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Nitrogen (N) and Water (W) - two resources critical for crop productivity — are
becoming increasingly limited in soils globally. To address this issue, we aim to
uncover the gene regulatory networks (GRNs) that regulate nitrogen use
efficiency (NUE) - as a function of water availability - in Oryza sativa, a staple
for 3.5 billion people. In this study, we infer and validate GRNs that correlate
with rice NUE phenotypes affected by N-by-W availability in the field. We did
this by exploiting RNA-seq and crop phenotype data from 19 rice varieties
grown in a 2x2 N-by-W matrix in the field. First, to identify gene-to-NUE field
phenotypes, we analyzed these datasets using weighted gene co-expression
network analysis (WGCNA). This identified two network modules (“skyblue” &
“grey60°) highly correlated with NUE grain yield (NUEg). Next, we focused on
90 TFs contained in these two NUEg modules and predicted their genome-
wide targets using the N-and/or-W response datasets using a random forest
network inference approach (GENIE3). Next, to validate the GENIE3 TF—target
gene predictions, we performed Precision/Recall Analysis (AUPR) using nine
datasets for three TFs validated in planta. This analysis sets a precision threshold
of 0.31, used to "prune” the GENIE3 network for high-confidence TF—target
gene edges, comprising 88 TFs and 5,716 N-and/or-W response genes. Next,
we ranked these 88 TFs based on their significant influence on NUEg target
genes responsive to N and/or W signaling. This resulted in a list of 18 prioritized
TFs that regulate 551 NUEg target genes responsive to N and/or W signals. We
validated the direct regulated targets of two of these candidate NUEg TFs in a
plant cell-based TF assay called TARGET, for which we also had in planta data
for comparison. Gene ontology analysis revealed that 6/18 NUEg TFs -
OsbZIP23 (LOC_0s02g52780), Oshox22 (LOC_0Os04g45810), LOB39
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(LOC_0s03g41330), Oshox13 (LOC_0s03g08960), LOC_0Os11g38870, and
LOC_0s06g14670 - regulate genes annotated for N and/or W signaling. Qur
results show that OsbZIP23 and Oshox22, known regulators of drought
tolerance, also coordinate W-responses with NUEg. This validated network
can aid in developing/breeding rice with improved yield on marginal, low N-
input, drought-prone soils.
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Introduction

Nitrogen (N) and water (W) are essential resources for plant
productivity that are becoming increasingly limited in marginal
soils world-wide (Gibbs and Salmon, 2015; Hsieh et al,, 2018).
Moreover, applications of N and W in agriculture are costly
resources to society (Williamson, 2011; Keeler et al, 2016;
D'Odorico et al., 2020). Most studies in major crops like rice,
examine the effects of N and drought separately (Anantha et al,,
2016; Li et al., 2017; Volante et al., 2017; Zhao et al., 2017). More
recently, studies that examine how the interaction between N
and W availability affects rice phenotypes and gene regulation
have been examined (Swift et al., 2019; Araus et al., 2020; Plett
et al., 2020; Sevanthi et al., 2021).

Several studies have shown that genes critical to N-uptake,
sensing and metabolism have been assodated with a drought
phenotype. For example, NRT1.1/CHL1/NPF6.3 the a dual-
affinity nitrate transporter (Liu et al., 1999) is expressed in the
guard cells in Arabidopsis. Moreover, nrtl.1/chll mutant is more
drought tolerant compared to wild-type. The loss of NRT1.1/
CHLI reduced the stomatal opening and transpiration rates
which contribute to its drought-tolerant phenotype (Guo et al.,
2003). Next, mutants in nitrate reductase in both Arabidopsis
(NIAI and NIA2) and rice (OsNR1.2) exhibit a drought-tolerant
phenotype with reduced water loss (Lozano-Juste and Leon,
2010; Han et al,, 2022). Transcription factors (TFs) are also at the
center of N-by-W response. NLP7 is a master regulator of
nitrogen signaling in Arabidopsis (Alvarez et al, 2020). The
nlp7 mutant shows drought resistant phenotype, similar to
nrtl.1/chil (Castaings et al, 2009). Putting these findings
together, it has been hypothesized that NLP7 regulates
NRT1.1/CHL1 expression in guard cells and further controls
stomatal opening and hence drought tolerance. Another TF in
rice, drought and salt tolerance (DST), also bridges between N-
assimilation and stomata movement that provides a path to crop
improvement under marginal soil (lowN-lowW) (Han
et al,, 2022).

Frontiers in Plant Science

02

On the genome-wide level, our current manuscript explores
on the gene regulatory networks (GRN) involved in N-by-W
interactions by mining the N-by-W response RNA-seq and
phenotype dataset from field grown rice (Swift et al, 2019). In
our previous Swift et al 2019 study, we used linear models to
discover that N-by-W signaling (N/W, molarity and/or NxW
synergistic interactions) significantly correlate with rice field
phenotypes, compared to genes that respond only to W-dose
or N-moles (Swift et al., 2019). That dataset — which we use in
our current analysis includes transcriptomic and phenotypic
data for 19 rice varieties that vary in their drought and N-
response. These 19 rice varieties were treated in a 2x2 N-by-W
matrix of two N-doses (fertilized vs. without N) and W-doses
(high vs. low water) in field experiments conducted at the
International Rice Research Institute (IRRI) in the Philippines
(Swift et al,, 2019) (Figure 1). While our Swift et al, 2019 study
determined the importance of the N-by-W gene responses (e.g.,
N/W and NxW) to phenotypic field outcomes in rice, the goal of
our present study is to determine the GRNs underlying
TF—target gene—phenotype interactions that correlate with
NUE phenotypes in the rice N-by-W field study.

To develop sustainable agricultural solutions to feed a
growing population, in this study we exploit a systems biology
approach to uncover and validate the gene regulatory networks
(GRNs) by which rice (Oryza sativa) plants sense and respond to
the combination of N- and W- availability to promote crop
productivity. To this end, we connected gene-to-NUE
phenotype using weighted gene correlation analysis (WGCNA)
(Langfelder and Horvath, 2008). Next, for the target genes that
correlate with NUE phenotypes, we identified TF-to-target gene
relationships in a gene regulatory network (GRN) using GENIE3
(Huynh-Thu et al, 2010). We then validated the TF-to-target
gene network predictions via precision/recall (AUPR) analysis
using validated TF-target gene data obtained in planta using the
ConnecTF platform (https://rice.connectf.org). Additionally, we
applied the plant cell-based Transient Assay Reporting Genome-
wide Effects of Transcription factors (TARGET) system
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Data: N-by-W Matrix: Rice Field! Step 1. DESeq2: DE Genes'
W bahw Gene | . N;vw = 2,386 DE genes
I Expression - . = 5,059 DE genes
LowN\ T 19 1] « N= 3,370 DE genes
rice vanetfals.
HighN| . . | N-and/or-W response
DE Genes (10,815)
Gene Expression &  Phenotype
- — —— — Prioritized : : ; T
Weighted Gene Correlation Network - __9_) N-and/or-W responsive GRN
22,436 genes & 10 Field Phenotypes from “Grey60 & | 90 TFs R — Predicted
WGCNA 1 Held Skybive 10,815  TF-> target gene
Network PR RO y- edges
Modules (P) Modules | /N> = 973,260
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S with NUEg Q
Step 5. High-Confidence (Fig. 3D) | Step 4. Network Validation (AUPR) &
TF-Prioritized GRN->NUEg (Table 1) Network “Pruning” (Fig. 4.2-4)
16 1Fs N-and/or-W Prioritized Data: 3 TFs, 9 in planta datasets
LB\ “ NUEg responsive rioritize Validated: 5,683 TF->target edges
3 TFs & DE genes v
= lwecm@ with signiﬁ‘cam I8NUERTFS || aupR (Precision cut-off: 0.31)
8 Y influence on for NUEg GRN N @ 8
etwork “Pruning” =
NUEg GRN 8,826 High-confidence edges
551 DE N-and/or-W Response Genes Targets* 88 TFs - 5,716 target genes
FIGURE 1

Flow-chart for generation of a high-confidence GRN of TF—target gene—NUEg phenotype from rice field data. Gene expression and
phenotype data from field grown rice used to generate the WGCNA modules and GEN were obtained from 19 rice varieties of varying drought
resistance, grown under a 2x2 N-by-W matrix with four combinations of N and W conditions (Low vs High) from Swift et al, 2019 (Swift et al.,
2019} Step 1. N-by-W matrix: RNA-seq and field phenotype data: The differentially expressed (DE) rice geries that respond exclusively to either
N:W, W and N were identified using DESeq2 analysis from field gene expression data (Swift et al, 2019). Step 2. WGCNA analysis: network
modules-to-phenotype: The genes/TFs highly correlated with field phenotypes were identified using the field gene expression counts of the
22,436 normalized genes and 10 field phenotypes as inputs into weighted gene co-expression network analysis (WGCNA). Step 3. GENIE3
analysis: TF—target gene predictions: The TF—target gene predictions between 90 TFs highly correlated with the NUE grain yield (NUEg) from
WGCNA analysis (Step 2) and the total 10,815 N-and/or-W response genes from Swift et al, 2019 (Step 1) determined using the netwaork
inference program GENIE3 resulted in ((90 TFs*10,815 DE genes) - 90 TFs) = 973,260 edges or TF—target gene predictions) Step 4. Network
validation (AUPR) and “pruning”: Validation data for 3 TFs in the GENIE3 network was located using rice.connectf.org (Brooks et al., 2020}, which
consisted of 9 RNA-seq/ChlP-seq in planta datasets. This rice validation data confirmed 5,683 predicted edges for the 3 TFs was used to
calculate the area under the precision/recall curve (AUPR) using automated functions in ConnecTF (Brooks et al, 2020). This AUPR was then
used to select a precision cut-off and "prune” the network for high-confidence edges of the GENIEZ gene regulatory netwark (GRN), again
using autornated functions in ConnecTF. The “pruned’ GENIE3Z network consists of 8,826 high-confidence edge predictions for 88 TFs and
5,716 genes linked to the NUEg phenotype from WGCNA. Step 5. High-confidence GRN: There are 18/88 TFs in the pruned network that
regulated a significant number of the genes highly correlated with NUEg as identified in the WGCNA modules, for a total of 551 DE M-and/ar-W
Response Genes (Step 2).*See Table 1 and Supplementary Figure 3 for TF prioritization results and pipeline.

(Bargmann et al., 2013; Brooks et al., 2019), which we adapted in
rice to validate the high-confidence TF-to-gene network for the
N-by-W response genes whose expression level correlate
with NUE.

Overall, we identified six TFs that regulate genes involved in
both N and/or W signaling: OsbZIP23 (LOC_0s02g52780),
Oshox22 (LOC_Os04g45810), LOB39 (LOC_Os03g41330),
Oshox13 (LOC_0Os03g08960), LOC_0Os11g38870,
LOC_0s06g14670. Two of these TFs are known regulators of
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drought tolerance - OsbZIP23 and Oshox22 - (Xiang et al., 2008;
Zhang etal., 2012; Dey et al,, 2016; Zong et al., 2016). Qur present
study shows that these TFs involved in drought responses are also
responsive to N-by-W interactions. Moreover, we show that these
six TFs control N-and/or-W response genes that correlate with
NUEg. This information can now be applied to develop/breed
rice plants with improved yield, on marginal, low N-input,
drought-prone soils and on fields where water and N are
limited due to climate change.
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TABLE 1 Ranked list of 18 prioritized TFs that correlate with NUEg based on high-confidence edges to N-and/or-W DE genes in WGCNA modules (grey60 and skyblue).

Rank. TF Name

1. OsbZIP23

2. Oshox22

3. LOB39

4, Oshox13

5. LOC_Os11g38870

6. LOC_Os06g14670

7. ERF65

8. OsERF48

9. OsIRO3

10. LOC_Os03g08470

11. OsERF1

12. OsABF1

13, OsIRO2

14. OSBZ8

15. RSR1

Significant overlap of pruned GENIE3 target genes w/
1,099 N-and/or-W DE genes in WGCNA modules
(grey60&skyblue) #TF,s / #genes (Z score)

17 TF,s/159 genes (52.2)

11 TF2s/93 genes (39.3)

5 TF,s/53 genes (30.9)

5 TF.s/52 genes (27.6)
0 TF,s/37 genes (25.9)
4 TF25/49 genes (24.2)
7 TF,s/53 genes (32.1)
6 TF,s/57 genes (27.3)
2 TF,5/24 genes (16.4)

1 TF»/20 gene (15.2)
4 TF,s/25 genes (15.2)
5 TFzs/61 genes (13.6)

1 TF,/15 genes (13.3)

1 TF,/19 genes (12.8)

4 TF2s/18 genes (10.2)

Relevant N and/or W GO terms associated with TF-target
genes that overlap with N-and/or-W DE genes in
WGCNA modules (grey60&skyblue)

"Response to water deprivation”

"Response to water deprivation” & "Response to abscisic acid"

"Nitrate assimilation”

"Response to water deprivation”
"Nitrate assimilation”
"Response to water deprivation” & "Ammonia assimilation cycle"
No N and/or W GO terms found
No N and/or W GO terms found
No N and/or W GO terms found
No N and/or W GO terms found
No N and/or W GO terms found

No N and/or W GO terms found

No N and/or W GO terms found

No N and/or W GO terms found

No N and/or W GO terms found

TFs with High GS
and MM for NUEg
&/or WUE in
WGCNA

NUEg &
WUE

NUEg &
WUE
NUEg &
WUE

NUEg &
WUE
NUEg &
WUE
NUEg &
WUE
NUEg &
WUE
NUEg &
WUE

NUEg &
WUE
NUEg &
WUE
NUEg &
WUE

NUEg &
WUE

NUEg &
WUE

NUEg &

NUEg &

Published TF
Function
(Reference)

Drought tolerance
(Xiang 2008; Dey
2016; Zong 2016}
Drought tolerance
(Zhang et al., 2012}
N-responsive gene
(Obertello 2015;
Yang 2017}
Unknown/Novel

Unknown/Novel
Unknown/Naovel
Unknown/Novel

Drought tolerance
(Jung 2017)
Iron homeostasis
(Wang 2020)
Unknown

Ethylene response
(Hu 2008)
Drought tolerance
{Zhang 2017}
Iron homeostasis/
N-signaling
(Ogo 2007; Ueda
2020)

ABA response
(RoyChoudhury
2008)
Starch biosynthesis
(Fu 2010)

(Continued)
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e a5 z Materials and methods
358 3z si: :
Q= E '5::} = g = 2
ZE8 gz € B3 g Source of N-by-W response data
SEy o d S : (transcriptome and phenotype)
A = s for 19 rice varieties
0
G 5 £ % Field phenotypic data collection and conditions for 19 rice
-Eb% g E Bine v s varieties (Indica and Japonica) can be found in Swift et al., 2019
Tez S| B2 BB £ (Swift et al,, 2019). The details of the treatments are in Swift
"; é 8z “ -E et al, 2019, but as an overview: For the +N treatment, 150 kg/ha
E 'g % E dose of (NH4)2S04 was applied at 23 days after sowing (DAS).
£ The -N treatment had no addition of fertilizer. Plants in the -W
g :E condition were covered from rain with a rainout shelter
&5 ] § (intermittent watering was applied to ensure growth), while
E E E g plants in the +W condition received rainfall and normal
s &g - watering. Water-use-efficiency (WUE) was determined from
é E i g g leaves with carbon isotope discrimination as outlined in Swift
iz3 T L7 g 3 et al, 2019 (Swift et al, 2019). The nitrogen usage data was
ERE “Ef 22 2 % calculated using the Kjeldahl N (KJ N) method which
§ :g E §I 55 = 2 determined the nitrogen content from 1 gram of leaf samples.
E Zz = g g 8 f‘: 5 The total KJ N is determined as in (Bremner and Mulvaney,
g -ﬂé é z i z -§ % 1982; Bremner, 1996) by converting organic nitrogen forms to
O e g ’"g % g B x4 NH,** and then measuring the concentration. To calculate N-
% -E B z zZ g é uptake, we used the Kjeldahl N percent (K] N%) and vegetative
2 5 < mE E E shoot dry weight (SDW) measurements from Swift et al, 2019
g ‘Eg % § collected from leaf samples. We then used the N uptake
E -g % i measurement to calculate NUEg and NUE biomass (NUEDb).
= o g
g % ’ E, N uptake (g/m2) = (K] N % *SDWg/plant) = plants/m2
=4 a .
- i E _ Grain yield g/m2
; % E E NUEg = N uptake g/m2
h 1
%5 3 E_J‘gi NUEb = Biomass g /m?2
i 5 % B £ N uptake g/m2
g {33 % s %o E}} The field transcriptomic data consisted of 19 rice varieties
é = %ﬁ g B2 g En g (Indica and Japonica) of varying drought tolerant phenotypes,
T E L‘E, g, g % 7 E é g grown under four N-by-W treatment conditions, with three
E é':'a[; m g g =3 B g replicate leaf samples for RNA-seq for a total of 228 RNA-seq
32 B E‘ g' g‘ E g o samples. Expression counts for 228 RNA-seq samples were
= s s = o ,E 2 normalized with the DESeq2 package (Love et al., 2014). The
=58 E 'E z TFs and TF families from the N-and/or-W DE gene lists were
% E = E E identified based on the Plant Transcription Factor Database v4.0
‘5 z % @E categorization (Jin et al., 2017). See data availability in Swift
& § = :-; # et al, 2019 (Swift et al, 2019) for source phenotypes and
_Ea—T E E transcriptome data.
W -
3 Ee
E é % f Potential index (lpp) calculation of NUE
s z 83 under low vs. high N and W conditions
o H 8 g £ %
B E g g a ?Z £ To compare NUEg among the 19 rice varieties, we calculated
E & < g8 £ 8 the potential index (Ipp) as similar to Ndiaye et al, 2019
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(Ndiaye et al, 2019). For the calculation, each variety's NUEg
was compared with the conditional average, using the
formula below.

The Ipg is the potential index of variety i; Y;; is the NUEg of
variety i for the condition j where j is HWHN, HWLN, LWHN
or LWLN; Y; is the conditional mean of all 19 varieties under
condition j. The Ipg is a relative value that shows the increase or
decrease of a specific variety's NUEg, over the mean values. An
Ipo > 0 indicates better NUEg, whereas Ipg< 0 indicates worse
NUEg (Figure 2). The NUEg phenotype data was downloaded
from Swift et al, 2019 (Swift et al, 2019).

WGCNA analysis: Gene-to-field
phenotype correlation

The normalized counts files for each treatment and genotype
were averaged as inputs into WGCNA to match the averaged
field phenotypes for each biological replicate. This resulted
in 76 transcriptomic and phenotypic values (19 varieties
and 4 treatments) as inputs into WGCNA. The transcriptome
counts file consists of counts for 22,436 genes in 76 samples.
The R package, WGCNA, was used to perform the weighted
correlation network analysis using step-by-step network
construction and module detection (Langfelder and Horvath,
2008). We selected a MEDissThres of 0.5 to combine

A
lpo For NUEg Under HW
« [R64
JR?{;l
1.0 I
|
5 Ef:u-jd-ﬁ
2 05 '
I A |
o BG380-2  |psBRC 82
o
2 IR129IF\;12'“ {f;eunio
Rt R —
Ol oy IR445, ® Tainung67
abati Mantakhe
0.5 ?Ei%izaw T1R54 Haginamiae_Machi

0
lpo HWHN

FIGURE 2

10.3389/fpls.2022.1006044

modules correlated with each other. We averaged the
absolute value of the NUEg GS, WUE GS, and module
membership (MM) scores for the genes in each module to
select a cut-off value for highly correlated genes. (Figure 3C
and Supplemental Figure 1). Overlapping module gene lists
and N-and/or-W DE gene lists were made with Venny 2.1
web tool (Oliveros, 2015). To determine the Z score and p-
value of the NUEg and WUE genes that overlap with N-and/or-
responsive DE gene lists, we used the Genesect function in
Virtual Plant 1.3 (Katari et al., 2010) (Figures 3B, D and

Supplementary Figure 1).

GENIE3 analysis of GRNs and validation
of TF— target gene predictions by AUPR
and "network pruning”

The GENIE3 package in R (Huynh-Thu et al,, 2010) was
used for network inference analysis. The gene expression data
used to make the GENIE3 network consisted of the normalized
counts of 228 RNA-seq samples for 10,815 N-and/or-W DE
genes from Swift et al., 2019 (Swift et al., 2019) (Figure 1 Step 3).
The 90 TFs for GENIE3 were selected from the two WGCNA
modules (grey60 and skyblue) that are highly correlated with
NUEg and are also N-and/or-W responsive (Figure 3D and
Supplementary Data 4). The total unpruned network of 973,260
edges were uploaded to ConnecTF-Rice (rice.connectf.org) for
network pruning and AUPR analysis (Brooks et al., 2020). This
analysis is based on the in planta TF-target gene validation data

B
lpo For NUEg Under LW
3 o IRG4 IR108
|
|
e |
2 IR70 |
|
= |
§‘ I
s 1 lFf5-1
2 R IR124
S PSBRC_82 .
g=BOMRBA ) s e s

BG34-8 {q}ms
zq/ PRI -iza_:-WlR129
ﬁgﬁgﬁu ) o *Yabani Montakhab

R
'LGQD
0 1 2 3

-1
lpo LWHN

The NUEg phenotype for 19 rice varieties measured under four N-by-W conditions. We used the Potential index (lpo) (Ndiaye et al, 2019) on 19
rice varieties which differ in their drought resistance to assess the NUEg values under (A) high water and (B) low water conditions with varying
N-doses. (A) DHWHN, high-W/high-N; HWLN, high-W/low N; (B) LWHN, low-W/high N; LWLN, low-W/low-N.
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FIGURE 3

WGCNA modules named "grey60” and “skyblue” are highly correlated with NUEg in field grown rice. (A) Heatmap of the correlation values for
the Module Eigengene (ME) values with field phenotypes from WGCNA. Red and blue colors note positive and negative correlation, respectively,
for the ME for each module of co-expressed genes. Modules significantly associated with traits have a p value< 0.05, denoted by an asterisk*.
(B, D) N-and/or-W DE genes and TFs for N:W, W and N -response genes derived from ANOVA analysis in Swift et al, 2019 (Swift et al., 2019)
Heatmap of the Z-score for each overlap (Z-score > 10). The p-value< 0.001 is denoted with an asterisk*. Z-score and p-values were calculated
using the Genesect function in VirtualPlant 1.3 (Katari et al, 2010). (B) Significance of intersection between the genes in each co-expression
madule from WGCNA (Supplernentary Data 1) and the N, W, and N:W DE genes, identified using Genesect function in VirtualPlant 1.3. (C)
Scatterplots of the WGCNA Gene Significance (GS) for NUEg, versus the Module Membership (MM] for the grey60 and skyblue modules exhibit
a significant correlation p-value< 0.001 with NUEg. The genes with a G5 and MM cut-off scores above the average score for the genes in each
module were selected for further analysis (1,209 grey60 + 282 skyblue genes = 1,491 genes). (D) Significance of gene intersection (using
Genesect) between the union of the genes and TFs with an above-average G5 and MM score frormn the WGCNA grey60 and skyblue modules
{grey60&skyblue) and the N:W, W, or N- responsive DE genes. Union of the genes in grey60 and skyblue modules: N-and/or-W response DE
TFs (29 + 61 = 90 total) used for GENIE3 network analysis and N-and/or-W response DE genes (322 + 777 = 1,099 total) used to prioritize TFs

from the pruned GENIE3 network (Supplementary Data 2).

for OsbZIP23, OsABF1, and OsNACI14 that is housed in the
ConnecTF database (Brooks et al,, 2020) (Figure 4 and
Supplementary Figure 2). Gene Ontology (GO) biological
process analysis was conducted using g:Profiler (https://biitcs.
ut.ee/gprofiler/gost) with settings for only annotated genes and a
significance threshold of 0.05 calculated with Benjamini-
Hochberg FDR (Raudvere et al, 2019) (Table 1). For this
analysis the gene IDs for target genes and genes associated
with GO terms were converted between MSU7 and RAPDB
gene designations. Cytoscape v3.9.1 was used for network
visualization (Paul Shannon et al., 1971) (Figure 5).
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Plasmid construction for TF-perturbation
experiments using TARGET assay in
plant cells

The coding sequences of OsABF1 and OsbZIP23 were
determined as listed in Phytozome 13 (Goodstein et al, 2012)
and were synthesized by GENEWIZ (South Plainfield, NJ)
with the GATEWAY cassette for cloning into the pl1107
destination plasmid (Supplementary Figure 4). Entry vectors
were cloned into the p1107 plasmid using the LR Clonase II
reaction according to manufacturer's instructions (Invitrogen).
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4.1. GENIE3: TF->target gene predictions 4.2. Validated: TF->target gene interactions
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((90 TFs x 10,815 DE Genes)-90 TFs) =
973,260 predicted TF->target gene edges

4.3. Precision/Recall (AUPR) GENIE3 Network

TF Name In planta datasets

RNA-seq OX, RNA-seq OX Drought, RNA-seq LOF,

bZiP23
e RNA-seq LOF, Drought ChiP-seq (Zong et al., 2016)

OsABF1 RNA-seq OX, RNA-seq LOF, ChiP-seq (Zhang et al., 2017)

OsNAC14 RNA-seq OX (Shim et al.,, 2018)

10,941 validated TF-target genes for 3 TFs
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FIGURE 4

Validation of GENIE3 network using rice TF-perturbation datasets in Area Under the Precision Recall (AUPR) curve analysis. 4.1. GENIE3: The
GENIE3 network ranked TF—target gene predictions for 90 N-and/or-W DE TFs (from the grey60 and the skyblue modules, Figure 3D}, and
10,815 DE genes - each TF—target gene edge is given a weight 4.2 The validated TF—target gene data used to "prune” the network predictions
was identified using the rice TF data housed in the ConnecTF database (https://rice.connectf.org) (Brooks et al., 2020) (Supplementary Figure 2)
Data for three TFs, OsbZIP23, OsABFlL, and OsNAC14 were then used to validate the predicted GENIE3 edges with a total of 10,941 validated
edges between all three TFs. 4.3. Area Under the Precision-Recall (AUPR) curve was calculated with the rice shoot in planta validation data for
the three TFs. AUPR analysis shows that the ranking for the validated TF—target gene edges of the GENIE3 network (blue line) is significantly
better (p-value<0.001, permutation test), than a set of randomly validated edges (Note: gray dashed lines are for the highest and lowest AUPR
that resulted from random validated edges). A precision cut-off of 0.31 (red dashed line) was selected as the highest precision value before the
curve flattens, and the “pruned” network edges were exported as an automated function in ConnecTF (Brooks et al, 2020). 4.4 The pruned
GENIE3 network consists of 8,826 edges for 88 TFs and 5,716 genes that pass an edge score threshold of 0.0581 Source data of the original

GENIE3 network vs. the high-confidence "pruned” GENIE3 network are supplied as Supplemental Data 4 and 5. Precision and Recall are

calculated as in Brooks et al, 2019, 2020 (Brooks et al, 2019, 2020).

The p1107 plasmid for rice TARGET has a pBeaconRFP_GR
(Bargmann et al, 2013) backbone with the following
modification. The 35S promoters were replaced with maize
Ubiquitin promoter subcloned from pTDM-C (Wu et al,
2016). A biotin ligase recognition peptide (BLRP) was
fused at the N-terminal of the GATEWAY cassette, which is
followed by the GR protein. All junctions were sequenced
and verified for in frame TF-GR fusion proteins. The
plasmid map and sequence (.FASTA) are provided in
Supplemental Data File 1.
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TARGET temporal TF perturbation
experiment in rice leaf cells and
RNA-sequencing

The rice protocol was adapted from our Arabidopsis
TARGET protocol (Bargmann et al,, 2013; Brooks et al., 2019)
with some modifications. Rice seeds (Nipponbare) were
sterilized by 70% ethanol for 3 mins followed by 50%
commercial bleach for 30 min with rotation. The rice seeds
were germinated in the dark for 4 days. The germinated rice
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FIGURE §
High-confidence GRN of rice TFs Targeting N-and/or W response DE genes correlated with NUEg connected to nitrogen and drought GO
terms. This network consists of the TFs from Table 1 that regulate target genes associated with the gene ontology (GO) terms, “nitrate
assimilation” (GO:0042128), "ammonia assimilation cycle” (GO:0019676), ‘response to water deprivation® (GO:0009414), and “response to
abscisic acid” (GO:0009737). These GO terms were selected based upon the enrichment of these terms in the TF-target genes for each TF
candidate from Table 1 using g:Profiler (Raudvere et al, 2019). The full list of GO terms for each TF is in Supplementary Data B. To create this
network the 551 total target genes from Table 1 were examined for the genes associated with the selected GO terms. This left 23/551 target
genes and 14/18 TFs from Table 1 that regulate them. For simplicity and significance, we highlight the & TFs in red and their target genes
because they regulate genes related to both nitrogen and water, either directly or indirectly. All 6 TFs were also associated highly with NUEg
and WUE (Table 1). Edges for this network include either high-confidence GENIES edges, or validated GENIE3 edges for OsbZIP23 and OsABF1
for which we had TARGET data, and in planta data. The total network is in list in Supplemental Data 7

seeds were transferred to % MS plates without sugar for 13 days
in the growth chamber, under 16 h light/8 h dark diurnal cycle,
at temperatures 27 and 25°C respectively and 70% humidity. On
the day of the TARGET experiment, rice shoot tissue was cut
into small (1 mm) pieces and stirred with cell-wall digestion
solution (1.5% cellulase RS, 0.3% macerozyme R10 (Yakult
Honsha), 0.6M mannitol, 10 mM MES (pH 5.7), 1 mM CaCl,,
5 mM b-mercaptoethanol, and 0.1% BSA) in a flask. The flask
was vacuumed infiltrated for 20 minutes and shaken at 50 rpm
in the dark for 4 hours. Rice shoot protoplasts were filtered
through a 40 pm cell strainer (BD Falcon, USA) and spun down
for 5 min at 500 g. The rice shoot protoplasts were then washed
with 10 mL W5 solution (150 mM NaCl, 1M CaCl,, 1M KCI, 200
mM MES pH 5.7) three times, then resuspended in MMG
solution (400 mM D-mannitol, 10 mM MgCl,, 4 mM MES
pH 5.7) to 1.0x10° cells/mL. For protoplast transfection with
vector, 1.0x10° cells were mixed with 40 pg plasmid DNA and
110 uL 40% PEG solution (40% 4000 PEG (Sigma, 81242), 400
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mM D-mannitol, 50 mM CaCl,). The mixture was incubated at
room temperature for 10 minutes. After incubation, the
protoplasts were washed with W5 solution three times and
resuspended in 1 mL WI solution (400 mM D-mannitol, 1M
KCl, 200 mM MES pH 5.7). The transfected protoplasts were
stored in the dark overnight. The next day, transfected
protoplasts were treated with 30 pM cycloheximide (CHX)
for 20 minutes (to block translation of secondary TF, targets
genes), before a three-hour 10 mM dexamethasone (DEX)
treatment (to induce TF-GR nuclear import). After 3 hours,
TF vector and control empty vector transfected protoplasts
were FACS sorted for RFP signals into 150 pL TRI regent
for RNA extraction (Zymo, R2061) (Supplementary Figure 5).
We used Lexogen QuantSeq 3' mRNA-Seq Library Prep Kit
FWD for Tlumina (Lexogen, 015.2x96) for making RNA-Seq
libraries. The libraries were pooled and sequenced on the
Mlumina NextSeq 500 platform at NYU-CGSB Genomics
Core facility.
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RNA-seq analysis of TARGET assay for
validation of TF-target direct
regulated genes

The UMI-incorporated RNA-Seq libraries of TF-transfected
and empty vector control were analyzed following Lexogen's
guidance (https://www.lexogen.com/quantseq-3mrna-
sequencing/). The reads' UMI were extracted from raw fastq
files using ‘extract’ command from UMI-tools v1.1.1 (Smith
et al, 2017). Then the fastq files were trimmed by fastp 0.21.0
(Chen et al,, 2018). The clean fastq files were aligned to MSU7
(Kawahara et al,, 2013) genome using STAR 2.7.6a (Dobin et al,
2013). The aligned reads with the identical UMI were
deduplicated using 'dedup’ command from UMI-tools v1.1.1
(Smith et al,, 2017). The gene counts matrix was generated by
featureCounts v2.0.1 (Liao et al, 2014) from the deduplicated
bam files. The TARGET DE genes for OsABF1 and OsbZIP23
were identified using DESeq2 package (Love et al, 2014) by
comparing TF vs Empty Vector with a Benjamin & Hochberg
adjusted p-values< 0.05. Differentially expressed (DE) genes
identified for OsABF1 and OsbZIP23 are listed in
Supplementary Data 9. Overlap between in planta and
TARGET data was conducted with Venny 2.1 (Oliveros, 2015)
and the significance was determined with Genesect in Virtual
Plant 1.3 (Katari et al., 2010). The calculations for precisions,
recall and F-score for the GENIE3 network was the same as in
Brooks et al, 2019 (Brooks et al., 2019) (Supplementary Figure 6).

Results

Phenotypic variation in NUEg in 19 rice
varieties grown in N-by-W matrix
field

The N-by-W response field data set used in our current
study consisted of 19 rice varieties treated in a 2x2 matrix of four
N-and/or-W treatment conditions (Figure 1) (Swift et al., 2019),
comprising: well-watered (HW) with low-or-high N (HWLN,
HWHN) (Figure 2A) vs. Low-W (LW) with low-or-high N
(LWHN, LWLN) (Figure 2B) (For treatment details see
Materials & Methods, and Swift et al, 2019. To refine our
focus to NUEg, we examined how each of the 19 rice varieties
performed for NUEg in the field (Figure 2). To identify the rice
varieties with higher NUEg in the four different N-by-W field
conditions, we adapted the Potential Index (Ipg) (Ndiaye et al.,
2019) of NUEg for our N-by-W field dataset (Figure 2). The Ipq
for NUEg indicated the relative performance of each of the 19
rice varieties, compared to the conditional average (dotted lines).
Under the well-watered (HW) condition, none of the rice
varieties performed well under both LN and HN conditions
(Figure 2A). For example, IR64 showed the highest NUEg values
under HWLN, but only average NUEg values under HWHN
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conditions (Figure 2A). By contrast, Tainung67 showed the
highest NUEg values under HWHN, but only average NUEg
values under HWLN conditions (Figure 2A). However, under
LW treatments, there was one variety, IR108, that performed
well under both LWLN and LWHN conditions, with the highest
Ipo-NUEg compared to the other 18 varieties (Figure 2B). In line
with this finding, the IR108 variety has been released under the
variety name "Sukha dhan 5" to be used in the drought-prone
regions of Nepal (Anantha et al, 2016). The Ipg analysis reveals
that this phenotypic dataset covers a range of rice NUEg values.
Therefore, we used this NUEg phenotype data from the 2016
growing season data and the corresponding transcriptome data
of Swift et al 2019, for the ensuing network-to-NUE phenotype
analysis (Figure 1).

Identification of N-and/or-W responsive
DE genes highly correlated with NUEg

To discover the relationships between genes and field
phenotypes induding NUEg, we used WGCNA (Langfelder
and Horvath, 2008) (Figure 1, Step 2, and Figure 3). The
WGCNA analysis identified 11 co-expression modules for the
22,436 genes from the rice transcriptome data from the N-by-W
field plot (Figure 1, Step 2, Figure 3A, Data in Supplemental Data
1). The genes in each of the WGCNA co-expression modules
contribute to a Module Eigengene (ME) value based upon their
Module Membership (MM) score. The MM score is the
contribution of the individual gene to the ME value of the
module (Langfelder and Horvath, 2008). We used the ME value
to determine module correlation with each of the rice
phenotypes from the N-by-W field plots (Figure 3A). The ME
score for two WGCNA modules, grey60 (3,050 genes) and
skyblue (744 genes) was significantly and highly correlated
with the NUEg and WUE phenotype data in the N-by-W plot
(Figure 3A). The ME value of the grey60 module was negatively
correlated with NUEg (-0.71), while the ME value of the skyblue
module was positively correlated with NUEg (+0.73)
(Figure 3A). However, each WGCNA module contains subsets
of genes that can be either positively or negatively correlated
with NUEg. In WGCNA, this gene expression-to-phenotype
correlation is called Gene Significance (GS), as shown for the
plot of MM vs. GS in Figure 3C.

To identify which WGCNA modules had a significant
representation of genes responding to N-and/or-W signals, the
genes comprising each module were overlapped with the N-and/
or-W responsive DE genes from Swift et al 2019 (Swift et al,
2019) (Figure 3B). This analysis uncovered a significant overlap
of the N:W- and W- responsive gene lists with the genes in the
WGCNA modules - grey60 and skyblue - which are each highly
correlated with NUEg and WUE (Figure 3A). This demonstrates
that the genes in the WGCNA modules - grey60 and skyblue -
not only correlate with the NUEg phenotypes from the N-by-W
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matrix field plots but are also enriched in genes responsive to N-
and/or-W signals (Figure 3B). Additionally, the blue and
lightyellow WGCNA modules are enriched in genes that
respond to N-moles, but not to the interaction of N and W.
While the WGCNA modules - blue and lightyellow - do not
correlate significantly with NUEg, each of these modules
correlates significantly with chlorophyll concentration
(Figure 3A), a trait known to be regulated by N and used to
determine N-status and the need for fertilizer in the field
(Fageria et al., 2010).

Next, we performed two analyses that enabled us to
prioritize the N-and/or-W response DE TFs and genes within
each of the two WGCNA modules - grey60 and skyblue - that
are most highly correlated with the NUEg phenotype
(Figures 3C, D). The genes with MM scores closes to -1 or 1
are highly connected to their WGCNA module. In addition,
genes with GS scores that have a high absolute value for a specific
trait are also more biologically significant (Langfelder and
Horvath, 2008). Therefore, to filter genes in each module that
were highly correlated with NUEg, we identified genes with high
absolute values for both their MM and GS scores. To do this, we
first plotted the absolute values of the MM vs. GS scores for each
gene in the WGCNA modules - grey60 and skyblue - which are
highly correlated with NUEg (Figure 3C). Next, we calculated
the average MM and GS scores for the genes in each of these two
modules. This enabled us to set a cut-off and identify genes
whose absolute MM and GS values were great than or equal to
the average of the genes in each module (Figure 3C, upper
right quadrant).

This analysis identified a combined total of 131 TFs and
1,491 genes highly relevant to NUEg in the two WGCNA
modules: grey60 (104 TFs & 1,209 genes) and skyblue (27 TFs
& 282 genes) (Figure 2C). Next, to identify whether genes highly
relevant to NUEg are significantly enriched in N-and/or-W
response gene, we performed a Genesect analysis (Katari et al,
2010) (Figure 3D). This analysis revealed significant overlaps
between the N:W and W responsive gene lists from Swift et al
2019 (Swift et al, 2019), with the genes highly correlated with
NUEg (131 TFs and 1,491 genes) from the combined grey60 and
skyblue WGCNA modules (Figure 3D). The resulting overlap
consisted of 90 TFs and 1,099 genes that are highly associated
with NUEg and N-and/or-W responsive (Supplementary Data
2). Next, we determined which of these TFs and genes correlated
NUEg were also highly associated with the WUE phenotype. To
do this, we conducted the same analysis pipeline as described
above for NUEg, in which we determine a new GS cut off value
for WUE (Supplementary Figure 1A). This resulted in 79 TFs
and 976 genes that are highly correlated with WUE and are N-
and/or-W responsive (Supplementary Figure 1B, Supplementary
Data 3). We find that 72 (80%) NUEg TFs and 815 (74%) NUEg
genes are also highly correlated with WUE, thus suggesting a
dual role for these genes/TFs in regulating both N and
W responses.
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For further analysis, we prioritized 90 TFs from the GENIE3
analysis that are; i) N-and/or-W responsive and ii) highly
correlated to NUEg from the combined WGCNA modules -
grey60 and skyblue. This analysis resulted in 29 TFs that are N:
W-responsive and 61 TFs that are W-responsive (Figures 3C, D).

Validation of TF—target GRN predictions
in WGCNA modules associated
with NUEg

To predict TF—target gene interactions in GRNs important
for NUEg, we used GENIE3, a random forest network inference
method (Huynh-Thu et al, 2010). This analysis will identify
potential master TF regulators of the NUEg response amongst
the 90 TFs (29 TFs N:W-responsive and 61 TFs W-responsive)
(Figure 3D) that are highly correlated with NUEg (e.g., members
of WGCNA grey60 and skyblue models) (Figures 3A, C). To
identify and rank these 90 TFs from these NUEg modules, we
generated a GRN using 90 potential TF-regulators of 10,815 DE
(N-and/or-W response genes) from the field N-by-W matrix
(Figure 1, Step 1). The output of GENIE3 ranks the TF— target
gene predictions in the order of confidence for each of the 90 TFs
and the 10,815 DE genes N-and/or-W responsive (Figure 4). In
total, the resulting GENIE3 inferred network ranks numerical
confidence scores for each TF and target gene, exduding self-
regulation of the TF ((90 TF x 10,815 genes) - 90 TFs) = 973,260
TF-target edges (Figure 4 and Supplemental Data 4).

Our next goal was to validate the TF-target gene interactions
in our predicted GRN, using TF-target gene data validated in
planta. To this end, we used experimentally validated TF-target
gene interactions from TF perturbation data in rice, housed in
the ConnecTF platform (https:/rice.connectf.org) (Brooks et al.,
2020) (Figure 4 and Supplementary Figure 2). The ConnecTF
database includes published rice RNA-seq and ChIP-seq data
available as of June 2020. To validate the GRN, we uploaded the
TF—target gene interactions predicted by the GENIE3 network
into ConnecTF and filtered for validated TF-regulation (RNA-
seq) and TF-binding (ChIP-seq) data from rice in planta
datasets (Figure 4 and Supplementary Figure 2, Supplementary
Data 4). We focused our analysis on validated TF-target gene
datasets from rice leaf tissue, given that the source RNA-seq data
used to make the GENIE3 network was from rice leaves
(Supplementary Figure 2).

Our query of the ConnecTF rice TF database identified
experimental TF-target gene validation datasets for three TFs
in rice leaf tissue from our GENIE3 network (Figure 4 and
Supplemental Figure 2). The three validated rice TFs are
OsABF1 (Zhang et al., 2017), OsbZIP23 (Zong et al, 2016),
and OsNAC14 (Shim et al,, 2018). These three validated rice TFs
include a total of nine datasets with 10,941 validated target genes
from TF-regulation and/or TF-binding data (Figure 4 and
Supplementary Figure 2). We then used this in planta data as
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"gold-standard" data to validate the TF—target gene predictions
from our GENIE3 network using Area Under the Precision
Recall (AUPR) curve analysis, which is an automated function in
the ConnecTF platform (Figure 4). The results show that the
AUPR for the TF—target gene predictions (edges) in the rice
GENIE3 network were significantly higher than the random TEF-
target gene edges (P-value<0.001, permutation test) (Figure 4).
Given the AUPR curve, we were able to select a precision
threshold of 0.31 (e.g., TF—target gene edge score = 0.0581).
This cut-off score is equivalent to the TF—target gene
predictions being accurate 1/3 of the time and this level of
accuracy is comparable to other similar network validation
AUPR studies (Varala et al., 2018; Brooks et al., 2019). The
GENIE3 network was then pruned for only the high-confidence
TF—target gene predictions using this precision cut-off score.
This network pruning for precision, resulted in a GRN
containing 8,826 high confidence edges connecting 88 TFs and
5,716 target N-and/or-W response DE genes (Figure 4 and
Supplementary Data 5).

Prioritization of master TFs that regulate
NUEg in response to N-and
/or-W signaling

Our next goal was to prioritize candidate N-and/or-W
response TFs with a significant influence on NUEg from the
pruned GENIE3 network. To this end, we overlapped the pruned
high confidence TF—target edges for the 88 TFs in the GENIE3
network with the 1,099 genes from the two WGCNA modules
that are highly correlated with NUEg - grey60 & skyblue - N-
and/or-W DE genes = 322 N:W response genes + 777 W-
response genes) (Supplementary Figure 3). We calculated the
significance of the overlapping TF—target genes with the 1,099
NUEg genes. To prioritize the 88 TFs, we ranked them by the Z-
score for the overap (Supplementary Data 6). We found 18 TFs
whose high confidence TF—targets gene edges had the highest
significant overlap (P-value<0.001, Z score = 10) with the 1,099
genes in the NUEg WGCNA modules - grey60 and skyblue
(Table 1). This analysis links 18 TFs— 551 N-and/or-W
response target genes—NUEg. Among the 18 TFs, OsbZIP23
is predicted to regulate the most of the NUEg correlated genes,
compared to the other 17 TFs (Table 1). Additionally, we find
that 16/18 TFs (all except EIL4 and IDEF4) are also highly
corelated with WUE (Table 1 and Supplemental Data 3).

Of these 18 TFs, multiple TFs have published functions in
drought tolerance induding, OsABF1 (Zhang et al, 2017),
OsbZIP23 (Xiang et al, 2008; Dey et al., 2016; Zong et al,
2016), Oshox22 (Zhang et al., 2012), and OsERF48 (Jung et al,
2017). Of note, OsABF1, OsbZIP23, and Oshox22 are N:W-
responsive genes based on the N-and/or-W response DE gene
lists from Swift et al 2019 (Supplemental Data 6), suggesting
their new function in regulating N:W responses, in addition to
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drought (Table 1). Published functions for other candidate TFs
in the 18 TF list include, N-signaling (LOB39) (Obertello et al,
2015; Yang et al, 2017), ABA signaling (OSBZ8)
(RoyChoudhury et al., 2008), ethylene signaling (OsERF1) (Hu
et al,, 2008), iron homeostasis (IDEF2, OsIRO3, and OsIRO2)
(Ogo et al,, 2007, 2008; Masuda et al., 2019; Wang et al., 2020),
starch biosynthesis (RSR1) (Fu and Xue, 2010), and grain yield
(OsSPL9) (Hu et al., 2021) (Table 1). OsIRO2 was also found to
regulate NUE in a N-response gene network in rice (Ueda
et al, 2020).

Gene ontology for target genes for
prioritized TFs

To further determine the mechanism of the prioritized TFs
in regulating NUEg, we performed Gene Ontology (GO) analysis
on the NUEg target genes from Table | regulated by each TF
using g:Profiler (Table 1 and Supplemental Data 7) (Raudvere
et al, 2019). For each TF, we focused on the relevant biological
process GO terms related to water and nitrogen signaling. We
found that the target genes of the TFs, LOB39,
LOC_0Os11g38870, and LOC_Os0D6g14670, were enriched for
GO terms related to nitrogen including, "nitrate assimilation,”
and "ammonia assimilation cyde" (Table 1). Further, we found
that the target genes of the TFs, OsbZIP23, Oshox22, Oshox13,
LOC_Os06g14670, were enriched for GO terms related to
drought including, "response to water deprivation,” and
"response to abscisic acid" (Table 1). LOC_Os06g14670 was
the only TF enriched for nitrogen and drought-related GO
terms. We did not identify any GO enrichment for the TF-
target genes of OsERF48, OsIRO3, LOC_0s03g08470, OSBZ8,
RSR1 and IDEF2. However, we did identify some other GO
terms of interest for the remaining TFs including, "sulfur
compound metabolic process” for EIL4, "cell communication”
ERF65, "response to temperature stimulus” for OsABF1,
"phosphorus metabolic process” for OsERF1, "iron ion
homeostasis” for OsIRO2, and "zinc ion homeostasis” for
OsSPLY (Supplemental Data 8). While these enriched GO
terms suggest the relevance of these TFs in other cell
processes, we focus on the TFs that regulate the target genes
associated with the nitrogen and water related GO terms.

High-confidence GRN of TFs that target
nitrogen and drought-related genes

To identify the TFs that regulate both nitrogen and water
response from our list of prioritized TFs, we took the subset of
the GENIE3 network that includes 18 TFs— 551 N-and/or-W
response target genes associated with NUEg, and identified the
target genes from this list of 551 that were part of the GO terms
"nitrate assimilation”, "ammonia assimilation cycle”, "response to
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water deprivation,” and "response to abscisic acid"
(Supplemental Data 7). This resulted in a list of 23 target
genes regulated by 14 TFs (Supplemental Data 7). We found
six TFs that regulated both nitrogen and water related target
genes either directly (OsbZIP23, LOB39, LOC_Os11g38870,
LOC_Os06g14670, and Oshox13) or indirectly (Oshox22 via
regulation of OsbZIP23) (Figure 5). While OsABF1 did not
regulate genes related to nitrogen, it is included in the network
visualization because it is annotated for the water-related GO
terms and is regulated by OsbZIP23 and Oshox22 (Figure 5).

The target genes involved in nitrate and ammonia
assimilation that are regulated by the TFs in our high-
confidence GRN include validated regulators of NUE,
glutamate synthetase 1 (OsGOGAT), and nitrite reductase
(OsNiR) (Lee et al,, 2020; Yu et al, 2021) (Figure 5). We also
find regulation of the putatively expressed nitrate reductase 1
(NIA1) gene, which is necessary for nitrate assimilation
(Subudhi et al, 2020). The TFs, OsbZIP23, LOB39 and
LOC_Os11g38870 regulate nitrate assimilation genes, while
OsbZIP23, Oshox13, and LOC_Os06g14670 regulate the
ammonia assimilation gene. OsbZIP23 is the only TF that
regulates genes in both nitrate and ammonia assimilation
genes (Figure 5).

Furthermore, each TF regulates genes involved in water
deprivation and/or ABA signaling (Figure 5). These genes
include the TFs OsbZIP46 and OsbZIP72, which are known
positive regulators of drought tolerance and function in
coordination with OsbZIP23 and OsABFI1, two other
prioritized TFs in our network (Lu et al, 2009; Chang et al.,
2017; Zhang et al, 2017; Song et al, 2020). We also find
regulation of the rice aquaporins, OsPIP1;1, OsPIP1;2, and
PIP2A that facilitate water transport (Sakurai et al., 2005; Xu
et al, 2019). In addition, there are genes that regulate multiple
components involved in the ABA signaling pathway including,
the ABA drought receptors, OsPYL1, OsPYL6 (Li et al, 2015;
Santosh Kumar et al, 2021a), the clade A type 2C protein
phosphatases, OsPP2C51, OsPP2C30 (Zong et al, 2016;
Santosh Kumar et al, 2021a), and the ABA-activated protein
kinase, SAPK6 (Chang et al., 2017). Overall, this result
demonstrates that a subset of our prioritized candidate TFs
regulates both nitrogen and water genes.

Network validation with in vivo
TARGET assay

To further validate the nitrogen and drought-related edges in
our high-confidence GRN (Figure 5), we performed in vive
Transient Assay Reporting Genome-wide Effects of Transcription
factors (TARGET) assays to identify the direct TF-target genes for
these TFs. We selected OsbZIP23 and OsABF1 for TARGET assays
because we could compare the accuracy of our TARGET results
with the available in planta data for these TFs in ConnecTF (Brooks
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et al, 2020). The TARGET TF-perturbation assay in isolated plant
cells has been previously used to identify direct TF—regulated
target genes in Arabidopsis (Bargmann et al, 2013; Varala et al,
2018; Brooks et al, 2019). In this paper, we adapt the vectors and
the TARGET temporal TF-perturbation assay to rice shoot cells
(Supplementary Figure 4).

The TARGET TF-perturbation assay identifies the direct
TF— regulated target gene interactions because; i) there is
timed nuclear entry of the TF, and ii) translation of regulated
secondary (TF,) transcription factors is blocked by
cycloheximide treatment. TF-regulated DE genes are identified
by comparison to an empty vector control. The TARGET assay
identifies direct TF—target genes as follows: i) the TF is fused to
the glucocorticoid receptor (GR) protein that when expressed in
the plant cells, ii) the TF-GR fusion is retained in the cytoplasm
by HSP90 binding, iii) upon dexamethasone (DEX) treatment,
the GR binding is released and the TF is imported into the
nucleus where it can regulate expression (Bargmann et al,, 2013;
Brooks et al., 2019) (Supplementary Figure 5). iv) Additionally,
cycloheximide + DEX treatment inhibits translation of mRNA
for TF,s. Therefore only the target genes of the over-expressed
TF are identified, when compared to the empty vector control
(Brooks et al., 2019).

Based on our TARGET assay, OsbZIP23 directly regulates
3,095 target genes, while OsABF1 directly regulates 2,151 target
genes in rice shoot protoplasts (Supplementary Figure 6 and
Supplemental Data 9). To determine the accuracy of our
TARGET results, we took the overlap between the TARGET
results and the in planta binding and expression data for each
TF from ConnecTF (Zong et al,, 2016; Zhang et al, 2017; Brooks
et al, 2020). We found a significant overlap between the TARGET
and in planta DE genes (Supplemental Figure 6A). This significant
overlap suggests that the plant cell-based TF-target data can
accurately identify in planta TF-regulated genes. Additionally,
we find the TARGET data is as accurate, if not even better, than
the in planta data at validating the predicted TF—target genes in
the GENIE3 network, with a higher F-score and similar precision
and recall values (Supplementary Figure 6B).

Given that the TARGET data was accurate in identifying
OsbZIP23 and OsABFI1 target genes, we used the TARGET and
in planta data to validate the nitrogen and drought-related edges
in our high-confidence GRN (Figure 5). We confirm with
TARGET that OsbZIP23 directly regulates genes involved in
nitrogen and drought responses including, NIA1 involved in nitrate
assimilation (Subudhi et al, 2020), ABCG4 involved in abiotic stress
responses (Matsuda et al,, 2012), and the rice aquaporin, OsPIP1;2, that
improves yield in rice (Xu et al, 2019). Additionally, we confirm with
OsbZIP23 TARGET and in planta data that OsbZIP23 regulates
drought associated genes OsDhnl and OsPP2C30 (Lee et al, 2013;
Santosh Kumar et al, 2021b). Furthermore, we confirm the role
of OsABFI1 in regulating drought signaling, as it regulates the
drought-associated gene OsPP2C51 in both TARGET and in planta
datasets (Figure 5) (Zong et al, 2016).
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Overall, our TARGET results show that the high-confidence
edges inferred in our GENIE3 network accurately predict
TF—target genes, thus further confirming the role of
OsbZIP23 in regulating both NUEg and WUE. In addition, we
find a new function for OsbZIP23 in mediating NUEg
phenotypes, as previous studies show its role in drought
responses (Xiang et al, 2008; Dey et al, 2016; Zong et al,
2016). Thus, our combined network inference and validation
approach reveals new TFs in regulating NUEg (Table 1).

Discussion

In this study, we sought to identify GRNs that control NUEg
in response to two key interacting components that regulate rice
productivity: N and W. By exploiting transcriptomic and
phenotypic data collected from 19 rice varieties grown in a
2x2 N-by-W matrix in the field (Swift et al., 2019), we identified
and validated the role GRNs comprised of N-and/or-W response
genes for their role in TF—target gene— NUEg phenotype
relationships. The TF to N-by-W response gene information
now encoded in this high-confidence GRN correlated to NUEg,
can now be applied to develop/breed rice plants with improved
yield marginal, low N-input, drought-prone soils - which are
increasing in the face of climate change.

High-confidence GRN identifying master
regulators of NUEg responsive to
N-and/or-W signals

We were able to link the TF—target gene—~NUEg
phenotype using a combination of four approaches (i)
WGCNA-based gene-to-trait co-expression network
(Langfelder and Horvath, 2008), (if) GENIE3, a random forest
machine learning approach to GRN inference for predicting TF-
target interactions (Huynh-Thu et al., 2010), (iii) Experimental
validation of GRN predictions and Network "pruning” by AUPR
(Varala et al,, 2018; Brooks et al., 2019), and (iv) Network
validation using TARGET, an approach which uses plant cells
to identify direct TF—target gene interactions (Bargmann et al,
2013; Brooks et al,, 2019). Using this pipeline (Figure 1), the
WGCNA approach identified two network modules that were
highly correlated to NUEg called "grey" and "skyblue". Next, we
constructed a GRN for the genes in this module, based on their
N-and/or-W response DE genes. Finally, we used experimental
data for TF-target genes validated in planta (Zong et al,, 2016;
Zhang etal,, 2017; Shim et al., 201 2) as well as ones we generated
in rice leaf cells for this study. These validated rice TF datasets
were used to conduct precision/recall analysis of our GRN.
This enabled us to set a precision cut-off score to prune the
network for high confidence TF-target predictions for all TFs in
the GRN.
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Overall, our GRN analysis and validation identified
OsbZIP23 and Oshox22 as top candidate master regulators of
NUEg in response to N and W signaling. These two TFs are
network hubs, as they regulate the largest number of DE genes
(N-and/or-W responsive) that are highly correlated with NUEg
in the grey60 and skyblue WGCNA modules (Table 1 and
Supplemental Data 6). Further validating their known role in
drought, these two TFs have published functions in regulating
drought tolerance through the plant hormone abscisic acid
(ABA) signaling responses (Xiang et al., 2008; Zhang et al,
2012, 2017; Park et al,, 2015) (Table 1). Our current study, now
links these two well-known drought TFs to regulation by N-and/
or-W signaling and NUEg. Our results are also in line with
previous studies that show OsbZIP23 activity to be dependent
upon phosphorylation by SAPK2 (Zong et al., 2016), an osmotic
stress/ ABA-activated protein kinase, which promotes nitrate
uptake and assimilation under drought stress (Lou et al., 2020).

In addition to the TF hubs (OsbZIP23 and Oshox22), we
identify four TFs with novel functions NUEg and WUE gene
regulation in our GRN. We identified four TFs (LOB39,
Oshox13, LOC_Os11g38870, and LOC_Os06g14670), that
regulate genes involved in both N and/or W responses using
GO analysis of their predicted TARGET genes in the high-
confidence GRN (Table 1 and Figure 5). Unlike OsbZIP23 and
Oshox22, the TFs Oshox13, LOC_Os11g38870, and
LOC_Os06g14670TFs had until now unknown functions in
both nitrogen and drought regulation (Table 1). LOB39
expression is regulated by nitrogen, however it was previously
not known to be involved in drought (Obertello et al., 2015).
OsbZIP23, LOB39 and LOC_Os11g38870 regulate nitrate
assimilation genes NIAl and OsNiR, which is a known to
promote nitrogen assimilation and NUE in coordination with
OsNLP4 (Figure 5) (Yu et al,, 2021). Furthermore, OsbZIP23,
Oshox13 and LOC_0Os06g14670 regulate the ammonia
assimilation gene OsGOGAT]I, which improves NUE in low N
conditions in coordination with the ammonium transporter
OsAMT1;2 (Lee et al, 2020). While it is known that rice
prefers ammonia uptake compared to nitrate (Sasakawa and
Yamamoto, 1978; Hachiya and Sakakibara, 2017), we find the
TFs in this network regulate both pathways, with OsbZIP23
regulating genes involved in both.

We also examined the mechanism of transcriptional
regulation between these master TFs in the NUEg GRN by
validating TF—target gene interactions using TARGET, a plant
cell-based assay that identifies direct TF—=TARGET gene
interactions (Bargmann et al,, 2013; Varala et al., 2018; Brooks
etal, 2019). We find that Oshox22 regulates nitrogen and water
responses indirectly via candidate TFs OsbZIP23, and OsABF1
(Figure 5). We then validate the TF—target gene interactions for
OsbZIP23 and OsABF1 TFs with the TARGET assay. We
confirm that OsbZIP23 regulates both nitrogen and drought
response genes, and OsABF1 regulated drought response genes,
with TARGET and in planta data.
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Overall, these finding supports previous studies that show
the regulation of these two essential signals N-and-W are linked
(Swift et al., 2019; Araus et al,, 2020; Plett et al., 2020). Our work
presents a path of how ABA/drought induced signaling regulates
both N and W responses which ultimately affect crop
phenotypes, such as NUEg, the trait of focus in our study.

Validation of GRNs in rice using
ConnecTF as a platform to validate and
prune for high-confidence networks

In our study, we demonstrate the usefulness of ConnecTF as
a platform - now applied to rice - to integrate published TF-
binding and TF-expression datasets to identify and validate
target genes in GRNs (Brooks et al, 2020) (Figure 4 and
Supplementary Figure 2). While some GRN studies use an
arbitrary cut-off value for network pruning as in other
network studies (Ueda et al, 2020), we show how TF-
perturbation data can be used as a "gold-standard" for GRN
validation and "network pruning”, using automated AUPR
functions in ConnecTF (Brooks et al, 2020) (Figure 4). We
performed Precision/Recall analysis of the GRN for NUEg -
using the TF-target gene validation sets for rice housed in the
ConnecTF database. This enabled us to empirically select a
TF—target precision cut-off value of 0.31 from the AUPR
curve. This AUPR cut-off represents that approximately 1/3 of
our GENIE3 network predictions are validated (Figure 4). This
precision cut-off is comparable to what we find in other network
studies in Arabidopsis that use AUPR analysis (Varala et al,
2018; Brooks et al., 2019). Overall, the automated AUPR
function in ConnecTF provides an accurate, and facile means
to validate GRN predictions in any rice GRN that researchers
can load onto the site. Importantly, these cut-off values for
TF—target gene validated edges established a cut-off score that
can be applied to all TF—target gene edges in the network -
including TFs which have not been validated. This enables the
generation of a high-confidence network for all TFs in the GRN.

bZIP family TFs as regulators of N and
W signaling

In our high-confidence GRN we identify nine bZIP TFs as
regulators in our "pruned” network (Supplementary Data 6).
Members of the bZIP family of TFs are known to regulate
drought stress responses in multiple crops species in addition to
rice, including Glycine max, Zea mays and Hordeum vulgare
(Joshi et al, 2016). Additionally, bZIP family TFs regulate ABA
hormone responses, which play a crucial role in regulating the
drought response in plants in general (Joshi et al, 2016; Zong
et al., 2016; Zhang et al., 2017; Araus et al., 2020). In our high-
confidence GRN studies that focus on genes correlated with
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NUEg, we find that bZIP TFs regulate N-signaling as well as
drought responses in rice. In line with our finding, previous
studies examining N-responses in rice, identified bZIP
transcription factors that regulate NUE (Ueda et al,, 2020).

We identified three bZIP family members - OsABF1,
OsbZIP23, and OSBZ8 - as top-regulators of N-and/or-W
signaling in regulating NUEg (Table 1). Additionally, we find
regulation of two other bZIP TFs, OsbZIP72 and OsbZIP46, in
our NUEg GRN regulated by Oshox22 and OsbZIP23,
respectively (Figure 5). This finding is significant, as
OsbZIP23, OsbZIP46, OsbZIP72 are part of the same
subgroup-III of bZIP TFs and are known to be coordinated in
their regulation of ABA signaling and drought responses (Lu
et al,, 2009; Hossain et al., 2010; Song et al., 2020). Addil:ionai]y,
ObZIP46 improves drought tolerance in coordination with the
ABA-activated protein kinase, SAPK6, which is another target
gene in our NUEg GRN (Figure 5) (Chang et al., 2017). Overall,
our NUEg GRN results link bZIP TFs in rice as mediating N-
and/or-W response genes that control NUEg. We validate the
TF—target genes predictions in our high-confidence GRN for
NUEg for two bZIP TFs, OsbZIP23 and OsABF1, using the
TARGET assay.

Functional validation of TFs in rice:
TARGET assay to identify direct
TF—target gene interactions in rice cells

The TARGET system allows researchers to identify the
validated TF-target gene interactions for any TF of interest
using a rapid plant cell based temporal TF perturbation assay
(Bargmann et al., 2013; Brooks et al,, 2019). The key to this assay
is the inducible TF nuclear localization and its ability to identify
direct TF-target genes based on RNA-seq data (Bargmann et al.,
2013). Previously, the TARGET assay has been used to identify
direct TF—target gene interactions in Arabidopsis root or shoot
cells (Bargmann et al., 2013; Varala et al., 2018; Brooks et al.,
2019). In this study we establish the TARGET system in rice leaf
protoplasts (see Methods). We then used the rice TARGET assay
to identify the direct regulated target genes of the rice TFs
OsbZIP23 and OsABF1 (Supplementary Data 9). Our analysis
shows that the TF target genes identified in rice leaf protoplasts
using TARGET, are comparable and show a significant overlap
with genes identified in planta (Supplementary Figure 6A).
Additionally, in this study, we demonstrate that the accuracy
of rice TARGET data is comparable to in planta data at
validating network predictions (Supplementary Figure 6B).
This finding suggests that rice TARGET data can be used to
validate GRN predictions in rice, as was shown in Arabidopsis
(Varala et al., 2018; Brooks et al., 2019; Brooks et al,2020;
Cirrone et al,, 2020). In our study, we validated that OsbZIP23
regulates both nitrogen and water-related genes including, NIA1
which is involved in nitrate assimilation (Subudhi et al., 2020),
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OsDhnl which is induced by drought (Lee et al, 2013),
OsPIP1;2 which is an aquaporin that improves yield (Xu et al.,
2019), ABCG4 which is involved in abiotic stress responses
(Matsuda et al, 2012), and OsPP2C30 which a core regulator in
the ABA signaling pathway (Zong et al, 2016). Overall, our
study supports that the TARGET assay is a fast and reliable
approach to identify the direct TF—target genes in rice,
bypassing the time-consuming process of developing
transgenic rice. Importantly, the rapid rice TARGET TF-
perturbation assay, can be used to prioritize rice TFs for more
laborious studies in planta.

Our network approach is transferrable to
any phenotype in any organisms

The method we applied in this study relies on two inputs: a
transcriptome-wide gene expression table and collected
phenotypes from the same samples. With the reduced cost of
RNA-Seq, especially with the 3’ RNA-sequencing (Weih, 2014;
Groen et al,, 2020; Weng and Juenger, 2022), it is much more
feasible for researchers to obtain transcriptome expression data
from many samples. Moreover, the software we used are all
open-source and publicly available. This includes WGCNA
(Langfelder and Horvath, 2008) for gene-to-phenotype
correlation, GENIE3 (Huynh-Thu et al., 2010) for GRN
inference and ConnecTF (Brooks et al,, 2020) for network
pruning. Putting these together, our network approach is not
limited in rice research, but can be applied to any organism for
any phenotype or trait.

Conclusions

By using a combination of WGCNA and GENIE3 network
methods, we present a gene regulatory network that links
TF—target gene—~NUEg phenotype to determine the
mechanism of N-and/or-W signaling to the regulation of
NUEg (Figure 1). We also show how to use TF-validation
datasets from rice to validate inferred networks using
ConnecTF (https://rice.connectf.org) (Brooks et al., 2020). In
addition, we apply the cell-based TARGET temporal TF-
perturbation system to rice to identify direct TF—target
genes interactions and validate inferred gene networks.
Overall, we identify a new role for OsbZIP23 and Oshox22 as
regulators of the N-and/or-W signaling and regulation of
NUEg, in addition to ABA/drought signaling. More broadly,
we have identified 18 prioritized TFs and their targets that
correlate with NUEg, and results from this network approach
can potentially be used to optimize rice varieties to thrive in
marginal low-N/arid soils, which are increasing in the face of
global climate change.
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