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ABSTRACT. We prove that if two topologically free and entropy regular actions of countable
sofic groups on compact metrizable spaces are continuously orbit equivalent, and each group
either (i) contains a w-normal amenable subgroup which is neither locally finite nor virtually
cyclic, or (ii) is a non-locally-finite product of two infinite groups, then the actions have the
same sofic topological entropy. This fact is then used to show that if two free uniquely ergodic
and entropy regular probability-measure-preserving actions of such groups are boundedly orbit
equivalent then the actions have the same sofic measure entropy. Our arguments are based on a
relativization of property SC to sofic approximations and yield more general entropy inequalities.
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At first glance it may seem that dynamical entropy and orbit equivalence should have little
to do with one another. One is a conjugacy invariant that is tailor-made for the hairsplitting
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job of distinguishing Bernoulli shifts, all of which have the same spectral theory, while the
other is a coarse relation between group actions whose tendency to nullify asymptotic behaviour
is most devastating in the setting of amenable groups, where entropy finds its classical home
[26, 27, 41, 10, 34]. One registers information while the other threatens to destroy it.

This brutal disparity can however be honed so as to bring the two concepts into frequent and
sometimes surprising alignment. Indeed entropy turns out to be sensitive in meaningful ways
to the various kinds of restrictions that one may naturally impose on an orbit equivalence, its
role as an invariant remaining intact in some cases but completely neutralized in others. The
history of this relationship traces back several decades and in its original thrust encompasses the
work of Vershik on actions of locally finite groups [42, 43], the Ornstein isomorphism machinery
for Bernoulli shifts [32], the theory of Kakutani equivalence [19, 11, 33, 9], and Kammeyer
and Rudolph’s general theory of restricted orbit equivalence for p.m.p. actions of countable
amenable groups that all of this inspired [37, 17, 18] (see Chapter 1 of [18] for a genealogy).
In a somewhat different vein from these lines of investigation, Rudolph and Weiss later proved
in [38] that, for a free p.m.p. action of a countable amenable group, the conditional entropy
with respect to a prescribed invariant sub-o-algebra . is preserved under every .#-measurable
orbit equivalence. As Rudolph and Weiss demonstrated in the application to completely positive
entropy that motivated their paper, this crisp expression of complementarity between entropy
and orbit equivalence, when combined with the Ornstein—Weiss theorem [34], turns out to be
very useful as a tool for lifting results from Z-actions to actions of general countable amenable
groups. More recently Austin has shown, for free p.m.p. actions of finitely generated amenable
groups, that entropy is an invariant of bounded and integrable orbit equivalence, and that there
is an entropy scaling formula for stable versions of these equivalences [3]. It is interesting to note
that Austin makes use of both the theory of Kakutani equivalence (to handle the virtually cyclic
case, which his approach requires him to treat separately) and the Rudolph—Weiss theorem (in
a reduction-to-Z argument which, ironically, forms part of the verification of the non-virtually-
cyclic case).

The basic geometric idea at play in Austin’s work when the group is not virtually cyclic is
the possibility of finding, within suitable connected Fglner subsets of the group, a connected
subgraph which is sparse but at the same time dense at a specified coarse scale. By recasting this
sparse connectivity as a condition on the action that we called property SC and circumventing
the “derandomization” of [3] with its reliance on the Rudolph—Weiss technique, we established in
[25] the following extension beyond the amenable setting: if G is a countable group containing a
w-normal amenable subgroup which is neither locally finite nor virtually cyclic, H is a countable
group, and G ~ (X,u) and H ~ (Y,v) are free p.m.p. actions which are Shannon orbit
equivalent (i.e., the cocycle partitions all have finite Shannon entropy), then the maximum
sofic measure entropies of the actions satisfy

(1) hy(H A Y) > hy(G ~ X).

One property shared by the groups G in this theorem is that their first £2-Betti number vanishes,
which in the nonamenable world can be roughly intuited as an expression of anti-freeness, and
indeed our approach breaks down for free groups (see Section 3.5 of [25]). In what is surely not
a coincidence, groups whose Bernoulli actions are cocycle superrigid also have vanishing first
/2-Betti number [35], and it has been speculated that these two properties are equivalent in
the nonamenable realm (curiously, however, Bernoulli cocycle or orbit equivalence superrigidity



ENTROPY, PRODUCTS, AND BOUNDED ORBIT EQUIVALENCE 3

remains generally unknown for wreath products of the form Z{ H with H nonamenable, which
satisfy the hypotheses on G above).

Given that nonamenable products of countably infinite groups form a standard class of exam-
ples within the circle of ideas around superrigidity, cost one, and vanishing first £2-Betti number,
and in particular are known to satisfy Bernoulli cocycle superrigidity by a theorem of Popa [36],
it is natural to wonder whether the entropy inequality (1) holds if G is instead assumed to be
such a product. In [25] we demonstrated, in analogy with Gaboriau’s result on cost for products
of equivalence relations [13], that product actions of non-locally-finite product groups, when
equipped with an arbitrary invariant probability measure, satisfy property SC, which is suffi-
cient for establishing (1). However, such actions always have maximum sofic entropy zero or
—o00. One of the main questions motivating the present paper is whether one can remove this
product structure hypothesis on the action.

To this end we establish Theorem A below, which gives the conclusion for bounded orbit
equivalence (i.e., orbit equivalence with finite cocycle partitions, as explained in Section 2.3)
and uniquely ergodic actions. We say that a p.m.p. action G ~ (X, u) is uniquely ergodic
if the only G-invariant mean on L°°(X, u) is integration with respect to u, i.e., the induced
action of G' on the spectrum of L (X, u) is uniquely ergodic in the usual sense of topological
dynamics. When p is atomless, unique ergodicity forces the acting group to be nonamenable [39,
Theorem 2.4]. In fact an ergodic p.m.p. action G ~ (X, p) is uniquely ergodic if and only if the
restriction of the Koopman representation to L?(X, ) © C1 does not weakly contain the trivial
representation [39, Proposition 2.3]. It follows that if G is nonamenable then unique ergodicity
holds whenever the restriction of the Koopman representation to the orthogonal complement of
the constants is a direct sum of copies of the left regular representation, and in particular when
the action has completely positive entropy [15, Corollary 1.2][40, Corollary 1.7], and thus occurs
in the following examples:

(i) Bernoulli actions G ~ (X%, u%), where (X,pu) is a standard probability space and
(92)p = w41y, for all g, h € G and z € XY (see Section 2.3.1 of [24]),

—

(ii) algebraic actions of the form G ~ ((ZG)"/(ZG)™A, ) where A € M, (ZG) is invertible
as an operator on ¢2(G)®" and y is the normalized Haar measure [16, Corollary 1.5].

Moreover, if G has property (T) then all of its ergodic p.m.p. actions are uniquely ergodic [39,
Theorem 2.5].

As above hy,(+) denotes the maximum sofic measure entropy, and we write h,,(-) for the infimum
sofic measure entropy (see Section 2.6).

Theorem A. Let G and I' be countably infinite sofic groups at least one of which is not locally
finite, and let H be a countable group. Let G x I' ~ (X, u) and H ~ (Y,v) be free p.m.p.
actions which are boundedly orbit equivalent. Suppose that the action of H is uniquely ergodic.
Then

ho(H~Y) > h,(GxT ~ X).

Theorem A is a direct consequence of Theorem 5.2 and Proposition 3.15. When combined
with Theorem A of [25] it yields the following Theorem B. We say that an action is entropy
regular if its maximum and infimum sofic entropies are equal, i.e., the sofic entropy does not
depend on the choice of sofic approximation sequence. Entropy regularity for a p.m.p. action is
known to hold in the following situations:
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(i) the group is amenable, in which case the sofic measure entropy is equal to the amenable
measure entropy [23, 6],
(ii) the action is Bernoulli [5, 22],

(iii) the action is an algebraic action of the form G ~ ((ZG)"/(ZG)"A, ) where A €
M, (Z@G) is injective as an operator on £2(G)®" and p is the normalized Haar measure
[14],

(iv) the action is a shift action G ~ {1,...,n}% equipped with a Gibbs measure satisfying
one of various uniqueness conditions [1, 2].

For the definition of w-normality see the paragraph before Theorem 3.12.

Theorem B. Let G and H be countable sofic groups each of which either

(i) contains a w-normal amenable subgroup which is neither locally finite nor virtually
cyclic, or

(ii) is a product of two countably infinite sofic groups at least one of which is not locally
finite.

Let G ~ (X, ) and H ~ (Y,v) be free p.m.p. actions which are uniquely ergodic and entropy
regular, and suppose that they are boundedly orbit equivalent. Then

hy(H~Y)=h, (G~ X).

We note that, by a theorem of Belinskaya [4], if two ergodic p.m.p. Z-actions are integrably
orbit equivalent, and in particular if they are boundedly orbit equivalent, then they are measure
conjugate up to an automorphism of Z (what is referred to as “flip conjugacy”). On the other
hand, a bounded orbit equivalence between ergodic p.m.p. Z%actions for d > 2 can scramble
local asymptotic data to the point of scuttling properties like mixing and completely positive
entropy, as Fieldsteel and Friedman demonstrated in [12].

Our strategy for proving Theorem A is to localize property SC to sofic approximations, yield-
ing what we call “property sofic SC” for a group or an action, or more generally “property .#-SC”
where .7 is a collection of sofic approximations for the group in question (see Section 3.1). The
advantage of this localization is that the action itself need not have a product structure, only
the sofic approximation used to model it. This accounts for the appearance of the infimum sofic
entropy in Theorem A, in contrast to (1), but as noted above many actions of interest are known
to be entropy regular, in which case one does in fact get (1). The trade-off in using property
sofic SC is its natural and frustratingly stubborn compatibility with the point-map formulation
of sofic entropy, which is a kind of dualization of the homomorphism picture adopted in [25] and
requires the choice of a topological model. This has put us into the situation of not being able to
control the empirical distribution of microstates except under the hypothesis of unique ergodic-
ity, when the variational principle makes such control unnecessary for the purpose of computing
the entropy, and even then we have had to restrict the hypothesis on the orbit equivalence from
Shannon to bounded.

Given that we are adhering to the point-map picture with its use of topological models, it
makes sense to isolate as much of the argument as possible to the purely topological framework,
which also has its own independent interest. Accordingly we establish the following theorem, the
second part of which goes into proving Theorem A via Theorem 5.2. It is a direct consequence of
Theorems 4.1 and 3.12 and Proposition 3.15. Here h(-) denotes the maximum sofic topological
entropy and A(-) the infimum sofic topological entropy (see Section 2.5).
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Theorem C. Let G ~ X and H ~ Y be topologically free continuous actions of countable sofic
groups on compact metrizable spaces, and suppose that they are continuously orbit equivalent.
If G contains a w-normal amenable subgroup which is neither locally finite nor virtually cyclic
then

hMH~NY)>h(G X),

while if GG is a product of two countably infinite groups at least one of which is not locally finite
then

h(H~Y)>h(G X).

If the actions of G and H above are genuinely free or if G and H are torsion-free, then using
the variational principle (Theorem 10.35 in [24]) and (in the case of torsion-free G and H) the
main result of [30] one can also derive the first part of the above theorem from Theorem A of
[25], or from [3] if G and H are in addition amenable and finitely generated.

In parallel with the p.m.p. setting, we define a continuous action of a countable sofic group on
a compact metrizable space to be entropy reqular if its maximum and infimum sofic topological
entropies are equal, and note that this occurs in the following situations:

(i) the group is amenable, in which case the sofic topological entropy is equal to the
amenable topological entropy [23],

(i) the action is a shift action G ~ X where X is a compact metrizable space [24,
Proposition 10.28],

(iii) the action is an algebraic action of the form G ~ (ZG)"/(ZG)"A where A € M, (ZG)
is injective as an operator on £2(G)®" [14].

From Theorem C we immediatety obtain:

Theorem D. Let G and H be countable sofic groups each of which either

(a) contains a w-normal amenable subgroup which is neither locally finite nor virtually
cyclic, or

(b) is a product of two countably infinite sofic groups at least one of which is not locally
finite.

Let G ~ X and H ~ Y be topologically free and entropy regular continuous actions on compact
metrizable spaces, and suppose that they are continuously orbit equivalent. Then

hH~NY)=hG~X).

It was shown in [7, 8] that the finite-base shift actions of a finitely generated group satisfy
continuous cocycle superrigidity if and only if the group has one end (a property that the groups
in Theorem D possess when they are finitely generated—see Example 1 in [7]). As observed
in [7], this implies, in conjunction with a theorem from [28], that if a finitely generated group
is torsion-free and amenable then each of its shift actions with finite base is continuous orbit
equivalence superrigid. Whether such superrigidity ever occurs in the nonamenable setting
appears however to be unknown.

We begin the main body of the paper in Section 2 by setting up general notation and re-
viewing terminology concerning continuous and bounded orbit equivalence and sofic entropy. In
Section 3.1 we define properties ./-SC and sofic SC for groups, p.m.p. actions, and continuous
actions on compact metrizable spaces. In Section 3.2 we determine that a countable group fails
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to have property sofic SC if it is locally finite or finitely generated and virtually free. In Sec-
tion 3.3 we verify that, for free p.m.p. actions, property SC implies property sofic SC, and then
use this in conjunction with [25] to show that (i) for countable amenable groups property sofic
SC is equivalent to the group being neither locally finite nor virtually cyclic, and (ii) if a count-
able group has a w-normal subgroup which is amenable but neither locally finite nor virtually
cyclic then the group has property sofic SC. In Section 3.4 we prove that if a w-normal subgroup
has property sofic SC then so does the ambient group, while in Section 3.5 we determine that
the product of two countably infinite groups has property .-SC, where % is the collection
of product sofic approximations, if and only if at least one of the factors is not locally finite.
Sections 3.6 and 3.7 show property sofic SC to be an invariant of continuous orbit equivalence
for topologically free continuous actions on compact metrizable spaces and of bounded orbit
equivalence for free p.m.p. actions. Section 4 is devoted to the proof of Theorem 4.1, which
together with Theorem 3.12 and Proposition 3.15 gives Theorem C. Finally, in Section 5 we
establish Theorem 5.2, which together with Proposition 3.15 yields Theorem A.
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2. PRELIMINARIES

2.1. Basic notation and terminology. Throughout the paper G and H are countable discrete
groups, with identity elements e and epy. We write F(G) for the collection of all nonempty
finite subsets of G, and F(G) for the collection of symmetric finite subsets of G containing eg.
For a nonempty finite set V', the algebra of all subsets of V is denoted by Py, the group of all
permutations of V' by Sym(V'), and the uniform probability measure on V' by m.

Given a property P, a group is said to be wvirtually P if it has a subgroup of finite index with
property P, and locally P if each of its finitely generated subgroups has property P.

A standard probability space is a standard Borel space (i.e., a Polish space with its Borel o-
algebra) equipped with a probability measure. Partitions of such a space are always understood
to be Borel. A p.m.p. (probability-measure preserving) action of G is an action G ~ (X, ) of G
on a standard probability space by measure-preserving transformations. Such an action is free
if the set Xy of all € X such that sz # z for all s € G\ {eg} has measure one. Two p.m.p.
actions G ~ (X, p) and G ~ (Y, v) are measure conjugate if there exist G-invariant conull sets
Xop C X and Yy C Y and a G-equivariant measure isomorphism Xy — Yj.

A continuous action G ~ X on a compact metrizable space is said to be topologically free if
the Gy set of all z € X such that sx # z for all s € G\ {eg} is dense. It is uniquely ergodic
if there is a unique G-invariant Borel probability measure on X. By Gelfand theory this is
equivalent to the existence of a unique G-invariant state (i.e., unital positive linear functional)
for the induced action of G on the C*-algebra C'(X) of continuous functions on X given by
(gf)(x) = f(g7 o) forall g € G, f € C(X), and x € X.

A p.m.p. action G ~ (X, pu) is uniquely ergodic if there is a unique state (or mean as it
is also called in this setting) on L°(X,p) which is invariant for the action of G given by
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(gf)(x) = f(g7'z) for all g € G, f € L™®(X,p), and x € X. Again by Gelfand theory, this
is equivalent to the unique ergodicity, in the topological-dynamical sense above, of the induced
action of G on the spectrum of L™(X, u).

2.2. Continuous orbit equivalence. We say that two continuous actions G ~ X and H Y
on compact metrizable spaces are continuously orbit equivalent if there exist a homeomorphism
®: X — Y and continuous maps Kk : G x X — H and A : H x Y — (G such that

®(gx) = k(g, z)P(x),
L (ty) = A(t, 1)@ (y)

forallge G, x € X,t€ H,and y € Y. Such a & is called a continuous orbit equivalence.
If the action H ~ Y is topologically free then the continuity of ® implies that the map & is
uniquely determined by the first line of the above display and satisfies the cocycle identity

k(fg,z) = k(f, gz)K(g, )

for f,g € G and x € X. In the case that both G ~ X and H ~ Y are topologically free we
have

A(k(g,2), ®(x)) = g

for all g € G and = € X, and A is uniquely determined by this identity.

2.3. Bounded orbit equivalence. Two free p.m.p. actions G ~ (X, ) and H ~ (Y, v) are
orbit equivalent if there exist a G-invariant conull set Xy C X, an H-invariant conull set Yy C Y,
and a measure isomorphism ¥ : Xy — Y{ such that ¥V(Gz) = HY(z) for all x € Xy. Such a ¥ is
called an orbit equivalence. Associated to ¥ are the cocyclesk : GXxXg— Hand A: HxYy —» G
determined (up to null sets, in accord with our definition of freeness) by

\I/(Q-T) = /{(g,:{?)\l’(ﬂj),
UL (ty) = A(t, y) T L(y)

forall g € G, x € Xo, t € H, and y € Yy. We say that the cocycle k is bounded if (g, Xo) is
finite for every g € GG, and define boundedness for A likewise. If X, Yy, and ¥ can be chosen
so that k and A are both bounded, then we say that the actions are boundedly orbit equivalent,
and refer to U as a bounded orbit equivalence.

2.4. Sofic approximations. Given a nonempty finite set V we define on V" the normalized
Hamming distance
1
ptamm (T, S) = WHU eV :Tv # Sv}|.

A sofic approximation for G is a (not necessarily multiplicative) map o : G — Sym(V') for some
nonempty finite set V. Given a finite set ' C G and a § > 0, we say that such a ¢ is an
(F, d)-approzimation if

(i) pHamm(ost, 0s0¢) < 6 for all s,t € F, and

(ii) pHamm(0s,0¢) > 1 — 6 for all distinct s,t € F.



8 DAVID KERR AND HANFENG LI

A sofic approxzimation sequence for G is a sequence ¥ = {o}, : G — Sym(Vj)}2, of sofic
approximations for GG such that for every finite set ' C G and § > 0 there exists a ky € N such
that o is an (F,d)-approximation for every k > ko. A sofic approximation o : G — Sym(V) is
said to be good enough if it is an (F, §)-approximation for some finite set ' C G and § > 0 and
this condition is sufficient for the purpose at hand.

The group G is sofic if it admits a sofic approximation sequence, which is the case for instance
if G is amenable or residually finite. It is not known whether nonsofic groups exist.

Given a sofic approximation o : G — Sym(V') and a set A C GG, we define an A-path to be a
finite tuple (vg,v1,...,v,) of points in V' such that for every i = 1,...,n there is a g € A for
which v; = o4v;—1. The integer n is the length of the path, the points vy, ..., v, its vertices, and
vp and v, its endpoints. When n = 1 we also speak of an A-edge. For r € N, we say that a set
W C Vs (A,r)-separated if o arv N ogrw = ) for all distinct v, w € W,

2.5. Sofic topological entropy. Let G ~ X be a continuous action on a compact metrizable
space. Let d be a compatible metric on X. Let I’ be a finite subset of G and § > 0. Let
o : G — Sym(V) be a sofic approximation for G. On the set of maps V' — X define the
pseudometrics

1/2
do(p. ) = (Hl/ Zd«o(v),w(v)ﬁ) ,

veV

doo (0, Y) = gleagd(@(v),w(v))

Define Map,(F, 9, 0) to be the set of all maps ¢ : V' — X such that da(poy, gp) < 6 forall g € F.

For a pseudometric space (£, p) and € > 0 we write N.(2, p) for the maximum cardinality of a

subset Qg of  which is (p, £)-separated in the sense that p(w1,ws) > ¢ for all distinct wy,ws € Q.
Let ¥ = {0 : G = Sym(V},)}22, be a sofic approximation sequence for G. For € > 0 we set

1
% (G~ X) =inf inf limsup —
ool ) =1k koo | Vil

e 1
h52(G ~ X) = 11}f (%I;E llﬁsip il log N:(Map,(F, 6, 0%),ds2),

log N.(Map,(F, 9, 01), dso),

where the first infimum in each case is over all finite sets F' C G. The sofic topological entropy
of the action G ~ X with respect to X is then defined by

hs(G ~ X) =suph§, (G ~ X).
e>0

This quantity does not depend on the choice of compatible metric d, as is readily seen, and by
Proposition 10.23 of [24] we can also compute it using separation with respect to do, i.e.,

hs(G ~ X) =sup h5 (G ~ X).
>0
We define the mazimum and infimum sofic topological entropies of G ~ X by
MG~ X) = mzaxhg(G ~ X)),
(G X)= igfhg(G ~ X),
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where ¥ ranges in each case over all sofic approximation sequences for G (when G is nonsofic we
interpret these quantities to be —o0). It is a straightforward exercise to show that the maximum
does indeed exist (we do not know however whether the infimum is always realized). Note that
—o00 is a possible value for hs (G ~ X), and so if it occurs for some ¥ then h(G ~ X) = —o0,
and if it occurs for all ¥ then h(G ~ X) = —oo. The action G ~ X is entropy regular if its
maximum and infimum sofic topological entropies are equal, i.e., the sofic topological entropy
does not depend on the choice of sofic approximation sequence.

2.6. Sofic measure entropy. Let G ~ (X, u) be a p.m.p. action. Let € be a finite Borel
partition of X, F' a finite subset of G containing eg, and 6 > 0. Write alg(%’) for the algebra
generated by ¢, which consists of all unions of members of ¢, and write € for the join \/ 5 5%
Let 0 : G — Sym(V') be a sofic approximation for G. Write Hom,, (¢, F, d,0) for the set of all
homomorphisms ¢ : alg(ér) — Py satisfying

(i) Do ace m(ogp(A)Ap(gA)) <6 for all g € F, and

(i) X aew, mlp(A)) — u(A)] < 6.
For a finite Borel partition &2 < € we write | Hom,, (¢, F,d,0)|» for the cardinality of the set
of restrictions of elements of Hom, (¢, F,0,0) to .

Given a sofic approximation sequence ¥ = {0}, : G — Sym(V},)}72, for G, we define the sofic

measure entropy of the action G ~ (X, u) with respect to ¥ by

1
hy (G~ X) = sup(glg; 1%féggllﬂsgpm log | Hom,, (¢, F, 9, 0};)| 2,

where the supremum is over all finite partitions &2 of X, the first infimum is over all finite
partitions € of X refining &2, and the second infimum is over all finite sets F' C G containing
eq.

As in the topological case, one can check that there is a maximum among the quantities
hs (G ~ X) over all sofic approximation sequences X for G, where —oo is included as a
possible value. The mazimum and infimum sofic measure entropies of G ~ (X, ) are then
defined by

hy(G~ X) = mgxhgyﬂ(G ~ X),
h, (G~ X) = i%fhg’“(G ~ X),

where X ranges in each case over all sofic approximation sequences for G. When G is nonsofic
these quantities are interpreted to be —oco. The action is entropy regular if its maximum and
infimum sofic measure entropies are equal, i.e., the sofic measure entropy does not depend on
the choice of sofic approximation sequence.

3. PROPERTIES .¥-SC AND SOFIC SC

3.1. Definitions of properties .-SC and sofic SC. Write .7 for the collection of all sofic
approximations for G.
Let . be any collection of sofic approximations for G.

Definition 3.1. We say that the group G has property .#-SC (or property sofic SC'if ¥ = /)
if for any function T : F(G) — [0,00) there exists an S € JF(G) such that for any T € F(G)
there are C,n € N, and S1,...,S, € F(G) such that for every good enough sofic approximation
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7 : G — Sym(V) in . there are subsets W and V; of V for 1 < j < n satisfying the following
conditions:
(i) 2= T(S)m(V;y) < 1,
(i) Uyes mgW =V,
(iii) if w1, wy € W satisfy myw; = wy for some g € T then w; and wy are connected by a
path of length at most C' in which each edge is of the form (v, mpv) for some 1 < j < n,
h € S;, and v € V; with mv € V;.

Definition 3.2. We say that a continuous action G ~ X on a compact metrizable space X with
compatible metric d has property .-SC (or property sofic SC if . = /) if for any function
T : F(G) — [0,00) there exists an S € F(G) such that for any T € F(G) there are C,n € N,
Si,...,8, € F(G), F! € F(G), and §* > 0 such that for every good enough sofic approximation
7 : G — Sym(V) in . with Map,(F*,6*,7) # 0 there are W and V; for 1 < j < n as in
Definition 3.1. By [24, Lemma 10.24] this does not depend on the choice of d.

Definition 3.3. We say that a p.m.p. action G ~ (X, ) has property .#-SC (or property sofic
SCif . = Fg) if for any function T : F(G) — [0,00) there exists an S € F(G) such that
for any T € F(G) there are C,n € N, Sy,...,S, € F(G), a finite Borel partition €* of X, an
F* ¢ F(G) containing eq, and a 6 > 0 such that for every good enough sofic approximation
7 : G — Sym(V) in . with Hom, (€%, F* 5% 1) # () there are W and V; for 1 < j < n as in
Definition 3.1.

The following proposition shows that, when G is finitely generated, in Definition 3.1 we can
fix n = 1 and take S to be any symmetric finite generating subset of G containing eg, but with
the price that {J g mgW is only most of V instead of the whole of V.

Proposition 3.4. Suppose that G is finitely generated. Let A be a generating set for G in F(Q).
Then G has property .7-SC if and only if for any € > 0 there exists an S € F(G) such that for
any T € F(G) and § > 0 there is a C € N such that for any good enough sofic approzimation
m: G — Sym(V) in .7 there are subsets W and V of V' satisfying the following conditions:
(i) m(V) <e,
(ii) m(UgeSﬂ'gW) >1-9,
(1) if wi,wo € W satisfy mqwi = wo for some g € T then wi and wy are connected by an
A-path of length at most C' whose vertices all lie in V.

Proof. Denote by £4 the word length function on G associated to A.

Suppose first that G has property .#-SC. Let € > 0. Define T : F(G) — [0,00) by YT (F) =
e~ 1| A|maxger £a(9) Then there is an S € F(G) witnessing property .#-SC. Let T' € F(G) and § >
0. Then we have C,n, 51, ...,S, as given by Definition 3.1. Set m = maxj<;j<, maxges; £4(g)-
Let 7 : G — Sym(V) be a good enough sofic approximation for G in .. Then we have W
and V1, ..., "V, satisfying conditions (i)-(iii) in Definition 3.1. Denote by V' the set of allv € V'
satisfying mgpv = mympv for all g, h € A™ When 7 is a good enough sofic approximation, we
have m(V'\ V') < §/[S|. Set W/ = W N V'. For each 1 < j < n, set m; = maxyes, £a(g) and

V= Uyears mV;. Set V =}, Vi. Then

m(V) <y m(Vh) <3 [A™] - m(V) <Y T(S)m(V;) <e,
j=1 j=1

J=1
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verifying condition (i) in the proposition statement. Note also that

m< U ng/> 2m< U wgw> — S| - m(V\ V") >1-34,

geSs geS

which verifies condition (ii) in the proposition statement. Let g € T and wy,wy € W’ be such
that myw; = we. Then wy and wp are connected by a path of length at most C' in which each
edge is an Sj-edge with both endpoints in V; for some 1 < j < n. It is easily checked that the
endpoints of such an edge are connected by an A-path of length at most m; with all vertices in
V;. Thus w; and wsy are connected by an A-path of length at most C'm with all vertices in V,
verifying condition (iii) in the proposition statement. This proves the “only if” part.

To prove the “if” part, suppose that G satisfies the condition in the statement of the propo-
sition. Let T be a function F(G) — [0,00). Take 0 < e < 1/(2Y(A)). Then we have an S as in
the statement of the proposition. Let T' € F(G). Take 0 < 6 < 1/(6|/T|Y(T)). Then we have a C
as in the statement of the proposition. Set n =2, S1 = A, and Sy =T. Let 7 : G — Sym(V') be
a good enough sofic approximation for G in .. Then we have W and V as in the statement of
the proposition. Set W' = W U (V'\ Uges mgW). Then J g W' =V, verifying condition
(ii) in Definition 3.1. Set V1 =V and Vo = J,cp (W \W)Umg(W'\ W) U, H(W'\ W)). Then

m(V2) < (2|7 + Hm(W'\ W) < 3|T3,

and hence L1

YT(S1)m(Vy) + Y(S2)m(Va) < Y(A)e 4+ 3Y(T)|T6 < 3 + 5= 1,
which verifies condition (i) in Definition 3.1. Let g € T" and wy, ws € W' be such that myw; = ws.
If w; ¢ W or wy & W, then (wy,ws) is an Sy-edge with both endpoints in Vo. If wq,ws € W,
then wy and wy are connected by an Si-path of length at most C' such that all vertices of this
path lie in V = V;, yielding condition (iii) in Definition 3.1. O

3.2. Groups without property sofic SC. Let .¥ be a collection of sofic approximations for
G which contains arbitrarily good sofic approximations (or, equivalently, which contains a sofic
approximation sequence). In Propositions 3.6 and 3.7 we identify two classes of groups which
fail to have property .-SC, and in particular fail to have property sofic SC.

Lemma 3.5. Suppose that G is finite. Then G does not have property -SC.

Proof. Suppose to the contrary that G has property .#-SC. Define T : F(G) — [0,00) by
Y(F) = 4|G| for all F € F(G). Then there is some S € F(G) satisfying the conditions in
Definition 3.1. Put 7' = {eg}. Then there are C,n € N and S, ..., S, € F(G) satisfying the
conditions in Definition 3.1.

Let 7 : G — Sym(V') be a good enough sofic approximation in . so that there are subsets
W and Vi,...,V, of V satisfying conditions (i)-(iii) in Definition 3.1 and also so that m(U) <
1/(4|G|) where U consists of all v € V' satisfying 7., v # v. Seeing that W C U U Ji_, V;, we
have

n n

m(W) < m(U) +m< U Vj> < 4\le +;m(vj) = 4\le + @;T(Sj)m(vj) = 3G
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Thus

t=n( [ mv) < [Suv) < (Gm(w) <
geSs

?

N =

a contradiction. O
Proposition 3.6. Suppose that G is locally finite. Then G does not have property .#-SC.

Proof. Suppose to the contrary that G has property .’-SC. Then G must be infinite by Lemma 3.5.
Take a strictly increasing sequence {G}.} of finite subgroups of G such that G' = |J,cy Gk For
each F' € F(G), denote by ®(F') the smallest k € N satisfying F' C Gj. Define T : F(G) — [0, 00)
by Y(F) = 3|Gg(r)|- Then there is some S € F(@) satisfying the conditions in Definition 3.1.
Put m = ®(S) and T = Gpy1 € F(G). Then there are C,n € N and S1,...,S5, € F(G)
satisfying the conditions in Definition 3.1. Put M = max{maxi<;<, ®(S5;), m + 1}.

Let 7 : G — Sym(V') be a good enough sofic approximation in .# so that thereisaset V), CV
satisfying the following conditions:

(i) mgmpv = mgpo for all g,h € Gy and v € V7,
(ii) mgv # mpo for all v € V; and distinct g, h € Gy,
(iii) myVi = Vi for all g € Gy,
(iv) m(V7) > 1/2.
Then Gjs acts on Vi via w. Denote by &2 the partition of V; into G,,41-orbits.

By assumption, when 7 is a good enough sofic approximation we can find subsets W and
Vi,...,Vy of V satisfying conditions (i)-(iii) in Definition 3.1. Note that V' = |J,cgmgW =
U 9eGrm TgW, which implies that for every member P of & the intersection PNW is not contained
in a single G,,-orbit.

Set V = J;_, WGq)(Sj)(Vj N V7). Then

L =

@) m) < Y [Gas) V1) < Y (Gasylm(V) =5 S X(S)m(Vy) <

1<j<n 1<j<n 1<j<n

Now let P € & and w; € PNW. Then we can find some wy € P N W such that w; and ws
are in different G,,-orbits. We have wy = mw; for some t € Gp1 \ Gy = T\ Gy, Thus we can
find some 1 <I<C,1<j1,...,50 <n, v, €V;, for 1 <k <[, and g, € S, for 1 <k <[ such
that, setting vg = w1, we have g, vy_1 = v, for all 1 <k <[ and v; = wo. Then

Wwo = V] = 7TQL . .7T91U0 = ﬂ'glmgl’wl,

and hence g;---¢g1 = t. It follows that the elements g¢i,...,g; cannot all lie in G,,. Denote
by i the smallest k satisfying gr € G,,. Then v; € TG, W1, and hence w1 € 7y Vi
N Jq

Consequently,

TQ, w1 TerTchb(sji)vi = 7TG<I>(S]-Z.)’UZ' C ﬂ-an(Sjl.)(Vji NnVy) CVv.

Therefore Vi = & = ng,, (W N (UJZ)) C V, whence m(V) > m(V1) > 1/2, contradicting
(2). O

Proposition 3.7. Suppose that G is finitely generated and virtually free. Then G does not have
property . -SC.
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Proof. By Lemma 3.5 we may assume that G is infinite. Take a free subgroup G of G with finite
index. Then (7 is nontrivial and, by Schreier’s lemma, finitely generated. Take free generators
ai,...,a, for Gy. Set A ={aq,...,a,, afl, ...,a " eg}. Denote by ¢ the word length function
on (7 associated to ay,...,a,, al_l, ...,a; ', For each n € N denote by B,, the set of elements g
in G satisfying ¢(g) < n. Take a subset H of G containing e such that G is the disjoint union
of the sets hGy for h € H. Set D = H U A. For each F' € F(G), denote by U(F') the smallest
n € N satisfying F' C HB,, and set F' = HBy(p).

For any g € G and h € H we can write gh uniquely as bd with b € H and d € G1, and using
this factorization we set R to be the maximum value of ¢(d) over all g € D and h € H. Define
T:3(G) — [0,00) by Y(F) = 3|HBg| - |F'|.

Suppose that G has property .#-SC. Then there is some S € JF(G) satisfying the conditions
in Definition 3.1. Put m = ¥(S), N = m + 1, and T = S{a}",eq,a;*V}S € F(G). Then
there are C,n € N and S1,...,S5, € F(G) satisfying the conditions in Definition 3.1. Put
C" = Cmaxi<j<n(1+¥(S;)) € Nand U = (HA)C HByy) U (HA)® HBan) ™! € F(G).

Let 7 : G — Sym(V') be a good enough sofic approximation in . so that there are subsets W
and Vy,...,V, of V satisfying conditions (i)-(iii) in Definition 3.1 and a set V' C V satisfying
the following conditions:

(i) mympv = Ty for all g, h € U? and v € V7,
(ii) mgv # mpv for all v € V' and distinct g, h € U,
(i) m(V’") > 1/2.
For each 1 < j < n, set \7; = Ugesé_ mgVj. Set V = U?:l \7;.

Let v € V. We have TNV = Ty W1 and Qo NV = Thy W2 for some hi, ho € S and wy,wy € W.

Then

_ -1 -1 _ . —1 _
7Th;1a172Nh1’u}1 = 7Th2 ﬂ'al—Nﬂ'a{\,ﬂ'hlwl = 7Th2 Wa;NU = wq.

By assumption we can find a path from w; to ws of length at most C in which each edge is an
Sj-edge with both endpoints in V; for some 1 < j < n. Replacing each such edge by a D-path of
length at most 1 + W(S;) and with all vertices in V;, we find a D-path from w; to ws of length
at most C’ such that all vertices are in V. Thus we get some 1 <[ < C', vy € Vior1 <k <I,
and g, € D for 1 <k <[ such that, setting vg = w1, we have 7y, vp_1 = v forall 1 <k <[ and
v; = wy. Then

7Th2—1a1—NU =W2 =Tg...TgW1 =T

—1 .
g1--g1hy talVV

Since h2_1a1_N and g .. .glhl_la{V belong to U, we conclude that h;lal_N =g.. .glhl_la]lv. Set
tj=gj.. .glhl_la{\[ € U for 0 < j < 1. We can write each t; uniquely as b;d; for some b; € H
and d; € G1. Then we have

((djd;t) < R
for all 1 < j <. Consider the path p in G from dy to d; defined by concatenating the geodesic
from dj_1 to d; for all 1 < j <[, where we endow G with the right invariant metric induced

from £. Note that as reduced words dy and d; end with a; and afl respectively. Thus p passes
through eq. It follows that there is some 1 < i <[ with ¢(d;) < R. Then t; € HBg, whence

t;lvi € U 7Tg\7.
gE(HBR)™!

S
V=T U =T
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Therefore V' C Uy py)-1 mgV-
Now we get

1
L <m(V) < m( U w) < |HBglm(v)
gE(HBR)™!
- 1o 1
< [H B Y IS)m(V,) = 5 DT (S;)m(¥y) < 5.
j=1 j=1
a contradiction. O

3.3. Groups with property sofic SC. In Theorems 3.11 and 3.12 below we will identify
classes of groups that have property sofic SC. This will rely on results from [25] that we can
access via the connection to property SC established in Proposition 3.10.

Definition 3.8. Let ) be a class of free p.m.p. actions of a fixed infinite G. We say that ) has
property SC if for any function T : F(G) — [0,00) there exists an S € F(G) such that for any
T € F(G) there are C,n € N, and Sy,...,S, € F(G) so that for any G ~ (X, 1) in Q) there are
Borel subsets W and V; of X for 1 < j < n satisfying the following conditions:

(i) 251 T(S))u(Vy) <1,
(il) SW =X,
(iii) if wy,we € W satisfy gw; = wy for some g € T then w; and wy are connected by a
path of length at most C' in which each edge is an S;-edge with both endpoints in V;
for some 1 < j < n.

We say that a p.m.p. action G ~ (X, ) has property SC if the singleton class containing it
has property SC. We say that G itself has property SC if the class of all free p.m.p actions
G ~ (X, ) has property SC (note that freeness implies atomlessness of the measure since G is
infinite).

Remark 3.9. When 2) consists of either a single free p.m.p. action or all free p.m.p. actions of
a fixed G, the existence of the bound C' is automatic, as explained in the paragraph following
Proposition 3.5 in [25].

Proposition 3.10. Suppose that G is infinite and sofic. Let G ~ (X, u) be a free p.m.p. action
with property SC. Then the action has property sofic SC.

Proof. We may assume, by passing to a suitable G-invariant conull subset of X, that the action
of G is genuinely free. Let T be a function F(G) — [0,00). Since G ~ (X, ) has property SC,
using the function 2Y we find an S € F(G) such that for any T € F(G) there are C,n € N,
S1,...,S, € F(G), and Borel subsets W and V;, of X for 1 < k < n satisfying the following
conditions:
(i) 23 51 Y(Sk)u(Vi) < 1,
(i) SW = X,
(iii) if wy,we € W satisfy gw; = wy for some g € T then w; and wy are connected by a
path of length at most C' in which each edge is an Si-edge with both endpoints in Vi
for some 1 < k <n.
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Let T € F(G). Then we have C,n, Sy, for 1 <k <n, and W and V}, for 1 < k < n as above.
We now verify conditions (i)-(iii) in Definition 3.1 as referenced in Definition 3.3.

Let g € T. For each x € W N g~ 'W, we can find ¢1,...,¢ € G for some 1 <1 < C such that
9= gigi—1--- g1 and for each 1 < j <[ one has g; € Sk; and g;—1--- 912,951 g1° € Vy; for
some 1 < k; <n. Then we can find a finite Borel partition ¢, of W N g~ 'W such that

c
C
|€y] < Cn (lrélggn\sko

and for each A € ¢; we can choose the same [, g1,...,g;,k1,...,k for all x € A. Then for all
1 <j <lthesets gj_1---g14 and gjg;j—1---g14 are contained in V.

Denote by €* the finite partition of X generated by W,Vi,...,V, and ¢y for g € T. Set
Ff = (TUuSUU_, Sk € F(G). Set D = |T|C*n® (maxi<g<n |Sk|)¢ > 0, and take § > 0
with 30|T|Y(T) < 1/4. Take

0 < &' < min { <4k§n::1r(sk)>_l,5/(|5|(\T| D+ 2))}.

Let 7 : G — Sym(V') be a sofic approximation for G with Hom#(‘ﬁﬁ, F* 6% 7) # () which is
good enough so that m(Vp:) > 1 — 6%, where Vs denotes the set of all v € V satisfying TghV =
mgmpv for all g, h € F* and mgv # mpo for all distinct g, h € F!. Take ¢ € Homu(%ﬁ,Fﬁ,éﬁ,ﬂ).
Then ¢ is an algebra homomorphism alg(%}iﬁ) — Py satisfying

(i) ZAefﬂ m(mgp(A)Ap(gA)) < 5t for all g E Fﬁ, and
(ii) ZA@% Im(p(A)) — p(A)] < o*.

Let g € T and A € 6,. Then we have [, g1,...,q:, k1, ...,k as above. Denote by W;’A the set

Ulgjgz(ﬁg_j}qj,l---gl (‘P(gjgj—l - g14))Ap(A)). Then

M-

m( ;{A) < m(ﬂ-g_j]éjfl“'gl (@(gjgj—l - g14))Ap(A))

<
Il
—

m(p(gigi—1- g1A)Amg g, g 0(A)) < CF.

<
Il
—_

I
‘M“

Also set Wil = U peq, Wy 4 and W = U,er Wy Then

C
m(Wy) < 16,1C6 < C2n®( max |Sy])” 6"

and

c
m(W") < \T|02n0(195§ |5k|) 5t = Dét.
Set W' = UgeT(ﬂgl(cp(W) N Vi) \ (g~ 1W)). Note that

W = |J (g1 (0W) N Vi) \ o(g™ W) € ([ (mgr0(W) \ (g™ W),
geT geT



16 DAVID KERR AND HANFENG LI

and hence

m(W') < m(rg-10(W)Ap(g~ W) < |T)6°.
geT

Set W* = (o(W)NVes)\(W/UW"), and WT = W*UW‘I(V\Uges TgW*). Then | cq W =
V', verifying condition (ii) in Definition 3.1.

We have
o U w7 2 m( Ugwm) S (W U U (V' Vi)
ge ge
(e (59) (Yo )
— |S|(|T|6* + Dd* + &%)

. m(<ggwgw<w>)AgL€JS¢<gW>) —ISI(T| + D + 1)3
>1- Z;gm(ﬂgcp(W)Aw(gW)) — [S|(IT| + D+ 1)5*
>1- T;aﬁ —|S|(|T| + D + 1)6* > 1 -4,

and hence

m(WT\ W) < m(V\ U ngw*) < 6.

geSs
Put VI = p(V}) for 1 <k <n, Spy1 =T € F(G), and

Vi = U\ W) umg(Wi\ W) ur, (W W)

geT
Then
m(V},,) < /7| + Dm(WT\ W*) < 34/7],
and hence
n+1 ; n . 1 1 n
Zr (Sk)m(V]) < 3S|TIT(T) + ) L(Sk) ((Vi) + 6%) < 1t3 +0P) (k) <1
k=1 k=1

Verlfymg condition (i) in Definition 3.1.

Let g € T and wy,ws € W1 with 7rgw1 = wy. If wy & W* or we & W*, then (wq,ws) is
an Spy1- edge with both endpoints in Vn P Thus we may assume that wi,we € W*. Then
wy = m, twy € w; (p(W) N Vis). Since wy ¢ W', we get wy € p(g~'W). Thus

w, 6w(W)ﬂw(g_lw)=90(Wﬁg_lW):90( U A) — U #(a)
A€ty A€Cy

We have w; € ¢(A) for some A € 6,. Let l,g1,...,q1,k1,...,k be as above for this A. Then
for all 1 < j <1 the sets gj—1...¢914 and g;g;—1...91A are contained in ij. Since wy ¢ W;,A7
we have mg.4. . gw1 € ©(gjgj-1-.-01A) for all 1 < j < I. Thus mg,_, g w1, Tg9;_1..qoW1 €
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©(Vi,;) = V,t,j for all 1 < j <. Therefore wy and wy are connected by a path of length [ in which

each edge is an Si-edge with both endpoints in \7;2 for some 1 < k < n, verifying condition (iii)
in Definition 3.1. (]

Theorem 3.11. Consider the following conditions for an infinite G:

(i) G has property SC,
(ii) every free p.m.p. action G ~ (X, u) has property SC,
(iii) there exists a nontrivial Bernoulli action of G with property SC,
(iv) there exists a nontrivial Bernoulli action of G with property sofic SC,
(v) G has property sofic SC,
(vi) G is neither locally finite nor finitely generated and virtually free.
We have (i)& (ii)< (iii)= (iv)< (v)=(vi). Moreover, when G is amenable all of these conditions
are equivalent.

Proof. The equivalence of (i), (ii), and (iii) is the content of Proposition 3.5 of [25]. For (iii)=(iv)
apply Proposition 3.10. The implication (iv)=-(v) follows from the fact that nontrivial Bernoulli
actions have positive sofic entropy with respect to every sofic approximation sequence [5, 22, 21],
while (v)=(iv) follows from the definitions and (v)=-(vi) from Propositions 3.6 and 3.7.

In the case that G is amenable, Proposition 3.28 of [25] asserts that (vi)<(i), which gives us
the equivalence of all of the conditions. U

A subgroup Gy of G is said to be w-normal in G if there are a countable ordinal v and a
subgroup G of G for each ordinal 0 < A <~ such that
(i) for any A < X < one has G C Gy,
(ii) G = G5,
(iii) for each A\ < the group G} is normal in G1,
(iv) for each limit ordinal A" <+ one has G = [Jy. G-

In conjunction with Theorem 3.11 above, Theorem 3.29 of [25] yields the following.

Theorem 3.12. Suppose that G has a w-normal subgroup Go which is amenable but neither
locally finite nor virtually cyclic. Then G has property sofic SC.

3.4. W-normal subgroups and property sofic SC. The proof of the following lemma applies
some of the ideas from Section 8.1 of [3] to the sofic framework.

Lemma 3.13. Suppose that G is finitely generated and not virtually cyclic, and let A be a
generating set for G in F(G). Then there is a constant b > 0 such that given any

(i) group H containing G as a subgroup,

(ii) finite subset F' of H, and

(iii) r,M € N and 6 > 0
one can find, for any good enough sofic approzimation m : H — Sym(V') for H, sets Z CV C Vp,
where Vi denotes the set of all v € V' satisfying g, = mgmpv for all g,h € F' and mgv # mpv for
all distinct g,h € F, such that |U96A2T W9V|/|V\ >1-9, V| <blV|/r,|Z| < |V|/M, and every
point of V is connected to some point of Z by an A-path of length at most 2M with all vertices
mn'V.
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Proof. Since G is not virtually cyclic, there exists a ¢ > 0 such that |A"| > cn? for all n € N
(Corollary 3.5 of [29]). Set b =15/c. Let H, F,r,M,d, and 7 be as in the lemma statement. Set
N = |A]3M . Take k € N such that |AF| > N|A?"|.

Denote by V' the set of all v € V satisfying myv = m,mpov for all g,h € (F U A)00M+r)
and m,v # mpo for all distinct g,h € (F U A)P0M+1) - Denote by V” the set of all v € V
satisfying mgv = mgmpv for all g,h € (F U A)(200+k)(M+’”) and mgv # mpv for all distinct
g, h € (F U A)ROHR(MAT)  Then 7,V" C V' for every g € AR0" Assuming that 7 is a good
enough sofic approximation, we have |V”|/|[V| > 1 —§. Take a maximal (A, r)-separated subset
W of V" and also take a maximal (A,r)-separated subset W’ of V' containing W. Then we
have (J,¢ 42 mgW 2 V", and hence

1

V"
T W > >1-4.
U >

Let w € W. Set T\, = W/ N7 get2-w. Note that 7w C V' C 742, W', For each g € A* we
have mqw € my2-z for some z € W'. Then z € Tp2rmgw C Ty k42w, and hence z € T,,. Thus

WAkrw g 7TA2rTw.

Therefore

| AFr|

|Tw| > VEq > N.
Set T = Uy ew Tw € W’'. We have
AW = || Ww‘ <|V|

weWw’

whence
Vi _ V]

3 T <|W' < vl <
3) 1< W < 1o < oo

Let w € W. Let (T, Ey) be the graph whose edges are those pairs of vertices which can
be joined by an A-path of length at most 4r + 1, and let us show that it is connected. It is
enough to demonstrate that a given v € T}, is connected to w by a path in (T, Ey). Choose a
shortest A-path from w to v. For each vertex z in this path contained in 7 41w, the fact that
2z € marrw C Ty2- Ty, means that we can connect z to some u, € Ty, by an A-path p, of length
at most 2r. By inserting p, and its reverse at z, we construct an A-path from w to v in which
points of T, appear in every interval of length 4r + 1. Therefore v is connected to w by some
path in (T}, Ey), showing that (Ty, Ey) is connected.

Consider the graph (T, E') whose edges are those pairs of vertices which can be joined by an
A-path of length at most 4r + 1. From the above, every connected component of this graph has
at least N points. Starting with (7, E'), we recursively build a sequence of graphs with vertex
set T' by removing one edge at each stage so as to destroy some cycle at that stage, until there
are no more cycles left and we arrive at a subgraph (T, E’) such that (T, E) and (T, E’) have
the same connected components and each connected component of (T, E') is a tree.

For each pair (v,w) in E’, we choose an A-path in 744-T joining v to w of length at most
4r + 1. Denote by V the collection of all vertices which appear in one of these paths. Then



ENTROPY, PRODUCTS, AND BOUNDED ORBIT EQUIVALENCE 19

V C mgerT C V' C Vp. Note that each A-connected component of V has at least N points, and
W CT CWV. Thus
U mgV| >

1
geA?T - |V|

1
V]

U WQW‘ >1-4.
g€A2r

Moreover, using (3) we have

V| <|T|+4r|E'| < (4r + 1)|T| < 5r - % = M
cr r

Let € be an A-connected component of V. Denote by (C, E¢) the graph whose edges are the
pairs (w,v) € €% such that m,w = v for some g € A. Then (€, Eg) is connected. Endow €
with the geodesic distance p induced from Fp. Take a maximal subset Ze of € which is (p, M)-
separated in the sense that the M-balls {v € C: p(v,2z) < M} for z € Ze are pairwise disjoint.
Then Ze is (p,2M)-spanning in €, i.e., every point of € is connected to some point of Ze by
an A-path of length at most 2M with all vertices in €. Since || > N = |APM > |A]?M | we
have |Ze| > 2. Then |CN7wmz| > M for every z € Ze. Since the sets C N 7wz for z € Ze are
pairwise disjoint, we get

| Ze|M < ) [€Nnmamz| < €.
2E€EZp

Denote by Z the union of the sets Zg where € runs over all A-connected components of V.
Then every point of V is connected to some point of Z by an A-path of length at most 2M with
all vertices in V, and |Z|/|V| < 1/M. O

For the definition of w-normality, see the paragraph before Theorem 3.12.

Proposition 3.14. Suppose that G has a w-normal subgroup G° with property sofic SC. Then
G has property sofic SC.

Proof. Suppose first that G is locally virtually cyclic. Then G? is amenable and, by Lemma 3.5
and Theorem 3.11, neither locally finite nor virtually cyclic. It follows by Theorem 3.12 that G
has property sofic SC, as desired.

Suppose now that G” is not locally virtually cyclic. In this case we will first carry out the
argument under the assumption that G” is normal in G. Take a finitely generated subgroup Gy
of G” such that Gy is not virtually cyclic. Take an S} € F(Go) generating Go. Let b > 0 be as
given by Lemma 3.13 for the group Gy and generating set .

Let T be a function F(G) — [0,00). Choose an r € N large enough so that

(4) 36T (S)) < r.

Set S = S € F(Go).

Consider the restriction of 3T to F(G”?). Since G° has property sofic SC, there exists an
S’ € F(G?) such that for any T° € F(G) there are C*,n” € N and S7,.. .,Sf@b € F(G") such
that for any good enough sofic approximation 7w : G — Sym(V') for G there are subsets W’ and
V?c of V for 1 < k < n’ satisfying the following conditions:

() i, 3Y(Spm(V}) < 1,
(i) Uyesr mgW’ =V,
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(iii) if wq,wy € W* satisfy Tgw1 = wa for some g € T” then w; and wsy are connected by a
path of length at most C” in which each edge is an SZ—edge with both endpoints in ka,
for some 1 < k < n’.
Let T € F(G). Set
Sy = S°"TS" € F(G).
Take an M € N large enough so that
(5) M > 127(85)|S5].

Set T° = UgeT(SbS%MgS%Mg_le U S°gSM g=162M 65y ¢ F(GP). Then we have C°, n”, and

S/,bC for 1 < k < n’ as above. Set
C=4M +2+C" €N,
and F = (S;UT U S U, S2)100MCr ¢ 5(3).

Now let 7 : G — Sym(V) be a good enough sofic approximation for G. By Lemma 3.13 we can
find sets Z C V1 C Vr, where Vi denotes the set of v € V satisfying 7y, = mympv for all g, h € F
and myv # mpo for all distinct g, h € F, such that m(UgeS V1) > 1 —1/M, m(Vy) < b/r,
m(Z) < 1/M, and every point of V; is connected to some point of Z by an Sj-path of length at
most 2M with all vertices in V;. Note that

(4

S| o
oo\r—‘

Set W =V Ur_(V\ Uges mgV1) € V. Then J,eqmgW =V, which verifies condition (ii) in
Definition 3.1.
Set Vy = (UgeT((W \ Vl) U 7Tg(W \ Vl) U Wg_l(W \ Vl))) U U9652 7TgZ C V. Then
m(Vy) < 3|Tm(W \ V1) + [Sam(Z) < 3[Sofm(V \ | ] mgV1) + [S2l /M < 4|S,|/M,
ges
and hence

5) 1
T(S2)m(Vs) < 40(52)|51/M < <.

Assuming that 7 is a good enough sofic approximation for G, we have W? and VZ for1<k<n
as above, in which case

erk (V) <

Putting the above estimates together we get

oo\r—*

nb

T(S1)m(Vy) + T(Sa)m(Va) + > T(Sp)m(V;) < 1
k=1
which verifies condition (i) in Definition 3.1.

Let g € T and wy, ws € W be such that myw; = wy. If either wy € W\ Vi or wy € W\ Vy,
then (wq,ws) is an Se-edge with both endpoints in Vy. Thus we may assume that wy,wq € V.
For ¢ = 1,2, we can connect w; to some z; € Z by an Si-path of length at most 2M with all
vertices in V1. Then w; = m,2; for some ¢; € S%M. We have my21 = m,,uy for some u; € WP
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and ay € S", and zp = my,us for some uy € W’ and ay € S°. Note that aflg and a;l are both
in Sy. Since Tyr1g?1 = U1, the pair (21, u) is an Se-edge with both endpoints in V,. Also, since
o172 = U2 the pair (wsg, ug) is an Sy-edge with both endpoints in V5. Note that

Ty ity gtrg—Tay W1 = Moy 1 Ty 1 MMty Tg=1Ta, U1

= 7Ta2—171't2—171'g71't121
= ﬂ'a;lﬂ't;lﬂ'gwl
= 7ra517rt;1w2

= Wa;1Z2

= Uu2.

Since agltglgtlg_lal € SbS%MgS%Mg_lsb C T”, this means that us € mryur. Then w; and
ug are connected by a path of length at most C” in which each edge is an S,bc—edge with both
endpoints in V}: for some 1 < k < n’. Therefore w; and wsy are connected by a path of length
at most 4M + 2 + C° = C in which each edge is either an Sj-edge with both endpoints in V;
for some 1 < 5 < 2 or an S]"g—edge with both endpoints in V',’C for some 1 < k < n’, verifying
condition (iii) in Definition 3.1.

Notice that the set .S used in the above verification of property sofic SC for G is contained in
G, which can be any non-virtually-cyclic finitely generated subgroup of G”, and only depends
on the restriction of Y to F(Gp). This has the consequence that if Gy, G, ... is a sequence of
countable groups such that G,, is a normal subgroup of G,41 for each n and G is not locally
virtually cyclic and has property sofic SC then the group | J;7 ; G, has property sofic SC. Indeed
we can fix a finitely generated subgroup G of G which is not virtually cyclic and apply the
above argument recursively taking Gy = G}, G* = G,, and G = G4 at the nth stage to
deduce that G, 41 has property sofic SC, and if the function T is taken at each stage to be the
restriction of a prescribed function F(| o2 ; Gn) — [0,00) then we can use the same set S for
all n, showing that (J;”; G, has property sofic SC. It follows by ordinal well-ordering that if
G’ is merely assumed to be w-normal in G then we can still conclude that G has property sofic
SC. O

3.5. Product groups. Let G and H be countable groups. Let 7 : G — Sym(V) and ¢ : H —
Sym(W) be sofic approximations. The product sofic approzimation mxo : Gx H — Sym(V x W)
is defined by

(T X 0)(g,n) (v, W) = (74(v), oh(w))
forall g e G, h € Hyve V, and w € W. Note that if {m} and {o}} are sofic approximation
sequences for G and H, respectively, then {m X 0} is a sofic approximation sequence for G x H.

Proposition 3.15. Let G and H be countably infinite groups. Let . be the collection of product
sofic approzimations for G x H. Then G X H has property .#-SC if and only if at least one of
G and H 1is not locally finite.

Proof. If G and H are both locally finite then G x H is locally finite and hence does not have
property .-SC by Proposition 3.6. Suppose then that at least one of G and H is not locally
finite. Take two nontrivial Bernoulli actions G ~ (X, u) and H ~ (Y, v). By Proposition 3.32
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of [25] the p.m.p. action G x H ~ (X x Y, u x v) given by (g, h)(z,y) = (gz, hy) for all g € G,
he H,z € X,and y € Y has property SC, and hence has property sofic SC by Proposition 3.10.

By [5, 21], for every finite partition ¢ of X, F' € F(G) containing e, and 6 > 0 one has
Hom,, (¢, F,0,m) # () for every sufficiently good sofic approximation 7 for G, and for every
finite partition &2 of Y, L € F(H) containing ey, and § > 0 one has Hom, (2, L,d,0) #
for every sufficiently good sofic approximation o for H. Given such sofic approximations 7 :
G — Sym(V) and o : H — Sym(W) and ¢ € Hom,(¥,F,é,7) and ¢ € Hom,(Z,L,6,0)
we have a homomorphism ¢ : alg(¢r x Z1) = alg((¢ X P)rx1) — Pyxw determined by
((Cx D) =¢(C)xy(D) for C € €r and D € P, and one can readily verify that ¢ belongs to
Homy,x, (¢ x 2, FxL,26,7x0), showing that this set of homomorphisms is nonempty. Since the
algebra of subsets of X x Y generated by products of finite partitions is dense in the o-algebra
with respect to the pseudometric d(A, B) = (ux v)(AAB), it follows by a simple approximation
argument that for every finite partition & of X x Y, finite set eaxg € K C G x H, and § > 0
one has Homy,», (&, K, 0,7 x o) # ) for all good enough sofic approximations 7 : G — Sym(V)
and o : H — Sym(W). Since the action G x H ~ (X x Y, u x v) has property sofic SC, it
follows that G x H has property .#-SC. O

3.6. Property sofic SC under continuous orbit equivalence.

Proposition 3.16. Let G ~ X and H ~ Y be topologically free continuous actions on compact
metrizable spaces which are continuously orbit equivalent. Suppose that G ~ X has property
sofic SC. Then H 'Y has property sofic SC.

To prove this proposition we may assume that X =Y and that the identity map of X provides
a continuous orbit equivalence between the actions G ~ X and H ~» X. Let k : G x X — H
and A : H x X — G be the associated cocycles.

The actions of G and H generate an action G * H ~ X of their free product via the canonical
embeddings of G and H into G x H. Since the actions of G and H are topologically free, we can
find a G-invariant dense G5 set W7 C X on which G acts freely and an H-invariant dense Gy set
Wa € X on which H acts freely. Set Xo = (),cq.gz (W1 N Wa). Then Xj is a G * H-invariant
dense G subset of X on which both G and H act freely.

Fix a compatible metric d on X which gives X diameter no bigger than 1. For each g € G
there is an 7y > 0 such that for any z,y € X with d(z,y) < ny one has k(g,z) = k(9,Y),
and likewise for each s € H there is an 7, > 0 such that for any z,y € X with d(z,y) < s
one has A(s,z) = A(s,y). We put np = mingerny > 0 for a nonempty finite set ' C G, and
1r, = minger, ns > 0 for a nonempty finite set L C H.

We will need the following lemma, which will also be of use in the proof of Theorem 4.1.

Lemma 3.17. Let L € F(H), and 0 < 7 < 1. Set F = \(L?, X) € F(G) and
7' = min {72/ (8|F|)/2, 7/(22|F*)} > 0.
Let m : G — Sym(V) be an (F,7")-approximation for G. Let ¢ € Map,(F,7',7) be such that
©(V) C Xg. Define o’ : H—VV by
T = TA(tp(0))V

fort € H and v € V.. Then there is an (L, T)-approzimation o : H — Sym(V') for H such that
pHamm(O't,O'é) <7 forallte L2
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Proof. Denote by Vp the set of all v € V satisfying mym,v = mgpv for all g, h € F and v # mpv
for all distinct g,h € F'. Then

m(V\ V) < 2|F|>7 < 111
Denote by V,, the set of all v € V satisfying d(yp(mgv), gp(v)) < np2 for all g € F. Then

m(V\ V) <\F< > g

For all s,t € L? and v € VF NV, since A(t, ¢(v)) € F we have

d(cp(ﬂ-k(t,go(v))v)a A(tv SD(U))QO(U)) < M2
and hence
A(8, @(T(t0(0)) V) = Als, AL, @(v))e(v)) = A(s, te(v)),
which yields

TGOV = TA(5,0(010)) THV = TA(s,p(m o p(0y2) TA0(0)) Y
A(s,t0(0) TA(tip (1)

(
(

i
T
= MA(s,p(0))A(tp(v))V
i
g

= TA(styp(v)V
- ;tvv
so that
T T 197

Note that of, = 7. For each t € H choose a oy € Sym(V) such that oyv = oyv for allv € V
satisfying o}_,00v = v. For each t € L?, taking s = t~! in (6) we conclude that
pHamm(Uty U;) < pHamm(U{ffle/fa ld)

S pHamm(Ugflgév UéH) + PHamm (O—éHa 1d>

1971 .
< g + pHamm(T‘_egv ld)
< 197 ,

— 4T
- &8

197 T 23T
<—4 == —,
- &8 22 88

which in particular shows that pgamm(ot,0;) < 7. For all s,¢t € L we then have
pHamm(UsUt7 Ust) < pHamm(Us> 0{9) + pHamm(Uta U;&) + pHamm(O{gU;; U;t) + pHamm(Usta U;t)
2 W 19r 2
- 88 88 88 88
For all distinct s,¢ € L2, since p(V) C Xo we have olv # ajv for all v € Vg and hence

pHamm(037 Ut) > pHamm(Ugy 0—2) - pHamm(USa U;) - pHamm(Uta O_{f)

231 231
>m(Vr) = 5o~ %5
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>l———=—>1-7. ]

Proof of Proposition 3.16. Let Yy be a function F(H) — [0,00). Define the function T¢ :
F(G) = [0,00) by Ya(F) =2Yg(k(F, X)).

Since the action G ~ X has property sofic SC, there exists an Sg € F(G) such that for any
T € F(G) there are Cg,ng €N, Sg1,...,S6ne € F(G), Lg € F(G), and 0 < 7¢ < 1 such
that, for any (Lg, 7¢)-approximation 7 : G — Sym(V) for G with Map,(Lq, 7¢,7) # 0, there
are subsets Wg and Vg ; of V for 1 < j < ng satisfying the following conditions:

(i) 274 Ya(Sa)m(Vay) <1,
(i) Uyes, moWe =V,
(i) if wi, we € Wg satisfy mgwi = wy for some g € Tz then w; and wy are connected by a
path of length at most C¢ in which each edge is an Sg j-edge with both endpoints in
Va,; for some 1 < j < ng.

Set Sy = k(Sq, X) € T(H).

Let Ty € F(H). Set Tg = ATy, X) € F(G). Then we have Cg, ng, Sqgj for 1 < j < ng,
Lg, and 7¢ as above. Set Cyg = Cg, ng = ng + 1, Su; = k(Sq,;, X) € F(H) for 1 < j < ng,
and Spn, = Ty € F(H). Take 0 < 6y < 1/(6Yu(TH)|TH|). Also, set A = Lg U SgUTgU
UjS, Sy € F(G), Ly = k(A*100TC6) X)) e F(H), and

o= min{(rg/2)2,5H/(4|SG| . |A|2(100+CG))} >0,

Ty = min {1 2000500076 /(81 Lu )/, 7a /(22| Lu ), 70/ (21Lu|"?)} > 0.

Let ¢ : H — Sym(V) be an (Lpy,7y)-approximation for H with Map,(Ly,7y/2,0) # (.
Choose a ¢ € Map,(Ly,Tr/2,0). Since X is dense in X, by perturbing ¢ if necessary we may
assume that ¢ € Mapy(Ly, 7w, 0) and (V) C Xo. Define 7' : G — VV by

7r;v = Ok(gp(v)V

for all v € V and g € G. By Lemma 3.17 there is an (A'0°tC¢ 75)-approximation 7 : G —
Sym(V) such that pHamm (7, m;) < 7¢ for all g € AM00+C  For each g € Lg C A00+C¢ we have

da (g, omg) < da(gp, omy) + da(pmy, o)

X 1/2
< (i gdo@(g,so(v))so(v),so(an@,@(v))v))?) v

1 1z
(F X X deewhelon)?) + %
veV tek(g,X)
.
< (I + 5
< 7G-

Thus ¢ € Mapy(Lg, 7q, 7). Then we have Wg and Vg ; for 1 < j < ng as above.
We now verify conditions (i)-(iii) in Definition 3.1 as referenced in Definition 3.2. Denote
by Vi the set of all v € V satisfying 7y, 4,0 = 7y, g0 for all g1, g0 € A0FCE. Then m(V \

Vi) < |A|2(100+CG)%G. Also, denote by Vs the set of v € V satisfying mymg,v = W;?Tglv for
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all g € A and g1 € AY¢. Then m(V \ Vo) < 7g|A[1*C. Set Wi = We N Vi N Vs, and
Wy = Wi Ua H(V\ Unes,, onWg)- Then Ujeg, onWr =V, verifying condition (i) in
Definition 3.1.

Note that
m(Wy \Wg) <1-— m( U O'hW;{)
heSy
<1-m( |J W)
geSa
=1- m( U WgW}{)
ge€Sa

< [Sel(m(V\ V1) +m(V \ V2))
< ’SG’( ‘A‘2 100+C¢q) +T(;‘A|1+CG)
<dy.

Put Vg ; = Vg, for all 1 < j < ng, and

Virmg = | (Wa \ W) Uon(Wy \ W) Uoy, ' (We \ Wip)).

heTy
Then
m(Ve ) < Q2Tu| + 1)m(Wy \ Wy) < 3|Tw|0m,
and hence
ng
Z Y (Sm )V s) = Co(Tr)m(Van,) + Y Tr(s(Sa, X)m(Ve,)
j—l

= TH(TH) VHnH ZTG SG,] VG,])

1
<3Yu(Tw)|TH|ow + 3 <1,

verifying condition (i) in Definition 3.1. Let h € Ty and wy,ws € Wy with opw; = we. If
wy & Wy or wy & Wiy, then (wy, ws) is an S, -edge with both endpoints in Vg, . We may
thus assume that wy, ws € W};. Then

— — / —
Wy = OpW| = 7T)\(h7@(w1))w1 = T (hyp(wr)) W1 € T, W1

and so w; and wy are connected by a path of length at most Cg in which each edge is an
Sa,j-edge with both endpoints in V¢ ; for some 1 < j < ng. It is easily checked that such an
edge is also an Sy j-edge. This verifies condition (iii) in Definition 3.1. 0

3.7. Property sofic SC under bounded orbit equivalence.

Proposition 3.18. Let G ~ (X, p) and H ~ (Y,v) be free p.m.p. actions which are boundedly
orbit equivalent. Suppose that G ~ (X, u) has property sofic SC. Then so does H ~ (Y, v).
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To prove this proposition we may assume that (X,u) = (Y,v), the actions G ~ X and
H ~ X are free, and the identity map of X provides a bounded orbit equivalence between the
actions G ~ X and H ~ X. Let k : GXx X — H and A : H x X — G be the associated cocyles.

For each g € G denote by &, the finite Borel partition of X consisting of the sets X, ; :=
{r € X : gr = tz} for t € H, and likewise for ¢t € H denote by & the finite Borel partition of
X consisting of the sets X, for g € G. For every F' in F(G) or F(H), write p & =\ cfp Py.

The following is a specialization of Lemma 4.2 in [25] to the case of bounded orbit equivalence,
which permits a simplification of the statement.

Lemma 3.19. Let F € F(G) and set L = x(F?,X) € F(H). Let 0 <7 <1 and 0 < 7 <
7/(60|L|?). Leto : H — Sym(V') be an (L, 7')-approzimation for H. Letp € Hom, (g2, L, 7', 0).
Let 7' : F?2 — V'V be such that

/ —
gV = Ok(g,A)V

forallg€ F%2, A€ p2 P andv € ¢(A). Then there is an (F,T)-approzimation 7 : G — Sym(V)
for G such that pHamm(ﬂ'g,ﬂ';) < 71/5 for all g € F2.

Proof of Proposition 3.18. Let Ty be a function F(H) — [0, 00). Define a function Y¢ : F(G) —
[0,00) by TG(F) = 2TH(K(F7X))' .

Since G ~ (X, ) has property sofic SC, there exists an Sg € F(G) such that for any
Te € F(G) there are Cg,ng €N, Sg1,--.,Scne € F(G), a finite Borel partition 65 of X, an
Lg € F(G), and 0 < 7 < 1 such that, for any (Lg, 7¢)-approximation 7 : G — Sym(V) for G
with Hom,,(¢q, La, TG, ™) # 0, there are subsets W and Vg ; of V for 1 < j < ng satisfying
the following conditions:

(i) 274 Ya(Sa)m(Va,) <1,
(i) Uyes, mWe = V.
(iii) if wy, we € W satisfy mgwi = wy for some g € T then w; and wsy are connected by a
path of length at most C¢ in which each edge is an Sg j-edge with both endpoints in
Va,; for some 1 < j < ng.

Set Sy = k(Sq, X) € T(H).

Let Ty € F(H). Set Tg = A(Tg, X) € F(G). Then we have Cg,ng, Sa,; for 1 < j < ng, ¢a,
Lg, and 7¢ as above. Set Cy = Cg, ng = ng + 1, Su; = k(Sq,;, X) € F(H) for 1 < j < ng,
and Sg ., = Ty € F(H). Take 0 < 6y < 1/(6Y 5 (TH)|Tx|). Set U = LeUScgUTGUUSS, Sa.; €
F(Q), €u = (6a)Le V yraosce) P N 1y P, Lg = k(U2(100+Ce) X)) € F(H), and

7 = min {76/4,61/(2|S¢| - [U|2100+C)) > 0,
TH = min {%G/(6O|LH|2)7TG/(2|I€(LG’X)|)} > 0.

Let ¢ : H — Sym(V) be an (Lpy,7y)-approximation for H with Hom,(€y, Ly, TH,0)
nonempty. Take ¢ € Hom, (¢, Ly, TH,0). Define 7’ : U2100+Cs) 5 'V py

1o
gV = Ok(g,A)V

for all g € U2100+C6) A € P, and v € p(A). By Lemma 3.19 there is a (U'90+Ca 7y)-
approximation 7 : G — Sym(V') for G such that pHamm(Wg,W;) < 7 for all g € U00+Ca
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Let g € Lg. We have
> mmgp(A)Ap(gA) < > m(mgp(A) AT p(A)) + Y m(rp(A)Ap(gA))

A€Eba A€bq A€%a
< 2pHamm(mg, ) + Y Y m(myp(AN B)Ap(g(AN B))).
Acbg BeZ,

For any A € ¢ and B € &, say h = k(g, B) € Ly, we have myp(AN B) = o,p(AN B) and
©(g(AN B)) = ¢(h(AN B)), whence

S m(wlp(AN B)YAp(g(ANB) = 3 m(onp(AN B)YAG(h(AN B))) < 7.

A€Eba A€Eba
Therefore
3" m(mgp(A)Ap(9A)) < 2ottamm(mg ) + Y > m(rlo(AN B)Ap(g(AN B)))
A€ba Be ]g A€ba
<2g+ > TH
Be2,

-
< 5+ Inlg, X)lrr < 7.
We also have

Y lm(p(A) —p(A) < Y m(e(B)) — u(B)| < < 76

AG((KG)LG BECKH

Therefore ¢ € Hom,(¢q, Lg, 7q, 7). Then we have Wg and Vg ; for 1 < j < ng as above.

We now verify conditions (i)-(iii) in Definition 3.1 as referenced in Definition 3.3. Denote
by Vi the set of v € V satisfying g, 5,0 = 7y 740 for all gi,go € U6, Then m(V \
V1) < 76|U|2100+Ca) - Also denote by Vi the set of v € V satisfying m,myv = mymgv for
all g € U and g1 € UY. Then m(V \ Vo) < 76|U|'*Ce. Set Wi, = We N Vi N Vs, and
Wi = Wi U l(V\ Upes, onWg)- Then Uyes, onWa = V, verifying condition (ii) in
Definition 3.1. Note that

m(Wg \ Wy) <1 —m( U UhWJILI)

heSy
§1—m< U ﬂgw;{>
9€Sa
—1—m< U ﬂgW}I)
g€Sa

< |Sq|(m(V \ V1) + m(V \ V1))
< [8g|(7q|U|210+C6) | 70 U 1HC6) < oy

Put Vy j = Vg, for all 1 < j < ng, and

Vitng = |J (Wa \Wip) Uon(We \ W) Uy, (Wi \ Wh)).
heTw
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Then
M(Ving) < 2Ta| + Dm(Wg \ Wy) < 3|Tx|dm,
and hence
ny
S Tu(Su)mViy) = Ta(Ta)m(Vi,) Z Tr(k(Sc . X))m(Va,))
j=1

=Ty (Tu)m(Vhn,) + ZTG (Sc.5)m(Ve ;)

1
<3Yu(Tu)|Th|ow + 3 <1,

verifying condition (i) in Definition 3.1. Let h € Ty and wy,ws € Wy with opw; = we. If
wy & Wi or wg & Wy, then (wq,w2) is an Sy ,,,-edge with both endpoints in Vg ,,,,. Thus we
may assume that w;, wy € W}, Then wy € p(A) for some A € &),. Set g = A(h,A) € Tg.
Then
W2 = ORLW1 = W;wl = 7rgw1,

and so w; and wy are connected by a path of length at most Cg in which each edge is an
Sa j-edge with both endpoints in V¢ ; for some 1 < j < ng. It is easily checked that such an
edge is also an Sy j-edge. This verifies condition (iii) in Definition 3.1. O

4. TOPOLOGICAL ENTROPY AND CONTINUOUS ORBIT EQUIVALENCE

Our energies in this section will be invested in the proof of Theorem 4.1, which in conjunction
with Theorem 3.12 and Proposition 3.15 yields Theorem C.

Theorem 4.1. Let G ~ X and H ~ Y be topologically free continuous actions on compact
metrizable spaces, and suppose that they are continuously orbit equivalent. Let % be a collection
of sofic approzimations for G, and suppose that the action G ~ X has property .-SC. Let 11
be a sofic approzimation sequence for G in .. Then

hH~NY)> hn(G X).

For the purpose of establishing the theorem we may assume, by conjugating the H-action
by a continuous orbit equivalence, that ¥ = X and that the identity map on X is an orbit
equivalence between the two actions. As usual we write k and A, respectively, for the cocycle
maps G x X — H and H x X — G. As in Section 3.6, we take a dense G5 subset Xy of X such
that Xg is G * H-invariant and that both G and H act on Xj freely.

Fix a compatible metric d on X which gives X diameter no bigger than 1. For each t € G
(resp. t € H) we can find an 7, > 0 such that for any z,y € X with d(z,y) < n we have
k(t,x) = k(t,y) (resp. A(t,x) = A(t,y)), and for a nonempty finite subset L of G or H we set
nL = minger, n¢ > 0.

Lemma 4.2. Let L € F(H) and 0 < 6,7 < 1 with T < §2. Set F = \(L?, X) € F(G) and
7' = min {n;27'2/(8|F|)/?, /(22| F|*)} > 0.

Let 01 > 0 be such that (1 + 701)1/2 < 6. Let m: G — Sym(V) be an (F,7')-approzimation for
G. Suppose that S € F(G) and that W is a subset of V' satisfying the following conditions:
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(i) mg1mgw =w for allw € W and g € S,

(11) Tgmampw = Tgqpw for all g,h € S, a € AN(L, X), and w € W,

(i) m(U,es mgW) > 1 —61.
Take 0 < 02 < mgun(r,x) such that for any v,y € X with d(x,y) < 03 one has maxye (s, x) d(tz,ty) <
(51. Set

5 = 61725,/ (|1S|M2|SA(L, X)S|/2) > 0.
Let ¢y be a map in Mapy(F, 7', 7) N Mapy(SA(L, X)S,d', ) with ¢o(V) C Xo and ¢ a map in
Map,(SA(L, X)S, ¢, m) such that
H(gv QD()('UJ» - "i(g7 QO(UJ))

for allw € W and g € SA(L, X)S satisfying mqw € W. Let 0 : H — Sym(V') be a map such
that pramm (o, o)) < T for all t € L, where o' : H — V'V is given by

TV = TA(10(0)V
forallt € H andv € V. Take ¢ : V — X such that ¢ = ¢ on W and such that for each
v € Uyes mgW one has
$(v) = k(g, po(w))p(w)
for some g € S and w € W with mgw = v. Then ¢ € Mapy(L,6,0).

Proof. For each t € H set V; ={v eV :0w =0jw}. Thenm(V;) >1—r7forallte L.
Denote by V,, the set of all v € V satisfying d(gp(v), p(mqv)) < 62 for all g € SA(L, X)S.
Then
A
m(V\V,) <|SML,X)S|{ =) =75
P |S]
We define V,, in the same way, and get m(V \ Vi,,) < 61/|S|. Set W =W NV, NV, and
V' = (Uyes mW) \ (Uyes (V' \ (Vo N Vig))). Then

m(V') > m< U wgw) — 18] -m(V\ V) = S| - m(V\ V) >1—36.
ges
Lett € L, v; € V;NV’, and vo € V' be such that o,v1 = v9. Then we can find some g1, g € S
and wy, w2 € W such that 7, w; = v; and ¢(vj) = k(gj, po(w;))p(w;) for j = 1,2. Since
vj € V', we actually have w; € W’. We also have
wo =T

—1V9 = T _—10¢V]
2 2

g g

= 9510201
= Mo A (tp0(v1)) V1
= T MA(tp0(v1)) Tor W1
= Ty ' Mtpo(v1))gn U1+
Observe that
d(g1p0(w1), o(v1)) = d(gr1po(wi), po(mg,w1)) < d2 < My(L,x)
and

d(o(wa), g3 " Alt, po(v1))gro(wr))
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= d(P0(T 413 (1.0 (01 )01 1)+ 92 - At 20(v1))g1900(w1)) < b2 < ms,
and hence
K(A(t, wo(v1)), g1po(wr)) = K(A(E, wo(v1)), po(v1)) =t
and
k(g5 At po(v1)greo(wr)) = K(ga, 93 ' At po(v1))g1eo(w)) ™" = K(g2, wo(ws)) ™
Therefore

k(g5 At po(v1))g1, polwr))
= k(g5 " Alt; o(v1))gieo(wi)) (AL, po(v1)), 9100 (w))k(g1, o (wr))
= (g2, po(wa)) 'tk (g1, po(wr)).
We then get

kg2, o(w2)) " @ (v2) = p(ws)
~s, Gy Alts o(v1))giep(wr)
= %(951)\(15 eo(v1))g1, p(wi))p(wr)
= r(g3 " Alts po(01))g1, po(wr))p(wr)
= (92, p0(w2)) "tk (g1, po(wr))p(wr)
= r(g2, po(ws)) "t (1),
and consequently d(@(v2),td(v1)) < d1. We conclude that
da(tp, goy) < (1460 + 62 < (14 76)/2 <6
and hence that ¢ € Mapy(L, 0, 0). O

Proof of Theorem 4.1. Let II = {m, : G — Sym(V})}32; be a sofic approximation sequence in
< with hii(G ~ X) > 0. Let ¢ > 0. To establish the theorem it is enough to show the existence
of a sofic approximation sequence ¥ for H such that hy,(H ~Y) > h%z(G ~ X) — 2e.

For each F' € F(G), since k : G x X — H is continuous there exists a finite clopen partition
rZ of X such that for every g € F' the map = — (g, x) is constant on each member of pZ.
Define T : F(G) — [0,00) by Y(F) = (2/¢)log |rZ|.

Take a decreasing sequence 1 > §; > d2 > ... converging to 0. Take also a decreasing sequence
1>7>7 > >0 with 77 < for all k. Choose an increasing sequence {Ly} in F(H) with
union H.

For each k € N, set Fj, = A\(L?,X) C G and T}, = A\(Ly,, X) C Fy.

Since G ~ X has property .#-SC, there is some S € F(G) such that for each k € N, there
are Cy,ng € N, Sg1,...,Skn, € F(G), FIE € F(G), and 5,’1 > 0 such that for any good enough
sofic approximation 7 : G — Sym(V') in . with Map,(F, ,3, 5,&, 7) # () there are subsets W’ and
V; of V for 1 < j < ny, satisfying the following conditions:

(i) 2275, Y(Sk,)m(V;) <1,
(i) Uyes W' =V,



ENTROPY, PRODUCTS, AND BOUNDED ORBIT EQUIVALENCE 31

(iii) if w1, wy € W' satisfy mgwi = wy for some g € T}, := ST}.S € F(G) then wy and wy are
connected by a path of length at most C}, in which each edge is an S}, j-edge with both
endpoints in V; for some 1 < j < ny,.

Take & > 0 such that for any z,y € X with d(x,y) < ¢’ one has d(gz, gy) < /8 for every g € S.
Fix k € N. Set

74 = min {ngz /> /(8| Fk[)'/2, e/ (221 Fy[?) } > 0.

Let 0 < ;1 < 1/2 be such that (7, + 761)"/? < & and ((g/4)® + 6,.1)"/? < €/2. Take
0 < dg,2 < n7y, such that for any =,y € X with d(x,y) < 0y 2 one has max;c (s, x) d(tr, ty) < o 1.
Set &), = (5,1/12(5&2/(\5’\1/2\Tkll/z) > 0 and 7 = e, Spe By Stirling’s formula there is some
) = s
0 < v < 6k1/(3|S]) such that for any nonempty finite set V' the number of subsets of V'
with cardinality no bigger than ~;|V| is at most eIVI/2. Set S}, = U5z, Sk)F € F(G) and
& = min{0,, min{ng, £/16} (v¢/|Sk U S)/2, 7/} > 0.
Take an my > k large enough so that

1
i log N-(Mapy(Ty U Sy U Fy U Ff, min{6} /2, 0L}, mmy ), d2) > max{0, hf 5(G ~ X) — &}
mg

and so that mp,, : G — Sym(Vjy, ) is an (Fy, 7;,)-approximation for G and also a good enough
sofic approximation for G' to guarantee the existence of W’ and Vy,...,V,, as above. Denote
by mG the set of all w € V;,,, satisfying
(iv) Ty eqw = w,
(V) Tong g1 Tmygw = w for all g € S,
(Vi) Tmp,gTmg,aTmp,hW = T, gahw for all g,h € S and a € T},
(Vil) Ty ghW = Tomy gTm, pw for all g, h € S,
(Viil) 7y, gw # T, pw for all distinct g, h in Tj U Sk.
Taking my, sufficiently large, we may assume that m(V;,, ) > 1 — 6;.1/(3|9]).
Take a (dg, €)-separated subset ® of Map (T} U S U F}, 0} /2, Ty, ) with maximum cardinality.

Since X is dense in X, we may perturb each element of ® to obtain a (da, £/2)-separated subset
P, of Mapd(Tk U Sp U Fp, (5%, ka) with

’(131’ = |<I)‘ = NE(Mapd(Tk USpuU Fk,dg/Q,ka),dg)

such that ¢(V,,) € X for all p € ;.
For each ¢ € Map,(TyUSxUF}, 8/, Tm, ), using the fact that 67 < min{n,/16}(vx/|SkUS|)*/?
we have m(Vy) > 1 — ;, where

Vi i=A{v € Vi, : d(g¥p(v), 9 (7, gv)) < min{n,e/16} for all g € S, U S}
Thus there is a subset ®3 of ®; such that V,, is the same for all ¢ € ®2 and
’(131’ S |(I)2|€E|mG‘/2.
Set W = W' NV, NV, C Vyp, for ¢ € ®y. Then

m< U wmk,gw>

geSs
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> (U ) =2 U 0\ T) ) =10 U VA V2

QGS gES gGS

>1- %t

— Y| S| > 1 = 0p.1-

For each ¢ : Vi, — X, define ©(¢) € [[72, H%*Yi by ©(4)(gj,v;) = w(gj,¢(vj)) for
1 <j < nyand (gj,v;) € Skj x V;. Then

ng ng
O(X V)| < H \Skj«@!wj' — H o(E/DY(Sk )V — (e/2) 3275, X (Sk.)IVsl < eflVmgl/2,
j=1 j=1
Thus we can find a subset ®3 of ®3 such that O(y) is the same for all ¢ € &3 and
’@2’ < |‘1)3|€€|mG‘/2.

We claim that for any g € T}, and wi, wp € W with 7, qw1 = wo, the element k(g, p(w1)) € H
is the same for all ¢ € ®3. If w; = wa, then g = e and hence k(g, p(w1)) = ey for all ¢ € Ps.
Thus we may assume that w; # wz. We can find I < Cy, g1,...,91 € G, w1 = Wy, wh, ..., wj, =
ws in Vi, such that for each 1 <4 <[ one has my,, gw; = wj,, g; € Sy j, and w;,wi , € Vj,
for some 1 < j; < ng. Since w/l eW C ffmk, we have

I /o
Tmy,gigi—1--91W1 = Tmp,g: Tmy,gi—1 -+ - Tmyg,gn W1 = Wigq

for all 1 <i <. In particular, mpm, g, .. W] = W | = T, gw}, and hence

qigi—1---91 = G-

Note that w) € W C V, for all p € &3 C ®3. For each 0 < i <[ —1 and ¢ € ®3, we have
9igi—1--- g1 € Sk, and hence d(g;gi—1 - g19(w1), (T, g9, 1..1W1)) < Nk, which implies that

K(Git1, 9iGi—1 - - -91<P(w/1)) = K(Git1, @(ka,gigi_l---glwll))-
Then
-1

k(g p(w1)) = K(ggi1 - g1, 0(w))) = [ [ olgivr, gigio1 - grip(w}))
=0
-1

= H K(Git1, P(Tmy,gigi1.1 wy))
=0
-1

= H K(Ggit1, @(w2+1))

=0
-1

= [T o) (g1, wity)
i=0

is the same for all ¢ € ®3. This proves our claim.
Fix one ¢o € ®3. Define 0} : H — Vn‘f:k by

/ —
Ok ,tV = TA(t,po(v)V
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for all t € H and v € V;;,,. By Lemma 3.17 there is an (Lg, 74)-approximation o : H —
Sym(V,y, ) for H such that pHamm(0k7t,a;€7t) < 71 for all t € L. For each ¢ € P3 take a
¢ : Vin, — X such that ¢ = ¢ on W and such that for each v € Uges Tmy,,gVW one has

P(v) = K(g; po(w))p(w)
for some g € S and w € W with 7, sw = v. We may require that g and w depend only on v,
and not on ¢ € ®3. By Lemma 4.2 we have ¢ € Map,(Ly, 0, 0%).
Let ¢ and 1 be distinct elements in ®3. Since da(p, ) > /2 > ((¢/4)* + 61)"/? and
m(Uges Tmg,gW) = 1 = 0k,1, we have d(p(v),1(v)) > &/4 for some v € Uges Tmy,gW. Then

v = T, qw for some g € S and w € W such that $(v) = k(g, po(w))e(w) and P(v) =
k(g, po(w))y(w). Using the fact that w € W C V,, = Vi we have

d(gp(w), g¥(w))
> d(@(Tmy, W), Y(Tmy, gw)) — d(P(Tmy, gw), gp(w)) — d(P (T, gw), gP(w))

From our choice of ¢’ we get d(¢(w), P(w)) = d(p(w), h(w)) > ¢'. Therefore &3 := {@ : p € B3}
is (doo, €’)-separated and |®3| = |®3|. Thus

log No/(Mapy( L, 0k, 0k), doc) >

log | @3] = log | @3]

1
Vi | |mG!

| mkl

1
log [®1] —
|mG’

Z hH72(G 5% X) — 2e¢.

Now 3 = {oj}ren is a sofic approximation sequence for H. For any finite set L C H and
6 > 0, we have L C L and § > . for all large enough k, and hence

1 1
hm IOg N (Mapd(L7 57 Uk)? d ) > hm log N (Ma‘pd(Lkv 6[@‘7 Uk)a dOO)
k—oo ]Vm | k—oo ] Vi |
Z hH72(G 5% X) — 2e.
Taking infima over L and §, we obtain

he(H ~ X) > hg oo(H ~ X) > hf5(G ~ X) — 2.

5. MEASURE ENTROPY AND BOUNDED ORBIT EQUIVALENCE

In this final section we establish Theorem 5.2, which in conjunction with Proposition 3.15
yields Theorem A.

For a general reference on the C*-algebra theory and terminology used in the following proof,
see [31].

Lemma 5.1. Let G ~ (X, p) and H ~ (Y, v) be orbit equivalent free p.m.p. actions and suppose
that H ~ (Y, v) is uniquely ergodic. Then there are a zero-dimensional compact metrizable space
Z, a continuous action G« H ~ Z, and a G *x H-invariant Borel probability measure iz on Z
of full support such that
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(i) G ~ (Z, uz) is measure conjugate to G ~ (X, ) and H ~ (Z, juz) is measure conjugate
to H ~ (Y,v),
(ii) H ~ Z is uniquely ergodic,
(iii) there is a G x H-invariant Borel subset Zy of Z with puz(Zy) = 1 such that Gz = Hz
for every z € Zy.

If furthermore G ~ (X, u) and H ~ (Y,v) are boundedly orbit equivalent then we may demand
that both G ~ Zy and H ~ Zy be free and that the cocycles k : GX Zy — H and A: Hx Zy — G
extend to continuous maps G X Z — H and H x Z — G, so that G ~ Z and H ~ Z are
continuously orbit equivalent.

Proof. We may assume that (X, ) = (Y,v) and that Gx = Hz for every x € X. Denote by %
the o-algebra of Borel subsets of X. Denote by ¢ the mean f — [y fdu on L>(X, p).

Let V be a finite subset of 4. We claim that for every £ > 0 there is a finite subset W
of # containing V such that for any mean ¢ on L*(X, u) satisfying ¥ (sla) = 1(14) for all
s € Hand A € W one has |p(1a) —9(14)| < € for all A € V. Suppose to the contrary that
for some € > 0 and every finite subset W of # containing V' there is a mean ¥y on L*°(X, )
satisfying Yw(sla) = Yw(la) for all s € H and A € W and maxaev |¢(1a) — Yw(1a)| > e.
Then any cluster point ¢ of the net {¢y} (with index directed by inclusion) is H-invariant
and maxacy |©(14) — ¥(14)| > €. This contradicts the unique ergodicity of H ~ (X, i), thus
verifying our claim.

For any countable subset V' of 2, writing V' as the union of an increasing sequence {V}} of
finite subsets of V' and taking a sequence {ej} of positive numbers tending to 0, we conclude
from above that there is a countable subset W of & containing V' such that for any mean 1 on
L>°(X, ) satisfying ¢(slg) = 9(14) for all s € H and A € W one has ¢(14) = ¢(14) for all
AeV.

For a given countable set &/ C %, denote by &/’ the G* H-invariant subalgebra of % generated
by &7, which is again countable. Take a countable subset @ of % such that for any distinct
x,y € X one has 14(x) # 14(y) for some A € 7. Inductively, having constructed a countable
subset <7, of Z, we take a countable subset 7,11 of Z containing .27 such that for any mean
Y on L(X, ) satisfying ¢(sla) = 1(1a) for all s € H and A € @11, one has p(14) =1 (1a)
for all A € 7.

Now we put &/ = |J,, #%,. This is a countable G x H-invariant subalgebra of %. For any mean
Y on L>®(X, ) satisfying ¢ (sla) = ¢(14) for all s € H and A € o7, one has ¢(14) = ¥(1a)
for all A € o/. Denote by 2 the G x H-invariant unital C*-subalgebra of L*>°(X, 1) generated
by the functions 14 for A € /. Then 2 is the closure of the linear span of the functions 14
for A € o/ in L>°(X, ). Thus every state of 2 is determined by its values on the functions 14
for A € o/. Since every state of 2 extends to a mean of L*(X, i), we conclude that ¢y is the
unique H-invariant state on 2.

Define a G * H-action on {0, 1} *(G+H) by (sw)a = wy 414 for w € {0, 1}y (GH) A € o7,
and s,t € G * H, and consider the G * H-equivariant Borel map 7 : X — {0, 1}*(@*H) giyen
by m(z)as = 1a(t tw) = lya(x) forz € X, A€ o/, and t € G H. Since & C &/, the map 7 is
injective and hence is a Borel isomorphism from X to w(X) [20, Corollary 15.2]. Put pz = mpu
and Z = supp(pz). Then Z is zero-dimensional and py is a G % H-invariant Borel probability
measure on Z of full support. Put Zy = 7(X)NZ. Then Zj is G * H-invariant with uz(Zp) = 1,
and Gz = Hz for all z € Zy. The pull-back map 7* : C(Z) — L>®(X, p) is a G x H-equivariant
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*-homomorphism. From the Stone—Weierstrass theorem we get 7*(C(Z)) = 2. Since Z is the
support of m,u, the map 7* is injective and hence is an isomorphism from C(Z) to 2. Thus
C(Z) has a unique H-invariant state, which means that H ~ Z is uniquely ergodic.

Now assume that G ~ (X, pu) and H ~ (Y,v) are boundedly orbit equivalent. By passing
to suitable invariant subsets we may assume that G ~ X and H ~ X are both genuinely free
and that the cocycles k' : G x X — H and X : H x X — G are both bounded. Adding more
sets to 27, we may assume that for every ¢ € G (resp. t € H) there is a finite partition & of X
contained in ¢4 such that ' (resp. \’) is constant on {t} x P for every P € &. Then we can
extend k (resp. A) continuously to G x Z — H (resp. H x Z — G). O

Theorem 5.2. Let G ~ (X, u) and H ~ (Y,v) be free p.m.p. actions which are boundedly orbit
equivalent. Let . be a collection of sofic approximations for G. Suppose that G has property
S-SC and that the action H ~ (Y,v) is uniquely ergodic. Let 11 be a sofic approzimation
sequence in .. Then

hy(H~Y) > hn (G X).

Proof. Combine Lemma 5.1, Theorem 4.1, and the variational principle (Theorem 10.35 in
[24]). O
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