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ABSTRACT

We study iterative methods based on Krylov subspaces for low-

rank approximation under any Schatten-𝑝 norm. Here, given ac-

cess to a matrix A through matrix-vector products, an accuracy

parameter 𝜖 , and a target rank 𝑘 , the goal is to find a rank-𝑘 ma-

trix Z with orthonormal columns such that


A (

I − ZZ⊤
)



S𝑝
≤

(1 + 𝜖)minU⊤U=I𝑘



A (
I − UU⊤)



S𝑝
, where ∥M∥S𝑝

denotes the ℓ𝑝

norm of the the singular values of M. For the special cases of 𝑝 = 2

(Frobenius norm) and 𝑝 = ∞ (Spectral norm), Musco and Musco

(NeurIPS 2015) obtained an algorithm based on Krylov methods

that uses 𝑂̃ (𝑘/
√
𝜖) matrix-vector products, improving on the naïve

𝑂̃ (𝑘/𝜖) dependence obtainable by the power method, where 𝑂̃ (·)
suppresses poly(log(𝑑𝑘/𝜖)) factors.

Our main result is an algorithm that uses only 𝑂̃ (𝑘𝑝1/6/𝜖1/3)
matrix-vector products, and works for all, not necessarily constant,

𝑝 ≥ 1. For 𝑝 = 2 our bound improves the previous 𝑂̃ (𝑘/𝜖1/2) bound
to 𝑂̃ (𝑘/𝜖1/3). Since the Schatten-𝑝 and Schatten-∞ norms of any

matrix are the same up to a 1 + 𝜖 factor when 𝑝 ≥ (log𝑑)/𝜖 , our
bound recovers the result of Musco and Musco for 𝑝 = ∞. Further,

we prove a matrix-vector query lower bound of Ω(1/𝜖1/3) for any
fixed constant 𝑝 ≥ 1, showing that surprisingly Θ̃(1/𝜖1/3) is the
optimal complexity for constant 𝑘 .

To obtain our results, we introduce several new techniques, in-

cluding optimizing over multiple Krylov subspaces simultaneously,

and pinching inequalities for partitioned operators. Our lower bound

for 𝑝 ∈ [1, 2] uses the Araki-Lieb-Thirring trace inequality, whereas

for 𝑝 > 2, we appeal to a norm-compression inequality for aligned

partitioned operators. As our algorithms only require matrix-vector

product access, they can be applied in settings where alternative

techniques such as sketching cannot, e.g., to covariance matrices,

Hessians defined implicitly by a neural network, and arbitrary poly-

nomials of a matrix.
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1 INTRODUCTION

Iterative methods, and in particular Krylov subspace methods, are

ubiquitous in scientific computing. Algorithms such as power iter-

ation, Golub-Kahan Bidiagonalization, Arnoldi iteration, and the

Lanczos iteration, are used in basic subroutines for matrix inversion,

solving linear systems, linear programming, low-rank approxima-

tion, and numerous other fundamental linear algebra primitives

[24, 42]. A common technique in the analysis of Krylov methods

is the use of Chebyshev polynomials, which can be applied to the

singular values of a matrix to implement an approximate interval or

step function [27, 40]. Further, Chebyshev polynomials reduce the

degree required to accurately approximate such functions, leading

to significantly fewer iterations and faster running time. In this

paper we investigate the power of Krylov methods for low-rank

approximation in the matrix-vector product model.

The Matrix-Vector Product Model. In this model, there is an

underlying matrixA, which is often implicit, and for which the only

access to A is via matrix-vector products. Namely, the algorithm

chooses a query vector 𝑣1, obtains the product A · 𝑣1, chooses the
next query vector 𝑣2, which is any randomized function of 𝑣1 and

A ·𝑣1, then receivesA ·𝑣2, and so on. IfA is a non-symmetric matrix,

we assume access to products of the form A⊤𝑣 as well. We refer

to the minimal number 𝑞 of queries needed by the algorithm to

solve a problem with constant probability as the query complexity.

We note that upper bounds on the query complexity immediately

translate to running time bounds for the RAM model, when A

is explicit, since a matrix-vector product can be implemented in

nnz(A) time, i.e., the number of non-zero entries in the matrix.

Since this model captures a large family of iterative methods, it

is natural to ask whether Krylov subspace based methods yield

optimal algorithms, where the complexity measure of interest is

the number of matrix-vector products.

This model and related vector-matrix-vector query models were

formalized for a number of problems in [38, 45], though the model

is standard for measuring efficiency in scientific computing and

numerical linear algebra, see, e.g., [6]; in that literature, methods

that use only matrix-vector products are called matrix-free. Subse-

quently, for the problem of estimating the top eigenvector, nearly

tight bounds were obtained in [9, 44]. Also, for the problem of esti-

mating the trace of a positive semidefinite matrix, tight bounds were

obtained in [29] (see, also [51], where tight bounds were shown

in the related vector-matrix-vector query model). For recovering a

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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planted clique from a random graph, upper and lower bounds were

obtained in [37]. In the non-adaptive setting, where 𝑣1, . . . , 𝑣𝑞 , are

chosen before making any queries to A, this is equivalent to the

sketching model, which is thoroughly studied on its own (see, e.g.,

[34, 52]), and in the context of data streams [22, 32].

Why is the matrix A implicit? A small query complexity

𝑞 leads to an algorithm running in time O(𝑇 (A) · 𝑞 + 𝑃 (𝑛,𝑑, 𝑞)),
where 𝑇 (A) is the time to multiply the 𝑛 × 𝑑 matrix A by an arbi-

trary vector, and 𝑃 (𝑛,𝑑, 𝑞) is the time needed to form the queries

and process the query responses, which is typically small. When

the matrix A is given as a list of nnz(A) non-zero entries, then

𝑇 (A) ≤ nnz(A). However, in many problems A is not given ex-

plicitly, and it is too expensive to write A down. Indeed, one may

be given A but want to compute a low-rank approximation to the

łcovariancež (Gram) matrix A⊤A, and computing A⊤A is too slow

[31]. More generally, one may be given A = UΣV⊤ and a function

𝑓 : R → R, and want to compute matrix-vector products with

the generalized matrix function 𝑓 (A) = U𝑓 (Σ)V⊤, where U has

orthonormal columns, V⊤ has orthonormal rows, Σ is a diagonal

matrix, and 𝑓 is applied entry-wise to each entry on the diagonal.

The covariance matrix corresponds to 𝑓 (𝑥) = 𝑥2, and other

common functions 𝑓 include the matrix exponential 𝑓 (𝑥) = 𝑒𝑥 and

low-degree polynomials. For instance, when A is the adjacency

matrix of an undirected graph, 𝑓 (𝑥) = 𝑥3/6 is used to count the

number of triangles [4, 49]. Yet another example is when A is the

Hessian H of a neural network with a huge number of parameters,

for which it is often impossible to compute or store the entire

Hessian [16]. Typically H · 𝑣 , for any chosen vector 𝑣 , is computed

using Pearlmutter’s trick [35]. However, even with Pearlmutter’s

trick and distributed computation on modern GPUs, it takes 20

hours to compute the eigendensity of a single Hessian H with

respect to the cross-entropy loss on the CIFAR-10 dataset from a

set of fixed weights for ResNet-18 [21], which has approximately

11 million parameters [16, 19]. This time is directly proportional to

the number of matrix-vector products, and therefore minimizing

this quantity is crucial.

Algorithms and Lower Bounds for Low-Rank Approxi-

mation. The low-rank approximation problem is well studied in

numerical linear algebra, with countless applications to clustering,

data mining, principal component analysis, recommendation sys-

tems, and many more. (For surveys on low-rank approximation,

see the monographs [20, 26, 52] and references therein.) In this

problem, given an implicit 𝑛 × 𝑑 matrix A, the goal is to output a

matrix Z ∈ R𝑑×𝑘 with orthonormal columns such that

A (
I − ZZ⊤

)


𝑋

≤ (1 + 𝜖) min
U:U⊤U=I𝑘



A (
I − UU⊤)



𝑋
, (1)

where ∥·∥𝑋 denotes some norm. Note that givenZ, one can compute

AZ with an additional 𝑘 queries, which will be negligible, and then

(AZ) · Z⊤ is a rank-𝑘 matrix written in factored form, i.e., as the

product of an 𝑛 × 𝑘 matrix and a 𝑘 ×𝑑 matrix. Among other things,

low-rank approximation provides (1) a compression of A from 𝑛𝑑

parameters to (𝑛+𝑑)𝑘 parameters, (2) faster matrix-vector products,

sinceAZ·Z⊤ ·𝑦 can be computed in𝑂 ((𝑛+𝑑)𝑘) time for an arbitrary

vector 𝑦, as opposed to the 𝑂 (𝑛𝑑) time needed to compute A · 𝑦,
and (3) de-noising, as often matrices A are close to low-rank (e.g.,

they are the product of latent factors) but only high rank due to

noise.

Despite its tremendous importance, the optimal matrix-vector

product complexity of low-rank approximation is unknown for

any commonly used norm. The best known upper bound is due

to Musco and Musco [30], who achieve Õ(𝑘/𝜖1/2) queries1 for

both the case when ∥ · ∥𝑋 is the commonly studied Frobenius

norm ∥B∥𝐹 =

(∑
𝑖, 𝑗 B

2
𝑖, 𝑗

)1/2
as well as when ∥ · ∥𝑋 is the Spectral

(operator) norm ∥B∥2 = sup∥𝑦 ∥2=1 ∥B𝑦∥2.
On the lower bound front, there is a trivial lower bound of 𝑘 ,

since A may be full rank and achieving (1) requires 𝑘 matrix-vector

products since one must reconstruct the column span of A exactly.

However, no lower bounds in terms of the approximation factor 𝜖 were

known. We note that Simchowitz, Alaoui and Recht [44] prove lower

bounds for approximating the top 𝑟 eigenvalues of a symmetric

matrix; however these guarantees are incomparable to those that

follow from a low-rank approximation, even when the norm ∥ · ∥𝑋
is the operator norm.

Relationship to the Sketching Literature. Low-rank approx-

imation has been extensively studied in the sketching literature

which, when A is given explicitly, can achieve O(nnz(A)) time both

for the Frobenius norm [14, 28, 33], as well as for Schatten-𝑝 norms

[23]. However, these works require reading all of the entries in

A, and thus do not apply to any of the settings mentioned above.

Further, the matrix-vector query model is especially important for

problems such as trace estimation, where a low-rank approxima-

tion is used to first reduce the variance [29]. As trace estimation

is often applied to implicit matrices, e.g., in computing Stochastic

Lanczos Quadrature (SLQ) for Hessian eigendensity estimation [16],

in studying the effects of batch normalization and residual connec-

tions in neural networks [54], and in computing a disentanglement

regularizer for deep generative models [36], sketching algorithms

for low-rank approximation often do not apply.

Another important application is low-rank approximation of

covariance matrices [31], for which the covariance matrix is not

given explicitly. Here, we have a data matrix A and we want a low-

rank approximation for AA⊤. Even when S is a sparse sketching

matrix, the matrix SA is no longer sparse, and one needs to multiply

SA by A⊤ to obtain a sketch of SAA⊤, which is a dense matrix-

matrix multiplication. Moreover, when viewed in the matrix-vector

product model, sketching algorithms obtain provably worse query

complexity than existing iterative algorithms (see Table 1 for a

comparison). Further, as modern GPUs often do not exploit sparsity,

even when the matrix A is given, a GPU may not be able to take

advantage of sparse queries, which means the total time taken is

proportional to the number of matrix-vector products.

Motivating Schatten-𝑝 Norms. The Schatten norms for 1 ≤
𝑝 < 2 are more robust than the Frobenius norm, as they dampen

the effect of large singular values. In particular, the Schatten-1

norm, also known as the nuclear norm, has been widely used for

robust PCA [10, 53, 55] as well as a convex relaxation of matrix

1We let Õ (𝑓 ) = 𝑓 · poly(log(𝑑𝑘/𝜖)) .
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rank in matrix completion [11, 12], low-dimensional Euclidean em-

beddings [39, 41, 48], image denoising [17, 18] and tensor comple-

tion [56]. In contrast, for 𝑝 > 2, Schatten norms are more sensitive

to large singular values and provide an approximation to the op-

erator norm. In particular, for a rank 𝑟 matrix, it is easy to see

that setting 𝑝 = log(𝑟 )/𝜂 yields a (1 + 𝜂)-approximation to the

operator norm (i.e., 𝑝 = ∞). While the Block Krylov algorithm of

Musco and Musco [30] implies a matrix-vector query upper bound

of Õ
(
𝑘/𝜖1/2

)
for Schatten-∞ low-rank approximation, the exact

complexity of this problem remains an outstanding open problem.

When 𝑝 > 2, we can interpolate between Frobenius and operator

norm, and setting 𝑝 to be a large fixed constant can be a proxy

for Schatten-∞ low-rank approximation, with significantly fewer

matrix-vector products (see Theorem 4.2).

Our Central Question. The main question of our work is:

What is the matrix-vector product complexity of low-rank

approximation for the Frobenius norm, and more generally, for other

matrix norms?

1.1 Our Results

We begin by stating our results for Frobenius and more generally,

Schatten-𝑝 norm low-rank approximation for any 𝑝 ≥ 1; see Table

1 for a summary.

Theorem 1.1 (Query Upper Bound, informal Theorem 4.2).

Given amatrixA ∈ R𝑛×𝑑 , a target rank𝑘 ∈ [𝑑], an accuracy parame-

ter 𝜖 ∈ (0, 1) and any (not necessarily constant) 𝑝 ∈ [1,O(log(𝑑)/𝜖)],
there exists an algorithm that uses Õ

(
𝑘𝑝1/6/𝜖1/3

)
matrix-vector

products and outputs a 𝑑 × 𝑘 matrix Z with orthonormal columns

such that with probability at least 99/100,

A (
I − ZZ⊤

)


S𝑝

≤ (1 + 𝜖) min
U: U⊤U=I𝑘



A (
I − UU⊤) 



S𝑝
.

When 𝑝 ≥ log(𝑑)/𝜖 , we get Õ
(
𝑘/

√
𝜖
)
matrix-vector products.

We note that for Frobenius norm low-rank approximation (Schat-

ten 𝑝 for 𝑝 = 2), we improve the prior matrix-vector product

bound of Õ(𝑘/𝜖1/2) by Musco and Musco [30] to Õ(𝑘/𝜖1/3). For
Schatten-𝑝 low-rank approximation for 𝑝 ∈ [1, 2), we improve

work of Li and Woodruff [23] who require query complexity at

least Ω(𝑘2/𝑝/𝜖4/𝑝+1), which is a polynomial factor worse in both 𝑘

and 1/𝜖 than our Õ(𝑘/𝜖1/3) bound.
For 𝑝 > 2, [23] obtain a query complexity of Ω(min(𝑛,𝑑)1−2/𝑝 ).

We drastically improve this to Õ(𝑘/𝜖1/3), which does not depend

on 𝑑 or 𝑛 at all. Setting 𝑝 = log(𝑑)/𝜖 suffices to obtain a (1 + 𝜖)-
approximation to the spectral norm (𝑝 = ∞), and we obtain an

Õ
(
𝑘/

√
𝜖
)
query algorithm, matching the best known bounds for

spectral low-rank approximation [30]. When 𝑝 > log(𝑑)/𝜖 , we can
simply run Block Krylov for 𝑝 = ∞.

Remark 1.2 (Comments on the RAM Model). Although our focus

is on minimizing the number of matrix-vector products, which is

the key resource in the applications described above, our bounds

also improve the running time of low-rank approximation algo-

rithms when the matrix A has a small number of non-zero entries

and is explicitly given. For simplicity, we state our bounds and

those of previous work without using algorithms for fast matrix

multiplication; similar improvements hold when using such al-

gorithms. When nnz(A) = 𝑂 (𝑛), for Frobenius norm low-rank

approximation, work in the sketching literature, and in particu-

lar [5] (building off of [14, 15, 33]), achieves 𝑂 (𝑛𝑘2/𝜖) time. In

contrast, in this setting our runtime is Õ(𝑛𝑘2/𝜖2/3). Similarly, for

Schatten-𝑝 low-rank approximation for 𝑝 ∈ [1, 2), the previous

best [23] requires Ω̃(𝑛𝑘4/𝑝/𝜖 (8/𝑝−2) ) time, while for 𝑝 > 2 [23]

requires Ω̃(𝑛𝑑2(1−2/𝑝) (𝑘/𝜖)4/𝑝 ) time. In both cases our runtime is

only Õ(𝑛𝑘2𝑝1/3/𝜖2/3). We obtain analogous improvements when

the sparsity nnz(A) is allowed to be 𝑛(𝑘/𝜖)𝐶 for a small constant

𝐶 > 0.

Next, we state our lower bounds on the matrix-vector query

complexity of Schatten-𝑝 low-rank approximation.

Theorem 1.3 (Query Lower Bound for constant 𝑝 , infor-

mal Theorem 5.1 and Theorem 5.4 ). Given 𝜀 > 0, and a fixed

constant 𝑝 ≥ 1, there exists a distribution D over 𝑛 × 𝑛 matrices

such that for A ∼ D, any algorithm that with at least constant

probability outputs a unit vector 𝑣 such that


A (

I − 𝑣𝑣⊤
)

𝑝

S𝑝
≤

(1 + 𝜀)min∥𝑢 ∥2=1


A (

I − 𝑢𝑢⊤
)

𝑝

S𝑝
must perform Ω(1/𝜀1/3) matrix-

vector queries to A.

Remark 1.4. We note that this is the first lower bound as a function

of 𝜖 for this problem, even for the well-studied case of 𝑝 = 2,

achieving an Ω(1/𝜖1/3) bound, which is tight for any constant 𝑘 ,

simultaneously for all constant 𝑝 ≥ 1.

Remark 1.5. Braverman, Hazan, Simchowitz and Woodworth [9]

and Simchowitz, Alaoui and Recht [44] establish eigenvalue estima-

tion lower bounds that we use in our arguments, but their results

do not directly imply low-rank approximation lower bounds for

any matrix norm that we are aware of, including spectral low-rank

approximation, i.e., 𝑝 = ∞.

Matrix Polynomials and Streaming Algorithms. Since our algo-

rithms are based on iterative methods, they generalize naturally

to low-rank approximations of matrices of the form A
(
A⊤A

)ℓ
and(

A⊤A
)ℓ

for any integer ℓ , given A as input. We defer the details to

the full version.

Since we work in the matrix-vector model, our algorithms natu-

rally extend to the multi-pass turnstile streaming setting. Notably,

for 𝑝 > 2, with O
(
log(𝑑/𝜖)𝑝1/6/𝜖1/3

)
passes we are able to im-

prove the Õ
(
𝑛

(
𝑘𝑛1−2/𝑝

𝜖2
+ 𝑘2/𝑝+𝑛1−2/𝑝

𝜖2+2/𝑝

))
memory bound of [23] to

Õ
(
𝑛𝑘/𝜖1/3

)
.

1.2 Open Questions

We note that our lower bounds are tight only when the target rank

𝑘 and Schatten norm 𝑝 are fixed constants. In particular, it is open

to obtain matrix-vector lower bounds that grow as a function of

𝑘 , 𝑝 and 1/𝜖 . For the important special case of Spectral low-rank

approximation (𝑝 = ∞), it is open to obtain any lower bound that

grows as a function of 1/𝜖 , even when the target rank 𝑘 = 1. We also

note that improving our upper bound to even 𝑝1/6−𝑜 (1) would imply

a faster algorithm for Spectral low-rank approximation, addressing

the main open question in [52].
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Problem Frobenius Schatten-𝑝 , 𝑝 ∈ [1, 2) Schatten-𝑝 , 𝑝 > 2

Sketching [13, 23] Θ(𝑘/𝜖) Ω(𝑘2/𝑝/𝜖4/𝑝+1) Ω(min(𝑛,𝑑)1−2/𝑝 )

Block Krylov [30] Õ(𝑘/𝜖1/2) N/A N/A

Our Upper Bound Õ(𝑘/𝜖1/3) Õ(𝑘/𝜖1/3) Õ(𝑘𝑝1/6/𝜖1/3)

Our Lower Bound Ω(1/𝜖1/3) Ω(1/𝜖1/3) Ω(1/𝜖1/3)

Figure 1: Prior Upper and Lower Bounds on the Matrix Vector Product Complexity for Frobenius and Schatten-𝑝 low-rank

Approximation. The poly(𝑘/𝜖) factors in prior sketching work for Schatten-𝑝 are not explicit, but we have computed lower

bounds on them to illustrate our improvements. Our bounds are optimal, up to logarithmic factors, for constant 𝑘 . For

𝑝 > log(𝑑)/𝜖, spectral low-rank approximation [30] implies an Õ
(
𝑘/

√
𝜖
)
upper bound.

2 TECHNICAL OVERVIEW

For our technical overview, we drop polylogarithmic factors ap-

pearing in the analysis and assume the input A is a symmetric 𝑛×𝑛
matrix (we handle arbitrary 𝑛 × 𝑑 matrices in Section 4).

2.1 Algorithms for Low-Rank Approximation

We first describe our algorithm for the special case of rank-1 approx-

imation in the Frobenius norm, i.e., 𝑝 = 2. Our algorithm is inspired

by the Block Krylov algorithm of Musco and Musco [30]. Briefly,

their algorithm begins with a random starting vector 𝑔 (block size

is 1) and computes the Krylov subspace K = [A𝑔;A2𝑔; . . . ;A𝑞𝑔],
for 𝑞 = O

(
1/𝜖1/2

)
. Next, their algorithm computes an orthonormal

basis for the column span of K, denoted by a matrix Q, and outputs

the top singular vector of Q⊤A2Q, denoted by 𝑧 (see Algorithm 4.5

for a formal description). It follows from Theorem 1, guarantee (1)

in [30] that

A (
I − 𝑧𝑧⊤

)

2
𝐹
≤ (1 + 𝜖) min

∥𝑢 ∥2=1



A (
I − 𝑢𝑢⊤

)

2
𝐹
, (2)

and it is easy to see that this algorithm requires Θ
(
1/𝜖1/2

)
matrix-

vector products. A naïve analysis requires an O(1/𝜖)-degree poly-
nomial in the matrix A to obtain (2), while [30] use Chebyshev

polynomials to approximate the threshold function between first

and second singular value, and save a quadratic factor in the degree.

The guarantee in (2) then follows from observing that the best vec-

tor in the Krylov subspace is at least as good as the one that exists

using Chebyshev polynomial approximation.

Algorithm 2.1 (Algorithm Sketch for Frobenius LRA ).

Input: An 𝑛×𝑛 symmetric matrixA, accuracy parameter

0 < 𝜀 < 1.

(1) Run Block Krylov for O
(
1/𝜖1/3

)
iterations with a

random starting vector 𝑔. Let 𝑧1 be the resulting

output.

(2) Run Block Krylov for O(log(𝑛/𝜖)) iterations, but
initialize with an 𝑛 × 𝑏 random matrix G, where

𝑏 = O
(
1/𝜖1/3

)
. Let 𝑧2 be the resulting output.

Output: 𝑧 = argmax𝑧1,𝑧2

(
∥A𝑧1∥22 , ∥A𝑧2∥

2
2

)
.

Our starting point is the observation that while we require de-

gree Θ
(
1/𝜖1/2

)
to separate the first and second singular values, if

any subsequent singular value is sufficiently separated from 𝜎1, a

significantly smaller degree polynomial suffices. In the context of

Krylov methods, this translates to the intuition that starting with

a matrix G with 𝑏 columns (block size is 𝑏) should result in fewer

iterations to find some vector in the top 𝑏 subspace of A. On the

other hand, if no such singular value exists, the norm of the tail

must be large and we can get away with a less accurate solution.

We show that we can indeed exploit this trade-off by running Block

Krylov on two different scales in parallel and then combine the

solution. In particular, we use Algorithm 2.1.

Algorithm 2.1 captures the extreme points of the trade-off be-

tween the size of the starting matrix and the number of iterations,

such that the total number of matrix-vector products is at most

Õ(1/𝜖1/3). Further, we can compute the squared Euclidean norms

of A𝑧1 and A𝑧2 with an additional matrix-vector product, and it re-

mains to analyze the Frobenius cost of projectingA on the subspace

I − 𝑧𝑧⊤, where 𝑧 is the unit vector output by Algorithm 2.1.

Using gap-independent guarantees for Block Krylov (see Lemma

4.3 for a formal statement), it follows that with O
(
1/𝜖1/3

)
iterations,

we have

∥A𝑧1∥22 ≥ 𝜎21 (A) − 𝜖2/3𝜎22 (A) . (3)

In contrast, using gap-dependent guarantees (see Lemma 4.4) for

Block Krylov initialized with block size 𝑏, it follows that for any

𝛾 > 0, running 𝑞 = log(1/𝛾) ·
√︁
𝜎1 (A)/(𝜎1 (A) − 𝜎𝑏 (A)) iterations

results in 𝑧2 such that

∥A𝑧2∥22 ≥ 𝜎21 (A) − 𝛾𝜎22 (A) . (4)

If 𝜎𝑏 (A) ≤ 𝜎1 (A)/2, we can set 𝛾 = 𝜖/𝑛 in Equation (4) to obtain a

highly accurate solution. Further, regardless of the input instance,

Step 3 in Algorithm 2.1 ensures that we get the best of both guar-

antees, (3) and (4). Then, observing that I − 𝑧𝑧⊤ is an orthogonal

projection matrix (see Definition 3.1) and using the Pythagorean

Theorem for Euclidean space we have:

A (
I − 𝑧𝑧⊤

)

2
𝐹
= ∥A∥2𝐹 −



A𝑧𝑧⊤

2
𝐹
= ∥A∥2𝐹 − ∥A𝑧∥22 , (5)

where the second inequality follows from unitary invariance (see

Fact 3.8) of the Frobenius norm and that the squared Frobenius

norm of a rank-1matrixA𝑧 (vector) is equal to its squared Euclidean

norm. If it happens that 𝜎2 (A) ≤ 𝜎1 (A)/2, i.e., a constant gap exists
between the first two singular values, then since guarantee (4)

implies that ∥A𝑧∥22 ≥ 𝜎21 (A) − (𝜖/𝑛)𝜎22 (A), we can plug this into

(5) to yield a (1 + 𝜖/𝑛)-approximate solution. Hence, we focus on

instances where 𝜎2 (A) > 𝜎1 (A)/2.
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Consider the case where the Frobenius norm of the tail is large,

i.e., ∥A − A1∥2𝐹 ≥ 𝜎22 (A)/𝜖
1/3, where A1 is the best rank-1 approxi-

mation to A. Then we only require an 𝜖2/3-approximate solution

(plugging guarantee (3) into (5) ) since

A (
I − 𝑧1𝑧

⊤
1

)

2
𝐹
≤ ∥A∥2𝐹 − 𝜎21 (A) + 𝜖2/3𝜎22 (A)
≤ ∥A − A1∥2𝐹 + 𝜖 ∥A − A1∥2𝐹 .

(6)

Otherwise,
∑𝑛
𝑖=2 𝜎

2
𝑖 (A) < 𝜎22 (A)/𝜖

1/3, which implies that there is

a constant gap between the second and 𝑏-th singular values, where

𝑏 = O
(
1/𝜖1/3

)
. To see this, observe if 𝜎𝑏 (A) > 𝜎2 (A)/4, then∑𝑛

𝑖=2 𝜎
2
𝑖 (A) ≥ ∑𝑏

𝑖=2 𝜎
2
𝑖 (A) ≥ 𝑏𝜎22 (A)/4, which is a contradiction

when 𝑏 > 10/𝜖1/3, and thus 𝜎𝑏 (A) ≤ 𝜎2 (A)/4 < 𝜎1/2. Now we can

apply guarantee (4) with 𝑞 = O(log(𝑛/𝜖)) and conclude ∥A𝑧∥22 ≥
𝜎21 (A) − (𝜖/𝑛)𝜎22 (A), yielding a highly accurate solution yet again.

Overall, this suffices to obtain a (1 + 𝜖)-approximate solution with

Õ(1/𝜖1/3) matrix-vector queries.

Challenges in generalizing to Schatten 𝑝 ≠ 2 and rank 𝑘 > 1.

The outline above crucially relies on the norm of interest being

Frobenius. In particular, we use the Pythagorean Theorem to an-

alyze the cost of the candidate solution in Equation (5); however,

the Pythagorean Theorem does not hold for non-Euclidean spaces.

Therefore, a priori, it is unclear how to analyze the Schatten-𝑝 norm

of a candidate rank-1 approximation. A proxy for the Pythagorean

Theorem that holds for Schatten-𝑝 norms is Mahler’s operator in-

equality (see Fact 3.11), which is in the right direction but holds

only for 𝑝 ≥ 2, whereas we would like to handle all 𝑝 ≥ 1. Sep-

arately, for 𝑝 > 2, the case where the tail is small corresponds

to ∥A − A1∥𝑝S𝑝
≤ 𝜎

𝑝
2 (A) /𝜖1/3. Therefore, naïvely extending the

above argument requires picking a block size that scales propor-

tional to O
(
2𝑝/𝜖1/3

)
to induce a constant gap between 𝜎1 and 𝜎𝑏 ,

and the number of matrix-vector products scales exponentially in

𝑝 .

Finally, in the above outline, we also crucially use that


A𝑧𝑧⊤

2

𝐹
=

∥A𝑧∥22. Observe that this no longer holds if we replace 𝑧 with a

matrix Z that has 𝑘 orthonormal columns. Therefore, it remains

unclear how to relate ∥AZ∥𝑝S𝑝
to



AZ∗,𝑖

22, yet the vector-by-vector
error guarantee obtained by Block Krylov (see Lemmas 4.3 and 4.4)

only bounds the latter.

Handling all Schatten-𝑝 Norms and 𝑘 > 1. We modify our algo-

rithm to run Block Krylov on A⊤ and obtain a orthonormal matrix

W such that for all 𝑖 ∈ [𝑘],

A⊤W∗,𝑖


2 ≥ 𝜎2𝑖 (A) − 𝛾𝜎2

𝑘+1 (A), (7)

for some𝛾 > 0. We then analyze the cost


A (

I − ZZ⊤
)

𝑝

S𝑝
, where Z

is a basis for A⊤W. Our key insight is to interpret the input matrix

A as a partitioned operator (block matrix) and invoke pinching

inequalities for such operators. Pinching inequalities were originally

introduced to understand unitarily invariant norms over direct

sums of Hilbert spaces [43, 50]. In our setting, given a block matrix

M =

(
M(1) M(2)

M(3) M(4)

)
, the pinching inequality (see Fact 3.13) implies

that for all 𝑝 ≥ 1,

∥M∥𝑝S𝑝
≥




M(1)



𝑝
S𝑝

+



M(4)




𝑝
S𝑝

. (8)

A priori, it is unclear how to use Equation (8) to bound ∥A(I −
ZZ⊤)∥𝑝S𝑝

. First, we establish a general inequality for the Schatten

norm of a matrix times an orthogonal projection. Let P and Q be

any 𝑛×𝑛 orthogonal projection matrices with rank 𝑘 (see Definition

3.1). Then, we prove (see Lemma 4.6 for details) that for any matrix

A,

∥A∥𝑝S𝑝
≥ ∥PAQ∥𝑝S𝑝

+ ∥(I − P) A (I − Q)∥𝑝S𝑝
. (9)

To obtain this inequality, we use a rotation argument along with the

fact that the Schatten-𝑝 norms are unitarily invariant to show that

∥A∥𝑝S𝑝
=






(
A(1) A(2)

A(3) A(4)

)




𝑝

S𝑝

, where



A(1)





S𝑝

= ∥PAQ∥S𝑝
and




A(4)




S𝑝

= ∥(I − P) A (I − Q)∥S𝑝
, and then we can apply Equation

(8) to the block matrix above.

Once we have established Equation (9), we can set P = WW⊤

and set Q = ZZ⊤ to be the projection matrix corresponding to the

column span of A⊤WW⊤. Then, we have that PAQ = WW⊤A and

(I − P) A (I − Q) = A
(
I − ZZ⊤

)
, and combined with (9) this yields



A (
I − ZZ⊤

)

𝑝
S𝑝

≤ ∥A∥𝑝S𝑝
−



WW⊤A


𝑝
S𝑝

. (10)

To obtain a bound on


WW⊤A



𝑝
S𝑝

, we appeal to the per-vector

guarantees in Equation (7). However, translating from ℓ22 error to

𝜎
𝑝
𝑝

(
W⊤A

)
incurs a mixed guarantee (see Lemma 4.7 for details):



WW⊤A


𝑝
S𝑝

≥ ∥A𝑘 ∥
𝑝

S𝑝
− O(𝛾𝑝)

∑︁
𝑖∈[𝑘 ]

𝜎2
𝑘+1 (A) 𝜎

𝑝−2
𝑖 (A) .

To use this bound, we require 𝜎1 (A) to be comparable to 𝜎𝑘+1 (A)
and thus we require an involved case analysis, which appears in

the proof of Theorem 4.2.

Avoiding an exponential dependence on 𝑝 . Our main insight here

is that we do not require a block size that induces a constant

gap between singular values. Instead, we first observe that if the

block size 𝑏 is large enough such that 𝜎𝑏 ≤ 𝜎2/(1 + 1/𝑝), then
O
(
log(𝑛/𝜖)√𝑝

)
iterations suffice to obtain a vector 𝑧 such that

∥A𝑧∥22 ≥ 𝜎21 (A) − (𝜖/𝑛) 𝜎22 (A). Therefore, we can trade-off the

threshold for the Schatten norm of the tail with the number of

iterations as follows: if ∥A − A1∥𝑝S𝑝
≤ 1

𝑝1/3𝜖1/3
𝜎
𝑝
2 (A), then setting

𝑏 = (1 + 1/𝑝)𝑝/(𝜖𝑝)1/3 = Θ(1/(𝜖𝑝)1/3) suffices to induce a gap of

1 + 1/𝑝 with block size 𝑏. The total number of matrix-vector prod-

ucts is O
(
𝑏 · log(𝑛/𝜖)√𝑝

)
= Õ(𝑝1/6/𝜖1/3), since 𝑝 can be assumed

to be at most (log𝑛)/𝜖 . Otherwise, ∥A − A1∥𝑝S𝑝
>

1
𝑝1/3𝜖1/3

𝜎
𝑝
2 (A),

and we only require a (1 + 𝜖2/3/𝑝1/3)-approximate solution in-

stead (compare with Equation (6)). Using gap-independent bounds

(see Lemma 4.3), it suffices to start with block size 1 and run

O
(
log(𝑛/𝜖)𝑝1/6/𝜖1/3

)
iterations to obtain a (1 + 𝜖2/3/𝑝1/3)-approx.

solution.
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Avoiding a Gap-Dependent Bound. We note that even when there

is a constant gap between the first and second singular values, and

the per vector guarantee is highly accurate, i.e., for all 𝑖 ∈ [𝑘],

AZ∗,𝑖

2 ≥ 𝜎2𝑖 (A) − poly
(
𝜖
𝑑

)
𝜎2
𝑘+1 (A), it is not clear how to lower

bound ∥AZ∥𝑝S𝑝
in Equation 10. In general, the best bound we can

obtain using the above equation is

∥AZ∥𝑝S𝑝
≥ ∥A𝑘 ∥

𝑝

S𝑝
− O

(
𝜖

poly(𝑑)

)
𝜎2
𝑘+1 ·

∑︁
𝑖∈[𝑘 ]

𝜎
𝑝−2
𝑖 , (11)

which may be vacuous when the top 𝑘 singular values are signif-

icantly larger than 𝜎𝑘+1 and 𝑝 > 2. One could revert to a gap-

dependent bound, where the error is in terms of the gap between 𝜎1
and 𝜎𝑘+1, which one could account for by running an extra factor

of O(log(𝜎1/𝜎𝑘+1)) iterations.
To avoid this gap-dependent bound, we split A into a head part

A𝐻 and a tail partA𝑇 , such thatA𝐻 has all singular values that are at

least (1 + 1/𝑑) 𝜎𝑘+1 and A𝑇 has the remaining singular values. We

then bound


A𝐻

(
I − ZZ⊤

)


S𝑝

and


A𝑇

(
I − ZZ⊤

)


S𝑝

separately.

Repeating the above analysis, we can obtain Equation (11) for A𝑇

instead, and since all singular values larger than 𝜎𝑘+1 in A𝑇 are

bounded, we can obtain


A𝑇

(
I − ZZ⊤

)

𝑝
S𝑝

≤ O(𝜖𝑘/poly(𝑑)) 𝜎𝑝
𝑘+1.

To adapt the analysis forA𝑇 and obtain this bound, we use Cauchy’s

interlacing theorem to relate the 𝑗-th singular value ofA𝑇
(
I − ZZ⊤

)
to the (𝑖∗ + 𝑗)-th singular value of A

(
I − ZZ⊤

)
, where 𝑖∗ is the rank

ofA𝐻 . We lower bound the (𝑖∗+ 𝑗)-th singular value ofA
(
I − ZZ⊤

)
using the per vector guarantee of [30].

To bound


A𝐻

(
I − ZZ⊤

)


S𝑝

, we observe it has rank at most 𝑘

and thus 

A𝐻
(
I − ZZ⊤

)


S𝑝

≤
√
𝑘 ·



A𝐻
(
I − ZZ⊤

)


𝐹

=

√
𝑘 ·

√︃
∥A𝐻 ∥2𝐹 − ∥A𝐻Z∥2𝐹 ,

and we show how to bound this term in Section 4. Intuitively,

while the 𝑘-dimensional subspace that we find can łswap out"

singular vectors corresponding to singular values 𝜎𝑖 for which 𝜎𝑖
is very close to 𝜎𝑘+1, since they serve equally well for a Schatten-

𝑝 low-rank approximation, for singular values 𝜎𝑖 that are a bit

larger than 𝜎𝑘+1, the 𝑘-dimensional subspace we find cannot do

this. More precisely, if 𝑦 is a singular vector of A𝐻 with singular

value 𝜎𝑖 , then the projection of 𝑦 onto the 𝑘-dimensional subspace

that our algorithm finds (namely, Z) must be at least 1−𝜎2
𝑘+1/((𝜎

2
𝑖 −

𝜎2
𝑘+1)poly(𝑑)), which suffices to bound the above since the additive

error is inversely proportional to 𝜎2𝑖 when 𝜎2𝑖 ≫ 𝜎2
𝑘+1, and so the

very tiny additive error negates the effect of very large singular

values.

2.2 Query Lower Bounds

Our lower bounds rely on the hardness of estimating the smallest

eigenvalue of a Wishart ensemble (see Definition 3.15), as estab-

lished in recent work of Braverman, Hazan, Simchowitz and Wood-

worth [9]. In particular, [9] show that for a 𝑑 × 𝑑 instance W of

a Wishart ensemble, estimating 𝜆𝑑 (W) (minimum eigenvalue) to

additive error 1/𝑑2 requires Ω(𝑑) adaptive matrix-vector product

queries (see Theorem 3.1 in [9]). To obtain hardness for Schatten-𝑝

low-rank approximation, we show that when 𝑑 = Θ

(
1/𝜖1/3

)
, any

candidate unit vector 𝑧 that satisfies


(I −W/5)

(
I − 𝑧𝑧⊤

)

𝑝
S𝑝

≤
(1 + 𝜖)min∥𝑢 ∥2=1



(I −W/5)
(
I − 𝑢𝑢⊤

)

𝑝
S𝑝

, can be used to obtain

an estimate 𝜆𝑑 =
5
𝑝

(
1 − ∥(I −W/5) 𝑧∥𝑝2

)
such that 𝜆𝑑 = (1 ±

1/𝑑2)𝜆𝑑 (I −W/5). Let A = (I −W/5). To show our query lower

bound, in contrast to the analysis of our algorithm, the challenge is

now to lower bound


A (

I − 𝑧𝑧⊤
)

𝑝

S𝑝
in terms of ∥A∥𝑝S𝑝

and ∥A𝑧∥𝑝2
(contrast with Equation (10)).

Projection Cost via Araki-Lieb-Thirring. First, we note that the

case of 𝑝 = 2 is easy given the Pythagorean theorem. For 𝑝 ∈ [1, 2),
we can establish an inequality fairly straightforwardly: using the

trace inner product definition of Schatten-𝑝 (see Definition 3.7 )

norms, we have,



A (
I − 𝑧𝑧⊤

)

𝑝
S𝑝

= Tr

(( (
I − 𝑧𝑧⊤

)2
A2 (

I − 𝑧𝑧⊤
)2)𝑝/2)

, (12)

Since 𝑝/2 ∈ [1/2, 1), we can use the reverse Araki-Lieb-Thirring

inequality (see Fact 3.10) to show that

Tr

(( (
I − 𝑧𝑧⊤

)2
A2 (

I − 𝑧𝑧⊤
)2)𝑝/2)

≥ Tr
( (
I − 𝑧𝑧⊤

)
A𝑝 (

I − 𝑧𝑧⊤
) )

≥ ∥A∥𝑝S𝑝
−



A𝑧𝑧⊤

𝑝
S𝑝

(13)

where we use the cyclicity of the trace and again use reverse Araki-

Lieb-Thirring (Fact 3.10) to show that

Tr

( (
𝑧𝑧⊤

) 𝑝
2

(
A2

) 𝑝
2 (

𝑧𝑧⊤
) 𝑝
2

)
≤ Tr

((
𝑧𝑧⊤A2𝑧𝑧⊤

)𝑝/2)
=



A𝑧𝑧⊤

𝑝
S𝑝

.

Since we have


A𝑧𝑧⊤

𝑝

S𝑝
= ∥A𝑧∥𝑝2 , we conclude



A (
I − 𝑧𝑧⊤

)

𝑝
S𝑝

≥
∥A∥𝑝S𝑝

−


A𝑧𝑧⊤

𝑝

2
. This approach only works for 𝑝 ∈ [1, 2); for

𝑝 > 2 the application of Araki-Lieb-Thirring is reversed in Equation

13 (since 𝑝/2 > 1, see Fact 3.10) and we no longer get a lower bound

on the cost in Equation 12. We therefore require a new approach.

Projection Cost via Norm Compression. Recall, 𝑧 is the unit vec-

tor output by our candidate low-rank approximation and let 𝑦 =

A𝑧/∥A𝑧∥2. We yet again interpret the input matrix A as a parti-

tioned operator by considering the projection of A onto 𝑧𝑧⊤, 𝑦𝑦⊤

and the projection away from these rank-1 subspaces. In particu-

lar, let I − 𝑦𝑦⊤ = YY⊤, and I − 𝑧𝑧⊤ = ZZ⊤, where Y and Z have

orthonormal columns. Then, using a rotation argument, we show

that

∥A∥S𝑝
=






(
𝑦⊤A𝑧 𝑦⊤AZ
Y⊤A𝑧 Y⊤AZ

)




S𝑝

.

We define the 𝑝-compression of A, CA,𝑝 :

CA,𝑝 =

( 

𝑦⊤A𝑧

S𝑝



𝑦⊤AZ


S𝑝

Y⊤A𝑧

S𝑝



Y⊤AZ


S𝑝

)
.

To relate the norms of A and CA,𝑝 , we consider Audenaert’s Norm

Compression Conjecture [2], a question in functional analysis con-

cerning operator inequalities (see also [3]):
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Conjecture 2.2 (Schatten-𝑝 Norm Compression). LetM be

a partitioned operator (block matrix) such that M =

(
M1 M2

M3 M4

)
.

Let CM,𝑝 =

(
∥M1∥S𝑝

∥M2∥S𝑝

∥M3∥S𝑝
∥M4∥S𝑝

)
be a 2 × 2 matrix that denotes

the Schatten-𝑝 compression of M for any 𝑝 ≥ 1. Then, ∥M∥S𝑝
≥

CM,𝑝




S𝑝

if 1 ≤ 𝑝 ≤ 2, and ∥M∥S𝑝
≤



CM,𝑝




S𝑝

if 2 ≤ 𝑝 < ∞.

We could simply appeal to this conjecture to obtain that for all

𝑝 > 2,

∥A∥S𝑝
≤



CA,𝑝




S𝑝

=







( 

𝑦𝑦⊤A𝑧𝑧⊤



S𝑝



𝑦𝑦⊤A (
𝐼 − 𝑧𝑧⊤

)


S𝑝

(I − 𝑦𝑦⊤

)
A𝑧𝑧⊤




S𝑝



(I − 𝑦𝑦⊤
)
A

(
I − 𝑧𝑧⊤

)


S𝑝

)





S𝑝

.

(14)

However, for our choice of𝑦,


𝑦𝑦⊤A (

𝐼 − 𝑧𝑧⊤
)



S𝑝
= 0.With padding

and rotation arguments, we can then reduce our problem to a block

matrix where the blocks in each row are aligned, i.e., each row is a

scalar multiple of a fixed matrix (see Lemma 5.6). Then, we can use

one of the few special cases of Conjecture 2.2 for aligned operators

which has actually been proved, and appears in Fact 3.14. We can

thus unconditionally obtain the inequality in Equation (14).

Now that we have reduced to the case where we have a 2 × 2

matrix with 3 non-zero entries, we would like to bound its Schatten-

𝑝 norm. We explicitly compute the singular values of CA,𝑝 (see Fact

5.7 ), and then use the structure of the instance to directly lower

bound ∥A𝑧∥𝑝2 as follows:

∥A𝑧∥𝑝2 +
(
1 + O

(
𝜖2𝑝/3

))
∥A − A1∥𝑝S𝑝

≥


CA,𝑝



𝑝
S𝑝

≥ ∥A∥𝑝S𝑝
, (15)

where the last inequality follows from Equation (14). Since we

understand the spectrum of the matrixA, we can explicitly compute

all the terms in (15) above and show that we can obtain an accurate

estimate of the minimum singular value of A from ∥A𝑧∥𝑝2 . See
details in Section 5.2.

3 PRELIMINARIES

Given an 𝑛 × 𝑑 matrix A with rank 𝑟 , and 𝑛 ≥ 𝑑 , we can compute

its singular value decomposition, denoted by 𝑆𝑉𝐷 (A) = UΣV⊤,
such that U is an 𝑛 × 𝑟 matrix with orthonormal columns, V⊤ is

an 𝑟 × 𝑑 matrix with orthonormal rows and Σ is an 𝑟 × 𝑟 diagonal

matrix. The entries along the diagonal are the singular values of

A, denoted by 𝜎1, 𝜎2 . . . 𝜎𝑟 . Given an integer 𝑘 ≤ 𝑟 , we define the

truncated singular value decomposition of A that zeros out all but

the top 𝑘 singular values of A, i.e., A𝑘 = UΣ𝑘V
⊤, where Σ𝑘 has only

𝑘 non-zero entries along the diagonal. It is well-known that the

truncated SVD computes the best rank-𝑘 approximation to A under

any unitarily invariant norm, but in particular for any Schatten-

𝑝 norm (defined below), we have A𝑘 = minrank(X)=𝑘 ∥A − X∥S𝑝
.

More generally, for any matrixM, we use the notationM𝑘 andM\𝑘
to denote the first 𝑘 components and all but the first 𝑘 components

respectively. We useM𝑖,∗ andM∗, 𝑗 to refer to the 𝑖𝑡ℎ row and 𝑗𝑡ℎ

column ofM respectively.

We use the notation I𝑘 to denote a truncated identity matrix, that

is, a square matrix with its top 𝑘 diagonal entries equal to one, and

all other entries zero. The dimension of I𝑘 will be determined by

context.

Definition 3.1 (Orthogonal Projection Matrices). Given a 𝑑 × 𝑑

symmetric matrix P and 𝑘 ∈ [𝑑], P is a rank-𝑘 orthogonal projection

matrix if rank(P) = 𝑘 and P2 = P.

It follows from the above definition that P has eigenvalues that

are either 0 or 1 and admits a singular value decomposition of the

form UU⊤ where U has 𝑘 orthonormal columns.

Definition 3.2 (Unitary Matrices). Given a symmetric matrix U ∈
R
𝑑×𝑑 we say U is a unitary matrix if U⊤U = UU⊤

= I.

Definition 3.3 (Rotation Matrices). Given a symmetric matrix R ∈
R
𝑑×𝑑 we say R is a rotation matrix if R is unitary and det (R) = 1.

Fact 3.4 (Courant-Fischer for Singular Values). Given an

𝑛×𝑑 matrixAwith singular values 𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑑 , the following

holds: for all 𝑖 ∈ [𝑑],

𝜎𝑖 = max
𝑆 : dim(𝑆)=𝑖

min
𝑥 ∈𝑆 : ∥𝑥 ∥2=1



𝑥⊤A


2
.

Fact 3.5 (Weyl’s Ineqality for Singular Values (see Exer-

cise 22 [47])). Given 𝑛 × 𝑑 matrices X,Y, for any 𝑖, ( 𝑗 − 1) ∈ [𝑑]
such that 𝑖 + 𝑗 ≤ 𝑑 ,

𝜎𝑖+𝑗 (X + Y) ≤ 𝜎𝑖 (X) + 𝜎 𝑗+1 (Y) .

Fact 3.6 (Bernoulli’s Ineqality). For any 𝑥, 𝑝 ∈ R such that

𝑥 ≥ −1 and 𝑝 ≥ 1, (1 + 𝑥)𝑝 ≥ 1 + 𝑝𝑥 .

Schatten Norms and Trace Inequalities. We recall some basic facts

for Schatten-𝑝 norms. We also require the following trace and

operator inequalities.

Definition 3.7 (Schatten-𝑝 Norm). Given a matrix A ∈ R𝑛×𝑑 , let
𝜎1 ≥ 𝜎2 ≥ . . . ≥ 𝜎𝑑 be the singular values of A. Then, for any

𝑝 ∈ [0,∞), the Schatten-𝑝 norm of A is defined as

∥A∥S𝑝
= Tr

( (
A⊤A

)𝑝/2)1/𝑝
=

©­
«

∑︁
𝑖∈[𝑑 ]

𝜎
𝑝
𝑖 (A)

ª®
¬
1/𝑝

.

Fact 3.8 (Schatten-𝑝 norms are Unitarily Invariant). Given

an 𝑛×𝑑 matrixM, for any𝑚×𝑛 matrix U with orthonormal columns,

a norm ∥ · ∥𝑋 is defined to be unitarily invariant if ∥UM∥𝑋 = ∥M∥𝑋 .

The Schatten-𝑝 norm is unitarily invariant for all 𝑝 ≥ 1.

There exists a closed-form expression for the low-rank approxi-

mation problem under Schatten-𝑝 norms:

Fact 3.9 (Schatten-𝑝 Low-Rank Approximation). Given a

matrix A ∈ R𝑛×𝑑 and an integer 𝑘 ∈ N,

A𝑘 = arg min
rank(X) ≤𝑘

∥A − X∥S𝑝
,

where A𝑘 is the truncated SVD of A.

Fact 3.10 (ArakiśLiebśThirring Ineqality [1]). Given PSD

matrices A,B ∈ R𝑑×𝑑 , for any 𝑟 ≥ 1, the following inequality holds:

Tr ((BAB)𝑟 ) ≤ Tr (B𝑟A𝑟B𝑟 ) . Further, for 0 < 𝑟 < 1, the reverse

holds Tr ((BAB)𝑟 ) ≥ Tr (B𝑟A𝑟B𝑟 ) .
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Fact 3.11 (Mahler’s Orthogonal Operator Ineqality, The-

orem 1.7 in [25]). Given 𝑝 ≥ 2, and matrices P and Q such that the

row (column) span of P is orthogonal to the row (column) span of Q,

the following inequality holds:

∥P∥𝑝S𝑝
+ ∥Q∥𝑝S𝑝

≤ ∥P + Q∥𝑝S𝑝
.

Fact 3.12 (Hölder’s Ineqality for Schatten-𝑝 Norms, Corol-

lary 4.2.6 [7]). Given matrices A,B⊤ ∈ R𝑛×𝑑 and 𝑝 ∈ [1,∞), the
following holds

∥AB∥S𝑝
≤ ∥A∥S𝑞

· ∥B∥S𝑟
,

for any 𝑞, 𝑟 such that 1
𝑝 =

1
𝑞 + 1

𝑟 .

We also require pinching inequalities that were originally intro-

duced to relate norms for partitioned operators over direct sums of

Hilbert spaces. In our context, these inequalities simplify to norm

inequalities for block matrices:

Fact 3.13 (Pinching Ineqalities for Schatten-𝑝 Norms, [8]).

Let M ∈ R𝑡𝑑×𝑡𝑑 be the following block matrix

M =



M(1,1) M(1,2) · · · M(1,𝑡 )
M(2,1) M(2,2) · · · M(1,𝑡 )

...
. . .

...

M(𝑡,1) M(𝑡,2) · · · M(𝑡,𝑡 )


,

where for all 𝑖, 𝑗 ∈ [𝑡], M(𝑖, 𝑗) ∈ R𝑑×𝑑 . For all 𝑝 ≥ 1, the following

inequality holds:

©­
«
∑︁
𝑖∈[𝑡 ]



M(𝑖,𝑖)


𝑝
S𝑝

ª®
¬
1/𝑝

≤ ∥M∥S𝑝
.

We also require a norm compression inequality that is a special

case of Conjecture 2.2 (and known to be true), when each block is

aligned in the following sense:

Fact 3.14 (Aligned Norm Compression Ineqality, Section

4.3 in [2]). LetM =

(
M1 M2

M3 M4

)
such that there exist scalars𝛼1, 𝛼2, 𝛽1, 𝛽2

such that M1 = 𝛼1X, M2 = 𝛼2X, M3 = 𝛽1Yand M4 = 𝛽2Y. Then, for

any 𝑝 ≥ 2,

∥M∥S𝑝
≤







(
∥M1∥S𝑝

∥M2∥S𝑝

∥M3∥S𝑝
∥M4∥S𝑝

)





S𝑝

.

Random Matrix Theory. Next, we recall some basic facts for

Wishart ensembles from random matrix theory (we refer the reader

to [46] for a comprehensive overview).

Definition 3.15 (Wishart Ensemble). An𝑛×𝑛matrixW is sampled

from a Wishart Ensemble,Wishart(𝑛), ifW = XX⊤ such that for

all 𝑖, 𝑗 ∈ [𝑛] X𝑖, 𝑗 ∼ N
(
0, 1𝑛 I

)
.

Fact 3.16 (Norms of aWishart Ensemble). LetW ∼ Wishart(𝑛)
such that 𝑛 = Ω(1/𝜀3). Then, with probability 99/100, ∥W∥op ≤ 5

and for any fixed constant 𝑝 ,


I − 1

5W


𝑝
S𝑝

= Θ

(
1

𝜀1/3

)
.

4 ALGORITHMS FOR SCHATTEN-𝑝 LRA

In this section, we focus on obtaining algorithms for low-rank ap-

proximation in Schatten-𝑝 norm, simultaneously for all real, not

necessarily constant, 𝑝 ∈ [1,O(log(𝑑)/𝜖)]. For the special case

of 𝑝 ∈ {2,∞}, Musco and Musco [30] showed an algorithm with

matrix-vector query complexity 𝑂̃ (𝑘/𝜖1/2), given below as Algo-

rithm 4.5. We show that the number of matrix-vector products we

require scales proportional to 𝑂̃
(
𝑘𝑝1/6/𝜖1/3

)
instead. Finally, re-

call when 𝑝 > log(𝑑)/𝜖 , it suffices to run Block Krylov for 𝑝 = ∞,

which requires O
(
log(𝑑/𝜖)𝑘/

√
𝜖
)
matrix-vector products. We note

that proofs of intermediate lemmas have been ommited and appear

in the full version.

Algorithm 4.1 (Optimal Schatten-𝑝 Low-rank Approxima-

tion).

Input: An 𝑛 × 𝑑 matrix A, target rank 𝑘 ≤ 𝑑 , accuracy

parameter 0 < 𝜀 < 1, and 𝑝 ≥ 1.

(1) Let 𝛾1 = 𝜀2/3/𝑝1/3. Run Block Krylov Iteration (Al-

gorithm 4.5) on A with block size 𝑘 , and number

of iterations 𝑞 = O
(
log(𝑑/𝛾1)/

√
𝛾1 + log(𝑑/𝜖)√𝑝

)
.

Let Z1 ∈ R𝑑×𝑘 be the corresponding output with

orthonormal columns.

(2) Run Block Krylov Iteration (Algorithm 4.5) on A⊤

with block size 𝑘 , and number of iterations 𝑞 =

O
(
log(𝑑/𝛾1)/

√
𝛾1

)
. Let W1 ∈ R𝑛×𝑘 be the corre-

sponding output with orthonormal columns.

(3) Let 𝛾2 = 𝜀 and let 𝑠 = O
(
𝑝−1/3𝑘/𝜀1/3

)
. Run Block

Krylov Iteration (Algorithm 4.5) on A⊤ with block

size 𝑠 , and number of iterations 𝑞 = O
(
log(𝑑/𝛾2)

√
𝑝
)
.

Let W2 ∈ R𝑛×𝑘 be the corresponding output with

orthonormal columns.

(4) Run Block Krylov on A with target rank 𝑘 + 1 and

number of iterations𝑞 = O
(
(log(𝑑𝑝) + log(𝑑/𝜖))√𝑝

)
,

and let Ẑ1 be the resulting 𝑑 × (𝑘 + 1) output matrix.

Compute 𝜎̂21 =



A(Ẑ1)∗,1

22 and 𝜎̂2𝑘+1 = 

A(Ẑ1)∗,𝑘+1

22,
rough estimates of the 1-st and (𝑘 + 1)-st singular
values of A. Run Block Krylov on A with target

rank 𝑠 , where 𝑠 = O
(
𝑝−1/3𝑘/𝜀1/3

)
and iterations

𝑞 = O
(
log(𝑑/𝜖)√𝑝

)
, and let Ẑ2 be the resulting 𝑑 × 𝑠

output matrix. Compute 𝜎̂2𝑠 =



A(Ẑ2)∗,𝑠

22, an esti-

mate to the 𝑠-th singular value of A.

(5) If 𝜎̂21 ≥ (1 + 0.5/𝑝)𝜎̂2
𝑘+1, set Z = Z1. Else, if 𝜎̂

2
𝑠 ≤

𝜎̂2
𝑘+1/(1 + 0.5/𝑝), set Z to be an orthonormal basis

forA⊤W2W
⊤
2 and otherwise set Z to be an orthonor-

mal basis for A⊤W1W
⊤
1 .

Output: A matrix Z ∈ R𝑑×𝑘 with orthonormal columns

such that

A (
I − ZZ⊤

)

𝑝
S𝑝

≤ (1 + 𝜖) min
U: U⊤U=I𝑘



A (
I − UU⊤)

𝑝

S𝑝
.

Theorem 4.2 (Optimal Schatten-𝑝 Low-Rank Approxima-

tion). Given a matrix A ∈ R𝑛×𝑑 , a target rank 𝑘 ∈ [𝑑], an accu-

racy parameter 𝜖 ∈ (0, 1) and any 𝑝 ∈ [1,O(log(𝑑)/𝜖)], Algorithm
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4.1 performs O
(
𝑘𝑝1/6 log(𝑑/𝜖)/𝜖1/3 + log(𝑑/𝜖)𝑘√𝑝

)
matrix-vector

products and outputs a 𝑑 × 𝑘 matrix Z with orthonormal columns

such that with probability at least 9/10,

A (
I − ZZ⊤

)


S𝑝

≤ (1 + 𝜖) min
U: U⊤U=I𝑘



A (
I − UU⊤) 



S𝑝
.

Further, in the RAM model, the algorithm runs in time

O(nnz(A)𝑝1/6𝑘 log(𝑑/𝜖)/𝜖1/3 + 𝑛𝑝 (𝜔−1)/6𝑘𝜔−1/𝜖 (𝜔−1)/3) .
We first introduce the following lemmas from Musco and Musco

[30] that provide convergence bounds for the performance of Block

Krylov Iteration (Algorithm 4.5) :

Lemma 4.3 (Gap Independent Block Krylov with Arbitrary

Accuracy). Let A be an 𝑛 ×𝑑 matrix, 𝑘 be the target rank and 𝛾 > 0

be an accuracy parameter. Then, initializing Algorithm 4.5 with block

size 𝑘 and running for 𝑞 = Ω
(
log(𝑑/𝛾)/√𝛾

)
iterations outputs a 𝑑×𝑘

matrix Z such that with probability 99/100, for all 𝑖 ∈ [𝑘],

AZ∗,𝑖

22 = 𝜎2𝑖 ± 𝛾𝜎2
𝑘+1 .

Further, the total number of matrix-vector products is O(𝑘𝑞) and the
running time in the RAM model is O

(
nnz(A)𝑘𝑞 + 𝑛 (𝑘𝑞)2 + (𝑘𝑞)𝜔

)
.

The aforementioned lemma follows directly from Theorem 1 in

[30], using the per-vector error guarantee (3).

Lemma 4.4 (Gap Dependent Block Krylov, Theorem 13 [30]).

Let A be an 𝑛 × 𝑑 matrix and 𝛾 > 0, be an accuracy parameter and

𝑝, 𝑘 ∈ N be such that 𝑏 ≥ 𝑘 . Let 𝜎1, 𝜎2 . . . 𝜎𝑑 be the singular values

of A. Then, initializing Algorithm 4.5 with block size 𝑏 and running

for 𝑞 = Ω
(
log(𝑛/𝛾)√𝜎𝑘/

√
𝜎𝑘 − 𝜎𝑏

)
iterations outputs a 𝑑 ×𝑘 matrix

Z such that with probability 99/100, for all 𝑖 ∈ [𝑘]

AZ∗,𝑖

22 = 𝜎2𝑖 ± 𝛾𝜎2
𝑘+1 .

Further, the total number of matrix-vector products is O(𝑝𝑞) and the
running time in the RAM model is O

(
nnz(A)𝑏𝑞 + 𝑛 (𝑏𝑞)2 + (𝑏𝑞)𝜔

)
.

Algorithm 4.5 (Block Krylov Iteration, [30]).

Input: An 𝑛 × 𝑑 matrix A, target rank 𝑘 , iteration count

𝑞 and a block size parameter 𝑠 such that 𝑘 ≤ 𝑠 ≤ 𝑑 .

(1) Let U be a 𝑛×𝑠 matrix such that each entry is drawn

i.i.d. from N(0, 1). Let
K =

[
A⊤U; (A⊤A)A⊤U; . . . ; (A⊤A)𝑞A⊤U

]
be the 𝑑 × 𝑠 (𝑞 + 1) Krylov matrix obtained by con-

catenating the matrices A⊤U, . . . ,
(
A⊤A

)𝑞
A⊤U.

(2) Compute an orthonomal basisQ for the column span

of K. LetM = Q⊤A⊤AQ.
(3) Compute the top 𝑘 left singular vectors of M, and

denote them by Y𝑘 .

Output: Z = QY𝑘

Next, we prove the following key lemma relating the Schatten-𝑝

norm of row and column projections applied to a matrix A to the

Schatten-𝑝 norm of the matrix itself. We can interpret this lemma

as an extension of the Pythagorean Theorem to Schatten-𝑝 spaces

and believe this lemma is of independent interest. We note that we

appeal to pinching inequality for partitioned operators to obtain

this lemma.

Lemma 4.6 (Schatten-𝑝 Norms forOrthogonal Projections).

Let A be an 𝑛×𝑑 matrix, let P be an 𝑛×𝑛 matrix, and let Q be a 𝑑 ×𝑑
matrix such that both P and Q are orthogonal projection matrices of

rank 𝑘 (see Definition 3.1). Then, the following inequality holds for

all 𝑝 ≥ 1:

∥A∥𝑝S𝑝
≥ ∥PAQ∥𝑝S𝑝

+ ∥(I − P) A (I − Q)∥𝑝S𝑝
.

Note, despite establishing Lemma 4.6, it is not immediately appar-

ent how to lower bound


AZZ⊤

𝑝

S𝑝
, where Z is a candidate solution.

Next, we show how to translate a guarantee on the Euclidean norm

of A times a column of Z to a lower bound on


AZZ⊤

𝑝

S𝑝
.

Lemma 4.7 (Per-VectorGuarantees to SchattenNorms). Let

A be an 𝑛 × 𝑑 matrix with singular values denoted by {𝜎𝑖 (A)}𝑖∈[𝑑 ] .
Let Z be a𝑑×𝑘 matrix with orthonormal columns that is output by Al-

gorithm 4.5, such that for all 𝑖 ∈ [𝑘], with probability at least 99/100,

AZ∗,𝑖

22 ≥ 𝜎2𝑖 (A)−𝛾𝜎2
𝑘+1 (A), for some𝛾 ∈ (0, 1). Then, for any 𝑝 ≥

1, we have


AZZ⊤

𝑝

S𝑝
≥ ∥A𝑘 ∥

𝑝

S𝑝
−O(𝛾𝑝)∑𝑖∈[𝑘 ] 𝜎

2
𝑘+1 (A) 𝜎

𝑝−2
𝑖 (A) .

Finally, we also need the following lemma:

Lemma 4.8 (Singular Values to Alignment of Singular Vec-

tors). Let A = UΣV⊤ be the SVD and let Z be a 𝑑 × 𝑘 orthonormal

matrix such that for all 𝑖 ∈ [𝑘],


AZ∗,𝑖

22 ≥ 𝜎2𝑖 (A) − (𝜖/𝑑)𝑐𝜎2

𝑘+1, for
some fixed constant 𝑐 ≥ 10. Further, assume there exists a 𝑗∗ ∈
[𝑘] such that for all 𝑗 ∈ [ 𝑗∗], 𝜎2𝑗 (A) ≥ (1 + 𝜖/𝑑) 𝜎2

𝑘+1 (A) and

𝜎2𝑗∗+1 (A) ≤ (1 − 𝜖/𝑑) 𝜎2𝑗∗ (A). Then,



V⊤

𝑗∗Z




2
𝐹

≥ 𝑗∗ − (𝜖/𝑑)𝑐−4,
where V⊤

𝑗∗ is the top- 𝑗
∗ rows of V⊤.

We now have all the ingredients we need to complete the proof

of Theorem 4.2.

Proof of Theorem 4.2. Observe, using Lemma 4.3 with prob-

ability at least 97/100, Step 3 of Algorithm 4.1 outputs the fol-

lowing: 𝜎̂21 = (1 ± 0.1/𝑝) 𝜎21 , 𝜎̂
2
𝑘+1 = (1 ± 0.1/𝑝) 𝜎2

𝑘+1 and 𝜎̂2𝑠 =

(1 ± 0.1/𝑝) 𝜎2𝑠 , for 𝑠 = O(𝑘𝑝−1/3/𝜖1/3). Condition on this event.

Our proof proceeds via case analysis. The case where there is at

least a constant gap between the first and (𝑘 + 1)-st singular value
is easy to handle since we can use gap-dependent guarantees to

obtain highly accurate estimates of the top-𝑘 singular values. When

there is no gap, either the Schatten-𝑝 norm of the tail is large com-

pared to the (𝑘 + 1)-st singular value, and we don’t require a highly
accurate solution, or the Schatten-𝑝 norm of the tail is small, and

increasing the block size induces a gap. We formalize this intuition

into a proof.

Let us first consider the case where there is a constant gap

between the top and the (𝑘 + 1)-st singular values, i.e., 𝜎1 >

(1+ 1/𝑝)𝜎𝑘+1. Observe, since we have (1+ 0.1/𝑝)-approximate esti-

mates to 𝜎1 and 𝜎𝑘+1, we can detect that we are in this case and Al-

gorithm 4.1 outputs Z = Z1. We further observe that the Algorithm

4.1 runs at least Ω(log(𝑑/𝜖)√𝑝) iterations (since 𝑝 ≤ log(𝑑)/𝜖)
since Z = Z1. We observe that in this case, there exists a gap of size

𝑝 between 𝜎1 and 𝜎𝑘+1, since 1 − 𝜎𝑘+1/𝜎1 ≤ 1/𝑝 . It follows from
Lemma 4.4 that running Block Krylov Iteration for O

(
log(𝑑/𝜖)√𝑝

)
iterations with block size ≥ 𝑘 suffices to output a matrix Z such
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that with probability at least 99/100, for all 𝑖 ∈ [𝑘],


AZ∗,𝑖

22 ≥ 𝜎2𝑖 (A) − poly

( 𝜖
𝑑

)
𝜎2
𝑘+1 (A). (16)

We note that we cannot simply take 𝑝/2-th powers here (for large

𝑝) as this would introduce cross terms that scale proportional to

𝜎𝑖 (A), which can be significantly larger than 𝜎𝑘+1 (A). Instead, we
require a finer analysis by splitting A into a head and tail term.

Let A = UΣV⊤ be the SVD of A and for all 𝑗 ∈ [𝑑], let 𝑣 𝑗 = V⊤
𝑗,∗

denote the 𝑗-th row of V⊤. By the Pythagorean Theorem, we have

∥AZ∥2𝐹 = ∥A𝑘Z∥2𝐹 + ∥(A − A𝑘 ) Z∥2𝐹

≤
∑︁
𝑗 ∈[𝑘 ]

(
𝜎2𝑗 − 𝜎2

𝑘+1

) 


𝑣⊤𝑗 Z



2
2
+ 𝜎2

𝑘+1𝑘.
(17)

Summing over 𝑗 ∈ [𝑘] for the guarantee obtained in Equation 16,

we have

∥AZ∥2𝐹 =

∑︁
𝑗 ∈[𝑘 ]



AZ∗, 𝑗 

2𝐹 ≥
∑︁
𝑗 ∈[𝑘 ]

𝜎2𝑗 − O(𝛾𝑘) 𝜎2
𝑘+1 . (18)

where 𝛾 = poly(𝜖/𝑑). Combining Equations (17) and (18), we can

conclude∑︁
𝑗 ∈[𝑘 ]

(
𝜎2𝑗 − 𝜎2

𝑘+1

)
− O(𝛾𝑘) 𝜎2

𝑘+1 ≤
∑︁
𝑗 ∈[𝑘 ]

(
𝜎2𝑗 − 𝜎2

𝑘+1

) 


𝑣⊤𝑗 Z



2
2
.

(19)

Let 𝑗 ′ ∈ [𝑘] be the largest integer such that for all 𝑗 ≤ 𝑗 ′,
𝜎2𝑗 ≥ (1 + 𝜖/𝑑) 𝜎2

𝑘+1. Next, let 𝑗
∗ ∈ [ 𝑗 ′, 𝑘] be such that 𝜎 𝑗∗+1 ≤

(1 − 𝜖/𝑑)𝜎 𝑗∗ . Observe, such a 𝑗∗ is guaranteed to exist since there

is a gap between 𝜎1 and 𝜎𝑘+1. Since



𝑣⊤𝑗 Z




2
2
≤ 1, we can restate

Equation (19), as follows:∑︁
𝑗 ∈[𝑘 ]

(
𝜎2𝑗 − 𝜎2

𝑘+1

)
− O(𝛾𝑘) 𝜎2

𝑘+1

≤
∑︁

𝑗 ∈[ 𝑗∗ ]

(
𝜎2𝑗 − 𝜎2

𝑘+1

) 


𝑣⊤𝑗 Z



2
2
+

∑︁
𝑗 ∈[ 𝑗∗+1,𝑘 ]

(
𝜎2𝑗 − 𝜎2

𝑘+1

)
.

Subtracting
∑

𝑗 ∈[ 𝑗∗+1,𝑘 ]
(
𝜎2𝑗 − 𝜎2

𝑘+1

)
from both sides, and rearrang-

ing, we have

∑︁
𝑗 ∈[ 𝑗∗ ]

(
𝜎2𝑗 − 𝜎2

𝑘+1

)
− 𝛾𝑘𝜎2

𝑘+1 + 𝜎2
𝑘+1

∑︁
𝑗 ∈[ 𝑗∗ ]




𝑣⊤𝑗 Z



2
2

≤
∑︁

𝑗 ∈[ 𝑗∗ ]
𝜎2𝑗




𝑣⊤𝑗 Z



2
2

(20)

We are now ready to bound


A (

I − ZZ⊤
)



S𝑝
. By the triangle in-

equality, 

A (
I − ZZ⊤

)


S𝑝

≤


A𝑗∗

(
I − ZZ⊤

)


S𝑝

+


(A − A𝑗∗

) (
I − ZZ⊤

)


S𝑝

(21)

Observe, for any 𝑝 ≥ 1,


A𝑗∗

(
I − ZZ⊤

)


S𝑝

≤
√
𝑘


A𝑗∗

(
I − ZZ⊤

)


𝐹
,

sinceA𝑗∗ has rank at most𝑘 , with 𝑝 = 1 achieving the worst inequal-

ity. Therefore, using the Pythagorean theorem again, and plugging

in the lower bound from Equation (20)



A𝑗∗
(
I − ZZ⊤

)


S𝑝

≤
√
𝑘𝜎𝑘+1 ·

©­
«
𝑗∗ −

∑︁
𝑗 ∈[ 𝑗∗ ]




𝑣⊤𝑗 Z



2
2
+ O(𝛾𝑘)ª®¬

1/2

(22)

It therefore remains to lower bound
∑

𝑗 ∈[ 𝑗∗ ]



𝑣⊤𝑗 Z




2
2
. Applying

Lemma 4.8, we have,

∑︁
𝑗 ∈[ 𝑗∗ ]




𝑣⊤𝑗 Z



2
2
=




V⊤
𝑗∗Z




2
𝐹
≥ 𝑗∗ − O

(
(𝜖/𝑑)4

)
(23)

Plugging back into Equation (22),


A𝑗∗

(
I − ZZ⊤

)


S𝑝

≤ O
(
𝜖
𝑑
𝜎𝑘+1

)
and thus substituting into Equation (21),

A (

I − ZZ⊤
)



S𝑝
≤ O

( 𝜖
𝑑

)
∥A − A𝑘 ∥S𝑝

+


(A − A𝑗∗

) (
I − ZZ⊤

)


S𝑝

.
(24)

It remains to bound term 24.1 above.

Applying Lemma 4.6 with Q = ZZ⊤ and P = WW⊤ being the

projection on the column span of AZZ⊤, we have

(A − A𝑗∗
) (
I − ZZ⊤

)

𝑝
S𝑝

≤
∑︁

𝑗 ∈[ 𝑗∗+1,𝑑 ]
𝜎
𝑝
𝑗 −

∑︁
𝑗 ∈[𝑘 ]

𝜎
𝑝
𝑗

(
W⊤ (

A − A𝑗∗
) )

Next, we show that for all 𝑗 ∈ [𝑘],𝜎 𝑗 (W⊤ (A−A𝑗∗ )) ≥ 𝜎 𝑗+𝑗∗ (W⊤A).
Here, we invoke Fact 3.5 for X =

(
A − A𝑗∗

)
and Y = A𝑗∗, with 𝑖 = 𝑗

and 𝑗 = 𝑗∗. Note, the precondition on the indices 𝑖, 𝑗 in Fact 3.5 is

satisfied since X,Y are 𝑛×𝑘 matrices, and 𝑗 ∈ [𝑘] and 𝑗∗ < 𝑘 . Then,

we have 𝜎 𝑗+𝑗∗
(
W⊤A

)
≤ 𝜎 𝑗

(
W⊤ (

A − A𝑗∗
) )
+𝜎 𝑗∗+1

(
W⊤A𝑗∗

)
. But

A𝑗∗Z is a rank ≤ 𝑗∗ matrix, and thus 𝜎 𝑗∗+1
(
A𝑗∗Z

)
= 0. Therefore,

we can conclude,



(A − A𝑗∗
) (
I − ZZ⊤

)

𝑝
S𝑝

≤
∑︁

𝑗 ∈[ 𝑗∗+1,𝑑 ]
𝜎
𝑝
𝑗 −

∑︁
𝑗 ∈[ 𝑗∗,𝑘+𝑗∗ ]

𝜎
𝑝
𝑗

(
W⊤A

)
(25)

Finally, we show that 𝜎
𝑝
𝑗 (W

⊤A) ≥ 𝜎
𝑝
𝑗 (AZ) (we defer the proof to

the full version) and by definition, for 𝑗 ∈ [ 𝑗∗ + 1, 𝑘 + 𝑗∗], 𝜎 𝑗 ≤
(1 + 𝜖/𝑑) 𝜎𝑘+1 and thus, it follows from Lemma 4.7 that for all

𝑗 ∈ [ 𝑗∗ + 1, 𝑘],

𝜎
𝑝
𝑗 (AZ) ≥ 𝜎

𝑝
𝑗 − O(𝛾𝑝) 𝜎𝑝

𝑘+1, (26)

where the last inequality uses that 𝑝 = O(log(𝑑)/𝜖). Substituting
this back into Equation (25), we have

(A − A𝑗∗

) (
I − ZZ⊤

)

𝑝
S𝑝

≤ (1 + O(𝛾𝑝𝑘)) ∥A − A𝑘 ∥
𝑝

S𝑝
. (27)

Taking the 𝑝-th root and substituting back into Equation (24),

A (
I − ZZ⊤

)


S𝑝

≤ (1 + O(𝛾𝑝𝑘))1/𝑝 ∥A − A𝑘 ∥S𝑝
+ O

( 𝜖
𝑑

)
∥A − A𝑘 ∥S𝑝

,
(28)

and since 𝛾 = poly (𝜖/𝑑), we have


A (

I − ZZ⊤
)



S𝑝
≤ (1 + 𝜖)∥A −

A𝑘 ∥S𝑝
, which completes the analysis for this case.

Next, we consider the case where the gap between the top and

the (𝑘+1)-st singular value is small, i.e., 𝜎1 < (1 + 1/𝑝) 𝜎𝑘+1. We yet

again split into cases, and consider the case where the Schatten-𝑝
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norm of the tail is small, i.e. ∥A − A𝑘 ∥
𝑝

S𝑝
≤ 𝑘

𝑝1/3𝜖1/3
·𝜎𝑝

𝑘+1. Observe,

for any 𝑡 ∈ [1, 𝑑 − 𝑘 − 1],

𝑘

𝑝1/3𝜖1/3
· 𝜎𝑝

𝑘+1 ≥ ∥A − A𝑘 ∥
𝑝

S𝑝
≥

𝑘+1+𝑡∑︁
𝑖=𝑘+1

𝜎
𝑝
𝑖 ≥ 𝑡𝜎

𝑝

𝑘+1+𝑡 . (29)

Then, setting 𝑡 =
(1+1/𝑝)𝑝𝑘
𝜖1/3𝑝1/3 = Θ

(
𝑘

𝜖1/3𝑝1/3

)
, we have 𝜎𝑘+1+𝑡 ≤

𝜎𝑘+1/(1 + 1/𝑝). It suffices to show that we can detect this gap for

some 𝑠 ≥ 𝑘 + 1 + 𝑡 . Recall, we know that 𝜎̂𝑘+1 = (1 ± 0.1/𝑝)𝜎𝑘+1
and 𝜎̂𝑠 = (1 ± 0.1/𝑝)𝜎𝑠 . Then, we have

𝜎̂𝑠 ≤
(
1 + 0.1

𝑝

)
𝜎𝑠 ≤

(
1 + 0.1

𝑝

)
𝜎𝑘+1+𝑡 ≤ 1

(1 + 0.5/𝑝) 𝜎̂𝑘+1 . (30)

Therefore, Algorithm 4.1 outputsZ, an orthonormal basis forA⊤W2,

where W2 is obtained by running Algorithm 4.5 on A⊤, initialized

with a block size of Θ
(

𝑘
𝜖1/3𝑝1/3

)
and run for O

(
log(𝑑/𝜖)√𝑝

)
iter-

ations. Observe, since 𝜎𝑘+1+𝑡 ≤ 𝜎𝑘+1/(1 + 1/𝑝), this suffices to

demonstrate a gap that depends on 𝑝 as follows: 𝜎𝑘
𝜎𝑘−𝜎𝑘+𝑡+1 ≤ 𝑝 .

Recall, we account for this gap by running O
(
log(𝑑)√𝑝

)
iterations.

Using the gap dependent analysis (Lemma 4.4), we can conclude

that with probability at least 99/100, for all 𝑖 ∈ [𝑘],

A⊤ (W2)∗,𝑖


2
2
≥ 𝜎2𝑖 − poly

( 𝜖
𝑑

)
𝜎2
𝑘+1 . (31)

Then, applying Lemma 4.7 withW2W
⊤
2 satisfying the guarantee in

(31), we have

A⊤W2W
⊤
2



𝑝
S𝑝

≥ ∥A𝑘 ∥
𝑝

S𝑝
− poly

( 𝜖
𝑑

)
𝜎
𝑝

𝑘+1 . (32)

Next, we use Lemma 4.6 to relate


A⊤W2W

⊤
2



𝑝
S𝑝

to


A (

I − ZZ⊤
)

𝑝

S𝑝
,

where Z is an orthonormal basis for A⊤W2W
⊤
2 as output by the

algorithm. Setting Q = ZZ⊤ and P = W2W
⊤
2 , we observe that

∥PAQ∥𝑝S𝑝
=



W2W
⊤
2 A



𝑝
S𝑝

and ∥(I − P)A(I − Q)∥𝑝S𝑝
= ∥A(I −

ZZ⊤)∥𝑝S𝑝
. Then, invoking Lemma 4.6 and plugging in Equation

(32), we have

A (
I − ZZ⊤

)

𝑝
S𝑝

≤ ∥A∥𝑝S𝑝
−



A⊤W2W
⊤
2



𝑝
S𝑝

≤
(
1 + poly

( 𝜖
𝑑

))
∥A − A𝑘 ∥

𝑝

S𝑝
,

(33)

which concludes the analysis in this case.

As shown in Equation 30, we can detect a gap between 𝜎𝑘+1+𝑡
and 𝜎𝑘+1 by comparing 𝜎̂𝑠 and 𝜎̂𝑘+1. When 30 does not hold, we

know that 𝜎̂𝑠 ≥ (1 + 0.5/𝑝) 𝜎̂𝑘+1 and Algorithm 4.1 outputs Z,

an orthonormal basis for A⊤W1W
⊤
1 . Since we have (1 ± 0.1/𝑝)-

approximate estimates to these quantities, we can conclude that

𝜎𝑠 ≥ (1 + 0.1/𝑝) 𝜎𝑘+1. Then, we have

∥A − A𝑘 ∥
𝑝

S𝑝
≥ 𝑠 · 𝜎𝑝𝑠 = Ω

(
𝑘

𝜖1/3𝑝1/3

)
𝜎
𝑝

𝑘+1 .

It therefore remains to consider the case where ∥A − A𝑘 ∥
𝑝

S𝑝
>

𝑐𝑘
𝑝1/3𝜖1/3

· 𝜎𝑝
𝑘+1, for a fixed universal constant 𝑐 . Here, we note that

the tail is large enough that an additive error of O
(
𝜖2/3𝑝1/3

)
𝜎2
𝑘+1

on each of the top-𝑘 singular values suffices. Formally, it follows

from Lemma 4.3 (setting 𝛾 = 𝜖2/3𝑝−1/3, and invoking it for A⊤)
that initializing Algorithm 4.5 with block size 𝑘 and running for

O
(
log(𝑑/𝜖)𝑝1/6/𝜖1/3

)
iterations suffices to output a 𝑛 × 𝑘 matrix

W1 such that with probability at least 99/100, for all 𝑖 ∈ [𝑘],

A⊤ (W1)∗,𝑖


2
2
≥ 𝜎2𝑖 − 𝜖2/3𝑝−1/3𝜎2

𝑘+1 .

Then, invoking Lemma 4.7 with A⊤ andW1 as defined above, we

have 

A⊤W1W
⊤
1



𝑝
S𝑝

=



W1W
⊤
1 A



𝑝
S𝑝

≥ ∥A𝑘 ∥
𝑝

S𝑝
− O

(
𝑘𝜖2/3𝑝2/3

)
𝜎
𝑝

𝑘+1
(34)

where the last inequality uses that 𝜎1 < (1 + 1/𝑝)𝜎𝑘+1 and (1 +
1/𝑝)𝑝 = O(1). Recall, in this case, Algorithm 4.1 outputs ZZ⊤ where

Z is an orthonormal basis for A⊤W1W
⊤
1 . Next, we invoke Lemma

4.6 to relate


A⊤W1W

⊤
1



𝑝
S𝑝

to


A (

I − ZZ⊤
)

𝑝

S𝑝
. Setting Q = ZZ⊤

and P = W1W
⊤
1 , we observe that ∥PAQ∥𝑝S𝑝

=



W1W
⊤
1 A



𝑝
S𝑝

and

∥(I − P) A (I − Q)∥𝑝S𝑝
=



A (
I − ZZ⊤

)

𝑝
S𝑝

. Then, invoking Lemma

4.6 and plugging in Equation (34), we have

∥(I − P) A (I − Q)∥𝑝S𝑝
≤ (1 + O(𝑝𝜖)) ∥A − A𝑘 ∥

𝑝

S𝑝
, (35)

where the last inequality follows from our assumption on the

Schatten-𝑝 norm of the tail, given the case we are in. Taking the

(1/𝑝)-th root, and recalling that 𝜖 < 1/2, we obtain

A (
I − ZZ⊤

)


S𝑝

≤ (1 + O(𝜖)) ∥A − A𝑘 ∥𝑝 , (36)

which concludes the final case.

Next, we analyze the running time and matrix-vector products.

RunningAlgorithm 4.5with block size𝑘 for𝑞 = O
(
log(𝑑)𝑝1/6/𝜖1/3

)
iterations requires O

(
nnz(A)𝑘𝑝1/6 log(𝑑)

𝜖1/3

)
time and O

(
𝑘𝑝1/6 log(𝑑)

𝜖1/3

)

matrix-vector products. Similarly, runningwith block sizeO
(

𝑘

(𝜖𝑝)
1
3

)

for 𝑞 = O
(
log(𝑑/𝜖)√𝑝

)
iterations requires O

(
nnz(A)𝑘𝑝1/6 log(𝑑/𝜖)

𝜖1/3

)

time and O
(
𝑘𝑝1/6 log(𝑑)

𝜖1/3

)
matrix-vector products. Finally, we ob-

serve that to obtain a (1 + 1/𝑝)-approximation to 𝜎1 and 𝜎𝑘+1, we
need O

(
log(𝑑)√𝑝

)
iterations with blocksize 𝑘 + 1 and this requires

O
(
log(𝑑)√𝑝𝑘

)
matrix-vector products. Note, our setting of the ex-

ponent of 𝑝 and 𝜖 was chosen to balance the two cases, and this

concludes the proof.

□

5 QUERY LOWER BOUNDS

Next, we show that the 𝜖-dependence obtained by our algorithms

for Schatten-𝑝 low-rank approximation is optimal in the restricted

computation model of matrix-vector products. The matrix-vector

product model is defined as follows: given a matrixA, our algorithm

is allowed to make adaptive matrix-vector queries to A, where

one matrix-vector query is of the form A𝑣 , for any 𝑣 ∈ R𝑑 . Our
lower bounds are information-theoretic and rely on the hardness

of estimating the smallest eigenvalue of a Wishart ensemble, as

established in recent work of Braverman, Hazan, Simchowitz and

Woodworth [9].
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We split the lower bounds into the case of 𝑝 ∈ [1, 2] and 𝑝 > 2.

For 𝑝 ∈ [1, 2], we have a simple argument based on the Araki-Lieb-

Thirring inequality (Fact 3.10), whereas for 𝑝 > 2, our lower bounds

require an involved argument using a norm compression inequality

for partitioned operators (Fact 3.14).

5.1 Lower Bounds for 𝑝 ∈ [1, 2]
The main lower bound we prove in this sub-section is as follows:

Theorem 5.1 (Query Lower Bound for 𝑝 ∈ [1, 2]). Given 𝜀 > 0,

and 𝑝 ∈ [1, 2], there exists a distribution D over 𝑛 × 𝑛 matrices such

that for A ∼ D, any randomized algorithm that with probability

at least 9/10 outputs a rank-1 matrix B such that ∥A − B∥𝑝S𝑝
≤

(1 + 𝜀) ∥A − A1∥𝑝S𝑝
must make Ω(1/𝜀1/3) matrix-vector queries to

A.

We require the following theorem on the hardness of computing

the minimum eigenvalue of a Wishart Matrix, introduced recently

by Braverman, Hazan, Simchowitz and Woodworth [9]:

Theorem 5.2 (Computing Min Eigenvalue of Wishart, Theo-

rem 3.1 [9]). Given 𝜖 ∈ (0, 1), there exists a function d : (0, 1) → N
such that for all 𝑑 ≥ d(𝜖), the following holds. LetW ∼ Wishart(𝑑)
be a Wishart matrix and {𝜆𝑖 }𝑖∈[𝑑 ] be the eigenvalues of W, in de-

scending order. Then, there exists a universal constant 𝑐∗ such that:

(1) Let 𝜁1 be the event that 𝜆𝑑 (W) ≤ 𝑐1/𝑑2, 𝜁2 be the event that
𝜆𝑑−1 (W)−𝜆𝑑 (W) ≥ 𝑐2/𝑑2 and 𝜁3 be the event that ∥W∥𝑜𝑝 ≤
5, where 𝑐1 and 𝑐2 are constants that depend only on 𝜖 . Then,

PrW [𝜁1 ∩ 𝜁2 ∩ 𝜁3] ≥ 1 − 𝑐∗
√
𝜖

2 .

(2) Any randomized algorithm that makes at most (1 − 𝜖)𝑑 adap-

tive matrix-vector queries and outputs an estimate 𝜆𝑑 must

satisfy

Pr
W

[���𝜆𝑑 − 𝜆𝑑

��� ≥ 1

4𝑑2

]
≥ 𝑐∗

√
𝜖.

We also use the following lemma from [9] bounding the mini-

mum eigenvalue of a Wishart ensemble:

Lemma 5.3 (Non-Asymptotic Spectra of Wishart Ensembles,

Corollary 3.3 [9]). Let W ∼ Wishart(𝑛) be such that 𝑛 = Ω(1/𝜀3).
Then, there exists a universal constant 𝑐2 > 0 such that

Pr

[
𝜆𝑛 (W) ≥ 1

𝑛2

]
≥ 𝑐2, and Pr

[
𝜆𝑛 (W) < 1

2𝑛2

]
≥ 𝑐2

2
.

We are now ready to prove Theorem 5.1. Our high level approach

is to show that we can take any solution that is a (1+𝜀)-relative-error
Schatten-𝑝 low-rank approximation to the hard instance I − 1

5W,

where W is a Wishart ensemble, and extract from it an accurate

estimate of the minimum eigenvalue ofW, thus appealing to the

hardness stated in (2) of Theorem 5.2 above.

Proof of Theorem 5.1. Let 𝑛 = Θ

(
1/𝜖1/3

)
and let A = I − 1

5W

be an𝑛×𝑛 instance whereW ∼ Wishart(𝑛). Let 𝜁1 be the event that
∥W∥op ≤ 5. It follows from Fact 3.16 that 𝜁1 holds with probability

at least 99/100, and we condition on this event. Let 𝜁2 be the event

that 𝜆𝑛 (W) ≥ 1
𝑛2 =

𝜀2/3
𝑐∗ and 𝜁3 be the event that 𝜆𝑛 (W) < 1

2𝑛2 =

𝜀2/3
2𝑐∗ .

Then, conditioning on 𝜁2, we have that 1 − 1
5𝜆𝑛 (W) ≤ 1 − 𝜀2/3

5𝑐∗

and conditioning on 𝜁3, we have that 1 − 1
5𝜆𝑛 (W) ≥ 1 − 𝜀2/3

10𝑐∗ . We

observe that for 𝑝 ∈ [1, 2], using Bernoulli’s inequality (Fact 3.6)

we have (
1 − 1

5
𝜆𝑛 (W)

)𝑝
≥ 1 − 𝑝

5
𝜆𝑛 (W)

and since (1 − 𝑥)𝑝 ≤ (1 − 𝑥) for any 𝑥 ∈ (0, 1), we also have that,(
1 − 1

5
𝜆𝑛 (W)

)𝑝
≤ 1 − 1

5
𝜆𝑛 (W)

Therefore, we can conclude,
(
1 − 1

5𝜆𝑛 (W)
)𝑝

= 1 − Θ (𝜆𝑛 (W)).
Further, it follows from part (1) of Fact 3.16 that 0 ⪯ I − 1

5W ⪯ I,

and thus

∥A∥𝑝S𝑝
=

∑︁
𝑖∈[𝑛]

𝜆
𝑝
𝑖

(
I − 1

5
W

)
≤

∑︁
𝑖∈[𝑛]

𝜆𝑖

(
I − 1

5
W

)
≤ O

(
1

𝜖1/3

)

(37)

where the last inequality follows from the fact that 𝑛 =

√
𝑐∗/𝜖1/3.

Let A1 denote the best rank-1 approximation to A. Then, it follows

from Equation (37) that

𝜖 ∥A − A1∥𝑝S𝑝
≤ 𝜖 ∥A∥𝑝S𝑝

≤ O
(
𝜖2/3

)
(38)

Observe, any (1 + 𝜖)-approximate relative-error Schatten-𝑝 low-

rank approximation algorithm for 𝑘 = 1 outputs a matrix 𝑣𝑣⊤ such

that 

A (
I − 𝑣𝑣⊤

)

𝑝
S𝑝

≤ ∥A∥𝑝S𝑝
− ∥A∥𝑝op + Θ(𝜖2/3) (39)

By definition of the Schatten-𝑝 norm we have:

A (
I − 𝑣𝑣⊤

)

𝑝
S𝑝

≥ Tr
( (
I − 𝑣𝑣⊤

)𝑝
A𝑝 (

I − 𝑣𝑣⊤
)𝑝 )

= ∥A∥𝑝S𝑝
− Tr

( (
𝑣𝑣⊤

)𝑝/2 (
A2

)𝑝/2 (
𝑣𝑣⊤

)𝑝/2)

≥ ∥A∥𝑝S𝑝
− Tr

((
𝑣𝑣⊤A2𝑣𝑣⊤

)𝑝/2)

= ∥A∥𝑝S𝑝
−



A𝑣𝑣⊤

𝑝
S𝑝

(40)

where the first and last inequality follows from the reverse Araki-

Lieb-Thirring inequality (Fact 3.10). Combining equations (39) and

(40), we have that

∥A∥𝑝op ≥ ∥A𝑣 ∥𝑝2 ≥ ∥A∥𝑝op − Θ(𝜖2/3) (41)

Next, we observe that A𝑣 = (I − 1/5W) 𝑣 can be computed with

one additional matrix-vector product and

∥A∥𝑝op =

(
1 − 1

5
𝜆𝑛 (W)

)𝑝
= 1 − 𝑝

5
𝜆𝑛 (W) + O

(
𝜆2𝑛 (W)

)
(42)

Consider the estimator 𝜆(W) = 5
𝑝

(
1 −




(I − 1
5W

)
𝑣



𝑝
2

)
. Combining

equations (41) and (42), we can conclude

𝜆(W) = 𝜆min (W) ± Θ(𝜖2/3) .
obtaining an additive error estimate to the minimum eigenvalue

of W by computing an additional matrix-vector product. It follows

that we satisfy conditions (1) and (2) in Theorem 5.2 and thus any

algorithm for computing a rank-1 approximation to the matrix
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A = I − 1
5W in Schatten 𝑝 norm must make at least 1

𝜖1/3
queries to

the aforementioned matrix, completing the proof. The claim follows

from Theorem 5.2. □

5.2 Lower Bound for 𝑝 > 2

We now consider the case when 𝑝 > 2. We note that the previous

approach no longer works since we cannot lower bound the cost

of ∥ (I −W/5)
(
I − 𝑣𝑣⊤

)
∥S𝑝

, as the Araki-Lieb-Thirring inequality

reverses (see application in Equation 40). Therefore, we require a

new approach, and appeal to a special case of Conjecture 2.2 that

is known to be true, i.e. the Aligned Norm Compression inequality

(see Fact 3.14). The main theorem we prove in this sub-section is as

follows:

Theorem 5.4 (Query Lower Bound for 𝑝 > 2). Given 𝜀 > 0,

and 𝑝 ≥ 2 such that 𝑝 = O(1), there exists a distribution D over

𝑛 × 𝑛 matrices such that for A ∼ D, any randomized algorithm

that with probability at least 99/100 outputs a unit vector 𝑢 such

that


A − A𝑢𝑢⊤



𝑝
S𝑝

≤ (1 + 𝜀) ∥A − A1∥𝑝S𝑝
must make Ω

(
1/𝜀1/3

)
matrix-vector queries to A.

We first introduce a sequence of key lemmas required for our

proof.

Corollary 5.5 (Special Case of Lemma 4.3). Given 𝛾 ∈ [0, 1],
a vector 𝑣 ∈ R𝑑 and an 𝑛 × 𝑑 matrix A, let 𝑡 = log(𝑛/𝛾)/(𝑐√𝛾),
for a fixed universal constant 𝑐 . Then, there exists an algorithm that

computes 𝑡 matrix-vector products with A and outputs a unit vector

𝑢 such that with probability at least 99/100,

∥A∥2op − ∥A𝑢∥22 ≤ 𝑂
(
𝛾𝜎22

)
.

where 𝜎2 is the second largest singular value of A.

Next, we prove a key lemma relating the norm of a matrix to

norms of orthogonal projections applied to the matrix. We note

that this lemma is straight forward and holds for arbitrary vectors

unit 𝑢, 𝑣 if Conjecture 2.2 holds. However, we show that we can

transform our matrix to have structure such that we can apply Fact

3.14 instead.

Lemma 5.6 (Orthogonal Projectors to Block Matrices ).

Given an 𝑛 × 𝑑 matrix A, 𝑝 > 2 and unit vectors 𝑢 ∈ R𝑑 , 𝑣 ∈ R𝑛 ,
such that

(
I − 𝑣𝑣⊤

)
A𝑢𝑢⊤ = 0. Then, we have

∥A∥S𝑝
≤







(

𝑣𝑣⊤A𝑢𝑢⊤



S𝑝



𝑣𝑣⊤A (
I − 𝑢𝑢⊤

)


S𝑝

0


(I − 𝑣𝑣⊤

)
A

(
I − 𝑢𝑢⊤

)


S𝑝

)





S𝑝

.

Fact 5.7 (SVD of a 2 × 2 Matrix). Given a 2 × 2 matrix M =(
𝑎 𝑏

𝑐 𝑑

)
let UΣV⊤ be the SVD ofM. Then,

Σ1,1 =

√√√
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 +

√︃(
𝑎2 + 𝑏2 − 𝑐2 − 𝑑2

)2 + 4 (𝑎𝑐 + 𝑏𝑑)2

2
,

and

Σ2,2 =

√√√
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 −

√︃(
𝑎2 + 𝑏2 − 𝑐2 − 𝑑2

)2 + 4 (𝑎𝑐 + 𝑏𝑑)2

2
.

Now, we are ready to prove Theorem 5.4.

Proof of Theorem 5.4. Let A = I − 1
5W where W is an 𝑛 × 𝑛

Wishart matrix as in the proof of Theorem 5.1 and we have by

hypothesis that there is an algorithm that with probability at least

99/100, outputs a unit vector 𝑢 such that


A (

I − 𝑢𝑢⊤
)

𝑝

S𝑝
≤ (1 +

𝜀) ∥A − A1∥𝑝S𝑝
. Let 𝑣 = A𝑢/∥A𝑢∥2 and observe,

(
I − 𝑣𝑣⊤

)
A𝑢𝑢⊤ =

0. Further, by the unitary invariance of the Schatten-𝑝 norm,



𝑣𝑣⊤A𝑢𝑢⊤


S𝑝

=

��𝑣⊤A𝑢�� =
��𝑢⊤A⊤A𝑢

��
∥A𝑢∥2

= ∥A𝑢∥2 . (43)

Similarly,

𝑣𝑣⊤A (
I − 𝑢𝑢⊤

)


S𝑝

=

√︃
∥𝑣⊤A (I − 𝑢𝑢⊤)∥22 ≤ 𝜖1/3𝜎2 (44)

where we use sub-multiplicativity of the ℓ2 norm and Corollary

5.5 with 𝛾 = 𝜖2/3. Note that we can assume w.l.o.g. that Corollary

5.5 holds since we can just iterate Block Krylov 𝑞 = (1/𝑐𝜖1/3)
times, for a sufficiently large constant 𝑐 , starting the iterations

with the vector 𝑢 output by the algorithm hypothesized for the

theorem, and pay only (1/𝑐𝜖1/3) extramatrix-vector products. Since

𝑣𝑣⊤A + A𝑢𝑢⊤ − 𝑣𝑣⊤A𝑢𝑢⊤ has rank at most 3,

(I − 𝑣𝑣⊤
)
A

(
I − 𝑢𝑢⊤

)

𝑝
S𝑝

= Ω

(
1/𝜖1/3

)
, (45)

where the last inequality follows from Fact 3.16.

Let M =

( 

𝑣𝑣⊤A𝑢𝑢⊤


S𝑝



𝑣𝑣⊤A (
I − 𝑢𝑢⊤

)


S𝑝

(I − 𝑣𝑣⊤

)
A𝑢𝑢⊤




S𝑝



(I − 𝑣𝑣⊤
)
A

(
I − 𝑢𝑢⊤

)


S𝑝

)⊤
.

Then, it follows from Fact 5.7 that

Σ1,1 (M) =

√︄
𝑐2 + 𝑑2 + Θ

(
𝑎2𝑐2

𝑐2 + 𝑑2 − 𝑎2

)
, (46)

where we use that 𝑏 = 0, 𝑐, 𝑎 ≤ 1 and 1 ≪ 𝑑 and the Taylor

expansion of
√
𝑥 + 𝑦 for 𝑥,𝑦 ≥ 0. Similarly,

Σ2,2 (M) =

√︄
𝑎2 − Θ

(
𝑎2𝑐2

𝑐2 + 𝑑2 − 𝑎2

)
. (47)

Then, using equations (46) and (47) we can bound the Schatten-𝑝

norm of M as follows:

∥M∥𝑝S𝑝
≤

(
1 + O

(
𝜖2𝑝/3

))
∥A − A1∥𝑝S𝑝

+ ∥A𝑢∥𝑝2 (48)

It follows from Lemma 5.6, that ∥M∥𝑝S𝑝
≥ ∥A∥𝑝S𝑝

and thus

∥A𝑢∥𝑝2 ≥ ∥A∥𝑝S𝑝
−

(
1 + O

(
𝜖2𝑝/3

))
∥A − A1∥𝑝S𝑝

≥ ∥A∥𝑝op − O
(
𝜀2/3

) (49)

where the second to last inequality follows from recalling 𝑝 ≥ 2.

The remainder of the proof is as in that following (41) in the proof

of Theorem 5.1. □
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