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1 Introduction

The optimization of the response of dynamic multibody systems (MBS) has been gathering
the attention of the multibody community since the inception of the first dynamic formula-
tions [1-3]. Gradient-based optimization methods are usually employed in optimal control
or design optimization problems, but they are strongly tied to the properties of the gradi-
ent of the objective function [4-6]. The accuracy and efficiency of the sensitivity analysis
method used to compute the gradient are crucial to obtain a satisfactory optimum. While
poor accuracy may increase the number of optimization iterations or even lead to an er-
roneous optimum, the CPU time required to compute the gradient will determine the total
computational time of the optimization.

The sensitivity analysis of a multibody system can be achieved through different meth-
ods. The finite differences method represents the simplest of the differentiation techniques,
but it suffers from poor accuracy, high dependency on the magnitude of the perturbation and
high computational cost, increasing with the number of parameters [6]. A second option is
automatic differentiation, which is a technique that explodes the differentiation capabilities
of external libraries [7,8]. Finally, analytical methods consist in the analytical computation
of the derivatives of the dynamic formulation, which usually leads to the best performance
in terms of accuracy and computational time, but they have as main drawback a significant
increase in the implementation effort compared with other methods.

Analytical sensitivities can be classified into Direct Differentiation Methods (DDM)
and Adjoint Variable Methods (AVM) [9] attending to which magnitudes are regarded as
the variables of the sensitivity problem. The DDM arises from the direct differentiation of
the equations of motion (EoM) of the system, and generates a problem where the sensi-
tivities of the states are the unknowns. The AVM avoids the sensitivities of the states by
means of a transformation of the sensitivity problem [10], which highly reduces the gradient
computational cost in systems subjected to a high number of parameters.

The derivation of the sensitivity expressions is also conditioned by the order between
differentiation and discretization [11,12]. In the differentiate-then-discretize approach, the
dynamic expressions are considered as continuous, and a numerical integrator is applied to
the sensitivity expressions to solve them. In the discretize-then-differentiate approach, the
dynamics are regarded as a set of algebraic expressions resulting from the application of a
numerical integrator to the EoM of the system. The differentiation process handles deriva-
tives of algebraic expressions, which usually leads to simpler expressions but particular for
the numerical integrator used in the dynamics.

Accuracy and efficiency are as important in a sensitivity analysis as in the evaluation of
the dynamics. The Augmented Lagrangian Index-3 formulation with projections (ALI3-P)
offers high accuracy at position, velocity and acceleration levels with a reduced computa-
tional time. From the seminal work by Bayo and Ledesma [13], this formulation has been
applied to natural coordinates [14] and relative coordinates models [15,16] in the field of
rigid body dynamics. Moreover, this formalism has been extended to flexible multibody
systems [17—19], and its capabilities have been exploited for real time simulation [20, 19].
Recently, the focus has been moved to sensitivity analysis [5,21].

In this work, the discretize-then-differentiate approach is applied to the ALI3-P formu-
lation in the sense of the AVM. The new sensitivity formulation is regarded as a means to
reduce the complexity of the continuous method presented in [21]. The method has been
implemented in the general purpose multibody library MBSLIM [22] as general sensitivity
formulations for the global and topological forward dynamics formulations in natural and
relative coordinates presented in [14,16].
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This paper is structured as follows: in section 2, the ALI3-P forward dynamic formu-
lation is briefly outlined; in section 3, the Newmark’s family of numerical integrators used
to solve the dynamics is introduced; section 4 encompasses the direct sensitivity analysis
of the ALI3-P formulation; section 5 includes the main contribution of the paper, which is
the derivation of the adjoint variable method using a discretize-then-differentiate approach
applied to the ALI3-P global and topological formulations; in section 6, the new sensitivity
formulation is tested with two numerical experiments, one referred to a benchmark problem
and the other to a more complex real-life vehicle; finally, section 7 gathers the conclusions
of the present work.

2 Forward dynamic formulation

The performance of a forward dynamic multibody formulation can be measured by three
crucial factors, which are accuracy, stability and efficiency. In general, an increase of ac-
curacy and/or stability is to the detriment of efficiency and vice versa. Nevertheless, the
augmented Lagrangian ALI3-P formulations conquer good levels of these three properties,
guaranteeing accuracy with the imposition of constraints in position, velocity and accelera-
tion, reducing instability by means of velocity and acceleration projections while keeping a
low computational cost.

In this section, a brief description of the ALI3-P formulation presented in [14] is ex-
posed. Let us consider a multibody system described by means of p € R? parameters and
q € R” generalized dependent coordinates subjected to ® € IR holonomic constraints'. The
classical representation of the augmented Lagrangian index 3-formulation takes the form:

M+ (4" +ae)] " = Q1) (1
A'*{I'Jrl} :l*{l}_j’_aé{l}; i:071727... (lb)

in which M (q, p) € R"*" is the mass matrix, §* € IR" the unprojected accelerations, ®q (q,p) €
R™*" is the Jacobian of the constraints, A* € R corresponds to the approximate Lagrange
multipliers, & € R"™*™ is a diagonal matrix which contains the penalty factors associated
with each one of the constraints, Q (q,q*,p) € R” is the vector of generalized forces and
the superindex i indicates the iteration index.

Equation (1) delivers the exact values of the Lagrange multipliers A when i — oo. How-
ever, with the appropriate penalty factors, convergence can be reached in a few iterations
given the fulfillment of an error criteria. As proposed by Dopico et al. in [14], the initializa-
tion of the approximated Lagrange multipliers at the beginning of the iteration process (with
i = 0) with the values of the previous time step usually speeds up convergence °.

The augmented Lagrangian index-3 problem is usually solved by means of a Newton-
Raphson scheme, with increments in positions as main variables. Computational effort can
be reduced through the use of an approximate tangent matrix instead of the exact one, but

!For simplicity, only holonomic constraints will be considered in this work, although the ALI3-P formu-
lation presented in [14] supports also non-holonomic constraints.

2 Aqui hay algo que no habjamos estudiado lo suficiente y es que, cuando hay restricciones redundantes,
un factor de reduccién de los multiplicadores en torno a 0.8 o 0.9 puede mejorar la convergencia y evitar
que los multiplicadores se disparen. Esto lo observé experimentalmente Emilio en un sistema con ecuaciones
redundantes y es algo que sabemos pero que estd sin estudiar debidamente.
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the terms that could be neglected could vary depending on the mechanism or the set of
coordinates used to model the system .

Another property of the augmented Lagrangian index-3 is the support of redundant con-
straints, which could eventually arise in the definition of a multibody mechanism or in the
combination of the dynamic expressions with others in the sense of a multiphysics problem
4

The solution of the previous index-3 system with classical integrators, can lead to in-
stabilities related to numerical errors that gradually increment the violation of constraints in
velocities and accelerations. There are different techniques to keep these violations bounded
without modifying the index of the dynamic equations, such as the use of energy conserv-
ing or dissipative numerical integrators or the addition of projections onto the velocity and
acceleration constraints manifolds.

The inception of velocity and acceleration projections from a minimization problem
[13] is omitted here, and only final expressions are presented. Moreover, only penalty non-
iterative projections will be consider in order to simplify the expressions as much as possible
regarding the sensitivity analysis of the following sections. The velocities resulting from (1)
can be projected onto the velocity constraints manifold with:

(P+ @ a®,) q =Pq* — Dcod, )

where P € R™*" is a symmetric projection matrix and ¢ is a penalty factor.
Similarly, unprojected accelerations can be projected onto the acceleration constraints
manifold using:
(P+c@q0®y) i = Pij* — Dy (Dyq+ D) 3)

The mass matrix is usually used as projection matrix delivering the so called mass or-
thogonal projections. This seems to be a good choice regarding that this matrix is always
symmetric and semi-defined positive and that the resulting projections are unconditionally
dissipative, this is, do not add spurious energy to the system, as it was demonstrated by
Garcia Orden and Dopico in [23] for positive definite mass matrices. This result can be
easily extended to semi-definite mass matrices, attending to the fact that a variation on the
additional massless variables do not change the kinetic energy of the system.

In general, velocity projections are sufficient to stabilize an index-3 formulation, but
numerical experiments indicate that acceleration projections enhance convergence with a
minimum additional cost, since the factorization of the velocity projection system matrix
can be directly reused on the acceleration problem. Additionally, projections can be executed
only under certain conditions of the constraint time derivatives violation, which contributes
to minimize the computational effort without damaging accuracy or stability.

3 Numerical integrator

The EoM presented in the previous section are not analytically solvable for any multibody
system, but they require a numerical integrator to be solved. There are multiple numerical
integrators that have been applied to multibody systems, and there is no consensus regarding
which one delivers the best performance in terms of CPU time, accuracy and stability.

One of the most popular numerical integrators in the multibody community is the New-
mark integrator, which spans a series of numerical integrators for second order differential

3;No podemos funcionar siempre con la matriz tipica aproximada?.
‘WHY?
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equations. The performance of these integrators is conditioned by two parameters, ¥ and f3,
whose values determine not only their stability, but the energy dissipation and the order of
accuracy.

Considering positions as main variables, these numerical integrators take the form:

s :ﬁlhqn+1+c°1n; G, = — (ﬁhqn+(g 1) qw(—ﬁfl)hqn) (4)
it = s Gt + G, = (- +1 + —1)4§ (4b)
qn+1 = Bh2 qn+1 q,. q, = th qn B qn 2[3 qn

Although equations (4) have the same expressions for all the Newmark family of inte-
grators, the selection of y and 3 lead to completely different behaviors. Considering y=1/2
and B = 1/4, equations of the trapezoidal rule are reached, with its well known properties
of A-stability, second order accuracy and energy conservation for linear systems.

Besides, these parameters can be modified so as to add numerical dissipation to the solu-
tion, which sometimes is useful to stabilize it. Dissipative Newmark integrators are usually
build around one parameter &, with y and 3:

(1-&7% , 1-2¢
4 B = 2

Y= , with & < 0. 5)

4 Direct sensitivity analysis

Prior to immerse ourselves in the development of the sensitivity analysis, let us define an
objective function Y € R° dependent on the states q, § and §, the Lagrange multipliers A
and the set of parameters p.

o "
v=[ s(@air’p)d ©)
173

Taking derivatives of (6), the gradient of the objective function with respect to the set of
parameters leads to:

T
v =vy' = /t (gqq’ +gqq’+gqq’+gvl*'+gp) dt (7
F

In equation (7) the derivatives of g are known, and the terms ¢, ¢/, §’ and A* are the
unknown sensitivity variables, which can be obtained from the sensitivity analysis of the
EoM.

Considering the ALI3-P formulation, its sensitivity analysis can be obtained applying
the DDM to the continuous expressions, as described in [5]. The forward sensitivity expres-
sions developed in this paper are directly presented here in order to establish the base to
build the adjoint variable method.

The application of the DDM to (1) leads to a set of p systems of Differential Algebraic
Equations (DAE).

[Mq*/ + Cq*/ + I‘(q/ +¢pzl*/] {i} — QP{i} (83)
A*/{i+l} _ A‘*/{i} +a¢/{l} (Sb)
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in which:
K=Myi* + @y, (A" + a®) + Dgad, +K (9a)
Q° =Qp —Mpi" — @], (A" + a®) - D ad, (9b)
D' =Pyq +Pp (9¢)
In (8) and (9), K = —g—g € R™" and C = —?9—2 € R™*" represent the equivalent

stiffness and damping matrices of the system respectively.
The sensitivity analysis of the velocity projections delivers p systems of algebraic equa-
tions with the form:

(P+c@qa®q) g =Pq” + P (4" — q) — (Pgesa®P) q' — Pgpcad — Dycab®  (10)
with:

b? = dyq + D) (11a)
P = qu/ +Pq*q*/ +I_’p (11b)

Observe that in the case of mass orthogonal projections, the term l_’q* vanishes.
Similarly to velocity projections, the sensitivity analysis of acceleration projections
leads to other p systems of algebraic equations:

(P+¢@qa®q) i’ =P + P (§ — §) — (Pgs0®) ¢ — Pgpca® - Dgcac®  (12)

with:
? =204 +Pyq' +Dp (13)

Note that the sensitivities of the velocity coordinates used in the acceleration projections
are the result of the sensitivities of the velocity projections, and not the unprojented velocity
sensitivities.

As it can be deduced from equations (8), (10) and (12), the number of systems to be
solved grows linearly with the number of parameters. Even though only two tangent matrices
have to be factorized per time step (one for (8) and other for (10) and (12)), the number of
systems are detrimental to the efficiency of the method. In the case of a high number of
parameters, the AVM should be used instead of the DDM.

5 Discrete adjoint variable method

The AVM is a well known technique to compute the sensitivity analysis of a set of equa-
tions avoiding the sensitivities of the original variables. This method is widely spread in the
multibody community, specially in control applications, where the number of parameters (or
equivalent magnitudes) is high. From the point of view of the order between differentiation
and discretization, the AVM can be classified in two groups: Continuous Adjoint Variable
Methods (CAVM) and Discrete Adjoint variable methods (DAVM) [24].

In CAVM, the EoM are regarded as continuous in time, and the set of adjoint equations
generated preserves the structure of the original set of equations (if the original equation
is a index-3 DAE, the adjoint equations will be a index-3 DAE too). This method usually
exploits the integration by parts to eliminate the sensitivities of the time derivatives of the
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states, which generates a set of conditions at the initial and final time. Even though the con-
ditions at the initial time 7y does not involve special problems (the sensitivities of the states
can be easily computed at the initial instant of time by means of kinematic sensitivity prob-
lems), final conditions usually lead to a complex initialization process, and often a set of
new adjoint variables have to be resorted to initialize properly the adjoint variables, as in
[9]. In addition, high order time derivatives of some dynamic terms arise from the integra-
tion by parts process, none of them being required on the dynamics. This last problem is
usually addressed by means of a change of variable [21], or just exploiting the properties
of a particular set of coordinates (natural coordinates has a constant mass matrix, being its
time derivatives all null).

The shortcomings of the CAVM can be avoided by the use of the DAVM. In this sense,
the discrete dynamic expressions at each time step are employed to build the adjoint La-
grangian, generating a set of algebraic adjoint equations with discrete dependencies among
instants of time. The relation between consecutive time steps depends on the numerical in-
tegrator used, which forces the DAVM to have a different expression for each numerical
integrator, being this one of the main drawbacks of the method. However, the initialization
process is almost straightforward, there is no need for additional adjoint variables out of the
ones related to the dynamic equations and no high order time derivatives are required. The
approach has been successfully applied to multibody models in [25] with a Runge-Kutta
integrator and in [11,26] with Hilber-Hughes-Taylor integrator, among others.

The application of the CAVM and DAVM to the ALI3-P formulation constitutes a per-
fect example of the commented problems. The recently published (continuous) adjoint sen-
sitivity of the ALI3-P formulation [21] describes thoroughly the set of transformations re-
quired to consistently define the adjoint system of equations, and not only this, but the ini-
tialization of the adjoint variables too. The DAVM presented hereinafter solves some of the
issues of the CAVM, with the counterpart of limiting the generality of the set of equations
generated to the Newmark’s family integrator.

First of all, the discrete nature of the DAVM implies that any integral will be substituted
by its discrete form in terms of sums. For simplicity, the integral function is discretized by
means of the trapezoidal rule, with the form:

73
Xdt =

fo

(Xo+X,)+h) X; (14)

h n—1
2 i=1
where £ is the time step of the discretization, n = % the number of steps and X; the value
of X at the time ik + .

Accordingly, the cost function (6) can be discretized and transformed into:

n—1

(gO (QO:q07QOal§7P)+gn (Qnanqm&::P)) +h Z gi (qivqi7qi72'i*7p) (15)
i=1

]I[:

NS

In this approach, the index-3 DAE is better suited for building the adjoint system than
the Augmented Lagrangian index-3 DAE as long as it does not require an iteration for the
Lagrange multipliers. The lemma 4.3 presented in [21] establishes the base to interchange
these two formulations within a sensitivity analysis, using the following upgrade of the
Lagrange multipliers:

A~ (A" +a®) (16)

where A are the Lagrange multipliers of the index-3 DAE and A™ are the approximated ones
of the Augmented Lagrange index-3.
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The index-3 DAE tangent linear model (TLM) here considered is:
MG" + Cq” + (Mqd" + @A +K) q' + @A’ = Q) — Mpii" — Dgp2 (17a)
®yq = -®, (17b)

and with the substitution of the Lagrange multipliers by the ones of the Augmented La-
grange scheme:

M + Cq" + (Mqi" + ®qa®q + Py (A" + 0®) +K) q' + A" =
Qp —Mpi* — @, (A" + a®) — D ad,
®,q = -, (18b)

(18a)

The discrete approach used to solve the dynamics require to handle the derivatives of the
equations with the numerical integrator already applied to them. In the present development,
the Newmark’s integrator is selected as numerical integrator due to its simplicity and good
behavior, with the sensitivities of positions of the states considered as the main variables of
the system. The application of the integrator to the index-3 DAE TLM yields:

. * 1 V */
My§* +Plad,+®! (1* + ad +K+—M+—C>q*’+qﬂl =
( q q q qu( ) ﬁ/’l ﬁ/’l q (19a)
Qp —Myi" — @), (A" + a®) — dlad, —M§ — C§’
®,q =@, (19b)

in which the equations of the Newmark integrator (4) have been extended to sensitivities.
The application of the numerical integrator to the sensitivities of the velocity projections
yields:

(P+c@lad,)q =P (F"’hq'+a’) TP (4 —q) - (®hcad)q - @1 cad— ®lcab?
(20)

Similarly, the sensitivities of the acceleration projections are:

_ _ /1 R o . .
(P+c@iad,) i =P (Wq’+q’) +P(§ — §) — (Pgc0P) ¢ — Py 0P — Do’
21

The first step in the generation of the adjoint equations is the composition of a La-
grangian preserving the same value of the objective function but including a set of new
adjoint variables. To keep the notation as clear as possible, let us define the Lagrangian at
an instant of time #; such as:

Li=y—p" (Mg"+®] (A" + a®) - Q) — pp®
—pg ([P+c®iady|q—Pq +Pocad;) - (22)
~Hg ([P+cPqa®y] i — PG+ Pqget (Pqq + D))
in which:

— € R™“ is the set of adjoint variables associated to the first n equations of the index-3
DAE system.
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- Mg € R are the adjoint variables associated to the last m equations of the index-3
DAE system.

- K4 € R™* is the set of adjoint variables related to the velocity projections.
— Ug € R is the set of adjoint variables correspondent to acceleration projections.
b i p proj

The gradient of this instant Lagrangian, considering now the discrete derivatives intro-
duced in (18), (20) and (21), has the following expression:

vt (v Y eaR
7= v {u (g 6 k)

+ul(-pL _p (@"—q) + Pggca® + Pt (Pyqd + Pyr)

[ ﬁh q qq q qqq qf

1 . . .

+hg (_PW —Py (4" — ) + Bygsa® + Pcar (‘pqu+q’qqq+q’qt)) + #gq’q} q
— {1y (P+c@ia®y) + pg (Pgsa (Paqd +Pq+Pyr)) } &
—{ng (P+c® a®g) } i
—{(n'C-peP)} 4
~{(W"M—pgP)} &
—{u2g} A’
~{ (1" (Qp ~Mpit" - @, (A" + 2 @) ~ @} ady ) — u5Pp
~Hg (<I>§p ca® P, (4" —q) +<I>§ga<i>p)

—ng (<I>§pga<'1'> Py (4" —4) +‘1’qT€°‘"I"P)> }
(23)

in which all magnitudes are evaluated at time ;.
The adjoint Lagrangian can be defined using the previous instant Lagrangian (22) and
the discrete integral equations (15):

h n—1
zzi(%+ﬂ)+h2$ (24)
i=1
where, once again, 4 is the time step of the discretization, n = % the number of steps and
%, the value of .Z at the time ih +1g.
Analogously, the gradient of the Lagrangian involving a discrete integral can be com-
puted as:
n—1
(L+2)+hY & (25)
i=1

7=

NS

Once defined the integration rule, the instant Lagrangian sensitivities can be substituted
into (25), conforming a unique expression with the adjoint variables, the sensitivities of the
states and the sensitivities of the Lagrange multipliers as unknowns. Since the value of the
Lagrangian and its gradient are equal to the cost function and its gradient, respectively, for
any value of the adjoint variables, these adjoint variables can be selected such as they nullify
the terms multiplying the unknown sensitivities of the states and the Lagrange multipliers,
hence avoiding their calculation.
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Returning again to equation (23), it can be seen that ¢’ and G could be transformed
into expressions dependent on the sensitivities of the previous step of time #;_; using (4).
Therefore, the instant gradient of the Lagrangian for any time ¢; is:

A T R
7 =v-{u (G g0k
+uT( m Pq(q*—q)+<l>T ga<1>+q> sa( qlqlq+<I>qlt)
I A .
-ng, (_PW_Pq(q —4)+ gad>—|—¢' ga( qu+d>qu+d>qz))+l-lq>¢ }q
—{np (P+ gcbgacbq) +Hg (tquga (Pgqd+Pyq+Pqy)) } d'

— {1 (P+c®qa®)}d

e i ()6 ()

—{u®g} A
_{(/"T(Q ~Mp§* — D, (A" + a®) — and)p)_pd,cpp
—hy (Plcad By (4" — )+ Bicad, )

1y (@hpcad Py (" — i)+ Picad, ) ) |
26)

in which the subscript i indicating magnitudes evaluated at time ¢; is eliminated for the sake
of clearness.

Observe that the sensitivity of each instant Lagrangian involves the sensitivities of the
states in the time step #; and in the previous one #;_;. Therefore, the instant Lagrangians at
consecutive time steps have to be calculated jointly in order to nullify the terms multiplying
the sensitivity of a state in a given step of time. The relation among instant expressions has to
be done following the scheme of integration (25) paying special attention to the coefficients
multiplying each Lagrangian.

Let us now consider two subsequent time steps #; and #;; 1, none of them being the ini-
tial or final time of the dynamic simulation. The expressions of the instant gradient of the
Lagrangian will appear in (25) multiplied by the same coefficient 4, so they could be simply
added scaled by this coefficient. The result of this sum will deliver a set of terms multiplying
the sensitivities of the states and Lagrange multipliers at #;, and others at ;1. Observe that,
since the sensitivities of the states are integrated forward in time, the sensitivities at #; only
affect the instant gradient of the Lagrangian at #; and #;1;. This sum (omitted here for the
sake of clearness and brevity) supplies the terms that multiply the sensitivities of the states at
t;, and thus, the ones that have to be nullified in order to avoid these state sensitivities. Since
no particular time has been chosen in this evaluation, the results are valid in the interval
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(to,r). The set of equations resulting from this evaluation is:
u’ 5 (% .
—M C K —P — <I> ad d> ad,

+I1<Tp ( ﬁh2 Pq (q )‘Fq>qqgad>+‘b ga¢ ) +#g¢q}

{i}
+ {——G ! H} =8
Bh [ afi}
(27a)
{ng (P+c®@qa®q) +pg (Pqca (29q))}
7) I } (27b)
+9l1-%G——H =8l
{< ﬁ ﬁh {i+1} q{}
5 1
s (P+c®iad,)},. +{<1 )hc+< 7>H} =g 27
{F‘@ (P+g q a) }{,} 28 2B e 8i{i} (27¢)
{w'egt = (27d)
where:
G=p"C—pyP (28a)
H=p"M-p;P (28b)

These equations can be solved sequentially: first, g can be determined from (27c¢);
second, the value of l14 can be substituted in (27b), so 4 can be obtained; third and last,
(27a) and (27d) can be combined and solved jointly, giving as result the values of § and
Hg- The solution of this third system of equations is equivalent to the one solved in [21] for
the continuous approach, and suffers the same problems of indetermination when redundant
constraints are part of the multibody model. Following the algorithm proposed in [21], this
system can be solved using an augmented Lagrange scheme with (27a) scaled by a factor of
Bh? to improve its numerical conditioning. The final expressions are:

_ \T o
(Md +yhC + BhZK) p+ BH®] (uqf ) o, (gy — d:qy)) _— (29a)
pa) = pa Y oy (g — Pgp) (29b)

with
r| = Bn’ {gq —uf;, (_Pﬁlh —Py(q" Q)+¢qq€aq’+‘b sa (P qq‘l'“pqt))

+hg (fPW —Py (4" — 4) + Bygsa® + Pycar (¢qqq+¢qqq+¢qf)) }{A} (30)

2

14 1 }
—9—-——=—G--—=H
{ ﬁ h th {i+1}
In the discrete adjoint problem, the different expressions used to solve the initial posi-
tion, velocity and acceleration problems have to be considered in the Lagrangian in order to

incorporate their effect on the sensitivities. Consequently, the adjoint of the initial position
and velocity problem have to be computed at 7y, but also the adjoint of the initial dynamic
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acceleration problem have to be addressed. In this work, the initial acceleration problem is
solved by means of the penalty approach described in [27].

The initial positions of the dependent coordinates g are obtained by means of the kine-
matic initial position problem, in which a kinematic model is enforced to fulfill a set of
constraints ® for a given set of values of its degrees of freedom (dof) z € R¢, being d the
number of dof. This problem is commonly solved using a Newton-Raphson scheme with the

form:

P, -

o[
in which B € R4*" is a constant matrix composed by “1”’s and “0”s such that:

Bq=z (32)

This formalism can be extended to non constant B matrices, i. e. to problems where the
degrees of freedom are not included in the vector of dependent coordinates qg. Nevertheless,
only constant B matrices will be considered here.

The velocity problem is described by a similar set of linear equations:

B

The implicit Newmark numerical integrator requires initial accelerations to compute the
positions, velocities and accelerations at the following instant of time. These accelerations
can be computed with multiple formulations, such as an index-1 DAE, a matrix R formu-
lation or the penalty approach described in [27]. With any of the previous problems, the
dependent positions and velocities computed with the initial position and velocity problems
can be used to build the system of dynamic equations, and any of them can be solved with
the accelerations as main variables. As it was mentioned above, the penalty approach will
be the method considered hereinafter.

The penalty formulation proposed by Bayo et al. [27] presents a solution for the equa-
tions of motion by substituting the Lagrange multipliers of the classical Lagrange’s formu-
lation by a penalized term composed by the constraints vector in positions, velocities and
accelerations, which transforms the original DAE into and ODE with the form:

M+ @l (<'1'>+29.§<1>+92<1>) -Q (34)

Unlike the notation presented in [27], here the penalizer originally denoted as y is re-
named as & in order to eliminate possible misunderstandings with the set of adjoint variables
described in the in the following lines. The application of this formulation to an initial ac-
celeration problem transforms the ODE into a set of linear equations, since positions and
velocities are already determined by the correspondent kinematic problems.

Equation (34) can be reformulated to simplify the notation as:

Mi=Q (35)

in which:
M =M-+®;ad, (36a)
Q=Q- ®ja(Deq+® +20£0+ 00 (36b)
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where the leading matrix of the system M is symmetric and always has inverse.

Once described the initial position, velocity and acceleration problems, derivatives can
be taken to obtain their correspondent sensitivity equations. Considering (31), the sensitivi-
ties of q can be reached by means of:

Dy, [P
{ B } q= [ Iy (37)
Deriving (33), the sensitivities of the velocities of the states are directly obtained with:
& ., [-Dgqd —Dp
= [0 w

The derivation of the dynamic penalty problem, already studied by Pagalday in [28],
yields:

Mi' +Cq' + (Mqi+K)q' = Q° —MPg (39)

where:
My =M + B}, 00Dy + Dy adyq (40a)
MP = M) + @, 0Dy + Py a Py (40b)

K= -Qq =K+ @), (i + & +20Ed + Q*0)
T . (400)
+ 0 (Paql + Biq + 2080, + 270, )
C=-Q4=C+®y (Pgqd+Pq+Drg +22ED) = C+ D} (20, +2QEDy) (40d)
Q° = Qp ~ B (2ya+ &, + 206D+ 2°®) — Bla (Dypi+ Biq + 228D, + Q')
(40¢e)
Observe that neither the kinematic problems in positions and velocities neither the
penalty acceleration problem depend on any previous value, hence the integrator does not
have to be applied to these expressions.

Equations (31), (33) and (35) allow the computation of the instant Lagrangian at the
initial time 7 as:

® [ o
—w T _ T q| ) _
A=V ”“’0([&1—2]) ”“([B}“{—i}) 41)
—1 (Mg —-Q)
Now, applying the sensitivity expressions (37), (38) and (39) of the initial problems, the
gradient of the instant Lagrangian at the initial time step is:

‘1];«1} o — [‘f’f’]) ~nh ([qﬁq} q+ m a+ ESD T @)

*ﬂg (Mq/ +Cq' + (qu+f() q - Qp +Mpq>

%:‘I’f)*#cho(

In the two previous equations, Hg, € R(m+d)x0 ig the adjoint variable related to the

initial position equations, U4, € R t4)%0 jg the variable related to the fulfillment of the
initial velocity problem and f, € R"* is related to the compliment of the dynamic penalty
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problem, where m is the number of constraints, d the number of degrees of freedom, n the
quantity of dependent coordinates and o the number of objective functions.

In (42), there are no unprojected velocities or accelerations, neither Lagrange multipli-
ers, but there are 3 sets of unknown sensitivities: ', 2’ and #’. Considering the integration
step between #y and #; of the Lagrangian gradient using (42), (26) and the coefficients of the
trapezoidal rule (25), a set of expressions multiplying the unknown sensitivities can be iden-
tified. The following system of adjoint equations at the initial time #( can obtained nullifying
these expressions:

o d d Y 1
T(Mgq+K) +pd ([ ‘1D+ T([ qD} +2{——G——H} =
{“0( qq ) Heo B “cb 0 (0} Bh th (o +h) gQ{fo}
(43a)

{I»lg (C) + kg ([%qD }{to} +2{ (1 - Ey) o (7ﬁ> H}{t()+h} Bt} (3D

T (K Y 1 _

Observe that a coefficient 2 appears now multiplying the accumulated terms G and H
due to the integration scheme used (25). Looking at this equation, the Lagrangian at #y
is multiplied by A/2, while the next time step #; is multiplied by /4. This coefficient arise
during the addition of equations and the nullifying of the terms related to the sensitivities of
the states at #o. It should be remarked that this coefficient is exclusively valid for the rule of
integration (25). If a different scheme of integration is used, different values of this constant
will come out.

The system of equations (43) can be easily solved sequentially: firstly, i, can be de-
termined from (43c) (this system is compatible determined, hence it has a unique solution);
secondly, 4, can be obtained from (43b). Thirdly, lg can be calculated from (43a).

It is important to note that the use of redundant constraints entails the existence of infinite
valid solutions for l 4, being one of them the minimum norm solution of the system. Since
this system is solved only once per simulation, there is no need to use efficient techniques
to solve it, so general routines of math libraries such as LAPACK could be employed. This
minimum norm solution is considered and implemented in MBSLIM for the solution of both
Ko and gy

Similarly to 79, in tg the effect of the integration rule have to be considered too. In
the solution of the adjoint equations related to the sensitivities of the states and Lagrange
multipliers at tr — h, the accumulation terms G and H appear multiplied by a coefficient of
0.51in (27).

Once solved the correspondent systems of adjoint equations at each time step, the gradi-
ent of the cost function can be computed with the remaining terms independently from the
sensitivities of the states. The instant gradient for #; € (fo,7r] can be computed as:

v, =g +u' (Qp ~Mpi" — @y (A" + @) — ‘qu“‘I’p)
5@y — uf (@h,cad Py (d" - @)+ Phcad, ) (44)

1y (Qﬂpgafb —Pp (4" —q) +<I>§ga<'l'>p)
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At 19, the instant gradient of the cost function is:

P
v =2~ - ubo (| 2] ) 3o

Applying the numerical integration (25), the gradient of the cost function can be ob-
tained as:

“_’;} ) — gy (MP§—QP) 45)

v =

NS

n—1
(wot+w,)+h Y, v (46)
i=1

The DAVM of the ALI3-P semi-recursive formulation can be generally computed by
means of the following algorithm:

1. Solution of the dynamic problem and storage of the values of the states, the Lagrange
multipliers and the projected and unprojected velocities and accelerations at each time
step.

2. Initiation of the backwards computation of the adjoint variable sensitivity at fz with the

accumulation terms G = 0 and H = 0.

. Determination of i from (27c).

. Computation of i 4 from (27b).

. Solution of p and K g from (27a) and (27d).

. Computation of the sensitivity of the instant Lagrangian (44) and integration in time by

means of (46).
. Computation of the accumulated terms G and H through (28) at the current time step.
. Decrease of the time step and repetition of the stages from 2 to 6 until 7 is reached.
9. Atty, computation of i, from (43c).

10. Calculation of W4, from (43b), using a minimum norm solver.

11. Determination of g from (43a), using a minimum norm solver.

12. Computation of the sensitivity of the instant Lagrangian (42) and integration in time by

means of (46).

Behold that most of the obstacles found in the CAVM applied to the ALI3-P formu-
lation, such as time derivatives of mass and projection matrices, the application of a vari-
able change, the addition of adjoint variables at ¢ or the complex initialization process are
avoided with this method. There is no additional derivatives apart from the ones present on
the DDM, there is no need to include new adjoint variables for initialization purposes, and
the initialization process is reduced to use the same expressions valid for instant of time
t; € (o, tp] but with the accumulated terms equal to zero.

It should be remarked also that CAVM and DAVM yield very similar expressions, and
equivalent computational times are expected.

(o) NV, I SO

[c BN

6 Numerical experiments

In this section, the DAVM applied to ALI3-P formulations is tested with two multibody sys-
tems modeled with natural and relative coordinates. The relative coordinates semi-recursive
formulations used are RTdyn0 ALI3-P and RTdyn1 ALI3-P, both presented in [16]. Results
are compared with a reference response obtained with the matrix R formulation in natu-
ral coordinates described in [29] with 1 millisecond of time step. The sensitivity analyses
have been executed with the multibody library MBSLIM on an Intel Core 17-8700 CPU at
3.20GHz running Windows 10 with Fortran Intel Parallel Studio XE 2018.
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6.1 Five-bar mechanism

The five-bar mechanism used is a multibody system composed by 5 bars which has been
traditionally used as benchmark problem to test sensitivity results [28,30,31,5,21] .

Fig. 1 Five-bar linkage.

The array objective function considered is:

1o

V= gdt 47
173
with .
(ry —ry) (ry—Ty)
g= I, (43)
i,

in which r, is the position of the point identified as 2 in figure 1, whereas ¥, and ¥, are its
velocity and acceleration. The term r,, represents the position of point 2 at the initial instant

of time rpy = [0.5 —2.0 0.0] .
The mass, the length and the position of the center of mass of the bar A1l constitute the
set of parameters of the system along with the natural lengths of the springs:

p = [Ly Lo may x§) Lai] (49)

in which x§| constitutes a simplified notation of (£§,) .

The results of the sensitivity analysis for a 5 second maneuver of the mechanism sub-
jected to gravitational and spring forces are displayed in table 1. Observe that the results
are equivalent for both natural and relative coordinate models, which demonstrates that the
method is valid for both constant or variable mass and projection matrices.

Harnessing the same mechanism, a second sensitivity problem is outlined. Let us con-
sider that two actuators are connected to points A and B (see fig. 1), and they can introduce
an angular force on the joints placed at this points. Behold that this is a 2-dof mechanism
which can be completely determined by defining the values of two of the angles of its rev-
olute joints®. An optimal control can be applied to this mechanism using these two angular
forces as control inputs.

5The reader is referred to those works for a detailed description of the mechanism.

6This mechanism can have a direct and an inverted configuration for a given selection of dof, but the
number of dof is still invariant.
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RTdyn0O ALI3-P RTdynl ALI3-P ALI3-P Reference
(v, -4.228 -4.228 -4.228 -4.228
(v’)’Lﬁ 3212 3.212 3.212 3.212
(v 0.3186 0.3186 0.3186 0.3186
;"Al
(¥ e 0.4423 0.4423 0.4423 0.4423
Al
(y! )’LAl 3.360 3.360 3.360 3.360
(v, -15.45 -15.45 -15.45 -15.45
( 'I'Z)LQ 50.32 50.32 50.32 50.32
(v?) 0.9700 0.9700 0.9700 0.9700
;"AI
( Wz)xol 0.7454 0.7454 0.7454 0.7454
A
( nyz)’LA1 -21.37 27.37 -27.37 -27.37
(uﬁ)’LAl 221.7 221.7 221.7 221.8
(v),, 2437 2437 2437 2437
(v 3251 -32.51 3251 3251
mai
(v¥) o -85.70 -85.70 -85.70 -85.70
Al
(¥, -2547 -2547 -2547 -2547

Table 1 Sensitivities of each component of objective function.

One approach to optimal control consists of the parameterization of these forces by
means of splines, which allows a reduction in the number of parameters of the optimization
problem. In this case, cyclic splines are employed [32].

The optimal control problem is omitted here since it is out of the scope of this paper,
but the sensitivity analysis of the problem is studied for this application. The use of splines
allow to easily increase the number of parameters, which makes possible to assess the effect
of the size of the parameters vector on the total CPU time when a DAVM method is used.

Once guaranteed that the results are accurate with the first five-bar experiment, compu-
tational times with the force splines parameterized with 10, 25, 50, 100, 250 and 500 points
each one are evaluated for DAVM and DDM methods applied to ALI3-P in natural and
relative coordinates.

Number of parameters

20 50 100 200 500 1000

ALI3-P 0.828 1219 1.844 3.672 11.281 23.016

DDM  RTdyn0 ALI3-P  0.672 0.734 0.844 1.109 1.828 3.109
RTdynl ALI3-P  0.688 0.781 0.890 1.156 2.000 3.547

ALI3-P 0.719 0.781 0.844 0.953 1.313 1.828

DAVM  RTdyn0 ALI3-P  0.672 0.688 0.781 0.844 1.188 1.688
RTdynl ALI3-P  0.672 0.703 0.797  0.953 1.359 2.094

Table 2 CPU times (in seconds) for different numbers of sensitivity parameters.

Table 2 portraits the benefits of the DAVM with respect to the DDM in terms of compu-
tational time independently from the set of coordinates selected. CPU times of the reference
response computed with matrix R formulation have been eliminated from table 2 since the
goal of this table is to compare the performance of the differentiation methods within the
same dynamic formulation.
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6.2 Four-wheeled vehicle

The discrete sensitivity expressions are proved in a more complex real-life multibody model
in order to test their validity, generality and performance. The mechanical system considered
is the four-wheeled vehicle with articulated suspensions recently described in [16] and used
as test benchmark for different sensitivity schemes in [5,21].

Fig. 2 Points and vectors used to model the four-wheeled vehicle.

The mechanism depicted in figure 2 is composed by 18 bodies and is subjected to grav-
itational forces, spring-damper forces on the suspensions, contact and frictional tire forces,
and to a guidance of the steering rack by means of a rheonomic constraint. The user infor-
mation referred to points and vectors is translated by MBSLIM into a natural coordinates
model of 180 mixed coordinates restricted by 178 constraint equations, and to a relative
coordinates model of 36 joint coordinates subjected to 26 constraint equations.

Me maneuver considered consists of a descent of a 1.0 cm step placed at 5.5 m from the
initial position in the forward direction of the vehicle. The vehicle has an initial velocity of
3.0 m/s in the forward direction with 11.0 rad/s of spin velocity for each wheel, and there
are no additional traction forces.

A measure of driver’s comfort is regarded as objective function. It is calculated as the
integral over time of the square of the vertical accelerations experimented by the pilot (con-
sidered as rigidly attached to the chassis) during the step descent maneuver:

F )
v— / 2 dt (50)
o ‘
The set of sensitivity parameters selected for this maneuver are:

p = [ky cf kr ¢ m] (51)

wherein ky and c are the stiffness and damping coefficients of the front suspensions, k, and
¢, denote the stiffness and damping coefficients of the rear suspensions and mi, represents
the mass of the chassis.
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—+— ALI3-P
—©— RTdyn0 ALI3-P

> ®| . RTdyn1 ALI3-P
1 1 1
0 1 3 4 5 6
Time (sec)
x10°
1
—+— ALI3-P
397 05 —o— RTdyn0 ALI3-P
—— RTdyn1 ALI3-P
0 ‘ ® & ® ! ‘
0 1 3 4 5 6
Time (sec)
—+— ALI3-P
934“ ®| —©— RTdyn0 ALI3-P
—— RTdyn1 ALI3-P
1 1 1
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—— RTdyn1 ALI3-P
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Fig. 3 Evolution of each component of the objective function gradient during the backwards time integration

using the DAVM.

Figure 3 represents the evolution of each of the components of the gradient during the
backward time integration for the DAVM applied to ALI3-P in natural and relative coordi-
nates. Behold that the value of each component of the gradient at each time step does not
represent the real value of the gradient, but only an intermediate integration result. The final
results of the gradient are displayed in table 3. Observe that despite the complete different
formulations, differentiation methods and sets of coordinates, the DAVM demonstrates an
excellent level of accuracy.

me

RTdyn0O ALI3-P RTdynl ALI3-P ALI3-P Reference

(p), , 2.052e-4 2.054e-4 2.052e-4 2.054e-4

y). 9.336e-4 9.336e-4 9.336e-4 9.336e-4
(,f

(W), -3.843e-5 -3.844e-5 -3.814e-5 -3.814e-5

(v, 7.532e-4 7.532e-4 7.532e-4 7.532e-4

(y)! 4.060e-2 4.058¢e-2 4.092e-2 4.090e-2

Table 3 Sensitivities of each component of objective function.
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7 Conclusions

In this paper, the application of the DAVM to ALI3-P formulations was accomplished for
Newmark’s family numerical integrators. The generation of the set of adjoint equations has
been funded on the application of the adjoint variable formalism to the discrete expressions
of the EoM of a multibody system. As result, 2 accumulation terms G and H have been
identified as “couplings” between time steps during the backwards integration in time of the
adjoint equations.

An special attention has been put on the initial instant of time. The two kinematic posi-
tion and velocity problems along with the dynamic acceleration problem have been derived
and their adjoint equations have been reached.

It has been demonstrated that the DAVM method gathers the advantages of the CAVM,
which are a reduced set of variables and systems of equations, with the benefits of DDM,
which are the conservation of the order of the time derivatives of the dynamic magnitudes
from the original dynamic problem and the straightforward initialization process. As main
drawback, the set of equations presented is particular for the Newmark’s family integrator,
and the use of other numerical integrator will lead to different expressions and to different
accumulation terms.

The method has been implemented in the general purpose multibody library MBSLIM
for natural and relative coordinate models. Both theory and implementation have been tested
with two numerical experiments. First, the sensitivity analysis expressions have been tested
in a five-bar mechanism with design parameters in order to test accuracy, and then with
control parameters so as to test efficiency. The second experiment consists on the sensitivity
analysis of a vehicle during a step decent maneuver. In both experiments, results display a
satisfactory level of accuracy with a reduced computational time.
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