

Complete Genome Sequences of Chop, DelRio, and GrandSlam, Three *Gordonia* Phages Isolated from Soil in Central Arkansas

Heidi N. Mathes,^a Elijah I. Christenson,^a John H. Crum,^a Emme M. Edmondson,^b Cassidy E. Gray,^a Luke W. Lawson,^a Lauren E. Lee,^c Michael P. Lee,^a Jackson A. Lipscomb,^a Morgan E. Masengale,^d Hannah G. Matthews,^a Charles M. McClain IV,^a Tuesday N. Melton,^a Trace H. Morrow,^a Alexis M. Perry,^a David R. Rainwater,^e Grace E. Renois,^a Maryann F. Rettig,^a Duncan C. Troup,^a Allie J. Wilson,^a Nathan S. Reyna,^a Ruth Plymale^a

^aDepartment of Biology, Ouachita Baptist University, Arkadelphia, Arkansas, USA

^bUAMS College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA

^cNursing, Encompass Health Rehabilitation Hospital, Texarkana, Texas, USA

^dSpeech Therapy, InnovAge Total Long Term Care, Loveland, Colorado, USA

^eLouisiana State University School of Dentistry, New Orleans, Louisiana, USA

ABSTRACT Chop, DelRio, and GrandSlam are phage with a Siphoviridae morphotype isolated from soil in Arkansas using the host *Gordonia terrae* 3612. All three are temperate, and their genomes share at least 96% nucleotide identity. These phage are assigned to cluster DI based on gene content similarity to other sequenced actinobacteriophage.

We report on three bacteriophage, Chop, DelRio, and GrandSlam, that were isolated on *Gordonia terrae* 3612 (1). These phage also infect *Gordonia rubripertincta* NRRL B-16540 at a much reduced efficiency of plating, suggesting a potentially expanding host range (2).

All three phage were isolated from soil (3), with Chop isolated from garden soil, DelRio from the bank of the Caddo River, and GrandSlam from a pitching mound (see Table 1 for global positioning system [GPS] coordinates). Briefly, soil samples were washed in peptone-yeast extract-calcium (PYCa) medium, and the wash was filtered through a 0.22 mm filter, then combined with *Gordonia terrae* 3612, and incubated with shaking for 3 or 4 days at 30°C. The culture was then spun, the supernatant was plated in PYCa top agar with *G. terrae* 3612, and the plates were incubated at 30°C for 3 or 4 days. Four rounds of plaque purification were performed for Chop, and three rounds were performed for DelRio and GrandSlam. After incubation for 3 to 4 days at 30°C, phage replication produced turbid plaques with a diameter of 1.5 to 2 mm for Chop, 4 mm for DelRio, and 3 mm for GrandSlam. Viewed by negative-stain transmission electron microscopy, all three phage showed a Siphoviridae morphotype (Fig. 1). Capsid diameters and tail lengths were measured with ImageJ v1.53k (4) and are listed in Table 1.

Phage lysates were concentrated by pelleting and resuspending phage following polyethylene glycol precipitation (3). DNA was extracted using the Promega Wizard DNA cleanup kit, prepared for sequencing using the New England Biolabs (NEB) Ultra II Library kit, and sequenced on Illumina MiSeq (v3 reagents); 150-bp single-end reads yielded 2,221-fold (Chop), 594-fold (DelRio), and 2,034-fold (GrandSlam) genome coverage (Table 1). Raw reads were assembled using Newbler v2.9 (5), assembly completeness was determined using Consed v29 (<http://www.phrap.org/consed/consed.html>), and ends were identified using PAUSE (<https://cpt.tamu.edu/computer-resources/pause/>), all with default settings. Despite their geographic isolation, the three genomes are remarkably similar, sharing at least 96% nucleotide identity by BLASTn (6). Based on gene content similarity to other actinobacteriophage (<https://phagesDB.org/>), all three phage were assigned to cluster

Editor Simon Roux, DOE Joint Genome Institute

Copyright © 2023 Mathes et al. This is an open-access article distributed under the terms of the [Creative Commons Attribution 4.0 International license](https://creativecommons.org/licenses/by/4.0/).

Address correspondence to Ruth Plymale, plymale@obu.edu.

The authors declare no conflict of interest.

Received 31 January 2023

Accepted 28 March 2023

Published 10 April 2023

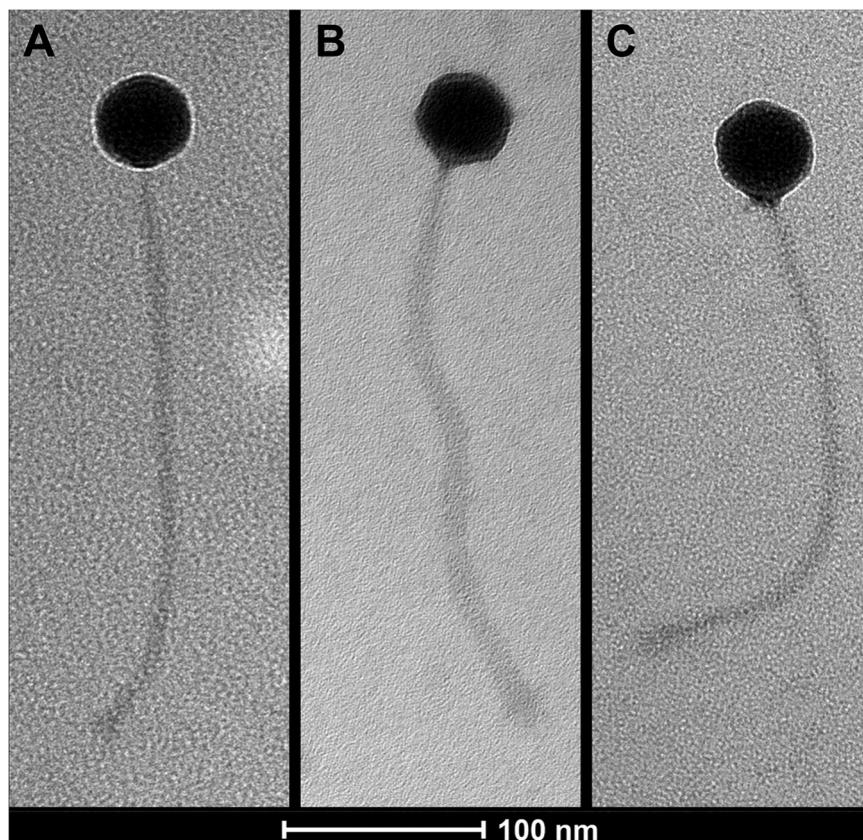


FIG 1 Transmission electron micrographs of *Gordonia* phages Chop (A), DelRio (B), and GrandSlam (C). Phage lysates were negatively stained with 1% uranyl acetate and viewed using a Tecnai F20 transmission electron microscope, with images taken at 80 kV and 80,000 on a Gatan Eagle camera.

DI (7, 8). The genomes all have 67% GC content and 39 single-stranded genome ends (59-TGCCGCGGTA-39).

The genomes were autoannotated with DNAMaster v2700 (<http://cobamide2.bio.pitt.edu>) using GLIMMER v3.02 (9) and GeneMark v2.5 (10) and manually refined using Phamerator v467 (11), Aragorn v1.2.41 (12), and PECAAN v20211202 (<https://discover.kbrinsgd.org>). Using BLASTp (6) and HHpred (13), putative functions were assigned to 40 of 76 annotated genes in Chop, 37 of 75 genes in DelRio, and 37 of 76 genes in GrandSlam. The majority of genes are transcribed rightward with a small number of leftward-transcribed genes in the center of each genome. The leftward-transcribed genes follow the annotated lysis cassette and include a predicted HicAB toxin-antitoxin system and putative integrase and immunity repressor. These, with observed plaque turbidity and isolation of a verified DelRio lysogen, support Chop, DelRio, and GrandSlam as temperate phage.

TABLE 1 Isolation details, sequencing results, and genome and virion characteristics of Chop, DelRio, and GrandSlam

Phage name	Date collected	Location (GPS coordinates)	Avg coverage (x)	No. of reads (thousands)	Genome size (bp)	Genome end	GC content (%)	No. of genes	Capsid diam (nm ± SD) (no. of particles)	Tail length (nm ± SD) (no. of particles)
Chop	September 2021	34.3099N, 93.1514W	2,221	757.0	50,919	39 10-base extension	67	76	46.3 6 1.7 (3)	277.4 6 6.9 (3)
DelRio	August 2017	34.1768N, 93.0714W	594	940.4	50,961	39 10-base extension	67	75	61.1 6 11.4 (3)	275.5 6 12.2 (3)
GrandSlam	August 2017	34.2958N, 92.4219W	2,034	915.3	50,919	39 10-base extension	67	76	46.8 (1)	279.6 (1)

Data availability. Chop GenBank and SRA accession numbers are [ON637763](#) and [SRX14443491](#), respectively. DelRio GenBank and SRA accession numbers are [MH509446](#) and [SRX5282532](#), respectively. GrandSlam GenBank and SRA accession numbers are [MK967392](#) and [SRX14443509](#), respectively.

ACKNOWLEDGMENTS

We thank Daniel Russell and Rebecca Garlena for sequencing and assembling the genome, Graham Hatfull for feedback on the manuscript, and the Science Education Alliance-Phage Hunters Advancing Genomic and Evolutionary Science (SEA-PHAGES) program for support.

Nathan S. Reyna and Ruth Plymale were supported by an NSF DBI Biology Integration Institute (BII) grant (award no. 2119968; PI-Ruben M. Ceballos).

REFERENCES

1. Jordan TC, Burnett SH, Carson S, Caruso SM, Clase K, DeJong RJ, Dennehy JJ, Denver DR, Dunbar D, Elgin SCR, Findley AM, Gissendanner CR, Golebiewska UP, Guild N, Hartzog GA, Grillo WH, Hollowell GP, Hughes LE, Johnson A, King RA, Lewis LO, Li W, Rosenzweig F, Rubin MR, Saha MS, Sandoz J, Shaffer CD, Taylor B, Temple L, Vazquez E, Ware VC, Barker LP, Bradley KW, Jacobs-Sera D, Pope WH, Russell DA, Cresawn SG, Lopatto D, Bailey CP, Hatfull GF. 2014. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. *mBio* 5:e01051-13. <https://doi.org/10.1128/mBio.01051-13>.
2. Jacobs-Sera D, Marinelli LJ, Bowman C, Broussard GW, Guerrero Bustamante C, Boyle MM, Petrova ZO, Dedrick RM, Pope WH, Science Education Alliance Phage Hunters Advancing Genomics And Evolutionary Science Sea-Phages Program, Modlin RL, Hendrix RW, Hatfull GF. 2012. On the nature of mycobacteriophage diversity and host preference. *Virology* 434:187–201. <https://doi.org/10.1016/j.virol.2012.09.026>.
3. Poxleitner M, Pope W, Jacobs-Sera D, Sivanathan V, Hatfull G. 2018. Phage discovery guide. Howard Hughes Medical Institute, Chevy Chase, MD. <https://seaphagesphagediscoveryguide.helpdocsonline.com/home>.
4. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. *Nat Methods* 9:671–675. <https://doi.org/10.1038/nmeth.2089>.
5. Russell DA. 2018. Sequencing, assembling, and finishing complete bacteriophage genomes. *Methods Mol Biol* 1681:109–125. https://doi.org/10.1007/978-1-4939-7343-9_9.
6. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *J Mol Biol* 215:403–410. [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2).
7. Russell DA, Hatfull GF. 2017. PhagesDB: the actinobacteriophage database. *Bioinformatics* 33:784–786. <https://doi.org/10.1093/bioinformatics/btw711>.
8. Pope WH, Mavrich TN, Garlena RA, Guerrero-Bustamante CA, Jacobs-Sera D, Montgomery MT, Russell DA, Warner MH, Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES), Hatfull GF. 2017. Bacteriophages of *Gordonia* spp. display a spectrum of diversity and genetic relationships. *mBio* 8:e01069-17. <https://doi.org/10.1128/mBio.01069-17>.
9. Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. *Bioinformatics* 23:673–679. <https://doi.org/10.1093/bioinformatics/btm009>.
10. Besemer J, Borodovsky M. 2005. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. *Nucleic Acids Res* 33:W451–W454. <https://doi.org/10.1093/nar/gki487>.
11. Cresawn SG, Bogel M, Day N, Jacobs-Sera D, Hendrix RW, Hatfull GF. 2011. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. *BMC Bioinformatics* 12:395. <https://doi.org/10.1186/1471-2105-12-395>.
12. Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. *Nucleic Acids Res* 32:11–16. <https://doi.org/10.1093/nar/gkh152>.
13. Söding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. *Nucleic Acids Res* 33:W244–W248. <https://doi.org/10.1093/nar/gki408>.