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Abstract—Inertial navigation provides a small footprint, low-
power, and low-cost pathway for localization in GPS-denied envi-
ronments on extremely resource-constrained Internet-of-Things
(IoT) platforms. Traditionally, application-specific heuristics and
physics-based kinematic models are used to mitigate the curse of
drift in inertial odometry. These techniques, albeit lightweight,
fail to handle domain shifts and environmental non-linearities.
Recently, deep neural-inertial sequence learning has shown
superior odometric resolution in capturing non-linear motion
dynamics without human knowledge over heuristic-based meth-
ods. These Al-based techniques are data-hungry, suffer from
excessive resource usage, and cannot guarantee following the
underlying system physics. This paper highlights the unique
methods, opportunities, and challenges in porting real-time Al-
enhanced inertial navigation algorithms onto IoT platforms.
First, we discuss how platform-aware neural architecture search
coupled with ultra-lightweight model backbones can yield neural-
inertial odometry models that are 31-134 x smaller yet achieve or
exceed the localization resolution of state-of-the-art Al-enhanced
techniques. The framework can generate models suitable for
locating humans, animals, underwater sensors, aerial vehicles,
and precision robots. Next, we showcase how techniques from
neurosymbolic AI can yield physics-informed and interpretable
neural-inertial navigation models. Afterward, we present oppor-
tunities for fine-tuning pre-trained odometry models in a new
domain with as little as 1 minute of labeled data, while discussing
inexpensive data collection and labeling techniques. Finally, we
identify several open research challenges that demand careful
consideration moving forward.
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Index Terms—Bayesian, dead-reckoning, inertial, kalman fil-
tering, neural architecture search, neural networks, neurosym-
bolic, odometry, platform-aware, sequence learning, TinyML

I. INTRODUCTION

Inertial odometry uses accelerometer, gyroscope, or mag-
netometer data for indirectly estimating the change in an
object’s location and orientation with intermittent updates
from infrastructure-dependent localization services [1]-[3].
Inertial navigation provides an always-available, small foot-
print, high resolution, and ultra-low-power pathway for dead-
reckoning [1], [4]-[9]. MEMS inertial measurement units
(IMU) encompass a broad domain spectrum. Underwater
autonomous vehicles, picosatellites, micro-unmanned aerial
vehicles, and precision agricultural robots use inertial sen-
sors for fast, always-on, and energy-efficient state estimation
and navigation [8], [10]-[23]. Smartphones and wearables
feature on-board transportation mode recognition, pedestrian
dead-reckoning (PDR), fitness monitoring, and human activity
recognition [1], [4], [24]-[29]. Virtual reality headsets and
earables estimate high-resolution head pose using IMU for
haptics, gaming, and augmented reality applications [10], [24],
[30]-[33]. Marine health trackers and wildlife tags use mo-
tion sensors for biologging tagged animal behavioral patterns
within a tight power and weight budget [34]-[37]. Industrial
robots and machinery employ multi-IMU arrays for vibration
analysis, joint state estimation, and anomaly detection [38]-
[41]. The market for inertial sensors was valued at USD 16.4
billion in 2020, with an expected value of USD 22.3 billion
by 2026 at 5.4% CAGR'.

Despite their widespread ubiquity, MEMS inertial sensors
suffer from soft and hard iron distortions, additive white
Gaussian noise (AWGN), angular random walk (ARW), and
time-varying bias instability (BI) [42]. Thus, naive double inte-
gration (NDI) of accelerometer readings and magnetic heading
estimation for dead-reckoning accumulates location error that

Uhttps://www.reportlinker.com/p05798878
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Fig. 1. Motion cycle segmentation, displacement estimation, and transportation mode recognition techniques used by classical inertial navigation algorithms.

drifts cubically with time [7], [43]-[45]. Traditionally, this
drift is handled using belief-based velocity updates, heuristic
drift reduction, map-matching, transportation phase detection,
Bayesian filtering, and kinematic pattern matching [46]-[57].
While being computationally tractable, these system mod-
els are only linear approximations of the real-world state-
evolution, failing to handle non-linear complex motions or
domain shifts due to non-optimal parametrization and no
“one size fits all” analytical solution [1], [5], [7], [18]-[20],
[45], [58]-[61]. Recently, Al-enhanced inertial navigation has
overcome the need for accurate system modeling, achieving
superior long-term odometric resolution over classical meth-
ods [7], [19], [45], [58], [62]-[65]. Machine learning (ML)
frameworks model sensor covariances and noise [18], [64],
[66]-[68], estimate velocity profiles [62], [65], [69]-[71], pro-
vide state pseudo-measurements to Bayesian filters [63], [72]-
[74], or estimate position end-to-end [1], [5], [7], [19], [58],
[60]. These techniques, on their own, are unsuitable for real-
time deployment on ultra-resource-constrained devices (e.g.,
microcontrollers) due to excessive memory and computational
resource usage, need large amounts of labeled data in the target
domain, suffer from inertial perturbations, and are unable to
learn physics-based constraints and kinematic models [1], [5],
[11], [61]. The real-time operation, deployability, interpretabil-
ity, data efficiency, and physics awareness of Al-enhanced
algorithms are difficult to guarantee, making their adoption
on Internet of Things (IoT) platforms challenging.

In this article, we discuss several techniques for achiev-
ing feasible real-time Al-enhanced inertial navigation on
resource-constrained platforms. Firstly, we introduce Tiny-
Odom, a platform-aware framework for developing neural-
inertial odometry models for microcontrollers and in-sensor

processing units [1]. TinyOdom exploits advances in tiny
machine learning (TinyML) to automatically optimize ultra-
lightweight neural network (NN) backbones using platform-
in-the-loop Bayesian neural architecture search (NAS), gen-
erating odometry models for various applications that are
deployable on IoT platforms without sacrificing resolution
significantly. TinyOdom talks to the target hardware during the
optimization process to guarantee that the model fits within
the platform constraints. Secondly, we showcase how neuro
U compile [symbolic] and symbolic [neuro] paradigms from
neurosymbolic Al leads to physics-aware neural-inertial nav-
igation models. Specifically, we develop a physics, velocity,
and magnetometer-centric sequence learning formulation ro-
bust to gravity pollution, inertial disturbances, varying sensor
placement, and heading rate singularity without needing large
amounts of training data [1]. We also showcase a neural-
Kalman filter for optimally combining interpretable physics-
based models with NN [11]. Thirdly, we discuss transfer-
learning techniques for fine-tuning pre-trained odometry mod-
els using small amounts of real-world labeled data in the target
domain, while illustrating an automated video-processing and
labeling pipeline for collecting high-resolution labeled IMU-
location data [1], [11], [75]. Lastly, we outline several open
challenges and ideas for future research.

The rest of the paper is organized as follows. Section II
provides background on inertial navigation using both clas-
sical and Al-enhanced techniques. Section III delineates the
platform-aware neural-inertial navigation framework and ro-
bust sequence learning formulation. Section IV presents the
neural-Kalman filter. Section V details the transfer learning
pipeline. Finally, Section VI provides concluding remarks and
open research challenges.
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II. BACKGROUND

The accelerometer f°, gyroscope w;p, and magnetometer b™
within a MEMS IMU are modelled as [42]:

f* = R™(a”, — g) + b, +n, (1)
Wip = Wnpp + bq + ng, (2)

b” = R"m"” +n,, m" = [cosd 0  sind] 3)

where, R®” is the rotation matrix from the navigation frame
n to the body frame b, a,,, is the latent linear acceleration,
g is the gravity vector, w,; is the latent angular velocity, and
§ is the geomagnetic inclination. b, ~ A(0,Q,) and b, ~
N(0,Q,) are BI gradients with covariance Q. n, ~ N(0,%,),
n, ~ N(0,X,), and n, ~ N(0,%,,) are AWGN with covari-
ance Y. Assuming the absence of geomagnetic perturbations,
sensor placement offsets, and by, the latitude (¢) and longitude
(M) of an object in the inertial frame [ are calculated by NDI
of accelerometer readings (a%,al,al), using magnetometer

readings for heading estimation (mi, mé, mg) [34]:

_ . . s s
¢; = arcsin (sm ¢r_1 - COS 7o +cos ¢¢_1 - sin Re - COS H)

4)
At = A\¢—1 + arctan 2 (sinH - sin E—’E - COSpy—1,CO8 1% —singy_1 - sin a,,)
(5)
where,
I
My 4 180
H = arctan yI — (6)
_mw,t ™
. By/fa2  +1a2 , + T2, +~, /la2,+Ta, +1a2,>a
0 otherwise
(7)

Rpg is 6.371 x 10°m, « is the noise rejection threshold,
and S and v are scaling constants. Without drift and noise
compensation, H has an error of £100° [76], while the error
o(t) in ¢ and X explodes cubically with time [43]:

o(t) = s0\/ (2 ARW VE/3)2 + (BT -12/2)  (8)

Inertial navigation systems (INS) counteract the curse of drift
in the above formulation either using physics-based heuristic
priors (Section II-A) or ML methods (Section II-B).

A. Classical Inertial Navigation Techniques

Heuristic techniques decompose the dead-reckoning prob-
lem into heading estimation, motion cycle segmentation, trans-
portation mode classification, and displacement estimation [4],
[6], [8], [76], summarized in Fig. 1 and Fig. 2. The selected
models are combined either using INS or step and heading
systems (SHS) for legged objects.

Heading Estimation: For strapdown inertial navigation, the

heading is obtained by horizontal projection u,”"""* of the
object attitude q, [53]:

— N, horz I 0 -

u, e = [ 252 0] C3(q)u” )

Cg is the direction cosine matrix (DCM) and u.? is the
unit vector nonparallel to the ground plane perpendicular. The
simplest algorithm (complementary) fuses low-pass filtered
accelerometer data and high-pass filtered gyroscope data [77]:

arctan2(al ;, al ;)

q2e(q,) = (1 — a) (42e(g,—;) + AR"w;) + @ |:‘<chtan 2(—al 4,/ (lfmz + ai)f)

0

(10)
g2e(-) is the quaternion to Euler conversion. Non-linear
complementary filters [78] correct gyroscope quaternion
e2q(AtR""w,) error using accelerometer-magnetometer fu-
sion via proportional-integral compensation (Mahony) [79],
gradient-descent (Madgwick) [80], quasi-static motion de-
tection (A3) [81], and Levenberg-Marquardt algorithm
(Fourati LMA) [82]. Least-square solvers (e.g., TRIAD [83],
QUEST [84], Davenport’s Q Method [85], and Fast
Accelerometer-Magnetometer Combination (FAMC) [86])
pose the attitude estimation problem as Wahba’s problem [87],
finding DCM between a reference vector and an observation
vector. MUSE [44] uses geomagnetic North as the primary an-
chor instead of gravity. For optimal linear attitude estimation,
a Kalman filter (KF) fuses noisy sensors under Bayesian vari-
ations using a prediction and update model [88]. The extended
KF (EKF) [89] and unscented KF (UKF) [90] linearizes non-
linear MARG models using Jacobians and sigma points around
the running moments [91]. Indirect KF model sensor errors
as state vectors, while direct KF output object attitude [53],
[92]-[95]. Adaptive KF allows the filter covariance and noise
parameters to be estimated on the fly [96]-[98].

To counteract drift in ;""" heuristic drift reduction and
position-attitude lock discards heading updates during periods
of negligible translational motion or straight walking [46],
[51], [99] with the aid of transportation mode classifica-
tion and curve angle segmentation. Magnetic drift reduction
techniques correct accelerometer and gyroscope errors in
presence of geomagnetic perturbations and sensor placement
offset using iterative magnetic triangulation (WalkCompass)
or by detecting periods of flat and abnormal magnetic field
gradients [100]-[103]. Known anomaly earth magnetic fields,
magnetic contours, and accelerometer-gyroscope signatures
may serve as virtual landmarks within a known localization
space [49], [104]-[107], forming a map and dramatically
limiting the possible heading angles [108]. Particle filters allow
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these semantic walking direction segments (Zee), inference
points, and inertial landmarks to be detected on the fly
using simultaneous localization and mapping (SLAM) [103],
[109]-[111], indirectly modeling the IMU noise and biases as
filter disturbances. Finally, INS can optimally combine several
attitude and heading estimation models using Kalman or
information filter [112] primitives. Information filter is faster
than KF but mathematically equivalent [113] and preferred for
real-time navigation.

Motion Cycle Segmentation: Motion phase segmentation or
zero velocity update (ZUPT) detects whether sufficient transla-
tional motion has occurred or not to activate the displacement
estimation module, based on the gait or motion cycle [4],
[26], [51], [52]. Static belief-based threshold detectors such as
the accelerometer vector sum, accelerometer rolling variance,
angular rate energy (ZARU), and cascade (SHOE) segregate
the motion cycle for a single transportation mode [47], [51],
[52], [101], [102], [114]-[120]. Adaptive thresholds are robust
across transportation modes, dynamically varying fixed thresh-
old hyperparameters discretely (finite state machines (FSM)
and lookup tables) or continuously [121]-[128]. Temporal
detectors exploit the periodic properties of the motion cycle to
extract recurrent contextual dynamics in the gait cycle, further
improving applicability under varying activity primitives [4],
[26], [76]. Hard temporal detectors include g-crossings [53],
[129]-[131], local extrema [49], [110], [111], [129], [132]-
[136], and local variance [118], [119], [124], [126], [137]-
[139]. Fuzzy logic and hidden Markov models (HMM) turn
hard constraints into generalizable, statistically magnified,
and granular soft thresholds [139]-[148]. In particular, HMM
robustly model the transition and time evolution between non-
observable motion states probabilistically, with the phases
forming a Markov chain. Autocorrelation and dynamic time
warping allow temporal analysis on the same motion cycle at
different time-scales [109], [110], [136]. Orthogonally, spectral
analysis identifies harmonics associated with particular phases,
filtering out inertial disturbances [140], [141]. Finally, several
ZUPT models can jointly form a decision tree or FSM, or be
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fed to an INS or SHS.

Displacement Estimation: The average stride length derived
from object statics or step frequency via regression analysis
forms the simplest displacement estimation algorithm, with
the regression coefficients solved using recursive least squares,
particle filters, and online/offline calibration [108], [110],
[123], [126], [130]-[134], [149], [150]. Dynamic stride length
estimators (SLE) operate on accelerometer statistics, step
frequency, and lookup indicator sets, aided by transportation
mode detectors and object dynamics priors to vary track
tortuosity [34], [53], [116], [121], [127], [129], [135], [138],
[151]-[155]. Inertial, magnetic, and geometric landmarks as-
sociated with a particular space can adaptively calibrate and
constrain stride lengths, either discovered via SLAM on-the-fly
(Zee) or known pre-deployment and stored as graphs, spatial
maps, or lookup tables [49], [108], [109], [117], [141]. In
particular, stored anomaly earth magnetic fields and magnetic
contours can be correlated with geophysical fields to form the
basis for geomagnetic self-localization in multirotor, ships, and
aircrafts [104]-[107], [156]. Known inertial traces signifying
object strides and time periods can be mapped to memory
and matched with incoming IMU sequences [57], [157]. Select
displacement models are fed to an uncertainty-aware INS using
Kalman filters [51], [95], [102], [114], [137], [139], [140],
[148] or non-Bayesian SHS [115], [119], [124].
Transportation Mode Classification: Transportation mode
classifiers make motion phase segmentation, displacement es-
timation, and heading estimation robust to activity primitives,
sensor placements, and topography [26] [76]. Classical activity
detectors form decision trees and FSM from temporal and
spectral features, match known inertial traces with incoming
IMU data, or use HMM to form probabilistic FSM. Recent
transportation mode classification frameworks opt for model-
free and data-driven ML and NN-based mobility classifica-
tion [4], [26], [76], [76], [158]. IMU data is collected in
diverse settings, pre-processed, and labeled. The dataset is then
partitioned and features are optionally extracted, on which the
ML algorithms are trained [25], [27], [159]-[163].
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B. Neural Inertial Navigation Techniques

Fig. 3 outlines four classes of Al-enhanced inertial odometry
techniques. The methods either aid in supplying model-free
and application-agnostic velocity profiles, covariance matrices,
noise parameters, or pseudo-states to classical INS or SHS,
or estimate location end-to-end [1], [11]. These methods are
generally superior at handling micro-vibrations, IMU noise,
sensor offset, domain shifts, different activity primitives, vary-
ing topography, inertial perturbations, and non-linearities over
classical methods without needing human-designed system
models [1], [5], [7], [18]-[20], [45], [58]-[61].

Covariance and Noise Modeling: Conventional INS estimate
the KF covariance matrices adaptively or offline using statisti-
cal techniques [164]. Statistical approaches for estimating the
KF process and measurement noise include maximum likeli-
hood estimation [165], covariance least squares [98], [166],
Bayesian updates [167], and correlation technique [168].
These techniques, based on statistical tests on measurement
error residuals, do not optimally capture the effects of varying
motion dynamics on the covariance parameters [18]. NN
are adept at finding black-box relations between covariance
matrices and motion primitives [18], [169]. NN-based systems
can be open-loop or closed-loop. Open-loop frameworks either
remove noise and drift from IMU readings before supplying
to an INS using GyroNet [170] or dilated convolutional NN
(CNN) [66], or remove the effects of noise and drift from the
INS position output using LWOI [64] or fully-connected NN
(FC-NN) [68]. To counteract statistically non-optimal denois-
ing under non-ideal gradient descent convergence, closed-loop
frameworks use temporal convolutional networks (TCN), TCN
with denoising autoencoders (DAE), or reinforcement learning
(RL) to dynamically and tightly update KF covariance and
noise parameters while receiving feedback about the correction
performance [18], [169], [171]-[173]. Closed-loop systems
follow the symbolic [neuro] neurosymbolic paradigm of com-
bining NN with physics-based models (e.g., KF), while open-
loop frameworks follow neuro—symbol or symbolic neuro
symbolic paradigms [174], [175].

Velocity Profile Estimation: Long short-term memory
(LSTM) networks are trained to segment motion cycles [62],
[65]. A support vector machine is trained to classify activity
primitives [45], [69], [71]. FC-NN or support vector regressors
(SVR) are trained to perform stride length estimation [45],
[70]. The model outputs are fed to INS or SHS for location es-
timation. This technique follows the neuro— symbol paradigm.
State Advisors: State advisors provide pseudo-state informa-
tion (such as velocity and heading) to INS, aiding the KF
and following the tightly coupled symbolic [neuro] paradigm.
TLIO [63] and Cortes et al. [72] use CNN to provide a
strapdown INS with displacement and KF covariance matrix
during measurement update. NN-DR [73], [74] uses an FC-NN
to provide heading pseudo-states to an EKF. TinyOdom [1]
fuses an end-to-end neural inertial navigation system model
with the GNSS measurement update model via a neural-EKF.
End-to-End Location Estimation: The absence of domain-

712

specific INS or SHS makes this the preferred Al-enhanced
inertial navigation technique [1], [11]. Deep inertial sequence
learning is used to train a NN to either regress the heading and
displacement [5], [19], [58], [61], [176] or the 2D Cartesian
velocities [1], [7], [20], [60] of an object directly from inertial
sensor windows. The latter formulation is robust to heading
rate singularities [1], [11]. An integrator converts the model
outputs to location. This approach is purely neural.

III. PLATFORM-AWARE NEURAL-INERTIAL NAVIGATION

IONet [58] proposed the first end-to-end Al-enhanced in-
ertial navigation technique based on deep inertial sequence
learning, using the heading-displacement formulation:

(AL, Ay) = yo- (v (0), &0, )-

The NN y with parameters 6* estimates the heading rate
Ay and the displacement rate Al in polar coordinates
from accelerometer ﬁé:q +n, and gyroscope windows Wé:q n)
of length n and stride s in the inertial frame /. The implicit
task is to estimate the latent initial velocity v/ (0) and gravity
vector direction g{ in each window at epoch k. The position

(Lz, Ly) and learning algorithm to obtain 6* are given as:

AT LT
A g+ns Waig+n

(1)

Ly =Ly i—1+ Al cos(App_1 + Avdy) (12)
Ly = Lyk—1+ Algsin(Avpp_1 + Aty)

0" = argmin L(yo- (X), Y) (13)

L() =Y ||Algx — Alk]3 + k|| Ay — A3 (14)

Aly . and Az i, are the ground truth displacement and head-
ing rates, respectively. X and Y are the training data (IMU)
and ground truth labels. « is a weighing factor. The heading-
displacement formulation has three shortcomings. Firstly, as
ALygi NALggr — 0, Aty T, leading to large spikes
in Aty 1. This is known as heading-rate singularity, causing
y to fail for motion dominated by rotational artifacts with
little translational changes [1], [7], [20], [60]. Secondly, g(l)
polluted by coupling of linear and gravitational acceleration.
Gravity pollution and gyroscope drift induce errors in the
latent attitude estimate, degenerating coordinate frame normal-
ization, and velocity projection [7], [44]. Thirdly, y is prone
to supplying invalid outputs caused by high-frequency inertial
signatures stemming from sensor placement offset, IMU noise,
and rotational artefacts [1]. In addition, the architectures of
y in existing frameworks are suitable for deployment on
smartphones [5], [18], [61], [66] but not on low-end IoT
platforms. A microcontroller typically has only 128 kB SRAM
and 1 MB eFlash while a smartphone may have 4 GB
RAM and 64 GB flash [177]. Reducing the memory-compute
footprint of smartphone-class models using deep compression
(pruning, quantization, and encoding) [178]-[180] or TinyML
compiler optimizations [177], [181]-[184] for microcontrollers
is challenging [177], [181], [185], [186].
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A. Robust Neural-Inertial Sequence Learning

TinyOdom proposes a physics, velocity, and magnetometer-
centric sequence learning formulation to handle the shortcom-
ings of the heading displacement formulation [1], [11], [75].
Handling Heading Rate Singularity: We train y to predict 2D
Cartesian velocities (v, v,) instead of heading-displacement.
Given the ground truth velocities (v 4,0, 4), the sequence
learning formulation, position, and the loss function (strided
loss [7]) in the learning algorithm are given as:

N .
(Ume ’Uy?k) = Yo~ (VI (0)7 gé? aq:qunv wq:q+n)' (15)
Lz = Lm — SV’UI’kv
k k-1t T (16)
Lyk = Lyr—1+ 325
Ly =E[(vz,9. = v21)?] + KE[(vy,g6 — vyx)?]. (AT

Reducing Dependence on Gravitational Anchor: We supply

y with magnetometer data ﬁlé: ¢+n to provide the geomagnetic

North as an additional latent attitude anchor Né beyond g} .
T

mq:q+n)
(18)
N(IJ is robust to gravity pollution, gyroscope drift, sensor
placement offset, and rotational artifacts, implicitly correcting
and constraining g} and v/ (0).
Physics-Aware Velocity Estimation: We follow the neuro
U compile [symbolic] paradigm from neurosymbolic ML to
ingrain physics or constraints in y via a physics metadata
channel ¢j(+). Specifically, we supply y with a local-variance
step detector binary mask [47] or mean Fourier transform co-
efficients [28] of accelerometer vector sum, signifying ZUPT
or transportation modes. y uses this information to provide ve-
locity updates only when significant translational movements
have occurred.

~T ~ T
(”I,kv vy,k) = Yo~ (VI(O)v gé7 N(I)v As:g4n Waig+no

~T ~ ] ~ I IaA
(vz,k7 'Uy,k) = Yo~ (VI (0)~ gév N(])v Ag.q+n> Waigtn Myigins Ck’( a))

19)

A T\ 2
("a) = Lapa > ¢ \/ZM‘ () (20)
0, otherwise

legged
k

(1) = |IFFT (g )| e
AT N Al
ap ny = Gsp.(lan]) — Gsp.(land), At = g g+n,

is a tunable parameter and G5 f.(-) is a Sth order low-pass
filter with cutoff f.. ¢(-) supplies f with latent vald motion
metadata derived from Newtonian kinematics.

B. Platform-Aware Neural Architecture Search

TinyOdom uses automated platform-in-the-loop NAS on a
lightweight model backbone search space 2 to generate y that
are performant, yet fit within the memory-compute bounds of
the target IoT platform.

NAS Program Formulation: The search is modeled as a
parallelizable black-box Bayesian optimization problem to
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minimize the latency and validation loss within the SRAM
and flash capacity of the microcontroller [1], [75]:

.fopt = )‘lfcrror(n) + /\Qfﬂash(ﬂ) + )‘SfSRAM(Q) + )\4flatency(n)

(22)
where,
ferror(n) = Evalidalion(ﬂ) (23)
i B o o "Yf‘ <1A €fiag = 0 v = _Cmnpil;::liz‘or)t(ed flash
fﬁush(ﬂ) = N—— *
fault flag
ay, ay > flashyax
(24)
Vs & |’YS| <1A €flag = 0 L vs = 7Compil§;r§§j{)ned SRAM
fsram(€2) = —_—— max
fault flag
Qs, s > SRAMpax
(25)
RTOS]:[eepnoCrted latency PN g = 0
Yiarget \ ,
flatency(ﬂ) = fault flag (26)

ai, o > latency e

fopt seeks a Pareto-optimal configuration of parameters (*
under competing objectives [187]:

Fu(QF) <= fi(Q) VEQ ATj: Q) < f5(Q) VQ £ QF
27
The NAS program constructs candidate models from €2, which
is composed of NN weights, hyperparameters, ML operations,
and connections denoted as a directed acyclic graph. The
program converts the TensorFlow model [188] to the native
coding scheme of the IoT platform using TensorFlow Lite
Micro (TFLM) [182]. The flatbuffer serialized model schema,
along with the TFLM and real-time operating system (RTOS)
file system is then flashed onto the target microcontroller. If
the model fits and there are no runtime faults, unsupported
operators, or compilation errors (denoted by the fault flag),
the candidate model is trained to obtain feyor(+). fsram(*)
and fgaen(-) are designed to perform full device capability
exploitation via hard thresholding, such that the SRAM and
flash consumption is maximized within the memory bounds to
improve feqor(+) with larger models. If the model does not fit
or induces faults (denoted by €qg), then the hardware metrics
are set to a value o much larger than the device capacity
or target latency to penalize the NAS program. If the target
hardware is unavailable, the NAS program uses the size of the
flatbuffer model schema as a proxy for v, [182], the standard
RAM usage model (intermediate layer-wise activation maps
and tensors are stored in the SRAM) as a proxy for v, [187],
and FLOPS as a proxy for latency [185]. A allows the user to
specify the weight of each element in fop.
Search Algorithm: The NAS program uses Gaussian Process
GP as the surrogate model to approximate fop While using
Monte Carlo sampling with Upper-Confidence Bounds as the
acquisition function to sample the next set of parameters from
 during the search process [189], [190]:

f(2) ~ GP(u(R), k(2, )
Q= argmax(pe 1 (Q) + f70,1(2))

(28)
(29)
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TABLE I

(LEFT) LOCALIZATION PERFORMANCE AND RESOURCE USAGE OF TINYODOM VERSUS COMPETING BASELINES ON PREVIOUSLY UNSEEN
TRAJECTORIES. (RIGHT) ABLATION STUDY OF ROBUST NEURAL-INERTIAL SEQUENCE LEARNING FORMULATION.

Dataset Method SRAM (kB) | Flash (kB) | ATE (m) | RIE (m) Difference _
PDR [138] 10.8 496 347 324 ATE 1.2X T, RTE 26X T Dataset . i ATE (m)
NDI [34] 12 28.1 9120 248 ATE 3260 1. RTE 200X 1 Velocity | Physics | Magnetometer
0xIOD [5) IONET [58] 766 670 595 284 ATE 2.1 1, Size 9.4x 1 \1{;: {‘(i‘i E:: 2‘22
LIONet [5] 154 183 437 282 ATE 16X 1. Size 26X 1 A -
RoNIN TCN [7] 2046 2196 1.95 042 ATE 14X . Size 31 T . No No Yes 415
TinyOdom 52.4-90.1 700-117 | 280682 | 124137 OxIOD [3] Yes Yes No 751
PDR [138] 10.8 9.6 348 236 ATE 15X T, RTE 40X T ;eos i"s z:i :(ﬁ
NDI [34] 12 28.1 12398 59.9 ATE 519% 1, RTE 10X 1 B
RoNIN [51] IONET [58] 976 782 225 7.63 RTE 13 1, Size 15x 1 sz :ﬁf :ﬁ‘s .
LIONet [5] 159 182 247 148 RTE 2.5 1. Size 36X T 3.9:
RoNIN TCN [7] 2046 2196 473 121 ATE 5.0 1. Size 43% 1 No Yes No 641
TinyOdom 362257 50.8-254 239283 | 584776 AQUALOC [196]* \I(t {‘(’C‘: ‘]{;0* g;‘?
AQUALOC [196] NavNet [20] 1364 1397 380 298 ATE 1.1x T. Size 68X T o oy - T
TinyOdom 17.3-36.7 205342 | 332499 | 245330 - o - o
"AbolDecplO [19] 1018 1018 112 140 ATE 5.1x 1. Size 134% 1 Yor - oo o
EuRoC MAV [195] VeTorch [61] 7325 7294 135 152 ATE 6.1x 1. Size 232x 1 - - = o
TinyOdom 43790 314-110 219290 | 202255 o N o e
Gunbog [197] Gunbog [34], [197] 85 325 285 106 ATE25% T.RIE71x T o - N T63
TinyOdom 32.4-843 55.9-96.0 114608 | 0.15-0.35 N N Yor 163
TONET [58] 600 10.1 057 ATE L1x 1. Size 17X T AgroBot [111€@ Yor Yo No 208
L-IONet [5] 183 186 1.40 ATE 20 1, Size 19% | You o Yor o3
AgroBot [11] AbolDeeplO [19] N/A 4160 20,6 0.93 ATE 23x 1. Size 12X 1 No You You loa
VeTorch [61] ~9000 156 0.84 ATE 1.7x 1. Size 25x +
TiEy0dom 3356 9.12 155 23 20 23 783

GP provides tractable and non-parameterized assessment
of prediction uncertainty incorporating the effect of data
scarcity [191]. Monte-Carlo sampling optimizes the non-
gradient-friendly fop, on €2 containing categorical, discrete,
continuous, and conditional elements. The acquisition function
also balances exploration and exploitation via clustering search
to ensure Pareto-optimal convergence, while the gradient-free
formulation accelerates the search process without evaluating
at invalid configurations in €2 [189], [190], [192].
Lightweight Model Backbones: 2 is composed of a TCN
backbone. TCN use dilated causal convolutions with gated
residual blocks. Compared to vanilla CNN or LSTM, TCN
can discover high-resolution, long-range, and non-linear spa-
tial and temporal context in long inertial windows without
overfitting, high parameter cost, or high memory usage [193],
[194]. The search parameters include the filter count, layer
count, layer-wise dilation factors, dropout rate, use of skip
connections, and normalization category.

C. Evaluation

We evaluate TinyOdom on the OxIOD [5] and RoNIN [7]
datasets for PDR, EuRoC MAV [195] dataset for aerial vehicle
odometry, AQUALOC [196] dataset for underwater vehicle
navigation, GunDog dataset [197] for wildlife tracking, and
the AgroBot dataset [11] for precision agricultural robot
localization. We run the NAS program to generate models for
four different STM32 ARM Cortex-M microcontrollers with
128-320 kB SRAM and 0.5-1 MB flash. We use the absolute
trajectory error (ATE) and relative trajectory error (RTE) to
quantify localization performance. ATE is the mean root-
mean-squared-error between the predicted and ground truth
locations for the whole trajectory, while RTE is the ATE for 1
minute [7], [63]. For each dataset, the NAS program was run
for 50 epochs, while each candidate model was trained for 300-
900 epochs. The dataset splits, dataset features, window size,
stride, NAS search space, baselines, and training infrastructure
are delineated in [1] and [11].
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* For selected hardware, Q for phase 1 of the dataset.

Table I (Left) shows the odometric resolution and resource
usage of TinyOdom and competing baselines across the six
datasets spanning five applications. The models generated
by TinyOdom are 31-134x smaller (flash usage 27-72 kB)
than competing neural-inertial navigation models, yet provide
1.15x higher resolution on average. TinyOdom provides a
location estimate within 2.5-12m for trajectories of length
12-1160 m or spanning 60 seconds. Classical inertial navi-
gation techniques such as SHS-PDR [51], NDI [34] and Gun-
Dog [197] are 1.5x smaller than TinyOdom, but have 750x
lower resolution. Baselines using the heading-displacement
formulation struggle in presence of sharp turns, rotational
artifacts, and sensor placement offset. RONIN [7] outperforms
TinyOdom in terms of resolution, but at the cost of 34X
more weights, availability of device attitude, and 50% more
training data. The hardware-aware auto TinyML formulation
of TinyOdom maintains superior odometric resolution both in
the long and short term for various microcontrollers across
heterogeneous applications.

Table I (Right) illustrates an ablation study showing the
importance of different components in the robust neural-
inertial sequence learning formulation. Our formulation lowers
the ATE by 1.1-3.1x. The addition of magnetometer data
and making y regress (vg,vyx) instead of (Alg, Aiy)
reduces the ATE the most. The velocity-centric formulation
mitigates the heading rate singularity issue. The magnetometer
data counteracts the effects of gravity pollution, IMU drift,
rotational artifacts, and sensor placement offset. The physics
channel implicitly forces the network to output zero velocities
when sufficient translational motion is absent. All three com-
ponents contribute to obtain the highest odometric resolution.

Fig. 4 (Left) and (Center) show predicted trajectories by
TinyOdom and competing baselines against ground truth tra-
jectory on unseen data. Classical methods have large error
bounds, while the heading-displacement formulation baselines
struggle during sharp turns and rough patches. Competing
baselines over smooth the trajectories, drift rapidly and suffer
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Fig. 4. (Left) and (Center) Selected previously unseen trajectory reconstruction by ZinyOdom and competing baselines on the OxIOD and GunDog datasets.
(Right) Architectural adaptation and device capability exploitation by TinyOdom on the RoNIN dataset for various microcontrollers. The SRAM and flash

capacity of each microcontroller are given in parentheses.

TABLE II
GPS FUSION PERFORMANCE AND FLASH USAGE OF NEURAL-EKF
VERSUS CONVENTIONAL INS.

ATE (m) RTE (m) "
Method Flash PL 5] 73 P 5] 73 Difference
UKF INS+GPS [198] 192 4.06 4.35 8.09 0.18 0.21 1.07 ATE 3.1 X 1
EKF INS+GPS [199] 77 2.22 2.24 528 0.35 0.35 1.05 ATE 1.8X T
GPS only None 1.90 1.88 1.89 0.40 0.40 0.45 ATE 12X T
Neural-EKF 376 1.07 220 217 0.30 1.16 0.45

refers to the dataset phase, flash size 1s in kB.

from rotational artifacts, noise, and varying topography.

Fig. 4 (Right) shows how TinyOdom adapts the NN for
the same dataset for different microcontrollers depending on
SRAM and flash availability. When more resources are avail-
able, TinyOdom automatically increases the parameter count,
the number of layers, filter count, and the kernel size of the
network to lower the ATE and RTE. TinyOdom also mitigates
the lack of parameters for models running on ultra-low-end
microcontrollers by assigning small dilation factors to lower
layers and large dilation factors to higher layers, allowing tiny
networks to model both local and global contexts. To prevent
overfitting and exploding-and-vanishing gradients, TinyOdom
adds skip connections to larger networks.

IV. NEURAL-KALMAN FILTERING

TinyOdom automatically learns complex inertial dynam-
ics from the training data without depending on human-
engineered approximations used in INS or SHS. Thus, NN-
based state evolution models are preferred over classical
INS/SHS formulation used in Al-enhanced navigation systems
that model covariance and noise, estimate velocity profiles,
or use NN as state advisors. However, TinyOdom is black-
box and non-interpretable to the user. The neuro U compile
[symbolic] paradigm of injecting physics-based constraints
does not guarantee that the constraints will be followed by the
NN. Given a neural system model, it is unclear how to combine
physics-based measurement updates in an interpretable, near-
optimal, and strictly-enforced fashion. We develop the concept
of neural-Kalman filtering using a modified symbolic[neuro]
paradigm and use the filter to inject TinyOdom with intermit-
tent GPS/GNSS updates.

A. Filter Formulation

The discrete-time EKF [200]-[202] propagate and update
equations are:

X1k = f(Xps U1, Wep1),

Piiije = FroiPiFL ) + G QG

of of
Fr1=—— v Gry1 = 0 , (30)
R Uk 41, Wht1 w Xp Ug 1, Wht1
—1
Kii1 =P HE, | Hp P HY +R
k+1 = Py k+1Per1)e g1 k+1 )
innovation covariance
Xpy1kr1 = Xeg1fk + Kegr | Zog1 — R(Xpqape, vie) |
measurement residual
oh
Piiijprr = (I = K1 Hp 1) Py, Hipr = o
Xpt1(k
(€20

During state propagation, X is the predicted state, which is
a non-linear mapping f of the past state, control input u,
and AWGN w with covariance Q. P is the predicted process
covariance and given by the Lyapunov equation [203]. The
diagonal elements of P encode the variances for the state
estimation errors for each element in X, while the off-diagonal
elements encode correlations. Minimizing the trace of P min-
imizes the mean squared error of the state estimates [204].
The equation contains Jacobians of f with respect to X and
w at k, which linearizes the non-linear f about X;. K is
the Kalman gain, which is computed during the measurement
update by linearizing the observation model i and inverting
the innovation covariance matrix. z represents measurements
mixed with AWGN v (noise covariance R). K is multiplied
with the measurement residual to update X. P is then updated
using algebraic Riccati recursion [203].

Now, consider a dynamical system such that Ty : X1, —
X | Ta is linear, and g : X415 — Ug41 | g is non-linear.
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If Ty and g are linearly separable, then the EKF propagation
equation is [11]:

Xpy1x = AXg + g(Wp41),

dg

Piiip = APLAT + B UkBiyy, By = o=

Xy SUk41

(32)

If x contains loose nonholonomic location and velocity esti-
mates, and g represents the TinyOdom-integrator combination:

T I
[A/z a%:qun
. W, L 0
&= L, Cu= gatn | A= 2x2 U2x2] 33y
Vg m q+n 02><2 02><2
Uy C(aq:q+7z)
At - I2><2 S
N = cype (1), At = (34)
90) [ Ioxo yo- () n—s
Atalye()'r Ata]yﬂ()'r Ata}!ﬂ()'f Atﬁ?e()—,
6aq:q+n awq:qun amq:q+n ac(aq:q+n)
Atdyg()y  Atdye()y  Atdye()y  Atdys()y
Oal ow! om!. Oc(al . )
— q:qg+n q:q+n q:q+n q:q+n
Bj1 = 5y;92')z ay?(q')z ay?(‘)z ayg(‘)z
6aq: ~§n awq: +n ‘?mq:qun B‘f(aq:q+n)
oveldy  owsCy  Swel)y _dwsl),
6aq qt+n 8wq qt+n qu qtn 8c(aq:q+n)

(35
Yo+ (-) is the NN from TinyOdom, providing a non-linear
black-box mapping between u and X. According to EKF
primitives, By, contains Jacobians of g with respect to u
around the current inertial window. U contains the Allan
variance parameters [205] of the IMU, which include the
accelerometer noise variance (02(ny1)), variance in gyroscope
ARW (0%(WhpwV/At)) and BI (0%(wk;)), gyroscope noise
variance (02(nyr)), and the magnetometer noise variance
g 2 (nml).

U = diag(02 (nar), 02 (Whrw VAL) + 02 (W) +
02 (nwl)’ 02 (nmf)v Z 02 (nal))

Given the EKF system model representation of TinyOdom, the
physics-based models can be combined with TinyOdom in the
form of measurement updates. R is the covariance associated
with velocity and position estimation error from these models.
The EKF is non-agnostic to both R and U, optimally balancing
complementary properties of the NN and the measurement
models (e.g., smoothness of neural-inertial navigation with
long-term precision of GPS/GNSS updates). In addition, if
the position estimation from TinyOdom drifts too far, X and P
can be reset using the measurement updates.

(36)

B. Evaluation

We evaluate the neural-EKF for locating a precision-
agricultural robot using the AgroBot dataset [11], introduced
in Section III-C. In our evaluation, z is the GPS/GNSS position
and velocity update. h is the inverse mapping from longitude-
latitude to 2D Cartesian coordinates and velocities using the
WGS-84 ellipsoid geodetic model [206]. We also evaluate
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TABLE III
RTE (M) OF NEURAL-INERTIAL MODELS ACROSS DIFFERENT DATASETS
(LEFT) AND APPLICATIONS (RIGHT) WITHOUT FINE TUNING. THE
TRAINING DATASET OR APPLICATION IS SHOWN IN PARENTHESIS.

Method
IONet (OxIOD)
IONet (RoNIN)
LIONet (OxIOD)
LIONet (RoNIN)
RoNIN TCN (OxIOD)
RoNIN TCN (RoNIN)
TinyOdom (OxIOD)
TinyOdom (RoNIN)

OxIOD
2.84
7.65
2.82
8.35
0.42
10.3
1.26
3.16

RoNIN
4.7
7.63
4.7
14.84
13.4
1.21
97.2
6.74

Method PDR uuv

IONet (PDR)
LIONet (PDR)
RoNIN TCN (PDR)
TinyOdom (PDR)
NavNet (UUV)
TinyOdom (UUV)

2.84
2.82
0.42
1.26
93
5.82

5.15
3.94
14.96
7.83
2.96
2.45

neural-EKF for tracking underwater animals with intermittent
GPS updates [75].

Table II summarizes the odometric resolution of neural-EKF
and conventional INS on the AgroBot dataset on previously
unseen trajectories, while Fig. 5 (Left) shows sample trajec-
tory plots. Neural-EKF provides 1.2-3.1x lower ATE over
traditional INS-GPS fusion algorithms. Traditional INS puts
more trust in the noisy GPS updates than the dead-reckoning
algorithm, leading to noisy trajectories. Neural-EKF balances
the short-term smoothness of neural-inertial navigation with
the long-term GNSS precision, leading to a smooth trajectory
that closely follows the ground truth.

Fig 5 (Center) and (Right) show the error evolution of
neural-EKF and traditional INS with increasing GPS outage
intervals on the AgroBot dataset and for locating marine
animals. For the first case, neural-EKF constrains the ATE to
2.75 m even with 20 minutes of GPS outage. For the second
case, the ATE is 14.4 m (0.4% of the entire trajectory of length
4 km) with 1 minute GPS update rate and 57.1 m (1.4% of
the entire trajectory) with 6 minute GPS update rate. Without
GPS updates, traditional INS drifts due to NDI cubic error
accumulation. Pure GPS updates, on the other hand, are noisy
and unusable. For underwater tracking, neural-EKF combines
the robustness of TinyOdom against wave turbulence, varying
depth, ship vibrations, and rotational artifacts with GPS preci-
sion, while for agricultural robot tracking, neural-EKF exploits
the robustness of TinyOdom against motor vibrations, wheel
slippage, and bumpy topography.

V. FINE-TUNING PRE-TRAINED MODELS

Neural-inertial navigation techniques need large amounts of
high-resolution training data in the target domain for providing
acceptable odometric resolution [1], [11], [75]. Table III shows
an example of resolution degradation of neural-inertial models
across domains. In general, these models perform well within
the learned data distribution but fail to adapt to different
motion artifacts and IMU characteristics in a new domain due
to differences in learned physical embeddings across domains.
Moreover, under parameterized systems such as TinyOdom
overfit on the dataset-specific spatiotemporal features due to a
lack of redundant weights, poorly generalizing across domains.

A. Data-Efficient Transfer-Learning

Instead of training new models from scratch using large
amounts of training data in the new domain, we propose using
transfer learning [207] to fine-tune pre-trained models using
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Fig. 5. (Left) Trajectory reconstruction of Neural-EKF (1 Hz GPS, 100 m trajectory) and competing baselines on the AgroBot dataset (phase 1). (Center)
Evolution of RTE (m) with different GPS outage intervals Neural-EKF and competing baselines on the AgroBot dataset (phase 1). (Right) Evolution of ATE
(m) and RTE (m) with different GPS outage intervals Neural-EKF for tracking marine animals (4 km trajectory)

TABLE IV
FINE-TUNING PRE-TRAINED MODELS ACROSS DIFFERENT PHASES OF
THE AGROBOT DATASET

.. RTE (m) on Inference Dataset (Unseen Trajectory)
Training Dataset | 57— pi @y P2 | P2 (FT) [ P3 s (yFT)
Pl 1.10 14.5 1.45 15.0 4.96
P2 2.71 1.09 0.97 425 2.63
P3 1.85 0.76 1.93 1.15 2.58
RTE (m) with T of data in the new d *
Method T=1 T=3 T=120
Train from scratch 26.8 3.29 2.55
Fine-tune* 1.92 1.62 1.45

I: Phase I, P2: Phase 2, P3: Phase 3
FT: Fine-tuning with 20 minutes of data in the new domain for 100 epochs
* The pre-trained model was trained on Phase | data; target dataset: Phase 2

TABLE V
FINE-TUNING PRE-TRAINED OXIOD TinyOdom MODEL ON THE
AGROBOT DATASET

RTE (m) with 7 minutes of data in the new domain*
T=3 T=5 T= 10 T=20 T= 40 T=75
1.39 1.09 0.94 0.86 0.83 0.81
0.85 0.81 0.80 0.80 0.80 0.80

Method

T=1
3.26
1.09

T= 100
0.80
0.80

Train from scratch
Fine-tine

as little as 1 minute of labeled data in the target domain. We
freeze some of the lower layers of the pre-trained NN and
make the higher layers trainable.

Table IV and Table V showcase the data efficiency and
resolution improvement brought on by transfer learning. For
the first case, fine-tuning reduces RTE by 1.6 - 13.6X in the

Extended-Maxima Transform
i Frame 1

= s
RGB to Gray Morphological Opening

Video Pre-processing

Frame i

Object Tracking (Kanade-Lucas-Tomasi)

target domain, while increasing data efficiency by >20x. In
other words, 1 minute of fine-tuning exceeds training from
scratch on 20 minutes of labeled data by 1.3 x. For the second
case, 1 minute of fine-tuning reduces the RTE by 8x for a
pre-trained model with no fine-tuning, while 5 minutes of fine-
tuning equals training from scratch on 100 minutes of labeled
data. Pre-trained models already have some notion of inertial
dynamics in a different domain, which models trained from
scratch must learn, resulting in fine-tuning being data-efficient.

B. Collecting Labeled Data in New Domain

Fine-tuning still requires some high-resolution labeled iner-
tial odometry data. Specialized motion capture systems suffer
from limited coverage, high cost, use of specialized soft-
ware, high computational requirements, and ambient lighting
conditions [208]. Vanilla GPS is noisy, with a maximum
resolution of around 2 m [11], [75] (unless differential GPS
is used, which can achieve centimeter-level accuracy at the
cost of limited coverage, complexity, and time delay [209]).
We develop an automated data extraction framework operating
on overhead quadrotor video feeds [11] that mitigates the
aforementioned limitations. Fig. 6 illustrates the automated
inertial odometry data extraction pipeline. The user places
several printed checkerboard patterns as reference landmarks
at the boundaries of the quadrotor camera’s field of view
(FOV). The horizontal distance, h between landmark ¢ and
7, and the vertical distance, v between landmarks % and [ are

Bounding box to .
centroid extraction > Smoothing |
Wind drift .
Scalin
correction g |
Bounding l l
o3 Missing data x and y robot
interpolation B position in global
coordinates

Pixel to Position Transformation

Fig. 6. Automated pipeline to extract labeled inertial odometry data from monocular quadrotor video feeds.
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measured and noted. The object to be tracked is then moved
within the FOV of the quadrotor camera. The IMU data is
logged onboard the object, while the quadrotor camera records
the object moving. The camera frames are synchronized with
the IMU data using “static-rotate-static” motion patterns. The
pipeline has three steps:

Video Pre-Processing: After converting the RGB video
frames to grayscale, extended maxima transform [210] and
morphological opening [211] are applied to leave only the
landmark and the object to be tracked in the frame.

Object Tracking: The user marks the bounding boxes for the
object and the landmarks in the first frame. The Kanade-Lucas-
Tomasi tracker [212], coupled with a minimum eigenvalue
feature extractor [213], tracks the bounding boxes across
subsequent frames.

Pixel to Position Transformation: The centroids of the
bounding boxes are derived from the corner points, which are
corrected for quadrotor wind drift by observing the movement
of static landmarks. The user provides warm starts when
the tracker loses the object or the landmarks due to light
intensity changes. Linear interpolation fills the gaps between
warm-starts and the last known object location. Median filter-
ing [214] cancels high-frequency tracking noise. Finally, the
derived pixel positions are scaled with the scale factor s, s,
to convert to global coordinates as follows:

‘C;,l - Cﬁ;,1| |Ck,1 - Cgl;,l
= h y Sy = )

v
C¢, is the centroid of landmark c at frame b for axis a.
The pipeline, executable on commodity computers, provides
ground truth locations at a resolution of +5.0 cm.

@ (37

xR Sy,

VI. CHALLENGES AND CONCLUSION

This paper provides a quantitative, methodological, and
qualitative review of several techniques conceived by us to port
Al-enhanced inertial navigation algorithms to IoT platforms
for real-time adoption. We showcase how advances in TinyML
and platform-aware NAS can yield models whose performance
exceeds both classical and existing Al-enhanced INS, yet fit
within the tight resource bounds of microcontrollers. Neu-
rosymbolic Al paradigms yield models that are physics-aware,
interpretable, and satisfy user constraints. Transfer learning
drastically reduces the data inefficiency of NN-based navi-
gation algorithms, allowing the usage of user-friendly video
pipelines to collect inertial odometry training datasets and
deployment of pre-trained models in a new domain. However,
there are several open research challenges.

On-device Domain Adaptation: Collecting labeled data in the
target domain for fine-tuning may not always be possible. The
onboard navigation models need to be adaptively personalized
using unlabeled data streams to account for domain shifts.
Possible solutions include the use of onboard BERT-like
unsupervised pre-trained IMU embeddings [215], [216] and
on-device training [181], [217]-[219]. Al-enhanced navigation
algorithms also need to be context-aware, modifying NN dy-
namics depending on the application, noise, and environmental

718

conditions.

Injecting Physics-Aware Embeddings: The neuro U compile
[symbolic] paradigm does not guarantee strict enforcement of
user constraints, which are lost within the NN embeddings.
The symbolic [neuro] paradigm allows the fusion of neural
and physics-based components through an EKF, but the NN
is agnostic to the heuristic rules, physics, and bounds being
managed by the EKF. The preferred paradigm is neuro [sym-
bolic], where the NN architecture is embedded with special
symbolic reasoning layers. The symbolic layer is biased to
strictly enforce user-defined models and mimic a logical
reasoning module [174], [175]. Since the loss flows through
the whole NN, the NN becomes aware of the intricacies
of the symbolic layer. More work is required to implement
such physics-aware reasoning layers [220]-[224] into onboard
neural-inertial navigation models.

Uncertainty Awareness: IMU data in the wild suffer from
missing data, cross-channel timestamp misalignment, and win-
dow jitter [225]-[227], which can degrade the NN odometric
resolution. Possible solutions include using uncertainty-aware
training frameworks [225], [227] and on-chip hardware en-
hancements [228].
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