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Data assimilation is a Bayesian inference process that obtains an enhanced understanding of a phys-
ical system of interest by fusing information from an inexact physics-based model, and from noisy
sparse observations of reality. The multifidelity ensemble Kalman filter (MFEnKF) recently devel-
oped by the authors combines a full-order physical model and a hierarchy of reduced order surrogate
models in order to increase the computational efficiency of data assimilation. The standard MFEnKF
uses linear couplings between models, and is statistically optimal in case of Gaussian probability
densities. This work extends MFEnKF to work with non-linear couplings between the models. Opti-
mal nonlinear projection and interpolation operators are obtained by appropriately trained physics-
informed autoencoders, and this approach allows to construct reduced order surrogate models with
less error than conventional linear methods. Numerical experiments with the canonical Lorenz ’96
model illustrate that nonlinear surrogates perform better than linear projection-based ones in the
context of multifidelity filtering.

KEY WORDS: Bayesian inference, control variates, data assimilation, multifidelity en-
semble Kalman filter, reduced order modeling, machine learning, surrogate models
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Nonlinear MFEnKF 1

1. INTRODUCTION

Data assimilation (Asch et al., 2016; Reich and Cotter, 2015) is a Bayesian inference process
that fuses information obtained from an inexact physics-based model, and from noisy sparse
observations of reality, in order to enhance our understanding of a physical process of interest.
The reliance on physics-based models distinguishes data assimilation from traditional machine
learning methodologies, which aim to learn the quantities of interest through purely data-based
approaches. From the perspective of machine learning, data assimilation is a learning problem
where the quantity of interest is constrained by prior physical assumptions, as captured by the
model, and nudged towards the optimum solution by small amounts of data from imperfect
observations. Therefore data assimilation can be considered a form of physics-constrained ma-
chine learning (Karpatne et al., 2017; Willard et al., 2020). This work improves data assimilation
methodologies by combining a mathematically rigorous data assimilation approach and a data
rigorous machine learning algorithm through powerful techniques in multilevel inference (Giles,
2008, 2015).

The ensemble Kalman filter (Burgers et al., 1998; Evensen, 1994, 2009) (EnKF) is a family
of computational methods that tackle the data assimilation problem using Gaussian assumptions,
and a Monte Carlo approach where the underlying probability densities are represented by en-
semble of model state realizations. The ensemble size, i.e., the number of physics-based model
runs, is typically the main factor that limits the efficiency of EnKF. For increasing the quality of
the results when ensembles are small, heuristics correction methods such as covariance shrink-
age (Nino-Ruiz and Sandu, 2015, 2018, 2019) and localization (Moosavi et al., 2019; Petrie,
2008; Popov and Sandu, 2019) have been developed. As some form of heuristic correction is re-
quired for operation implementations of the ensemble Kalman filter, reducing the need for such
heuristic corrections in operational implementations is an important and active area of research.

The dominant cost in operational implementations of EnKF is the large number of expensive
high fidelity physics-based model runs, which we refer to as “full order models” (FOM). A nat-
ural approach to increase efficiency is to endow the data assimilation algorithms with the ability
to make use of inexpensive but less accurate model runs (Cao et al., 2007; Farrell and Ioannou,
2001), which we refer to as “reduced order models” (ROMs). ROMs are constructed to cap-
ture the most important aspects of the dynamics of the FOM, at a fraction of the computational
cost; typically they use a much smaller number of variables than the corresponding FOM. The
idea of leveraging model hierarchies in numerical algorithms for uncertainty quantification (Pe-
herstorfer et al., 2018) is fast gaining traction in both the data assimilation and machine learning
communities. Here we focus on two particular types of ROMs: a proper orthogonal decomposi-
tion (POD) based ROM, corresponding to a linear projection of the FOM dynamics onto a small
linear subspace (Brunton and Kutz, 2019), and a ROM based on autoencoders (Aggarwal et al.,
2018), which are neural networks built for optimal dimensionality reduction, corresponding to a
non-linear projection of the dynamics onto a small dimensional manifold.

The multifidelity ensemble Kalman filter (MFEnKF) (Popov et al., 2021; Popov and Sandu,
2021) is a correction and extension to the multilevel EnKF (Chada et al., 2020; Chernov et al.,
2021; Hoel et al., 2016, 2019) that combines the ensemble Kalman filter with the idea of surro-
gate modeling. The MFEnKF attempts to utilize both the full-order and a reduced order surrogate
model in order to optimally combine the information obtained from model runs with information
begotten from the observations. By posing the problem in terms of a mathematically rigorous
variance reduction technique—the linear control variate framework—MFEnKF is able to pro-
vide robust guarantees about the accuracy of the inference results.

Volume x, Issue x, 2021



2 A.A. Popov, & A. Sandu

While numerical weather prediction is the dominant driver of innovation in data assimilation
literature (Kalnay, 2003), other applications can benefit from our multifidelity approach such as
mechanical engineering (Blanchard et al., 2009, 2010a,b) and air quality modeling (Constanti-
nescu et al., 2007a,b,c).

This paper is organized as follows. Section 2 discusses the data assimilation problem, pro-
vides background on control variates, the EnKF, and the MFEnKF, as well as ROMs and au-
toencoders. Section 3 introduces the non-linear extension to the MFEnKF. Section 4 presents
the Lorenz ’96 model and the corresponding POD-ROM and NN-ROM surrogates. Section 5
provides the results of numerical experiments. Concluding remarks are made in Section 6.

2. BACKGROUND

As the aphorism goes “all models are wrong, but some are useful”, Sequential data assimila-
tion propagates our imperfect knowledge about some physical quantity of interest through an
imperfect model which represents a time-evolving dynamical system, typically a chaotic system
(Strogatz, 2018). Without an additional influx of external information, our knowledge about the
systems would rapidly degrade, therefore acquiring and assimilating imperfect external informa-
tion about the quantity of interest is the core of the problem that we are interested in.

To be specific, consider a dynamical system of interest whose true state at time ti is Xt
i . The

evoluton of the system is captured by the dynamical model

Xi =Mti−1,ti(Xi−1) + Ξi, (2.1)

where Xi is a random variable whose distribution describes our knowledge of the the state of a
physical process at time index i, and Ξi is a random variable describing the modeling error. In
this paper we assume a perfect model (Ξi ≡ 0), as the discussion of model error in multifidelity
methods is significantly outside the scope of this paper.

Additional independent information about the system is obtained through imperfect mea-
surements of the observable aspects Yi of the truth Xt

i , i.e., through noisy observations

Yi = H(Xt
i ) + ηi, ηi ∼ N (0,Σηi,ηi

), (2.2)

where the “observation operator” H maps the model space onto the observation space (i.e.,
selects the observable aspects of the state).

Our aim is to combine the two sources of information in a Bayesian framework:

π(Xi|Yi) ∝ π(Yi|Xi)π(Xi). (2.3)

In the remainder of the paper we use the following notation. Let W and V be random vari-
ables. The exact mean of W is denoted by µW , and the exact covariance between W and V
by ΣW,V . EW denotes an ensemble of samples of W , and µ̃W and Σ̃W,V are the empirical
ensemble mean of W and empirical ensemble covariance of W and V , respectively.

2.1 Control Variates

Bayesian inference requires that all available information is used in order to obtain correct results
(Jaynes, 2003). Variance reduction techniques (Owen, 2013) are methods that provide estimates
of some quantity of interest with lower variability. From a Bayesian perspective they represent

Preprint



Nonlinear MFEnKF 3

a reintroduction of information that was previously ignored. The linear control variate (LCV)
approach (Rubinstein and Marcus, 1985) is a variance reduction method that aims to incorporate
the new information in an optimal linear sense.

LCV works with two vector spaces, a principal space X and a control space U, and several
random variables, as follows. The principal variate X is a X-valued random variable, and the
control variate Û is a highly correlated U-valued random variable. The ancillary variate U is a
U-valued random variable, which is uncorrelated with the preceding two variables, but shares
the same mean as Û , meaning µU = µÛ . The linear control variate framework builds a new
X-valued random variable Z, called the total variate:

Z = X − S(Û − U), (2.4)

where the linear “gain” operator S is used to minimize the variance in Z by utilizing the infor-
mation about the distributions of the constituent variates X , Û and U .

In this work X and U are finite dimensional vector spaces. The dimension of X is n, the
dimension of U is denoted bym when it is the observation space, and by r when it is the reduced
order model state space.

The following lemma is a slight generalization of (Rubinstein and Marcus, 1985, Appendix).

Lemma 1 (Optimal gain). The optimal gain S that minimizes the trace of the covariance of Z
(2.4) is:

S = ΣX,Û (ΣÛ,Û + ΣU,U )
−1
. (2.5)

Here we focus on the case where the principal and control variates are related through a
deterministic projection operator:

Û = θ(X), (2.6)

and where there exists an interpolation operator such that:

X ≈ X̃ = φ(Û), (2.7)

which in some optimal sense approximately recovers the information embedded in X . The vari-
able X̃ is known as the reconstruction.

We make the assumption that the projection and interpolation operators are linear:

θ(X) := ΘX, φ(Û) := Φ Û. (2.8)

We reproduce below the useful result (Popov et al., 2021, Theorem 3.1).

Theorem 1. Under the assumptions that Û andU have equal covariances, and that the principal
variate residual is uncorrelated with the control variate, the optimal gain of (2.4) is half the
interpolation operator:

ΣÛ,Û = ΣU,U and Σ(X−ΦÛ),Û = 0 ⇒ S = 1
2
Φ. (2.9)

Under the assumptions of Theorem 1 the control variate structure (2.4) is:

Z = X − 1
2

Φ (Û − U). (2.10)

Volume x, Issue x, 2021



4 A.A. Popov, & A. Sandu

2.2 Linear Control Variates with Non-Linear Transformations

While working with linear transformations is easy, many applications require reducing the vari-
ance of a non-linear transformation of a random variable. We generalize the control variate
framework to such an application.

Following Owen (2013), assume that our transformed principal variate is of the form h(X),
and the transformed control variate is of the form g(Û), where h and g are smooth non-linear
functions. Similarly, assume that the transformed ancillary variate has the form g(U). The total
variate Zh, in the same space as h(X), is defined as:

Zh = h(X)− S
(
g(Û)− g(U)

)
, (2.11)

with the optimal linear gain given by Lemma 1:

S = Σh(X),g(Û)

(
Σg(Û),g(Û) + Σg(U),g(U)

)−1
. (2.12)

Theorem 2. If Û and U are Gaussian, and share the same mean and covariance, (µÛ = µU ,
ΣÛ,Û = ΣU,U ), then

µg(Û) = µg(U), and Σg(Û),g(Û) = Σg(U),g(U), (2.13)

the control variate structure (2.11) holds, and the optimal linear gain is:

S = 1
2
Σh(X),g(Û)Σ

−1
g(Û),g(Û)

. (2.14)

Proof. As Û and U are Gaussian, they are completely defined by their mean and covariance,
and any deterministic non-linear transformation of the variates has the same moments, thereby
sharing the mean and covariance. In that case g(Û) − g(U) is unbiased, and the control variate
framework can be applied.

We now consider the case where the principal variate transformation is linear, h = H, and
the control and ancillary variate transformation is the interpolation operator, g = φ, such that
the underlying control variate is a projection of the principal variate (2.42),

HX ≈ φ(Û). (2.15)

Theorem 3. Without proof, if the assumption of Theorem 2 hold, and the transformed principal
variate residual is uncorrelated with the transformed control variate,

Σ(HX−φ(Û)),φ(Û)

assumed
= 0, (2.16)

then the optimal gain is
S = 1

2
I, (2.17)

where I is the identity operator.

Preprint
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2.3 The Ensemble Kalman Filter

The EnKF is a statistical approximation to the optimal control variate structure (2.4), where the
underlying probability density functions are represented by empirical measures using ensembles,
i.e., a finite number of realizations of the random variables. The linear control variate framework
allows to combine multiple ensembles into one that better represents the desired quantity of
interest.

Let EXb
i
∈ Rn×NX be an ensemble of NX realizations of the n-dimensional principal vari-

ate, which represents our prior uncertainty in the model state at time index i from (2.1). Likewise,
let EHi(Xb

i ) = Hi(EXb
i
) ∈ Rm×NX be an ensemble of NX realizations of the m-dimensional

control observation state variate, which represents the same model realizations cast into obser-
vation space. Let EYi ∈ Rm×NX be an ensemble of NX ‘perturbed observations’, which is a
statistical correction required in the ensemble Kalman filter (Burgers et al., 1998).

Remark 4 (EnKF Perturbed Observations). Each ensemble member of the perturbed observa-
tions is sampled from a Gaussian distribution with mean the measured value, and the known
observation covariance from (2.2):

[EYi ]:,e ∼ N (µYi
,Σηi,ηi). (2.18)

The prior ensemble at time step i is obtained by propagating the posterior ensemble at time
i− 1 through the model equations,

EXb
i

=Mti−1,ti

(
EXa

i−1

)
, (2.19)

where the slight abuse of notation indicates an independent model propagation of each ensemble
member. Application of the Kalman filter formula constructs an ensemble EXa

i
describing the

posterior uncertainty:
EXa

i
= EXb

i
− K̃i

(
EHi(Xb

i ) − EYi

)
, (2.20)

where the statistical Kalman gain is an ensemble-based approximation to the exact gain in
Lemma 1:

K̃i = Σ̃Xb
i ,Hi(Xb

i )

(
Σ̃Hi(Xb

i ),Hi(Xb
i ) + Σηi,ηi

)−1
. (2.21)

Remark 5 (Inflation). Inflation is a probabilistic correction necessary to account for the Kalman
gain being correlated to the ensemble (Popov and Sandu, 2020). In inflation the ensemble
anomalies (deviations from the statistical mean) are multiplied by a constant α > 1, thereby
increasing the covariance of the distribution described by the ensemble:

EXb
i+1
← µ̃Xb

i+1
+ α

(
EXb

i+1
− µ̃Xb

i+1

)
. (2.22)

2.4 The Multifidelity Ensemble Kalman Filter

The Multifidelity Ensemble Kalman Filter (MFEnKF) (Popov et al., 2021) seeks to merge the
information from a hierarchy of models and the corresponding observations into a coherent
representation that can be propagated forward in time. This necessitates that the information
from the models is decoupled, but implicitly preserving of some underlying structure; we take
the linear control variate structure for convenience.

Volume x, Issue x, 2021



6 A.A. Popov, & A. Sandu

Without loss of generality, we discuss here a bi-fidelity approach, with a telescopic extension
to multiple fidelities provided at the end of the section. Instead of having access to one model
M, assume that we have access to a hierarchy of models. In the bi-fidelity case, the principal
space model is denoted byMX and the control space model is denoted byMU .

We now consider the total variate

Zb
i = Xb

i −
1
2
Φ (Ûb

i − Ub
i ), (2.23)

that describes the prior total information from a model that evolves in principal space (Xb
i ) and

a model that evolves in ancillary space (Ûb
i and Ub

i ).
Assume that our prior total variate is represented by the three ensembles EXb

i
∈ Rn×NX con-

sisting of NX realizations of the n-dimensional principal model state variate , EÛb
i
∈ Rr×NX

consisting of NX realizations of the r-dimensional control model state variate, and EUb
i
∈

Rr×NU consisting of NU realizations of the r-dimensional ancillary model state variate. Each
of these ensembles has a corresponding ensemble of m-dimensional control observation space
realizations.

MFEnKF performs sequential data assimilation using the above constituent ensembles, with-
out having to explicitly calculate the ensemble of the total variates. The MFEnKF forecast step
propagates the three ansembles form the previous step:

EXb
i

=MX
ti−1,ti(EXa

i−1
),

EÛb
i

=MU
ti−1,ti(EÛa

i−1
),

EUb
i

=MU
ti−1,ti(EUa

i−1
).

(2.24)

Two observation operators HX
i and HU

i cast the principal model and control model spaces,
respectively, into the control observation space. In this paper we assume that he principal model
space observation operator is the canonical observation operator (2.2):

HX
i (Xi) := Hi(Xi), (2.25)

and that the control model space observation operator is the canonical observation operator (2.2)
applied to the linear interpolated reconstruction (2.7) of a variable in control model space:

HU
i (Ui) := Hi(ΦUi). (2.26)

Additionally, we define an (approximate) observation operator for the total model variate :

HZ
i (Zi) := HX

i (Xi)− 1
2

(
HU

i (Ûi)−HU
i (Ui)

)
, (2.27)

which, under the linearity assumptions on HX
i of Theorem 3 and the underlying Gaussian as-

sumptions on Ûi and Ui of Theorem 2, begets that HZ
i = HX

i . Even without the linearity
assumption the definition (2.27) is operationally useful.

The MFEnKF analysis updates each constituent ensemble as follows:

EXa
i

= EXb
i
− K̃i

(
EHX

i (Xb
i ) − EY X

i

)
,

EÛa
i

= EÛb
i
−ΘK̃i

(
(EHU

i (Ûb
i ) − EY X

i

)
,

EUa
i

= EUb
i
−ΘK̃i

(
(EHU

i (Ub
i ) − EY U

i

)
,

(2.28)

Preprint
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with the heuristic correction to the means

µ̃Xa
i
← µ̃Za

i
, µ̃Ûa

i
← Θµ̃Za

i
, µ̃Ua

i
← Θµ̃Za

i
, (2.29)

applied in order to fulfill the unbiasedness requirement of the control variate structure:

µ̃Za
i

= µ̃Zb
i
− K̃i

(
µ̃HX

i (Zb
i ) − µYi

)
. (2.30)

The Kalman gain and the covariances are defined by the semi–linearization:

K̃i = Σ̃Zb
i ,HZ

i (Zb
i )

(
Σ̃HZ

i (Zb
i ),HZ

i (Zb
i ) + Σηi,ηi

)−1
(2.31)

Σ̃Zb
i ,HZ

i (Zb
i ) = Σ̃Xb

i ,HX
i (Xb

i ) +
1
4
Σ̃ΦÛb

i ,HU
i (Ûb

i ) +
1
4
Σ̃ΦUb

i ,HU
i (Ub

i )

− 1
2
Σ̃Xb

i ,HU
i (Ûb

i ) −
1
2
Σ̃ΦÛb

i ,HX
i (Xb

i ),

(2.32)

Σ̃HZ
i (Zb

i ),HZ
i (Zb

i ) = Σ̃HX
i (Xb

i ),Hi(Xb
i ) +

1
4
Σ̃HU

i (Ûb
i ),HU

i (Ûb
i ) +

1
4
Σ̃HU

i (Ub
i ),HU

i (Ub
i )

− 1
2
Σ̃HX

i (Xb
i ),HU

i (Ûb
i ) −

1
2
Σ̃HU

i (Ûb
i ),HX

i (Xb
i ).

(2.33)

In order to ensure that the control variate Û remains highly correlated to the principal variate
X , at the end of each analysis step we replace the analysis control variate ensemble with the
corresponding projection of the principal variate ensemble:

EÛa
i
← ΘEXa

i
. (2.34)

Remark 6 (MFEnKF Perturbed observations). There is no unique way to perform perturbed
observations (remark 4) in the MFEnKF. We will present one way in this paper. As Theorem 2
requires both the control and ancillary variates to share the same covariance, we utilize here
the ‘control space uncertainty consistency’ approach. The perturbed observations ensembles in
(2.28) is defined by:

[EY X
i

]:,e ∼ N (µYi
,Σηi,ηi), (2.35)

[EY U
i

]:,e ∼ N (µYi
, sΣηi,ηi

), (2.36)

where the scaling factor is s = 1. See (Popov et al., 2021, Section 4.2) for a more detailed
discussion about perturbed observations.

Remark 7 (MFEnKF Inflation). Similarly to the EnKF (see Remark 5), the MFEnKF also re-
quires inflation in order to account for the statistical Kalman gain being correlated to its con-
stituent ensembles. For a bi-fidelity MFEnKF, two inflation factors are required: αX which acts
on the anomalies of the principal and control variates (as they must remain highly correlated)
and αU which acts on the ensemble anomalies of the ancillary variate:

EXb
i+1
← µ̃Xb

i+1
+ αX

(
EXb

i+1
− µ̃Xb

i+1

)
,

EÛb
i+1
← µ̃Ûb

i+1
+ αX

(
EÛb

i+1
− µ̃Ûb

i+1

)
,

EUb
i+1
← µ̃Ub

i+1
+ αU

(
EUb

i+1
− µ̃Ub

i+1

)
.

(2.37)

Volume x, Issue x, 2021
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2.5 Projection-Based Reduced Order Models

It is well known that the important information of many dynamical systems can be expressed
with significantly fewer dimensions than the discretization dimension n (Sell and You, 2013).
For many infinite dimensional equations it is possible to construct a finite-dimensional inertial
manifold that represents the dynamics of the system (including the global attractor). The Haus-
dorff dimension of the global attractor of some dynamical system is a useful lower bound for
the minimal representation of the dynamics, though a representation of just the attractor is likely
not sufficient to fully capture all the ‘useful’ aspects of the data. For data-based reduced order
models an important aspect is the intrinsic dimension (Lee and Verleysen, 2007) of the data. The
authors’ are not aware of any formal statements relating the dimension of an inertial manifold
and the intrinsic dimension of some finite discretization of the dynamics. For some reduced di-
mension r that is sufficient to represent either the dynamics or the data, or both, it is possible to
build a ‘useful’ surrogate model.

We will now discuss the construction of reduced order models for problems posed as ordinary
differential equations. The following derivations are similar to those found in Lee and Carlberg
(2020), but assume vector spaces and no re-centering.

Just like in the control variate framework in section 2.1, our full order model will reside
in the principal space X and our reduced order model will be defined in the space U, which is
related to X through some coupling.

Given an initial value problem in X:

dX

dt
= f(X), X(t0) = X0, t ∈ [t0, tf ], (2.38)

and the projection operator (2.42), the induced reduced order model initial value problem in U
is defined by simple differentiation of U = θ(X), by dynamics in the space U,

dU

dt
= θ′(X)f(X), X(t0) = X0, t ∈ [t0, tf ]. (2.39)

As is common, the full order trajectory is not available during integration, as there is no bijection
from X to U, thus an approximation using the interpolation operator (2.7) that fully resides in U
is used instead:

dU

dt
= θ′(φ(U))f(φ(U)), U(t0) = φ(X0), t ∈ [t0, tf ]. (2.40)

Note that this is not the only way to obtain a reduced order model by using arbitrary pro-
jection and interpolation operators. It is however the simplest extension of the POD-based ROM
framework.

Remark 8 (Linear ROM). In the linear case (2.8) the reduced order model (2.40) takes the form

dU

dt
= Θf(ΦU), U(t0) = φ(X0), t ∈ [t0, tf ]. (2.41)

2.6 Autoencoders

An autoencoder (Aggarwal et al., 2018) is an artificial neural network consisting of two com-
ponents, an encoder θ and a decoder φ, such that given a variable X in the principal space, the
variable

Û = θ(X), (2.42)

Preprint
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resides in the control space of the encoder. Conversely the reconstruction,

X̃ = φ(Û), (2.43)

is an approximation to X in the principal space. In our context we think of the encoder as a non-
linear projection operator (2.42), and of the decoder as a nonlinear interpolation operator (2.7).
While the relative dimension n of the principal space is relatively high, the arbitrary structure of
an artificial neural networks allows the autoencoder to learn the optimal r-dimensional (small)
representation of the data.

3. NON-LINEAR PROJECTION-BASED MFENKF

We extend MFEnKF to work with non-linear projection and interpolation operators. Theoretical
extensions of the linear control variate framework to the non-linear case (Nelson, 1987) are
not as-of-yet satisfactory. As is traditional in data assimilation literature, we resort to heuristic
assumptions, which in practice may work significantly better than the theory predicts. The new
algorithm is named NL-MFEnKF.

The main idea is to replace the optimal control variate structure for linear projection and
interpolation operators (2.10) with one that works with their non-linear counterparts (2.11):

Zb
i = Xb

i −
1
2

(
φ(Û b

i )− φ(U b
i )
)
. (3.1)

We assume that Û and U are Gaussian, and have the same mean and covariance, such that they
obey the assumptions made in Theorem 2 and in Theorem 3 for the optimal gain.

Similar to MFEnKF (2.26), the control model space observation operator is the application
of the canonical observation operator (2.2) to the reconstruction

HU
i (Ui) := Hi(φ(Ui)), (3.2)

with the other observation operators (2.25, 2.27) defined as in the MFEnKF.

Remark 9. It is of independent interest to explore control model space observation operators
that are not of the form (3.2). For example, if the interpolation operator φ is created through
an autoencoder, the control model space observation operatorHU could similarly be a different
decoder of the same latent space.

The MFEnKF equations (2.28) are replaced by their non-linear counterparts in a manner
similar to what is done with non-linear observation operators,

EXa
i

= EXb
i
− K̃i

(
EHX

i (Xb
i ) − EY X

i

)
,

EÛa
i

= EÛb
i
− K̃θ

i

(
EHU

i (Ûb
i ) − EY X

i

)
,

EUa
i

= EUb
i
− K̃θ

i

(
EHU

i (Ub
i ) − EY U

i

)
,

(3.3)

where, as opposed to (2.28), there are now two Kalman gains, defined by,

K̃i = Σ̃Zb
i ,HZ

i (Zb
i )

(
Σ̃HZ

i (Zb
i ),HZ

i (Zb
i ) + Σηi,ηi

)−1
, (3.4)

K̃
θ

i = Σ̃θ(Zb
i ),HZ

i (Zb
i )

(
Σ̃HZ

i (Zb
i ),HZ

i (Zb
i ) + Σηi,ηi

)−1
, (3.5)

for our purposes the covariances are semi-linear approximations, similar to (2.32) and (2.33),
and the perturbed observations are defined just like in the MFEnKF (Remark 6).
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3.1 NL-MFEnKF Heuristic Corrections

For linear operators the projection of the mean is the mean of the projection. This is however
not true for general non-linear operators. Thus in order to correct the means like in the MFEnKF
(2.29), additional assumptions have to be made.

The empirical mean of the total analysis variate (similar to (3.1) and (2.30)) is

µ̃Za
i

= µ̃Xa
i
− 1

2

(
µ̃φ(Ûa

i ) − µ̃φ(Ua
i )

)
. (3.6)

We use it to find the optimal mean adjustments in reduced space. Specifically, we set the mean
of the principal variate to be the mean of the total variate (3.6),

µ̃Xa
i
← µ̃Za

i
, (3.7)

enforce the recorrelation of the principal and control variates (2.34)) via

EÛa
i
← θ(EXa

i
), (3.8)

and define the control variate mean adjustment as,

µ̃Ûa
i
← µ̃θ(Xa

i ). (3.9)

Unlike the linear control variate framework of the MFEnKF (2.23), the non-linear framework
of the NL-MFEnKF (3.1) does not induce a unique way to impose unbiasedness on the control-
space variates. There are many possible non-linear formulations to the MFEnKF, and many
possible heuristic corrections of the mean the ancillary variate. Here we discuss three approaches
based on:

1. control space unbiased mean adjustment,

2. principal space unbiased mean adjustment, and

3. Kalman approximate mean adjustment,
each stemming from a different assumption on the relationship between the ancillary variate and
the other variates.

3.1.1 Control Space Unbiased Mean Adjustment

By assuming that the control variate Ûa
i and and the ancillary variate Ua

i are unbiased in the
control space, the mean adjustment of Ûa in (3.9) directly defines the mean adjustment of the
ancillary variate:

µ̃Ua
i
← µ̃Ûa

i
. (3.10)

The authors will choose this method of correction in the numerical experiments for both its
properties and ease of implementation.

3.1.2 Principal Space Unbiased Mean Adjustment

If instead we assume that the control variate φ(Ûi) and the ancillary variate φ(Ui) are unbiased
in the principal space, then the mean of the total variate Zi (3.1) equals the mean of the principal
variate Xi, a desirable property.
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Finding a mean adjustment for Ua
i in the control space such that the unbiasedness is satisfied

in the principal space is a non-trivial problem. Explicitly, we seek a vector ν such that:

µ̃φ(Ûa
i ) = µ̃φ(Ua

i −µ̃Ua
i

+ν). (3.11)

The solution to (3.11) requires the solution to an expensive inverse problem. Note that (3.11) is
equivalent to (3.10) under the assumptions of Theorem 2, in the limit of ensemble size.

3.1.3 Kalman Approximate Mean Adjustment

Instead of assuming that the control and ancillary variates are unbiased, we can consider directly
the mean of the control-space total variate:

µ̃θ(Za
i ) = µ̃θ(Xa

i ) −
1
2

(
µ̃Ûa

i
− µ̃Ua

i

)
, (3.12)

defined with the mean values in NL-MFEnKF formulas (3.3). The following adjustment to the
mean of the ancillary variate:

µ̃Ua
i
← µ̃θ(Za

i ), (3.13)

is not unbiased with respect to the control variate in any space, but provides a heuristic approxi-
mation of the total variate mean in control space.

3.2 Telescopic Extension

As in (Popov et al., 2021, Section 4.5) one can telescopically extend the bi-fidelity NL-MFEnKF
algorithm toL+1 fidelities. Assume that the nonlinear operator φ` interpolates from the space of
fidelity ` to the space of fidelity `− 1, where φ1 interpolates to the principal space. A telescopic
extension of (3.1) is

Z = X −
L∑

`=1

2−`
(
φ(Û`)− φ(U`)

)
, (3.14)

where the projection operator at each fidelity is defined as,

φ` = φ1 ◦ · · · ◦ φ`, (3.15)

projecting from the space of fidelity ` to the principal space. The telescopic extension of the
NL-MFEnKF is not analyzed further in this work.

4. MODELS FOR NUMERICAL EXPERIMENTS

For numerical experiments we use the Lorenz ’96 model, and two surrogate models that approx-
imate it’s dynamics:

1. a principal orthogonal decomposition-based quadratic reduced order model (POD-ROM),
and

2. an autoencoder neural network-based reduced order model (NN-ROM).
For each case we construct reduced order models (ROMs) for reduced dimension sizes of r = 7,
14, 21, 28, and 35. The Lorenz ’96 and the POD-ROM models are implemented in the ODE-
test-problems suite (Computational Science Laboratory, 2020; Roberts et al., 2019).
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4.1 Lorenz ’96

The Lorenz ’96 model (Lorenz, 1996) is conjured from the PDE (Reich and Cotter, 2015),

dy

dt
= −yyx − y + F, (4.1)

where the forcing parameter is set to F = 8. In the semi-discrete version y ∈ Rn, and the
nonlinear term is approximated by a numerically unstable finite difference approximation,

[yyx]k =
(
Îy
)
·
(
D̂y
)

= ([y]k−1) · ([y]k−2 − [y]k+1), (4.2)

where Î is a (linear) shift operator, and the linear operator D̂ is a first order approximation to
the first spatial derivative. The canonical n = 40 variable discretization with cyclic boundary
conditions is used. The canonical fourth order Runge-Kutta method is used to discretize the time
dimension.

For the given discrete formulation of the Lorenz ’96 system, 14 represents the number of
non-negative Lyapunov exponents, 28 represents the rounded-up Kaplan-Yorke dimension of
27.1, and 35 represents an approximation of the intrinsic dimension of the system (calculated by
the method provided by Bahadur and Paffenroth (2019)). To the authors’ knowledge, the inertial
manifold of the system, if it exists, is not known. The relatively high ratio between the intrinsic
dimension of the system and the spatial dimension of the system makes constructing a reduced
order model particularly challenging.

4.1.1 Data for Constructing Reduced-Order Models.

The data to construct the reduced order models is taken to be T = 5000 state snapshots from a
representative model run. The snapshots are spaced 36 time units apart, equivalent to six months
in model time.

4.2 Proper Orthogonal Decomposition ROM

Using the method of snapshots (Sirovich, 1987), we construct optimal linear operators, ΦT =
Θ ∈ Rr×n, such that the projection captures the dominant orthogonal modes of the system
dynamics. The reduced order model approximation with linear projection and interpolation op-
erators (2.41) is quadratic (similar to Mou et al. (2021); San and Iliescu (2015))

du

dt
= a + Bu + uT Cu, (4.3)

where the corresponding vector a, matrix B, and 3-tensor C are defined by:

a = FΘ1n, (4.4a)
B = −ΘΦ, (4.4b)

[C]pqr = −
(
ÎΦ:,p

)T (
D̂Φ:,q

)
Φ:,r. (4.4c)

4.3 Autoencoder based ROM

We now discuss building the neural network-based reduced order model (NN-ROM). Given the
principal space variable X , consider an encoder that computes its projection Û onto the control
space (2.42), and a decoder that computes the reconstruction X̃ (2.43).
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Canonical autoencoders simply aim to minimize the reconstruction error:

X ≈ X̃, (4.5)

which attempts to capture the dominant modes of the intrinsic manifold of the data. However,
for our purposes, we seek to preserve two additional properties.

The first property that is especially important to our application is the stable preservation of
the latent space through multiple projections and interpolations:

θ(φ(Û)) ≈ Û, (4.6)

which we will call the left-inverse property. For POD, this property is automatically preserved
by construction and the linearity of the methods. For non-linear operators, the authors have not
explicitly seen this property preserved, however, as the MFEnKF requires sequential applications
of projections and interpolations, we believe that for the use-case outlined in this paper, the
property is especially important.

The autoencoder structure automatically induces a reduced order modelMAE , correspond-
ing to the equation (2.40), that captures the dynamics of the system in the r-dimensional control
space. The second property is that the r-dimensional ROM dynamics follows accurately the
n-dimensional dynamics of the full order model.

Remark 10. Note that unlike the POD-ROM whose linear structure induces a purely r-dimensional
initial value problem, the NN-ROM (2.40) still involves n-dimensional function evaluations. In
a practical method it would be necessary to reduce the internal dimension of the ROM, however
that is significantly outside the scope of this paper.

We wish to construct a proof-of-concept neural network surrogate. We seek to ensure that the
induced dynamics (2.40) makes accurate predictions, by not only capturing the intrinsic manifold
of the data, but also attempting to capture the inertial manifold of the system. Explicitly, we wish
to ensure that ∥∥M(X)− φ(MAE(θ(X)))

∥∥ (4.7)

is minimized. In this sense (2.40) would represent an approximation of the dynamics along a
submanifold of the inertial manifold. In practice we replace (4.7) by the difference between a
short trajectory in the full space started from a certain initial value, and the corresponding short
trajectory in the latent space started form the projected initial value.

Combining the canonical autoencoder reconstruction error term (4.5), the latent space re-
construction error term (preserving property (4.6)), and the temporal reconstruction error (4.7)
(computed along K small steps), we arrive at the following loss function for each snapshot:

`j(Xj) =
1
n
‖Xj − φ(θ(Xj))‖2

2 +
λ1

r
‖θ(Xj)− θ(φ(θ(Xj)))‖2

2

+
K∑
k=1

λ2

n

∥∥∥Mtj ,(tj+k∆t)(Xj)− φ(MAE
tj ,(tj+k∆t)(θ(Xj)))

∥∥∥2

2
, (4.8)

where the hyper-parameters λ1 and λ2 represent the inverse relative variance of the mismatch.
The full loss function, combining the cost functions for all T snapshots,

L(X) =
T∑

j=1

`j(Xj), (4.9)

can be minimized through typical stochastic optimization methods.
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4.3.1 Lorenz ’96 Surrogate

Similar to the POD model, we construct r-dimensional NN-based surrogate ROMs. To this end,
we use one hidden layer networks with the tanh activation function for the encoder (2.42) and
decoder (2.43):

θ(X) = Wθ
2 tanh(Wθ

1X + bθ
1 ) + bθ

2 ,

Wθ
1 ∈ Rh×n,Wθ

2 ∈ Rr×h,bθ
1 ∈ Rh,bθ

2 ∈ Rr,

(4.10)

φ(U) = Wφ
2 tanh(Wφ

1 U + bφ
1 ) + bφ

2 ,

Wφ
1 ∈ Rh×r,Wφ

2 ∈ Rn×h,bφ
1 ∈ Rh,bφ

2 ∈ Rn,

(4.11)

where the hidden layer dimension on both the encoder and decoder is set to h = 200 in order to
approximate well most non-linear projection and interpolation functions.

The hyperparameter values used in the numerical experiments are λ1 = 103, λ2 = 1, and
K = 5. We employ the ADAM (Kingma and Ba, 2014) optimization procedure to train the NN
and produce the various ROMs needed. Gradients of the loss function are computed through
automatic differentiation.

5. NUMERICAL EXPERIMENTS

The numerical experiments compare the following four methodologies :
1. Standard EnKF with the Lorenz ’96 full order model;

2. MFEnKF with the POD surrogate model, an approach named MFEnKF(POD);

3. NL-MFEnKF with the autoencoder surrogate model, named NL-MFEnKF(NN); and

4. MFEnKF with the autoencoder surrogate model, named MFEnKF(NN).
Since MFEnKF does not support non-linear projections and interpolations, in MFEnKF(NN) the
ensembles are interpolated into the principal space, and assimilated under the assumption that
Θ = Φ = I.

To measure the accuracy of the analysis mean with respect to the truth we use the spatio-
temporal root mean square error (RMSE):

RMSE =

√√√√ N∑
i=1

n∑
k=1

([
µ̃Xa

i

]
k
− [Xt

i ]k

)2
, (5.1)

where N is the number of data assimilation steps for which we wish to measure the error.
For sequential data assimilation experiments we observe all 40 variables of the Lorenz ’96

system, with an observation error covariance of Σηi,ηi
= I. Observations are performed every

0.05 time units corresponding to 6 hours in model time. We run 20 independent realizations
(independent ensemble initializations) for 1100 time steps, but discard the first 100 steps for
spinup.

5.1 Accuracy of ROM Models

Our first experiment is concerned with the preservation of energy by our ROMs, and seeks to
compare the accuracy of NN-ROM against that of POD-ROM. For the Lorenz ’96 model, we
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r POD-ROM NN-ROM
7 0.52552 0.56753
14 0.70200 0.76303
21 0.82222 0.88997
28 0.90161 0.95494
35 0.96251 0.98483

TABLE 1: Relative kinetic energies preserved by the reconstructions of the POD-ROM and the
NN-ROM solutions of the Lorenz ’96 system. Various reduced-order model dimensions r are
considered.

use the following equation (Karimi and Paul, 2010) to model the spatio-temporal kinetic energy,

KE =
T∑
i=1

n∑
k=1

([yi]k)
2
, (5.2)

where T is the number of temporal snapshots that were used to construct the ROMs. Table 1
shows the relative kinetic energies of the POD-ROM and the NN-ROM reconstructed solutions
(2.7) (the energies of the reconstructed ROM solutions are by the kinetic energy of the full order
solution).

The results lead to several observations. First, the NN-ROM always preserves more energy
than the POD-ROM. We have achieved our goal to build an NN-ROM that is more accurate than
the POD-ROM. Second, the NN-ROMs with dimensions r = 21 and r = 28 preserve almost as
much energy as the POD-ROMs with dimension r = 28 and r = 35, respectively. Intuitively
this tells us that they should be just as accurate.

5.2 Impact of ROM Dimension

The second set of experiments seeks to learn how the ROM dimension affects the accuracy of
the various multifidelity data assimilation algorithms.

We take the principal ensemble size to be NX = 32, and the surrogate ensemble sizes equal
toNU = r−3, in order to always work in the undersampled regime. All multifidelity algorithms
are run with inflation factors αX = 1.05 and αU = 1.01. The traditional EnKF using the full
order model is run with an ensemble size of N = NX and an inflation factor α = 1.06 to ensure
stability.

The results are shown in Figure 1. For the ‘interesting’ dimensions r = 28, r = 35,
and an underrepresented r = 21, the NL-MFEnKF(NN) performs significantly better than the
MFEnKF(POD). For a severely underrepresented ROM dimension of r = 7 and r = 14 the
MFEnKF(POD) outperforms or ties the NL-MFEnKF(NN). The authors suspect that this is ei-
ther due to the NN-ROMs sharing the same hyperparameters, meaning that if the hyperparame-
ters were tailored to each r dimensional NN-ROM individually, the authors suspect that it would
beat the POD-ROM in all cases.

Of note is that excluding the case of r = 35, the MFEnKF(NN), using the standard MFEnKF
method in the principal space, is the least accurate among all algorithms, indicating that the non-
linear method presented in this paper is truly needed for models involving non-linear model
reduction.
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7 14 21 28 35
ROM Dimension (r)
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FIG. 1: Analysis RMSE versus ROM dimension for three multifidelity data assimilation algorithms and the
classical EnKF. Ensemble sizes are NX = 32 and NU = r − 3. Error bars show two standard deviations.
The inflation factor for the surrogate ROMs is fixed at αU = 1.01, the inflation of α = 1.07 is used for the
EnKF, and αX = 1.05 is used for all other algorithms.

We note that for r = 35, the suspected intrinsic dimension of the data, the NL-MFEnKF(NN)
outperforms the EnKF, both in terms of RMSE and variability within runs. This is additionally
strengthened by the results of the MFEnKF(NN) assimilated in the principal space, as it implies
that there is little-to-no loss of information in the projection into the control space.

5.3 Ensemble Size and Inflation

Our last set of experiments focuses on the particular ROM dimension r = 28, as we believe that
it is representative of an operationally viable dimension reduction, covering the dimensionality
of the global attractor.

For each of the four algorithms we vary the principal ensemble size NX = N , and the
principal inflation factor αX = α. As before, we set the control ensemble size to NU = r− 3 =
25 and the control-space inflation factor to αU = 1.01.

Figure 2 shows the spatio-temporal RMSE for various choices of ensemble sizes and infla-
tion factors. The results show compelling evidence that NL-MFEnKF(NN) is competitive when
compared to MFEnKF(POD); the two methods have similar stability properties for a wide range
of principal ensemble size NX and principal inflation αX , but NL-MFEnKF(NN) yields smaller
analysis errors for almost all scenarios for which the two methods are stable.

For a few points with low values of principal inflation αX , the NL-MFEnK(NN) is not as
stable as the MFEnKF(POD). This could be due to either an instability in the NN-ROM itself,
in the NL-MFEnKF itself, or in the projection and interpolation operators.

An interesting observation is that the MFEnKF(NN), which is assimilated naively in the prin-
cipal space, becomes less stable for larger ensemble sizes NX . One possible explanation for this
is that the ensemble mean estimates become more accurate, thus the bias between the ancillary
and control variates is amplified in (2.4), and more error is introduced from the surrogate model.
This is in contrast to most other ensemble based methods, including all others in this paper,
whose error is lowered by increasing ensemble size.
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FIG. 2: Analysis RMSE for four data assimilation algorithms and various values of the principal ensemble
size NX and inflation factor αX . The surrogate ROM size is fixed to r = 28 with ensemble size of
NU = 25 and inflation of αU = 1.01. The top left panel represents the MFEnKF with a POD-ROM
surrogate, the top right panel represents the NL-MFEnKF with a NN-ROM, the bottom left panel represents
the MFEnKF with a NN-ROM surrogate assimilated in the principal space, and the bottom right panel
represents the classical EnKF.

6. CONCLUSIONS

This work extends the multifidelity ensemble Kalman filter framework to work with nonlinear
surrogate models. The control variate framework is generalized to incorporate optimal non-linear
projection and interpolation operators implemented using autoencoders.

The results obtained in this paper indicate that reduced order models based on non-linear
projections that fully capture the intrinsic dimension of the data provide excellent surrogates
for use in multifidelity sequential data assimilation. Moreover, nonlinear generalizations of the
control variate framework result in small approximation errors, and thus the assimilation can be
carried out efficiently in the space of a nonlinear reduced model.

Future directions to be pursued include more robust constructions of projection and interpo-
lation operators, the use of recurrent neural network models, and applications to operational test
problems.
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