factors obtained by manual tuning are used, as follows: α = 1.001, and α = 1.05

for LETKF.

We run a total of three months of observations for January, February and March (90 days),

discarding the first 31 days of January as spinup, and observing the analysis RMSE for a range

of physical ensemble sizes, N ∈ [4, 40]. Twelve total independent runs are taken to account for

possible spurious results.
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4.6. SWS Results

The left panel of figure 4 show the initial conditions, and observations for the shallow water

equations. The initial conditions were chosen to be quasi-stable so that they would slowly diverge

from a cyclic solution. The right panel shows the results comparing L-Shr-ETKF against the state-

of-the-art LETKF. It can be clearly seen that even for large ensemble sizes up to 40, the LETKF

error is higher than the observation error of 100. The LETKF also suffers from large variability

in the error from various different initial ensembles. L-Shr-ETKF, on the other hand, matches the

observation error for an ensemble size of N = 4 dynamical members, and has lower error than that

of the observations for all larger dynamical ensemble sizes. The variability of the L-Shr-ETKF

error is also substantially smaller than that of LETKF.

The results clearly demonstrate that, in a small-ensemble high-observation-error regime where

LETKF performs relatively poorly, the proposed L-Shr-ETKF algorithm provides robust analyses.

5. DISCUSSION

Shrinkage covariance matrix estimators were shown to greatly improve the performance of the

EnKF [30]. This work extends the the idea of covariance shrinkage to the ensemble transform

Kalman filter. Instead of enhancing the covariance estimate, we propose enhancing the ensemble

with a synthetic ensemble derived from the target matrix of the shrinkage approach. By applying

the ETKF formulas to this enhanced ensemble, we develop the Shr-ETKF, whose internal repre-

sentation of the Kalman gain is approximately based on the shrinkage estimate of the covariance.

We compare Shr-ETKF to the current state-of-the-art LETKF algorithm on several test prob-

lems. Lorenz ’96 model results indicate that the new filter performs worse in the under-sampled

regime than the best ‘static’ shrinkage method, and performs better (in terms of less variance

in the error) than an optimal dynamic shrinkage method for the sufficiently sampled case. Re-

sults with QG model indicate that our method could potentially be used to augment operational

LETKF implementations, but not in the low-observation-error regime. Results with the shallow-

water equation on a sphere model show that a localized stochastic covariance shrinkage ETKF can

perform significantly better than the LETKF in a high-observation-error regime.

These results indicate that L-Shr-ETKF can be potentially utilized in an operational framework

to improve the performance of LETKF while keeping the dynamical ensemble size (the number of

forecast model runs) small. Additional work is needed to devise better heuristic estimates of the
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shrinkage factor γ.
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