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ABSTRACT

We study iterative methods based on Krylov subspaces for low-
rank approximation under any Schatten-p norm. Here, given ac-
cess to a matrix A through matrix-vector products, an accuracy
parameter €, and a target rank k, the goal is to find a rank-k ma-
trix Z with orthonormal columns such that ”A (1- ZZT)H S, <
(1+€) mingryy, [|A (I- UUT)HSP, where [[M||s, denotes the ¢,
norm of the the singular values of M. For the special cases of p = 2
(Frobenius norm) and p = oo (Spectral norm), Musco and Musco
(NeurIPS 2015) obtained an algorithm based on Krylov methods
that uses O(k/+/€) matrix-vector products, improving on the naive
O(k/e) dependence obtainable by the power method, where 0()
suppresses poly(log(dk/e)) factors.

Our main result is an algorithm that uses only é(kpl/ 6/¢1/3)
matrix-vector products, and works for all, not necessarily constant,
p = 1.For p = 2 our bound improves the previous O(k/e'/?) bound
to O(k/ el 3). Since the Schatten-p and Schatten-co norms of any
matrix are the same up to a 1 + € factor when p > (logd)/e, our
bound recovers the result of Musco and Musco for p = co. Further,
we prove a matrix-vector query lower bound of Q(1/€/?) for any
fixed constant p > 1, showing that surprisingly ©(1/e'/?) is the
optimal complexity for constant k.

To obtain our results, we introduce several new techniques, in-
cluding optimizing over multiple Krylov subspaces simultaneously,
and pinching inequalities for partitioned operators. Our lower bound
for p € [1, 2] uses the Araki-Lieb-Thirring trace inequality, whereas
for p > 2, we appeal to a norm-compression inequality for aligned
partitioned operators. As our algorithms only require matrix-vector
product access, they can be applied in settings where alternative
techniques such as sketching cannot, e.g., to covariance matrices,
Hessians defined implicitly by a neural network, and arbitrary poly-
nomials of a matrix.
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1 INTRODUCTION

Iterative methods, and in particular Krylov subspace methods, are
ubiquitous in scientific computing. Algorithms such as power iter-
ation, Golub-Kahan Bidiagonalization, Arnoldi iteration, and the
Lanczos iteration, are used in basic subroutines for matrix inversion,
solving linear systems, linear programming, low-rank approxima-
tion, and numerous other fundamental linear algebra primitives
[24, 42]. A common technique in the analysis of Krylov methods
is the use of Chebyshev polynomials, which can be applied to the
singular values of a matrix to implement an approximate interval or
step function [27, 40]. Further, Chebyshev polynomials reduce the
degree required to accurately approximate such functions, leading
to significantly fewer iterations and faster running time. In this
paper we investigate the power of Krylov methods for low-rank
approximation in the matrix-vector product model.

The Matrix-Vector Product Model. In this model, there is an
underlying matrix A, which is often implicit, and for which the only
access to A is via matrix-vector products. Namely, the algorithm
chooses a query vector o', obtains the product A - o', chooses the
next query vector 02, which is any randomized function of v! and
A -0l then receives A -v%, and soon. If A is a non-symmetric matrix,
we assume access to products of the form ATv as well. We refer
to the minimal number q of queries needed by the algorithm to
solve a problem with constant probability as the query complexity.
We note that upper bounds on the query complexity immediately
translate to running time bounds for the RAM model, when A
is explicit, since a matrix-vector product can be implemented in
nnz(A) time, i.e., the number of non-zero entries in the matrix.
Since this model captures a large family of iterative methods, it
is natural to ask whether Krylov subspace based methods yield
optimal algorithms, where the complexity measure of interest is
the number of matrix-vector products.

This model and related vector-matrix-vector query models were
formalized for a number of problems in [38, 45], though the model
is standard for measuring efficiency in scientific computing and
numerical linear algebra, see, e.g., [6]; in that literature, methods
that use only matrix-vector products are called matrix-free. Subse-
quently, for the problem of estimating the top eigenvector, nearly
tight bounds were obtained in [9, 44]. Also, for the problem of esti-
mating the trace of a positive semidefinite matrix, tight bounds were
obtained in [29] (see, also [51], where tight bounds were shown
in the related vector-matrix-vector query model). For recovering a
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planted clique from a random graph, upper and lower bounds were
obtained in [37]. In the non-adaptive setting, where ol, ..., 09, are
chosen before making any queries to A, this is equivalent to the
sketching model, which is thoroughly studied on its own (see, e.g.,
[34, 52]), and in the context of data streams [22, 32].

Why is the matrix A implicit? A small query complexity
q leads to an algorithm running in time O(T(A) - g+ P(n,d,q)),
where T(A) is the time to multiply the n X d matrix A by an arbi-
trary vector, and P(n, d, q) is the time needed to form the queries
and process the query responses, which is typically small. When
the matrix A is given as a list of nnz(A) non-zero entries, then
T(A) < nnz(A). However, in many problems A is not given ex-
plicitly, and it is too expensive to write A down. Indeed, one may
be given A but want to compute a low-rank approximation to the
“covariance” (Gram) matrix AT A, and computing AT A is too slow
[31]. More generally, one may be given A = UXV" and a function
f : R — R, and want to compute matrix-vector products with
the generalized matrix function f(A) = Uf(X)V", where U has
orthonormal columns, VT has orthonormal rows, ¥ is a diagonal
matrix, and f is applied entry-wise to each entry on the diagonal.

The covariance matrix corresponds to f(x) = x2, and other
common functions f include the matrix exponential f(x) = ¥ and
low-degree polynomials. For instance, when A is the adjacency
matrix of an undirected graph, f(x) = x3/6 is used to count the
number of triangles [4, 49]. Yet another example is when A is the
Hessian H of a neural network with a huge number of parameters,
for which it is often impossible to compute or store the entire
Hessian [16]. Typically H - v, for any chosen vector v, is computed
using Pearlmutter’s trick [35]. However, even with Pearlmutter’s
trick and distributed computation on modern GPUs, it takes 20
hours to compute the eigendensity of a single Hessian H with
respect to the cross-entropy loss on the CIFAR-10 dataset from a
set of fixed weights for ResNet-18 [21], which has approximately
11 million parameters [16, 19]. This time is directly proportional to
the number of matrix-vector products, and therefore minimizing
this quantity is crucial.

Algorithms and Lower Bounds for Low-Rank Approxi-
mation. The low-rank approximation problem is well studied in
numerical linear algebra, with countless applications to clustering,
data mining, principal component analysis, recommendation sys-
tems, and many more. (For surveys on low-rank approximation,
see the monographs [20, 26, 52] and references therein.) In this
problem, given an implicit n X d matrix A, the goal is to output a

matrix Z € Rk with orthonormal columns such that

A0-72)y < ke min [AG-OUT). )
where ||-||x denotes some norm. Note that given Z, one can compute
AZ with an additional k queries, which will be negligible, and then
(AZ) - Z7 is a rank-k matrix written in factored form, i.e., as the
product of an n X k matrix and a k X d matrix. Among other things,
low-rank approximation provides (1) a compression of A from nd
parameters to (n+d)k parameters, (2) faster matrix-vector products,
since AZ-Z" -y can be computed in O((n+d)k) time for an arbitrary
vector y, as opposed to the O(nd) time needed to compute A - y,
and (3) de-noising, as often matrices A are close to low-rank (e.g.,
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they are the product of latent factors) but only high rank due to
noise.

Despite its tremendous importance, the optimal matrix-vector
product complexity of low-rank approximation is unknown for
any commonly used norm. The best known upper bound is due
to Musco and Musco [30], who achieve (j(k/el/z) queries! for
both the case when || - ||x is the commonly studied Frobenius

norm ||B||f = (Zi,j B?’j)l as well as when || - || x is the Spectral
(operator) norm ||Bl|z = SUP |y [l,=1 [IBy]|2.

On the lower bound front, there is a trivial lower bound of k,
since A may be full rank and achieving (1) requires k matrix-vector
products since one must reconstruct the column span of A exactly.
However, no lower bounds in terms of the approximation factor € were
known. We note that Simchowitz, Alaoui and Recht [44] prove lower
bounds for approximating the top r eigenvalues of a symmetric
matrix; however these guarantees are incomparable to those that
follow from a low-rank approximation, even when the norm || - ||x
is the operator norm.

Relationship to the Sketching Literature. Low-rank approx-
imation has been extensively studied in the sketching literature
which, when A is given explicitly, can achieve O(nnz(A)) time both
for the Frobenius norm [14, 28, 33], as well as for Schatten-p norms
[23]. However, these works require reading all of the entries in
A, and thus do not apply to any of the settings mentioned above.
Further, the matrix-vector query model is especially important for
problems such as trace estimation, where a low-rank approxima-
tion is used to first reduce the variance [29]. As trace estimation
is often applied to implicit matrices, e.g., in computing Stochastic
Lanczos Quadrature (SLQ) for Hessian eigendensity estimation [16],
in studying the effects of batch normalization and residual connec-
tions in neural networks [54], and in computing a disentanglement
regularizer for deep generative models [36], sketching algorithms
for low-rank approximation often do not apply.

Another important application is low-rank approximation of
covariance matrices [31], for which the covariance matrix is not
given explicitly. Here, we have a data matrix A and we want a low-
rank approximation for AAT. Even when $ is a sparse sketching
matrix, the matrix SA is no longer sparse, and one needs to multiply
SA by AT to obtain a sketch of SAAT, which is a dense matrix-
matrix multiplication. Moreover, when viewed in the matrix-vector
product model, sketching algorithms obtain provably worse query
complexity than existing iterative algorithms (see Table 1 for a
comparison). Further, as modern GPUs often do not exploit sparsity,
even when the matrix A is given, a GPU may not be able to take
advantage of sparse queries, which means the total time taken is
proportional to the number of matrix-vector products.

Motivating Schatten-p Norms. The Schatten norms for 1 <
p < 2 are more robust than the Frobenius norm, as they dampen
the effect of large singular values. In particular, the Schatten-1
norm, also known as the nuclear norm, has been widely used for
robust PCA [10, 53, 55] as well as a convex relaxation of matrix

1We let O(f) = f - poly(log(dk/e)).
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rank in matrix completion [11, 12], low-dimensional Euclidean em-
beddings [39, 41, 48], image denoising [17, 18] and tensor comple-
tion [56]. In contrast, for p > 2, Schatten norms are more sensitive
to large singular values and provide an approximation to the op-
erator norm. In particular, for a rank r matrix, it is easy to see
that setting p = log(r)/n yields a (1 + n)-approximation to the
operator norm (i.e., p = 00). While the Block Krylov algorithm of
Musco and Musco [30] implies a matrix-vector query upper bound
of O (k /el 2) for Schatten-co low-rank approximation, the exact
complexity of this problem remains an outstanding open problem.
When p > 2, we can interpolate between Frobenius and operator
norm, and setting p to be a large fixed constant can be a proxy
for Schatten-co low-rank approximation, with significantly fewer
matrix-vector products (see Theorem 4.2).

Our Central Question. The main question of our work is:
What is the matrix-vector product complexity of low-rank
approximation for the Frobenius norm, and more generally, for other
matrix norms?

1.1 Our Results

We begin by stating our results for Frobenius and more generally,
Schatten-p norm low-rank approximation for any p > 1; see Table
1 for a summary.

THEOREM 1.1 (QUERY UPPER BOUND, INFORMAL THEOREM 4.2).
Given a matrix A € R™9_q target rank k € [d], an accuracy parame-
tere € (0, 1) and any (not necessarily constant) p € [1,0(log(d)/e€)],

there exists an algorithm that uses 0 (kp1/6/61/3) matrix-vector
products and outputs a d X k matrix Z with orthonormal columns
such that with probability at least 99/100,

la-zz7)|s, < 140 min I (1-vuT) ||, -

When p > log(d) /e, we get 0 (k/e) matrix-vector products.

We note that for Frobenius norm low-rank approximation (Schat-
ten p for p = 2), we improve the prior matrix-vector product
bound of (j(k/el/z) by Musco and Musco [30] to (j(k/el/S). For
Schatten-p low-rank approximation for p € [1,2), we improve
work of Li and Woodruff [23] who require query complexity at
least Q(k?/P /4/P*1) which is a polynomial factor worse in both k
and 1/e than our (j(k/el/S) bound.

For p > 2, [23] obtain a query complexity of Q(min(n, d)'~%/?).
We drastically improve this to O(k/e'/?), which does not depend
on d or n at all. Setting p = log(d)/e suffices to obtain a (1 + €)-
approximation to the spectral norm (p = ), and we obtain an
o (k/+/€) query algorithm, matching the best known bounds for
spectral low-rank approximation [30]. When p > log(d)/e, we can
simply run Block Krylov for p = co.

Remark 1.2 (Comments on the RAM Model). Although our focus
is on minimizing the number of matrix-vector products, which is
the key resource in the applications described above, our bounds
also improve the running time of low-rank approximation algo-
rithms when the matrix A has a small number of non-zero entries
and is explicitly given. For simplicity, we state our bounds and
those of previous work without using algorithms for fast matrix
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multiplication; similar improvements hold when using such al-
gorithms. When nnz(A) = O(n), for Frobenius norm low-rank
approximation, work in the sketching literature, and in particu-
lar [5] (building off of [14, 15, 33]), achieves O(nk?/¢) time. In
contrast, in this setting our runtime is (5(nk2 / 2/ 3). Similarly, for
Schatten-p low-rank approximation for p € [1,2), the previous
best [23] requires Q(nk*/? /e(8/P=2)) time, while for p > 2 [23]
requires Q(nd?(1-2/P) (k /€)*/P) time. In both cases our runtime is
only O(nk? pl/ 3/€2/3). We obtain analogous improvements when
the sparsity nnz(A) is allowed to be n(k/ €)€ for a small constant
C>o.

Next, we state our lower bounds on the matrix-vector query
complexity of Schatten-p low-rank approximation.

THEOREM 1.3 (QUERY LOWER BOUND FOR CONSTANT p, INFOR-
MAL THEOREM 5.1 AND THEOREM 5.4 ). Given ¢ > 0, and a fixed
constant p > 1, there exists a distribution D over n X n matrices
such that for A ~ D, any algorithm that with at least constant
probability outputs a unit vector v such that ||A (1- UUT)ng <

(1+ &) minj,, =1 ||A (I- uuT)”{JS must perform Q(1/}/3) matrix-
P

vector queries to A.

Remark 1.4. We note that this is the first lower bound as a function
of e for this problem, even for the well-studied case of p = 2,
achieving an Q(1/ €!/3) bound, which is tight for any constant k,
simultaneously for all constant p > 1.

Remark 1.5. Braverman, Hazan, Simchowitz and Woodworth [9]
and Simchowitz, Alaoui and Recht [44] establish eigenvalue estima-
tion lower bounds that we use in our arguments, but their results
do not directly imply low-rank approximation lower bounds for
any matrix norm that we are aware of, including spectral low-rank
approximation, i.e., p = oco.

Matrix Polynomials and Streaming Algorithms. Since our algo-
rithms are based on iterative methods, they generalize naturally
to low-rank approximations of matrices of the form A (ATA)[ and
(ATA)" for any integer ¢, given A as input. We defer the details to
the full version.

Since we work in the matrix-vector model, our algorithms natu-
rally extend to the multi-pass turnstile streaming setting. Notably,

for p > 2, with O(log(d/e)p1/6/61/3) passes we are able to im-
prove the o} (n (knle—;Z/P +
O (nk/e?).

k2P ypnl-2lp
e2+2/p

)) memory bound of [23] to

1.2 Open Questions

We note that our lower bounds are tight only when the target rank
k and Schatten norm p are fixed constants. In particular, it is open
to obtain matrix-vector lower bounds that grow as a function of
k, p and 1/e. For the important special case of Spectral low-rank
approximation (p = o), it is open to obtain any lower bound that
grows as a function of 1/€, even when the target rank k = 1. We also
note that improving our upper bound to even pl/ 6=0(1) would imply
a faster algorithm for Spectral low-rank approximation, addressing
the main open question in [52].
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Problem Frobenius | Schatten-p, p € [1,2) | Schatten-p, p > 2
Sketching [13,23] | ©(k/e) Q(K2/P [4lp+ly Q(min(n, d)1=2/P)
Block Krylov [30] | O(k/e!/?) N/A N/A
Our Upper Bound 0(k/el/3) é(k/sl/s) é(kpl/ﬁ/el/S)
Our Lower Bound | Q(1/¢!/3) Q(1/€!/3) Q(1/€'/3)

Figure 1: Prior Upper and Lower Bounds on the Matrix Vector Product Complexity for Frobenius and Schatten-p low-rank
Approximation. The poly(k/e) factors in prior sketching work for Schatten-p are not explicit, but we have computed lower
bounds on them to illustrate our improvements. Our bounds are optimal, up to logarithmic factors, for constant k. For

p > log(d)/e, spectral low-rank approximation [30] implies an O (k/+€) upper bound.

2 TECHNICAL OVERVIEW

For our technical overview, we drop polylogarithmic factors ap-
pearing in the analysis and assume the input A is a symmetric n X n
matrix (we handle arbitrary n X d matrices in Section 4).

2.1 Algorithms for Low-Rank Approximation

We first describe our algorithm for the special case of rank-1 approx-
imation in the Frobenius norm, i.e., p = 2. Our algorithm is inspired
by the Block Krylov algorithm of Musco and Musco [30]. Briefly,
their algorithm begins with a random starting vector g (block size
is 1) and computes the Krylov subspace K = [Ag; A%g;...;A%g],

forgq = O(l/ el/ 2), Next, their algorithm computes an orthonormal

basis for the column span of K, denoted by a matrix Q, and outputs

the top singular vector of QTA%Q, denoted by z (see Algorithm 4.5

for a formal description). It follows from Theorem 1, guarantee (1)
in [30] that

2

A (1=zzT)][; @

. _ T\ 12
S(1+6)||3h121il”A(I uu )HF’

1/2

and it is easy to see that this algorithm requires © (l/ € ) matrix-

vector products. A naive analysis requires an O(1/¢)-degree poly-
nomial in the matrix A to obtain (2), while [30] use Chebyshev
polynomials to approximate the threshold function between first
and second singular value, and save a quadratic factor in the degree.
The guarantee in (2) then follows from observing that the best vec-
tor in the Krylov subspace is at least as good as the one that exists
using Chebyshev polynomial approximation.

Algorithm 2.1 (Algorithm Sketch for Frobenius LRA ).
Input: AnnXn symmetric matrix A, accuracy parameter
0<e<l
(1) Run Block Krylov for O(l/ et/ 3) iterations with a
random starting vector g. Let z; be the resulting
output.
(2) Run Block Krylov for O(log(n/e)) iterations, but
initialize with an n X b random matrix G, where

b= 0(1/61/3). Let z; be the resulting output.

Output: z = argmax;, ,, (||Azl||%, ||Azz||%).

Our starting point is the observation that while we require de-

gree © (1 Je'! 2) to separate the first and second singular values, if
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any subsequent singular value is sufficiently separated from o1, a
significantly smaller degree polynomial suffices. In the context of
Krylov methods, this translates to the intuition that starting with
a matrix G with b columns (block size is b) should result in fewer
iterations to find some vector in the top b subspace of A. On the
other hand, if no such singular value exists, the norm of the tail
must be large and we can get away with a less accurate solution.
We show that we can indeed exploit this trade-off by running Block
Krylov on two different scales in parallel and then combine the
solution. In particular, we use Algorithm 2.1.

Algorithm 2.1 captures the extreme points of the trade-off be-
tween the size of the starting matrix and the number of iterations,
such that the total number of matrix-vector products is at most
(5(1/ €!/3). Further, we can compute the squared Euclidean norms
of Az; and Az with an additional matrix-vector product, and it re-
mains to analyze the Frobenius cost of projecting A on the subspace
I - zzT, where z is the unit vector output by Algorithm 2.1.

Using gap-independent guarantees for Block Krylov (see Lemma

4.3 for a formal statement), it follows that with O(l /et 3) iterations,
we have

1Az1]15 > o (A) - a5 (A). (3)
In contrast, using gap-dependent guarantees (see Lemma 4.4) for
Block Krylov initialized with block size b, it follows that for any
y > 0, running q = log(1/y) - \/01 (A)/(01(A) — 03, (A)) iterations
results in z, such that

IAz]5 > of (A) = yo3 (A). 4)

If 0 (A) < 01(A)/2, we can set y = ¢/n in Equation (4) to obtain a
highly accurate solution. Further, regardless of the input instance,
Step 3 in Algorithm 2.1 ensures that we get the best of both guar-
antees, (3) and (4). Then, observing that I — zz" is an orthogonal
projection matrix (see Definition 3.1) and using the Pythagorean
Theorem for Euclidean space we have:

A (1= 227)|7 = lIAIZ - [|AzzT |7 = IAIZ - l1Azl3,  (5)

where the second inequality follows from unitary invariance (see
Fact 3.8) of the Frobenius norm and that the squared Frobenius
norm of a rank-1 matrix Az (vector) is equal to its squared Euclidean
norm. If it happens that 02(A) < 01(A)/2, i.e., a constant gap exists
between the first two singular values, then since guarantee (4)
implies that ||Az||§ > O'f (A) - (6/n)022 (A), we can plug this into
(5) to yield a (1 + €/n)-approximate solution. Hence, we focus on
instances where 02(A) > o1(A)/2.
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Consider the case where the Frobenius norm of the tail is large,
ie, ||A—-A; ||% > 0'5 (A)/el/s, where A is the best rank-1 approxi-
mation to A. Then we only require an e2/3

(plugging guarantee (3) into (5) ) since

-approximate solution

A (1= z12])[[} < IAII% - c2(A) + €3 (A)

(6)
< IIA = AllE +€llA = Aql7.
Otherwise, 3.7, 0'1.2 (A) < 0'22 (A)/ €!/3, which implies that there is
a constant gap between the second and b-th singular values, where
b = 0(1/61/3). To see this, observe if 0;,(A) > 02(A)/4, then

T, criz (A) = Z?:z criz (A) = bag (A)/4, which is a contradiction
when b > 10/61/3, and thus 0, (A) < 02(A)/4 < 01/2. Now we can
apply guarantee (4) with ¢ = O(log(n/€)) and conclude ||Az||§ >
O'f (A) — (¢/ n)022 (A), yielding a highly accurate solution yet again.
Overall, this suffices to obtain a (1 + €)-approximate solution with

0o (1/€'/3) matrix-vector queries.

Challenges in generalizing to Schatten p # 2 and rank k > 1.
The outline above crucially relies on the norm of interest being
Frobenius. In particular, we use the Pythagorean Theorem to an-
alyze the cost of the candidate solution in Equation (5); however,
the Pythagorean Theorem does not hold for non-Euclidean spaces.
Therefore, a priori, it is unclear how to analyze the Schatten-p norm
of a candidate rank-1 approximation. A proxy for the Pythagorean
Theorem that holds for Schatten-p norms is Mahler’s operator in-
equality (see Fact 3.11), which is in the right direction but holds
only for p > 2, whereas we would like to handle all p > 1. Sep-
arately, for p > 2, the case where the tail is small corresponds
to |[A - Ay ||§ < 0"20 (A) /€13, Therefore, naively extending the
above argumgnt requires picking a block size that scales propor-
tional to O(ZP /el 3) to induce a constant gap between o1 and oy,
and the number of matrix-vector products scales exponentially in
p.

Finally, in the above outline, we also crucially use that ||AzzT||f, =
||Az||§. Observe that this no longer holds if we replace z with a
matrix Z that has k orthonormal columns. Therefore, it remains
unclear how to relate ||AZ||§P to HAZ*, ,||§ yet the vector-by-vector

error guarantee obtained by Block Krylov (see Lemmas 4.3 and 4.4)
only bounds the latter.

Handling all Schatten-p Norms and k > 1. We modify our algo-
rithm to run Block Krylov on AT and obtain a orthonormal matrix
W such that for all i € [k],

[ATW. | = gF(A) - yo?, (A), ()

for some y > 0. We then analyze the cost HA (1-zzT) HP ,where Z
P

is a basis for ATW. Our key insight is to interpret the input matrix
A as a partitioned operator (block matrix) and invoke pinching
inequalities for such operators. Pinching inequalities were originally
introduced to understand unitarily invariant norms over direct
sums of Hilbert spaces [43, 50]. In our setting, given a block matrix

1 2
M= (M( ) M®@

MO M@ ), the pinching inequality (see Fact 3.13) implies
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that for all p > 1,

P P
I, = [« ®
P Sy Sp
A priori, it is unclear how to use Equation (8) to bound ||A(I —
ZZ") ||gp. First, we establish a general inequality for the Schatten
norm of a matrix times an orthogonal projection. Let P and Q be
any nXn orthogonal projection matrices with rank k (see Definition

3.1). Then, we prove (see Lemma 4.6 for details) that for any matrix
A,
IAI, = IPAQIS +IA-P)AT-QIf . ©)

To obtain this inequality, we use a rotation argument along with the
fact that the Schatten-p norms are unitarily invariant to show that

»
1A% = ‘(A(l) A(Z))
P Sy

AB® A
HA(“) HS =||I-P)A(I-Q) ||Sp, and then we can apply Equation
P

, where HA(I)HS = ||PAQ||SP and
p

(8) to the block matrix above.

Once we have established Equation (9), we can set P = WWT
and set Q = ZZ" to be the projection matrix corresponding to the
column span of ATWW . Then, we have that PAQ = WW T A and
(I-P)A(I-Q)=A(I-ZZ"), and combined with (9) this yields

la(t-zzT)lfs < nalf - [[wwTAlf - (10)

To obtain a bound on HWWTAH‘D , we appeal to the per-vector
P

guarantees in Equation (7). However, translating from t’zz error to
og (WTA) incurs a mixed guarantee (see Lemma 4.7 for details):

IWWTAI > 1A - Op) Y, of., (W) of " (a).
iclk)

To use this bound, we require o1 (A) to be comparable to oy, 1(A)
and thus we require an involved case analysis, which appears in
the proof of Theorem 4.2.

Avoiding an exponential dependence on p. Our main insight here
is that we do not require a block size that induces a constant
gap between singular values. Instead, we first observe that if the
block size b is large enough such that o5, < 02/(1 + 1/p), then
O(log(n/e€)+/p) iterations suffice to obtain a vector z such that
||Az||§ > Jf (A) — (¢/n) ag (A). Therefore, we can trade-off the
threshold for the Schatten norm of the tail with the number of

I - P 1 .
iterations as follows: if ||A — A ”Sp < PIEr crg (A), then setting

b=+ l/p)p/(ep)l/3 = 8(1/(6p)l/3) suffices to induce a gap of

1+ 1/p with block size b. The total number of matrix-vector prod-

ucts is O(b - log(n/e)yp) = O(p1/6/el/3), since p can be assumed

to be at most (logn)/e. Otherwise, ||A — Ay ||g > crg (A),
P

and we only require a (1 + ¢2/3/p!/3)-approximate solution in-

stead (compare with Equation (6)). Using gap-independent bounds
(see Lemma 4.3), it suffices to start with block size 1 and run

O(log(n/e)p1/6/61/3) iterations to obtain a (1+ 62/3/p1/3)-approx.
solution.

1

pBel
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Avoiding a Gap-Dependent Bound. We note that even when there
is a constant gap between the first and second singular values, and
the per vector guarantee is highly accurate, i.e., for all i € [k],

Az

> O'iz (A) — poly (5) Ul€+1 (A), it is not clear how to lower
bound ||AZ||g in Equation 10. In general, the best bound we can
P

obtain using the above equation is

2, o

ielk]

AZ|E2 > AR - O 11
1AZI > IAIG, (11

€ o2 .
poly(d) | “k+1

which may be vacuous when the top k singular values are signif-
icantly larger than op,; and p > 2. One could revert to a gap-
dependent bound, where the error is in terms of the gap between oy
and oy, 1, which one could account for by running an extra factor
of O(log(o1/0k41)) iterations.

To avoid this gap-dependent bound, we split A into a head part
Ap and a tail part AT, such that Ay has all singular values that are at
least (1 + 1/d) 041 and A7 has the remaining singular values. We
then bound ||AH (1- ZZT)”SP and HAT (1- ZZT)”SP separately.
Repeating the above analysis, we can obtain Equation (11) for At
instead, and since all singular values larger than oy, in At are

bounded, we can obtain ||AT (I- ZZT)HPS < O(ek/poly(d)) Glf+1'
P

To adapt the analysis for At and obtain this bound, we use Cauchy’s
interlacing theorem to relate the j-th singular value of Ay (I— ZZ)
to the (i* + j)-th singular value of A (I - ZZT), where i* is the rank
of Ayy. We lower bound the (i*+ j)-th singular value of A (I - ZZT)
using the per vector guarantee of [30].

To bound ||Ay (I-ZZT) “SP’ we observe it has rank at most k

and thus

lAm (1= 227)|5, < Vk-[|An (1-227)],
= Vk - llAgllZ - ARZI2,

and we show how to bound this term in Section 4. Intuitively,
while the k-dimensional subspace that we find can “swap out"
singular vectors corresponding to singular values o; for which o;
is very close to oy, since they serve equally well for a Schatten-
p low-rank approximation, for singular values o; that are a bit
larger than oy, the k-dimensional subspace we find cannot do
this. More precisely, if y is a singular vector of Ay with singular
value o, then the projection of y onto the k-dimensional subspace
that our algorithm finds (namely, Z) must be at least 1— 0']§+ . /( (01.2 -
O'iﬂ)poly(d)), which suffices to bound the above since the additive

and so the

error is inversely proportional to O'iz when 01.2 > ‘le+ o
very tiny additive error negates the effect of very large singular
values.

2.2

Our lower bounds rely on the hardness of estimating the smallest
eigenvalue of a Wishart ensemble (see Definition 3.15), as estab-
lished in recent work of Braverman, Hazan, Simchowitz and Wood-
worth [9]. In particular, [9] show that for a d X d instance W of
a Wishart ensemble, estimating A;(W) (minimum eigenvalue) to
additive error 1/d? requires Q(d) adaptive matrix-vector product
queries (see Theorem 3.1 in [9]). To obtain hardness for Schatten-p

Query Lower Bounds
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low-rank approximation, we show that when d = ® (1 /el 3), any

candidate unit vector z that satisfies H(I -W/5) (I- zzT)”g <
p
(1 +€) minjy, =1 ||(I -W/5) (I- uuT)”p , can be used to obtain
'p

an estimate )Id % (1 - I(T-W/5) z||g) such that id = (1%

1/d?)A4 (1-W/5). Let A = (I— W/5). To show our query lower

bound, in contrast to the analysis of our algorithm, the challenge is

now to lower bound HA (I-227) ||1?9 in terms of ||A||‘g and ||Az||‘§
P P

(contrast with Equation (10)).

Projection Cost via Araki-Lieb-Thirring. First, we note that the
case of p = 2 is easy given the Pythagorean theorem. For p € [1, 2),
we can establish an inequality fairly straightforwardly: using the
trace inner product definition of Schatten-p (see Definition 3.7 )
norms, we have,

0=z, =1 ((0- =% 1-27) )

Since p/2 € [1/2,1), we can use the reverse Araki-Lieb-Thirring
inequality (see Fact 3.10) to show that

Tr (((1 — 22T ) A% (I- zzT)Z)p/Z)

>Tr((I-2z") AP (I-227))
P _ TP
> ”A”S,, ||Azz ”Sp

(13)

where we use the cyclicity of the trace and again use reverse Araki-
Lieb-Thirring (Fact 3.10) to show that

p
2

Tr ((ZZT)%’ (47)" z27) ) <Tr ((ZZTAZZZT)”/ 2) - Tl

Since we have “AzzT”g,P = ||Az||p, we conclude ||A (I- ZZT)HZP >
||A||PSP - ||AzzTH‘12J . This approach only works for p € [1, 2); for
p > 2 the application of Araki-Lieb-Thirring is reversed in Equation

13 (since p/2 > 1, see Fact 3.10) and we no longer get a lower bound
on the cost in Equation 12. We therefore require a new approach.

Projection Cost via Norm Compression. Recall, z is the unit vec-
tor output by our candidate low-rank approximation and let y =
Az/||Az||,. We yet again interpret the input matrix A as a parti-
tioned operator by considering the projection of A onto zz", yy "
and the projection away from these rank-1 subspaces. In particu-
lar,let I—yy" = YY", and I — zz" = ZZ", where Y and Z have
orthonormal columns. Then, using a rotation argument, we show
that
yTAz
YTAz

-
_ y AZ
wis, =[5 ¥l

We define the p-compression of A, Ca p:

ly™Azs, lly"az|s,

A v A, IvTAZs,

To relate the norms of A and Cj p, we consider Audenaert’s Norm
Compression Conjecture [2], a question in functional analysis con-
cerning operator inequalities (see also [3]):
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CONJECTURE 2.2 (SCHATTEN-p NoRM COMPRESSION). Let M be
M; Mz)

a partitioned operator (block matrix) such that M =
M; My
) be a 2 X 2 matrix that denotes

M M
Loty = (Malls, IMels,

IMslls, M,
the Schatten-p compression of M for any p > 1. Then, ||M||Sp
||cM,p||SP if1 < p <2 and Mg, < ”CM’P”SP if2<p <o

>

lAlls, < ”CA,p”Sp

However, for our choice of y,

llyy™ AzzT]|s, lyy ™A (1 - 22T)]g,
[0-yyT) AzzTl g [[(T-yyT) A (1-22T)]g

We could simply appeal to this conjecture to obtain that for all
Sp

p>2,
(14)

|nyA (I - ZZT)”SP = 0. With padding
and rotation arguments, we can then reduce our problem to a block
matrix where the blocks in each row are aligned, i.e., each row is a
scalar multiple of a fixed matrix (see Lemma 5.6). Then, we can use
one of the few special cases of Conjecture 2.2 for aligned operators
which has actually been proved, and appears in Fact 3.14. We can
thus unconditionally obtain the inequality in Equation (14).

Now that we have reduced to the case where we have a 2 X 2
matrix with 3 non-zero entries, we would like to bound its Schatten-
p norm. We explicitly compute the singular values of Ca , (see Fact
5.7 ), and then use the structure of the instance to directly lower
bound ||Az||12) as follows:

A ”+(1+0( 2P/3)) A-ALL >|Ca,le = 1AL, (15
Az +(1+0(7)) 1A~ Arlly = lcaplls 2 1A% . (9)

where the last inequality follows from Equation (14). Since we
understand the spectrum of the matrix A, we can explicitly compute
all the terms in (15) above and show that we can obtain an accurate
estimate of the minimum singular value of A from ||Az||g . See
details in Section 5.2.

3 PRELIMINARIES

Given an n X d matrix A with rank r, and n > d, we can compute
its singular value decomposition, denoted by SVD(A) = UXVT,
such that U is an n X r matrix with orthonormal columns, V' is
an r X d matrix with orthonormal rows and X is an r X r diagonal
matrix. The entries along the diagonal are the singular values of
A, denoted by 01,07 ... or. Given an integer k < r, we define the
truncated singular value decomposition of A that zeros out all but
the top k singular values of A, i.e, Ay = UX; VT, where 3 has only
k non-zero entries along the diagonal. It is well-known that the
truncated SVD computes the best rank-k approximation to A under
any unitarily invariant norm, but in particular for any Schatten-
p norm (defined below), we have Ay = ming,ny(x)=k [IA - XHSP'
More generally, for any matrix M, we use the notation My and My,
to denote the first k components and all but the first k components
respectively. We use M; . and M. j to refer to the ith row and jth
column of M respectively.

We use the notation I} to denote a truncated identity matrix, that
is, a square matrix with its top k diagonal entries equal to one, and
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all other entries zero. The dimension of I will be determined by
context.

Definition 3.1 (Orthogonal Projection Matrices). Givenad X d
symmetric matrix Pand k € [d], Pis a rank-k orthogonal projection
matrix if rank(P) = k and P? = P.

It follows from the above definition that P has eigenvalues that
are either 0 or 1 and admits a singular value decomposition of the
form UUT where U has k orthonormal columns.

Definition 3.2 (Unitary Matrices). Given a symmetric matrix U €
RY*d e say U is a unitary matrix if UTU = UUT =1,

Definition 3.3 (Rotation Matrices). Given a symmetric matrix R €
R9*d we say R is a rotation matrix if R is unitary and det (R) = 1.

FAcT 3.4 (COURANT-FISCHER FOR SINGULAR VALUES). Given an
nxd matrix A with singular valueso1 > 02 > ... > oy, the following
holds: for all i € [d],

0 = max min ||xTA||2 .

S: dim(S)=i x€S: |x||,=1

Fact 3.5 (WEYL’S INEQUALITY FOR SINGULAR VALUES (SEE EXER-
CISE 22 [47])). Given n x d matrices X, Y, for anyi,(j — 1) € [d]
such thati+j <d,

oi+j (X+Y) < 0i(X) + 041 (Y).

FAcT 3.6 (BERNOULLI'S INEQUALITY). For any x, p € R such that
x>-landp 21, (1+x) > 1+px.

Schatten Norms and Trace Inequalities. We recall some basic facts
for Schatten-p norms. We also require the following trace and
operator inequalities.

Definition 3.7 (Schatten-p Norm). Given a matrix A € R Jet
01 = 02 > ... = o4 be the singular values of A. Then, for any
p € [0, 00), the Schatten-p norm of A is defined as

1/p
_ T a2\ VP _
IAlls, =Tr ((ATA)P2) 7 <[ 3 oP(a)
ield]
FACT 3.8 (SCHATTEN-p NORMS ARE UNITARILY INVARIANT). Given
an nxd matrix M, for any mx n matrix U with orthonormal columns,

anorm || - ||x is defined to be unitarily invariant if ||[UM||x = ||[M||x.
The Schatten-p norm is unitarily invariant for all p > 1.

There exists a closed-form expression for the low-rank approxi-
mation problem under Schatten-p norms:

FAcT 3.9 (SCHATTEN-p Low-RANK APPROXIMATION). Given a
matrix A € R™4 and an integer k € N,

min
rank(X) <k
where Ay is the truncated SVD of A.

Ay = arg IA-X]s,.

FAcT 3.10 (ARAKI-LIEB-THIRRING INEQUALITY [1]). Given PSD
matrices A,B € R4, for anyr > 1, the following inequality holds:
Tr ((BAB)") < Tr (B"A"B"). Further, for 0 < r < 1, the reverse
holds Tr ((BAB)") > Tr (B"A"B").
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FAcT 3.11 (MAHLER'S ORTHOGONAL OPERATOR INEQUALITY, THE-
OREM 1.7 IN [25]). Given p > 2, and matrices P and Q such that the
row (column) span of P is orthogonal to the row (column) span of Q,
the following inequality holds:

p p P
Pl + Q1% < IP+QI% .

FacT 3.12 (HOLDER’S INEQUALITY FOR SCHATTEN-p NORMS, COROL-
LARY 4.2.6 [7]). Given matrices A,BT € Rm<d and p € [1,c0), the
following holds

IAB|s, < llAls, - IBs, .

:l+

1
q T

for any q,r such that ’%

We also require pinching inequalities that were originally intro-
duced to relate norms for partitioned operators over direct sums of
Hilbert spaces. In our context, these inequalities simplify to norm
inequalities for block matrices:

FAcT 3.13 (PINCHING INEQUALITIES FOR SCHATTEN-p NORMS, [8]).
Let M € Rtxtd pe the following block matrix

May M@y M1r)

M@u1 Mo M,
M= (. ) Mg (. ) ,

M@y My M1

where forall i, j € [t], M(; ) € R*d_For all p > 1, the following
inequality holds:

1/p

Z ”M(i,i)”gp < |IMlls, -
ie[t]

We also require a norm compression inequality that is a special
case of Conjecture 2.2 (and known to be true), when each block is
aligned in the following sense:

FacT 3.14 (ALIGNED NORM COMPRESSION INEQUALITY, SECTION

(M M
431N [2]). LetM = (M3 M,
such that M1 = a1 X, My = 22X, M3 = 1Yand My = B2Y. Then, for

anyp = 2,

Random Matrix Theory. Next, we recall some basic facts for
Wishart ensembles from random matrix theory (we refer the reader
to [46] for a comprehensive overview).

) such that there exist scalars a1, a2, B1, fo

Mills,
IMs]ls,

Mzl s,
Ml s,

IMlls, < H( :
Sp

Definition 3.15 (Wishart Ensemble). An nxn matrix W is sampled
from a Wishart Ensemble, Wishart(n), if W = XX such that for

all i, € [n] X; ~ N (0, 21).

FACT 3.16 (NORMS OF A WISHART ENSEMBLE). LetW ~ Wishart(n)
such that n = Q(1/¢3). Then, with probability 99/100, ||W||0p <5
1 P _
1- 4wl =e ().

L
173

and for any fixed constant p, \
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4 ALGORITHMS FOR SCHATTEN-p LRA

In this section, we focus on obtaining algorithms for low-rank ap-
proximation in Schatten-p norm, simultaneously for all real, not
necessarily constant, p € [1,O(log(d)/e)]. For the special case
of p € {2, 00}, Musco and Musco [30] showed an algorithm with
matrix-vector query complexity O(k/ el/?y, given below as Algo-
rithm 4.5. We show that the number of matrix-vector products we
1/3

require scales proportional to O (kpl/ 6/e ) instead. Finally, re-

call when p > log(d)/e, it suffices to run Block Krylov for p = oo,
which requires O(log(d/e€)k/+/€) matrix-vector products. We note
that proofs of intermediate lemmas have been ommited and appear
in the full version.

Algorithm 4.1 (Optimal Schatten-p Low-rank Approxima-
tion).
Input: An n X d matrix A, target rank k < d, accuracy
parameter 0 < e < l,and p > 1.

(1) Lety; = &3/ pl/ 3. Run Block Krylov Iteration (Al-
gorithm 4.5) on A with block size k, and number
of iterations q = O(log(d/yl)/\/ﬁ+log(d/e)\/§).
Let Z; € Rk be the corresponding output with
orthonormal columns.

(2) Run Block Krylov Iteration (Algorithm 4.5) on AT
with block size k, and number of iterations ¢ =
O(log(d/y1)/y1)- Let W1 € R™K be the corre-
sponding output with orthonormal columns.

Let yp = eand let s = O(p_1/3k/81/3). Run Block
Krylov Iteration (Algorithm 4.5) on AT with block
size s, and number of iterations ¢ = O(log(d/y2)\/p)-
Let W, € R™K be the corresponding output with
orthonormal columns.
Run Block Krylov on A with target rank k + 1 and
number of iterations g = O((log(dp) + log(d/€))/p),
and let Z; be the resulting d X (k + 1) output matrix.
Compute 62 = ||A(21)*,1||§ and Eriﬂ = ”A(zl)*,kH“;’
rough estimates of the 1-st and (k + 1)-st singular
values of A. Run Block Krylov on A with target
rank s, where s = O(p_l/Sk/sl/S) and iterations
q = O(log(d/€)y/p), and let Z; be the resulting d x s
output matrix. Compute 62 = ||A(22)*,s\
mate to the s-th singular value of A.
If 62 > (1+0.5/p)62,,, set Z = Zy. Else, if 6% <
&zﬂ/(l +0.5/p), set Z to be an orthonormal basis
for ATWZW; and otherwise set Z to be an orthonor-
mal basis for ATW1W;'—.
Output: A matrix Z € R4k with orthonormal columns
such that

_ T\ ||P : _ T\ ||P
|A(1-zz )”Spg(ue)u [r}lTltr}:IkHA(I uu )nsp.

®)

©)

2 i
5> an esti-

®)

THEOREM 4.2 (OPTIMAL SCHATTEN-p Low-RANK APPROXIMA-
TION). Given a matrix A € R™4 g target rank k € [d], an accu-
racy parameter € € (0,1) and any p € [1,0(log(d)/e)], Algorithm
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4.1 performs O(kp1/6 log(d/e)/el/3 + log(d/e)k\/f)) matrix-vector
products and outputs a d X k matrix Z with orthonormal columns
such that with probability at least 9/10,

A (1- ZZT)HSP <(i+e) II?TilrJl:Ik |A (1-uuT) Hsp 4

Further, in the RAM model, the algorithm runs in time
O(nnz(A)p'/®k log(d/e) /€' + np(@~ D0k~ je(@D/3)

We first introduce the following lemmas from Musco and Musco
[30] that provide convergence bounds for the performance of Block
Krylov Iteration (Algorithm 4.5) :

LEMMA 4.3 (GAP INDEPENDENT BLOCK KRYLOV WITH ARBITRARY
AccURACY). Let A be an n X d matrix, k be the target rank andy > 0
be an accuracy parameter. Then, initializing Algorithm 4.5 with block
sizek and running forq = Q (log(d/y)/+Jy) iterations outputs adxk
matrix Z such that with probability 99/100, for alli € [k],

2
HAZ*,in =of & YU/%H'
Further, the total number of matrix-vector products is O(kq) and the
running time in the RAM model is O(nnz(A)kq +n(kq)? + (kq)“).

The aforementioned lemma follows directly from Theorem 1 in
[30], using the per-vector error guarantee (3).

LEMMA 4.4 (Gap DEPENDENT Brock KryLov, THEOREM 13 [30]).
Let A be an n X d matrix and y > 0, be an accuracy parameter and
p.k € N besuch thatb > k. Let 01,0 ... 04 be the singular values
of A. Then, initializing Algorithm 4.5 with block size b and running

forq = Q (log(n/y)\/or/\/ox — 0p) iterations outputs a d X k matrix
Z such that with probability 99/100, for all i € [k]

2
||AZ*JH2 =0+ YO—I%H'
Further, the total number of matrix-vector products is O(pq) and the
running time in the RAM model is O(nnz(A)bq +n (bq)Z + (bq)“’).

Algorithm 4.5 (Block Krylov Iteration, [30]).
Input: An n X d matrix A, target rank k, iteration count
q and a block size parameter s such that k <'s < d.

(1) Let Ube a nx s matrix such that each entry is drawn
iid. from N(0, 1). Let
K=[ATU;(ATA)ATU;...; (ATA)IATU]
be the d X s(gq + 1) Krylov matrix obtained by con-
catenating the matrices AU, ..., (ATA)7ATU.

(2) Compute an orthonomal basis Q for the column span
of K. Let M =QTATAQ.

(3) Compute the top k left singular vectors of M, and
denote them by Y.

Output: Z = QY

Next, we prove the following key lemma relating the Schatten-p
norm of row and column projections applied to a matrix A to the
Schatten-p norm of the matrix itself. We can interpret this lemma
as an extension of the Pythagorean Theorem to Schatten-p spaces
and believe this lemma is of independent interest. We note that we
appeal to pinching inequality for partitioned operators to obtain
this lemma.
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LEMMA 4.6 (SCHATTEN-p NORMS FOR ORTHOGONAL PROJECTIONS).
Let A be an n X d matrix, let P be an n X n matrix, and let Q be ad X d
matrix such that both P and Q are orthogonal projection matrices of
rank k (see Definition 3.1). Then, the following inequality holds for
allp > 1:

p P P
1Al > IPAQI +II(1-P)A 1= QI -

Note, despite establishing Lemma 4.6, it is not immediately appar-
ent how to lower bound ||AZZT ||P , where Z is a candidate solution.
Next, we show how to translate a guarantee on the Euclidean norm
of A times a column of Z to a lower bound on ”AZZTH{;P.

LEmMMA 4.7 (PER-VECTOR GUARANTEES TO SCHATTEN NORMS). Let

A be an n X d matrix with singular values denoted by {o; (A)};c[q)-

Let Z be adxk matrix with orthonormal columns that is output by Al-

gorithm 4.5, such that for all i € [k], with probability at least 99/100,
2

||AZ*,1-||2 > 01.2 (A)—)/a/irl (A), forsomey € (0,1). Then, foranyp >

-2
1 wehave|[AZZT|I5 > AN ~O(rp) Sic(k) of,, (M) o] (A).
Finally, we also need the following lemma:

LEMMA 4.8 (SINGULAR VALUES TO ALIGNMENT OF SINGULAR VEC-
TORS). Let A = UXVT be the SVD and let Z be a d X k orthonormal
matrix such that for alli € [k], HAZ*,i |§ > criz (A) - (e/d)coiﬂ,for
some fixed constant ¢ > 10. Further, assume there exists a j* €
[k] such that for all j € [j*], O'JZ-(A) > (1+¢€/d) (A) and

2

(7].*+1(A) < (1-¢€/d) UJZ*(A). Then,

where V;'.; is the top-j* rows of V.

2
Ok+1
RER G

> — (€ >
r J

V%.Z
J

We now have all the ingredients we need to complete the proof
of Theorem 4.2.

Proor oF THEOREM 4.2. Observe, using Lemma 4.3 with prob-
ability at least 97/100, Step 3 of Algorithm 4.1 outputs the fol-
lowing: 62 = (1+0.1/p) o2, ?7/3“ = (1+0.1/p) 0']§+1 and 62
(1£0.1/p) o2, for s = O(kp_1/3/61/3). Condition on this event.
Our proof proceeds via case analysis. The case where there is at
least a constant gap between the first and (k + 1)-st singular value
is easy to handle since we can use gap-dependent guarantees to
obtain highly accurate estimates of the top-k singular values. When
there is no gap, either the Schatten-p norm of the tail is large com-
pared to the (k + 1)-st singular value, and we don’t require a highly
accurate solution, or the Schatten-p norm of the tail is small, and
increasing the block size induces a gap. We formalize this intuition
into a proof.

Let us first consider the case where there is a constant gap
between the top and the (k + 1)-st singular values, i.e., o7 >
(141/p)0g41. Observe, since we have (1+0.1/p)-approximate esti-
mates to o1 and oy, we can detect that we are in this case and Al-
gorithm 4.1 outputs Z = Z1. We further observe that the Algorithm
4.1 runs at least Q(log(d/e)+/p) iterations (since p < log(d)/e)
since Z = Z1. We observe that in this case, there exists a gap of size
p between o1 and oy, since 1 — ox41/01 < 1/p. It follows from
Lemma 4.4 that running Block Krylov Iteration for O(log(d/€)/p)
iterations with block size > k suffices to output a matrix Z such
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that with probability at least 99/100, for all i € [k],

2 €
||AZ*,,~H2 > O'iZ(A) —poly(a) aiH(A). (16)
We note that we cannot simply take p/2-th powers here (for large
p) as this would introduce cross terms that scale proportional to
0i(A), which can be significantly larger than oy, (A). Instead, we
require a finer analysis by splitting A into a head and tail term.

Let A = UXVT be the SVD of A and for all j € [d], let vj = V}—*

denote the j-th row of V. By the Pythagorean Theorem, we have

IAZIZ = IARZIIF + 11(A - Ap) ZI17

> (o7 ot 72 ot

Jjelk]

(17)

o? -

2
j 0

S k+1

Summing over j € [k] for the guarantee obtained in Equation 16,
we have

Iaziz = > [|AZ. |7 > > ot -0k of,,.  (18)

Jjelk] Jjelk]

where y = poly(e/d). Combining Equations (17) and (18), we can

conclude
> (- )i
(19)

(e
Jjelk]
< J’

J
Let j* € [k] be the largest integer such that for all j < j,
GJZ > (1+¢€/d) O']z_H. Next, let j* € [j’,k] be such that gj+y; <
(1—¢€/d)oj:. Observe, such a j* is guaranteed to exist since there

2
Ok+1

Glz+1) - Oyk) O'Ii+1 < Z (0-]2' -

Jjelk]

2
is a gap between o7 and oy,;. Since HZ)JTZH < 1, we can restate
2

Equation (19), as follows:

2, (-

Uk+1) Oyk) Uk+l

Jjelk]
2
2_ 2 T 2_ 2
< 2 (-t forze 3 (of-ata).
jelir] jely +1.k]
Subtracting . je[j*+1,k] (ajz. - Ulz+1) from both sides, and rearrang-

ing, we have

9j
jeli*]

(2

2
2 2 2 T
- 0k+1) = VkOy + 0 z : ij ZH2
jelj*]

2,

jelj*]

(20)

2
< o lloTZ
U | At PN

We are now ready to bound ||A (I - ZZ7)|| Sy By the triangle in-

equality,
A (t-2z7)|s, <A 1-2zT)|s,
d 21
la- A iz,
Observe, forany p > 1, ||Aj* (I- ZZT)”SP < \/E”Aj* (I- ZZT)“F,

since A j» has rank at most k, with p = 1 achieving the worst inequal-
ity. Therefore, using the Pythagorean theorem again, and plugging
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in the lower bound from Equation (20)
1/2
2
A 1-227)|, < Vo |~ 3, o7 7], + ok
Jjeli]
(22)

2
It therefore remains to lower bound } e[+ ‘v}'—ZHZ. Applying

Lemma 4.8, we have,

(23)

o7, =V

[ =7 - o)

Plugging back into Equation (22), “Aj* (I-zz7) HSP < O(§5k+1)
and thus substituting into Equation (21),

A(1-2ZT) 0| A-A
[ s, <0(3)1 kns,,T o0
HlA=Ap) (1-227)]g,

It remains to bound term 24.1 above.
Applying Lemma 4.6 with Q = ZZT and P = WW being the
projection on the column span of AZZT, we have

Dot - > o (WT(a-a;)

jeljr+1 d] Jjelk]

Next, we show that forall j € [k],o;(WT (A=Aj+)) = 0j4j(WTA).
(A - Aj*) andY = Ajs, withi=j
and j = j*. Note, the precondition on the indices i, j in Fact 3.5 is
satisfied since X, Y are n X k matrices, and j € [k] and j* < k. Then,
we have 07 j» (WTA) <oj (W—r (A - Aj*)) +0j+1 (WTA]-*). But
Aj.Z is arank < j* matrix, and thus Oj*+1 (Aj*Z) = 0. Therefore,
we can conclude,

A=) -2z ), <

Here, we invoke Fact 3.5 for X =

lin-ar) =220l < 5 -

e[j*+1,d]

2

Jelj*ke+j*]

(WA

(25)
Finally, we show that O'f (WTA) > o-f (AZ) (we defer the proof to
the full version) and by definition, for j € [j* + Lk + j*], g; <
(1+€/d) 041 and thus, it follows from Lemma 4.7 that for all
Jelj+1Lkl
O.P

k+1°

o} (AZ) 2 o} — Olyp) (26)

where the last inequality uses that p = O(log(d)/€). Substituting
this back into Equation (25), we have

I(a—ap) (1-2ZT)§ < 1+ Otrpk)) 1A - Al - (27)

Taking the p-th root and substituting back into Equation (24),
A(-zz"
A s,

1/ € (28)
< (1+0(ypk) 7 1A - Axlls, + O[5 ) 1A - Al

and since y = poly (€/d), we have ||A (1- ZZT)HSP <(1+e)||A-
Al Sp> which completes the analysis for this case.

Next, we consider the case where the gap between the top and
the (k+1)-st singular value is small, i.e., 01 < (1+1/p) og41. We yet
again split into cases, and consider the case where the Schatten-p
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norm of the tail is small, i.e. |A — Ak”g <
P

forany t € [1,d -k —1],

k
ST (r]f“. Observe,

k k+1+t
p
p1/351/3 .O-’f*'l > ||A_Ak||Sp z Z O-lp 2 to‘lzc)+1+t' (29)
i=k+1

+1/pPk _ o __k
61/3p1/3 - 51/3[,1/3

ok+1/(1+ 1/p). It suffices to show that we can detect this gap for
some s > k + 1+ t. Recall, we know that 651 = (1 +0.1/p)0g41
and 65 = (1 £+ 0.1/p)os. Then, we have

), we have op, 14 <

Then, setting ¢t =

ro< 1+ ) oy < (142 . )
Os = » Os = » 0'k+1+t—(1+0_5/p)0'k+1~

Therefore, Algorithm 4.1 outputs Z, an orthonormal basis for ATW,,
where W3, is obtained by running Algorithm 4.5 on AT, initialized

with a block size of © (W) and run for O(log(d/e)+/p) iter-

ations. Observe, since ox414; < 0k41/(1+1/p), this suffices to
demonstrate a gap that depends on p as follows: % < p
Recall, we account for this gap by running O(log(d)+/p) iterations.
Using the gap dependent analysis (Lemma 4.4), we can conclude

that with probability at least 99/100, for all i € [k],
2 €
AT (Wa)ly > oF ~ poly (5) o2, (31)

Then, applying Lemma 4.7 with Wy W, satisfying the guarantee in
(31), we have

|A™W. Wl > Al - poly (5) of (32)

d) k+1
Next, we use Lemma 4.6 to relate HATWZW;r ||gp to HA (I - ZZT)HPP,

where Z is an orthonormal basis for ATWZW;r as output by the
algorithm. Setting Q = ZZT and P = WgW;—, we observe that
IPAQIFg = [WaWTA[I and |1 - DA - QI = 1A -

ZZT)||gp. Then, invoking Lemma 4.6 and plugging in Equation
(32), we have

la(-zz)|fy <Al - aTw W]

< (1+poly (5)) 1A - Al . )

which concludes the analysis in this case.

As shown in Equation 30, we can detect a gap between og,14;
and oy, by comparing 65 and 63,;. When 30 does not hold, we
know that 65 > (1+0.5/p) 6% and Algorithm 4.1 outputs Z,
an orthonormal basis for ATWIWI. Since we have (1 +0.1/p)-
approximate estimates to these quantities, we can conclude that
0s =2 (1+0.1/p) or41. Then, we have

k
P —
”A_Ak”Sp > S'O'f = Q(m)GII;‘I

It therefore remains to consider the case where ||A — Ak”g >
»

_ck__ . 5P , for a fixed universal constant c. Here, we note that
P33 Tk+1

the tail is large enough that an additive error of O(ez/ 3pl/ 3) UI§+1

on each of the top-k singular values suffices. Formally, it follows
from Lemma 4.3 (setting y = €%/3p~1/3, and invoking it for AT)
that initializing Algorithm 4.5 with block size k and running for
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O(log(d/e)pl/ﬁ/el/S) iterations suffices to output a n X k matrix
W such that with probability at least 99/100, for all i € [k],

[AT (Wo i} > of - p 102, .

Then, invoking Lemma 4.7 with AT and W as defined above, we
have

laTwi Wl = [Wiw Al

(34)
> ||Ak||§P _ O(k€2/3p2/3) O-If+1

where the last inequality uses that o1 < (1 + 1/p)og,; and (1 +
1/p)? = O(1). Recall, in this case, Algorithm 4.1 outputs ZZ" where
Z is an orthonormal basis for ATW1W;'—. Next, we invoke Lemma

4.6 to relate [[ATW W] | to [|A (1-ZZT)|[f; . Setting Q = 27
» P
and P = W{ W, we observe that ||PAQ||g = ||W1WITA||‘g and
P P
lA-P)A (I- Q)||f9 =|A (- ZZT)||§ . Then, invoking Lemma
p P
4.6 and plugging in Equation (34), we have
I0-PA-QIf < (1+0(pe) A~ Al . (35)

where the last inequality follows from our assumption on the
Schatten-p norm of the tail, given the case we are in. Taking the
(1/p)-th root, and recalling that € < 1/2, we obtain

la(1=2ZT)|s, < (1+0(e)) IA - Al (36)
which concludes the final case.

Next, we analyze the running time and matrix-vector products.

Running Algorithm 4.5 with block size k for g = O(log(d)p1/6/61/3)

nnz(A)kp!/® log(d)) time and O(kpl/é log(d))

iterations requires O( v 7

matrix-vector products. Similarly, running with block size O( k i )
(ep)3

/
for ¢ = O(log(d/€)+/p) iterations requires O(M)

el/3

kp'/Slog(d)

time and O( i

) matrix-vector products. Finally, we ob-

serve that to obtain a (1 + 1/p)-approximation to o; and og,, we
need O(log(d)+/p) iterations with blocksize k + 1 and this requires
O(log(d)+/pk) matrix-vector products. Note, our setting of the ex-
ponent of p and € was chosen to balance the two cases, and this
concludes the proof.

o

5 QUERY LOWER BOUNDS

Next, we show that the e-dependence obtained by our algorithms
for Schatten-p low-rank approximation is optimal in the restricted
computation model of matrix-vector products. The matrix-vector
product model is defined as follows: given a matrix A, our algorithm
is allowed to make adaptive matrix-vector queries to A, where
one matrix-vector query is of the form Auv, for any v € R4, Our
lower bounds are information-theoretic and rely on the hardness
of estimating the smallest eigenvalue of a Wishart ensemble, as
established in recent work of Braverman, Hazan, Simchowitz and
Woodworth [9].
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We split the lower bounds into the case of p € [1,2] and p > 2.
For p € [1, 2], we have a simple argument based on the Araki-Lieb-
Thirring inequality (Fact 3.10), whereas for p > 2, our lower bounds
require an involved argument using a norm compression inequality
for partitioned operators (Fact 3.14).

5.1 Lower Bounds for p € [1, 2]

The main lower bound we prove in this sub-section is as follows:

THEOREM 5.1 (QUERY LOWER BOUND FOR p € [1,2]). Givene > 0,
and p € [1,2], there exists a distribution D over n X n matrices such
that for A ~ D, any randomized algorithm that with probability
at least 9/10 outputs a rank-1 matrix B such that ||A — B||gp <

(1+e)||A-Ay ||‘g must make Q(1/€1/3) matrix-vector queries to
p
A.

We require the following theorem on the hardness of computing
the minimum eigenvalue of a Wishart Matrix, introduced recently
by Braverman, Hazan, Simchowitz and Woodworth [9]:

THEOREM 5.2 (COMPUTING MIN EIGENVALUE OF WISHART, THEO-
REM 3.1 [9]). Given e € (0, 1), there exists a functiond : (0,1) —» N
such that for all d > d(e), the following holds. Let W ~ Wishart(d)
be a Wishart matrix and {Ai};c[q) be the eigenvalues of W, in de-
scending order. Then, there exists a universal constant ¢* such that:
(1) Let; be the event that 1;(W) < c1/d?, {5 be the event that
Ag—1(W) =24 (W) > cz/d? and {3 be the event that IWllop <
5, where c1 and ¢y are constants that depend only on €. Then,
Prw [(1N2 N3] 2 1—#-

(2) Any randomized algorithm that makes at most (1 — €)d adap-
tive matrix-vector queries and outputs an estimate id must
satisfy

. 1 .
%‘U/ld—/ld‘ZE > c*e.

We also use the following lemma from [9] bounding the mini-
mum eigenvalue of a Wishart ensemble:

LEMMA 5.3 (NON-ASYMPTOTIC SPECTRA OF WISHART ENSEMBLES,
COROLLARY 3.3 [9]). Let W ~ Wishart(n) be such that n = Q(1/¢3).
Then, there exists a universal constant cy > 0 such that

Pr [An (W) > lz
n

1
> ¢, and  Pr [An (W) < —] > 2
2n?

We are now ready to prove Theorem 5.1. Our high level approach
is to show that we can take any solution that is a (1+¢)-relative-error
Schatten-p low-rank approximation to the hard instance I — éW,
where W is a Wishart ensemble, and extract from it an accurate
estimate of the minimum eigenvalue of W, thus appealing to the
hardness stated in (2) of Theorem 5.2 above.

ProOF OF THEOREM 5.1. Let n=© (1/e!/3) andlet A =1~ 1W

be an nxn instance where W ~ Wishart(n). Let {1 be the event that
IWllop < 5.1t follows from Fact 3.16 that {7 holds with probability
at least 99/100, and we condition on this event. Let {3 be the event

that , (W) > & = £2 and £3 be the event that A, (W) < 74 =
2/3
.
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e . /
Then, conditioning on {3, we have that 1 — %/In(W) <1- %

and conditioning on {3, we have that 1 — %An (W) >1- % We

observe that for p € [1, 2], using Bernoulli’s inequality (Fact 3.6)
we have

1 p P
(1 - gAn(W)) >1- gﬂn(W)

and since (1 — x)? < (1 — x) for any x € (0, 1), we also have that,

o) <1 Laow
5n = sn

Therefore, we can conclude, (1 - %An(W))p =1-0A,(W)).

Further, it follows from part (1) of Fact 3.16 that 0 < I — éW <1
and thus

1 1 1
Al = Z AP (1— EW) < Z A (1— gW) < O(m)
i€[n] i€[n]

(37)
where the last inequality follows from the fact that n = Vc*/e!/3.
Let A; denote the best rank-1 approximation to A. Then, it follows
from Equation (37) that

cllA- Ay <ellalfy <o) (38)

Observe, any (1 + €)-approximate relative-error Schatten-p low-
rank approximation algorithm for k = 1 outputs a matrix vo! such
that

—_ oo N|I2 P _ P 2/3
la @-ooT)ll5, < AN - A1, + 0% 39)
By definition of the Schatten-p norm we have:

”A (- UUT)”gp >Tr ((I - zmT)p AP (1- UUT)P)
= ||A||gp -Tr ((UUT)P/Z (Az)p/2 (UUT)p/Z)

/2
> ||A||‘ljg - Tr ((UUTAZUUT)P )
P

_ P TP
= llall, —||Avo || 5,
(40)

where the first and last inequality follows from the reverse Araki-
Lieb-Thirring inequality (Fact 3.10). Combining equations (39) and
(40), we have that
Al > [lAolly > [IAlL, - ©(e*/*) (41)
Next, we observe that Av = (I - 1/5W) v can be computed with
one additional matrix-vector product and

p
||A||§p=(1—§an<W>) =1-Enw+o(w) @)

Consider the estimatori(W) = % (l - H(I - %W) v
equations (41) and (42), we can conclude

A(W) = Amin(W) + ©(2/3).

: ) . Combining

obtaining an additive error estimate to the minimum eigenvalue
of W by computing an additional matrix-vector product. It follows
that we satisfy conditions (1) and (2) in Theorem 5.2 and thus any
algorithm for computing a rank-1 approximation to the matrix
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A=1- %W in Schatten p norm must make at least +/3 queries to
the aforementioned matrix, completing the proof. The claim follows
from Theorem 5.2. ]

5.2 Lower Bound for p > 2

We now consider the case when p > 2. We note that the previous
approach no longer works since we cannot lower bound the cost
of |(I-W/5) (I-ooT) || S, as the Araki-Lieb-Thirring inequality
reverses (see application in Equation 40). Therefore, we require a
new approach, and appeal to a special case of Conjecture 2.2 that
is known to be true, i.e. the Aligned Norm Compression inequality
(see Fact 3.14). The main theorem we prove in this sub-section is as
follows:

THEOREM 5.4 (QUERY LOWER BOUND FOR p > 2). Givene > 0,
and p > 2 such that p = O(1), there exists a distribution D over
n X n matrices such that for A ~ D, any randomized algorithm
that with probability at least 99/100 outputs a unit vector u such

that ||A - AuuT”g <(1+¢||A- A1||g must make Q (1/51/3)
P »

matrix-vector queries to A.

We first introduce a sequence of key lemmas required for our
proof.

COROLLARY 5.5 (SPECIAL CASE OF LEMMA 4.3). Giveny € [0,1],
a vectorv € R? and an n x d matrix A, let t = log(n/y)/(c\Y),
for a fixed universal constant c. Then, there exists an algorithm that
computes t matrix-vector products with A and outputs a unit vector
u such that with probability at least 99/100,

IAIZ, - IAul? < 0 (yof).
where o is the second largest singular value of A.

Next, we prove a key lemma relating the norm of a matrix to
norms of orthogonal projections applied to the matrix. We note
that this lemma is straight forward and holds for arbitrary vectors
unit u, v if Conjecture 2.2 holds. However, we show that we can
transform our matrix to have structure such that we can apply Fact
3.14 instead.

LEMMA 5.6 (ORTHOGONAL PROJECTORS TO BLOCK MATRICES ).
Given an n X d matrix A, p > 2 and unit vectors u € Rd,o e R,
such that (I — va) Auu" = 0. Then, we have

||UUTAuuT||Sp ||00TA (I - uuT)Hsp
FacT 5.7 (SVD OF A 2 X 2 MATRIX). Given a2 X 2 matrix M =

IAlls, < 0 I1=voT) A (1= uuT)[ g,
(ccz z) let UXVT be the SVD of M. Then,

Sp

@ 4B 42+ d? + (a2 + b2 — 2 — d?)? + 4 (ac + b)?

2

211

\

>

and

@b+ +d? = (@ + b7 = ¢ — ) + 4 (ac+ bd)?
- .

Yoo = \

Now, we are ready to prove Theorem 5.4.
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Proor oF THEOREM 5.4. Let A =1 - %W where Wisann Xn
Wishart matrix as in the proof of Theorem 5.1 and we have by
hypothesis that there is an algorithm that with probability at least
99/100, outputs a unit vector u such that HA (1- uuT)”gp <(1+

&) |IA - Ay ||gp Let v = Au/||Aul|, and observe, (I-v0") Auu™ =

0. Further, by the unitary invariance of the Schatten-p norm,

[uT AT Aul
||vu—'—AuuT||S[J = |vTAu| = W = [|Aul|,. (43)
Similarly,
T T _ T V112 1/3
= < 2
||UU A(I-uu )”Sp VITAI-uuT)||5 < e /o (44)

where we use sub-multiplicativity of the £, norm and Corollary
5.5 withy = €%/3. Note that we can assume w.l.o.g. that Corollary
5.5 holds since we can just iterate Block Krylov g = (1/ce'/?)
times, for a sufficiently large constant c, starting the iterations
with the vector u output by the algorithm hypothesized for the
theorem, and pay only (1/ ce'/?) extra matrix-vector products. Since
00" A+ Auu’ — oo Auu” has rank at most 3,

H(I—UUT)A(I—uuT)HZP = Q(l/el/3), (45)
where the last inequality follows from Fact 3.16.
oo Auu” 00T A (I—uu” T
TR [Tyt e v,
Sp Sp

Then, it follows from Fact 5.7 that

11 (M) = \/c2+d2+®(— (46)

where we use that b = 0, c,a < 1 and 1 <« d and the Taylor
a’c

expansion of 4/x +y for x, y > 0. Similarly,
) 2
Y2 (M) = -0
22 (M) = /a (c2+d2—a2)
Then, using equations (46) and (47) we can bound the Schatten-p
norm of M as follows:

(47)

M < (1+0(e7)) 1A= Aulfy +lAull  (9)
P P
It follows from Lemma 5.6, that ||M||§ > ||A||g and thus
P P
IAullf > AN~ (1+0(*?)) 1A - Al
P P (49)

> [|Al15, - ()

where the second to last inequality follows from recalling p > 2.
The remainder of the proof is as in that following (41) in the proof
of Theorem 5.1. O
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