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Abstract— Precision agricultural robots require high-
resolution navigation solutions. In this paper, we introduce
a robust neural-inertial sequence learning approach to track
such robots with ultra-intermittent GNSS updates. First, we
propose an ultra-lightweight neural-Kalman filter that can
track agricultural robots within 1.4 m (1.4 - 5.8 better than
competing techniques), while tracking within 2.75 m with 20
mins of GPS outage. Second, we introduce a user-friendly
video-processing toolbox to generate high-resolution (+5 cm)
position data for fine-tuning pre-trained neural-inertial models
in the field. Third, we introduce the first and largest (6.5 hours,
4.5 km, 3 phases) public neural-inertial navigation dataset for
precision agricultural robots. The dataset, toolbox, and code
are available at: https://github.com/nesl/agrobot.

I. INTRODUCTION

Midway through the 1980s, precision agriculture (PA)
emerged as a technique for timely, granular, and data-driven
management of farms, livestock, orchards, and turfs [1]. PA
optimizes production, minimizes waste, and reduces financial
costs while enhancing environmental sustainability and food
security [2]. Mobile robots, equipped with various sensors
(e.g., soil moisture), actuators (e.g., delicate fruit-picking
end-effectors), and machine-learning algorithms (e.g., weed
classification), form key aids in automatically handling vari-
ability and uncertainties in agricultural practices [3][4][5][6].

Identifying precise points of interest in the field re-
quires a high-resolution navigation solution for agricultural
robots [7]. Large-scale agricultural robots use bulky and
power-hungry RTK GPS/GNSS systems to navigate with a
resolution of +0.4 m [7][8]. This approach is not suitable
for agricultural robots designed to operate in row crops
(e.g., flaxseed and canola) where the crop line spacing is
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less than 0.3 meters, or the robot must travel under crop
canopy (GPS-denied) [9]. Such robots have a limited size,
computing, and power budget, yet require a high preci-
sion navigation solution not achievable by GPS alone [9].
Proposed alternatives include using wheel encoders [10] or
cameras (visual odometry) [11]. The former suffers from
wheel slippage in muddy patches [12], while the latter suffers
from changes in ambient lighting, occlusions, excessive
power consumption, and terrain bumps [9]. Using quadrotors
and radio beacons has coverage and infrastructure setup
issues, which may not scale well across different fields [13].
Another alternative fuses inertial navigation systems (INS)
with GPS/GNSS updates using Kalman filters [14][15][16].
While inertial sensors have a small footprint, low delay, and
low power [11][17], existing GNSS/INS frameworks for PA
use heuristic propagation models that are over-reliant on GPS
updates to prevent position drift.

Here, we introduce robust neural-inertial (NI) sequence
learning [17][18] as the propagation model in GNSS/INS
Kalman fusion for PA. Instead of using human-engineered
models, a neural network predicts the velocity and location
of the robot during Kalman propagation from raw inertial
measurement unit (IMU) readings. The robot can navi-
gate longer without GPS updates over heuristic-based tech-
niques [17][19][20][21][22]. Nonetheless, using pre-trained
NI localization models requires 1-20 minutes of labeled high-
resolution ground truth position data in the target field [17],
which is hard to obtain by physically visiting the field. We
introduce a video-processing pipeline that allows farmers
to automatically extract position from raw quadrotor video
feeds and use the labeled data to fine-tune pre-trained mod-
els. We also release the largest public NI navigation dataset
for mobile robots for PA. Our contributions are as follows:

e PANI dataset: A dataset containing 6 hours (4.5 km) of
high-fidelity IMU, GPS, and ground truth position data
from a real PA mobile robot for training NI models;

e An automated video-processing pipeline to extract
ground truth position data from quadrotor videos to fine-
tune pre-trained odometry models;

o A neural-Kalman filter that combines the precision of NI
sequence learning with the accuracy of GNSS updates,
thereby reducing over-reliance on GNSS.

II. RELATED WORK

A. Inertial Odometry Techniques

MEMS IMUs suffer from the curse of drift due to angular
random walk, bias instability, and white noise [38][39]. The
position estimation error is constrained by two methods:
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TABLE I: Inertial navigation datasets

Dataset

OxIOD [23], RoNIN [20], TUM-VI [24], RIDI [25]
KITTI [26], Berkeley DeepDrive [27], Oxford
RobotCar [28], nuScenes [29], Waymo Open [30]
Zurich Urban [31], EuRoC MAV [32]

AQUALOC [33]

Application
Pedestrian dead reckoning
Autonomous driving

Quadrotor tracking
Underwater navigation

Heuristic techniques: These methods use physics-based
kinematic models to estimate heading and displacement.
Heading estimation techniques include heuristic drift re-
duction, opportunistic calibration, magnetic map matching,
and quasi-static moment detection [17][40]. Belief-based
velocity and transportation mode constraints, such as zero-
velocity updates, stride length estimation based on physi-
ological knowledge, map information, and time-frequency
analysis are used to mitigate double-integration displacement
errors [41][42][43]. Kalman filters are widely used to fuse
information from GPS, LIDAR, WiFi, and cameras with
INS [44]. While heuristics-based techniques are computa-
tionally tractable, these “approximate” system models fail
even when the assumed conditions change slightly [17][19].
Deep-learning (DL) techniques: DL-based methods are
capable of capturing nonlinear motion dynamics without
requiring human knowledge [17]. Techniques include using
neural networks to adapt noise models and supply veloc-
ity pseudo-measurements to Kalman filters [45][46], adapt
belief-based velocity constraints [47], and regress velocity,
heading or displacements end to end [17][19][23][20][21].
The last technique, known as NI localization [18], is the
favored approach due to its superior long-term resolution
compared to heuristic methods. However, only a subset of
NI localization models can be deployed on actual hardware.
Furthermore, pre-trained neural networks need labeled data
to fine-tune in the target domain [17], and their application
potential for PA is unexplored.

B. Inertial Navigation Datasets

Table I shows several public inertial odometry datasets
for localization applications in GPS-denied environments.
While the aforementioned datasets are useful for prototyping
NI models, Saha et al. [17] showed that odometry models
trained on one dataset are not directly transferable to other
datasets or real-world applications. The pre-trained models
must be fine-tuned on a few minutes of labeled data in the
target application for the model to adapt to the motion prim-
itives. The motion dynamics of agricultural robots signifi-
cantly differ from those of cars or quadrotors, as evidenced
by the occurrence of wheel slippage, uneven terrain (loose
nonholonomic constraints), high-amplitude motor vibrations,
and constrained travel paths [9]. These make the direct usage
of existing datasets for fine-tuning pre-trained models for
PA non-viable. Consequently, no public inertial navigation
datasets exist for PA applications.

C. Fusion of INS and GNSS

Fusing GNSS and INS wusing Kalman filters with
heuristic propagation and update models has been ex-
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Fig. 1: Data collection setup for the Agrobot dataset. Dotted
red insets show the robot, dotted yellow insets show the
ground truth setup, and the solid blue insets show the
reference landmarks. (a) Phase 1 (b) Phase 2 (c) Phase 3
(d) The robot and the reference landmarks (checkerboard
patterns) as viewed from the quadrotor camera in Phase 3.

tensively explored and implemented commercially, for
decades [48][16][49][50][51]. The INS runs faster than GPS
measurement updates, allowing agile navigation of fast-
moving objects such as quadrotors [52]. The drift in INS
trajectory is intermittently corrected by GNSS measure-
ments [50], while the INS takes full control during GPS
outage (e.g., inside tunnels). As we will showcase, how-
ever, the inadequate long-term odometric resolution of the
heuristic-based INS model leads to an overreliance on GPS
updates. While this is acceptable for applications with map
information and position resolution of £1m, the approach
is unsuitable for agricultural robots requiring odometric
resolution as low as £10cm. The superior performance of NI
navigation over heuristic-based techniques makes learning-
enabled propagation models viable [20][19][45], but no prior
work showcased the fusion of NI models with GPS updates.

III. THE AGROBOT DATASET

The Agrobot dataset contains 6.5 hours of 9DoF IMU data
(2 hours of GPS data) and ground truth position, collected
in 3 phases from an agricultural robot intended for precision
farming [9][53]. We also provide an automated video pro-
cessing pipeline for farmers to collect labeled ground truth
position data using quadrotors for fine-tuning pre-trained NI
odometry models for their own applications.
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TABLE II: The AgroBot dataset

Phase Location IMU Model Ground Truth Setup Position Resolution Length (hrs) Distance (km) Sequences
1 Indoor InvenSense MPU-9250 [34] OptiTrack 13W-P MoCap [35] ~ 0.5mm@120Hz 3.0 2.5 (~278 m / seq.) 9
2% Rooftop farm Bosch BNOO055 [36] OptiTrack 13W-P MoCap [35] ~ 4.0mm@60Hz 2.0 1.4 (~285 m / seq.) 5
3 Strawberry farm Bosch BNOO55 [36] DIJI Mini 2 FC7303 [37] ~ 5.0cm@30Hz 1.5 0.6 (~114 m / seq.) 6

* also has GPS data from UBlox ZED-FOR.
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Fig. 2: Automated pipeline to extract 2D ground truth robot position in global coordinates from the quadrotor video feed.

A. Data Collection Setup

Fig. 1 and Table II illustrate the data collection setup for
three phases. In all phases, we drove the agricultural robot
with a remote (Logitech F710 wireless gamepad). The IMU
data were logged at ~100 Hz and the GPS data were logged
at 1 Hz. At the beginning of each sequence, ground truth
position and IMU/GNSS data were synced using ”static-
rotate-static” motion patterns. In phase 1, we mounted
a standalone Sparkfun Razor IMU board (containing an
InvenSense MPU-9250) on the robot to log the robot’s
dynamics on an SD card, and 6 MoCap infrared markers
with 5 OptiTrack Prime 13W [35] cameras to log sub-mm
resolution ground truth position on a workstation. The robot
was confined to travel in an indoor space of ~ 3m x 2m.
Nine sequences were collected in this phase, totaling 2.5
km traveled and three hours of data. We used the ground
plane supplied by OptiTrack as a reference landmark for
the MoCap system. In phase 2, we used an in-robot Bosch
BNOO055 IMU [36] and UBlox ZED-FO9R GNSS module
to log inertial and GPS data, respectively, on the robot’s
control computer using ROS backend [54]. We used the same
ground truth setup from phase 1 in a rooftop farm measuring
~ 3.7Tm x 2.5m. The robot was allowed to drive between
flaxseed crop lines spaced 0.3 meters apart, emulating typical
flax and canola crop line spacing from North Dakota for
which the robot was designed [9]. Moreover, the farm was
deliberately made bumpy (loose nonholonomic constraints)
and slippery (possibility of wheel slippage) for high-fidelity
data collection. Across 5 sequences, 2.0 hours of data were
recorded, totaling 1.4 km of distance traversed. Finally, in
phase 3, we logged 1.5 hours of data across 6 sequences
(0.6 km) on a strawberry farm in Oxnard, California. We
used a DJI Mini 2 ($449) retrofitted with a DJI FC7303
gimbal-stabilized camera [37] pointing downwards to capture
the robot’s movements in the strawberry crop line spacings.
The quadrotor is low-cost and lightweight, yet it provides
a high-resolution (4k), 3-axis stabilized video feed under

windy conditions (at 25 mph). The quadrotor was set to
hover at ~ 20m. For reference landmarks, we placed 4 x 8
checkerboard patterns measuring 8.5 x 11 inches at the edges
of the camera’s field of view. The robot moved in a 20m x 8m
area with sandy loam soil, muddy patches, uneven terrain,
and 0.3 meters crop line spacing. Phase 3 environment is the
most realistic in which the robot is expected to operate.

B. Video Processing Toolbox

While the MoCap system achieves sub-mm ground truth
position resolution, it is not ideal for field data collection
due to its limited coverage, high cost (~ $10%), reliance
on specialized software and servers, and optical glare sen-
sitivity [55]. Farmers are more likely to collect labeled
data using the setup depicted in Phase 3. However, the
camera’ video feed does not provide position information
directly. Thus, we designed a computer-executable automated
pipeline for extracting 2D position (at £5.0cm resolution)
from raw videos, shown in Fig. 2. The user only supplies the
horizontal distance, h between landmarks ¢ and 7, and the
vertical distance, v between landmarks k£ and [ in the global
coordinates to determine the scale factor of the camera. The
pipeline consists of 3 steps:

Video Pre-processing: RGB video frames are first converted
to grayscale. Extended maxima transform [56] then returns
pixel groups with a specific intensity surrounded by pixels
with a lower intensity, removing unwanted artifacts, e.g.,
plants, crop line spacings. Finally, morphological open-
ing [57] with disc structuring element removes graininess,
leaving only the landmarks and the robot intact.

Object Tracking: The user marks the bounding boxes for
the landmarks and the robot in the first frame. The Kanade-
Lucas-Tomasi tracker [58] then traces the landmarks and the
robots across subsequent pre-processed video frames. We
use the minimum eigenvalue algorithm [59] to extract the
tracking features. In each frame, the outputs are the bounding
boxes of the landmarks and the robot. Only the selected

9624



landmarks 4, j, k, and [ need to stay in frame through the
entire run, while others can be missed.

Pixel to Position Transformation: Pixel centroids are de-
rived from the corner points of the bounding box. After
the first frame, the robot’s centroid position is corrected
based on the average change of landmarks in all succeeding
frames. This compensates for the quadrotor’s movement
caused by wind. Occasionally, the tracker may lose the robot
or some of the landmarks after tracking for specific periods
due to shadows or sudden pixel intensity changes. During
these periods, tracking stops, and the user is prompted to
perform a warm-start by re-drawing the robot and landmark
bounding boxes in the first of the succeeding frames where
the landmarks and the robot are noticeably visible. Linear
interpolation is used to fill the gaps between warm-starts and
the last known object position. Median filtering [60] smooths
out high-frequency noise from the tracker. Finally, the pixel
positions are converted to global coordinates by multiplying
them with the scale factor s, s,:

|Cap — ol Cya — Cyal
A S R

C¢ , is the centroid of landmark c at frame b for axis a.

Sy &5y, (1)

IV. NEURAL-KALMAN GNSS/INS FUSION

We propose a neural-Kalman formulation to fuse GNSS
with INS. We use velocity, magnetometer, and physics-
centric NI sequence learning [17] for Kalman propagation,
and GNSS measurements for Kalman updates. The proposed
method combines the odometric resolution of neural net-
works [18] with the long-term accuracy of GPS.

A. Robust Sequence Learning Formulation

The heading-displacement inertial sequence learning for-
mulation, proposed by IONet [19], is given as follows:

(Alp, Ay) = yo(v/ (0), 8,80 Whegin)- (D)

Under loose nonholonomic constraints, a neural network yy
predicts the displacement Al; and heading rates Ay in
polar coordinates from a window of accelerometer ﬁé:q Tn
and gyroscope Wé:q 1, readings of size n in the body frame
I. The initial velocity v/(0) and gravity g/ in each window
are treated as latent states. Saha et al. [17] showed that the
Eq. 2 is affected by gravity pollution, high-frequency inertial
signatures, varying sensor orientation, and heading rate sin-
gularity. Thus, we use magnetometer, physics, and velocity-
centric sequence learning resistant to the artifacts [17]:

al ~ 1 ~ 1
(Ul’vk’ Uny) = Yo (VI(0)7 gé? N67 aq:q+n7 wq:q+n7 mq:q+n7

cx('a)), (') = ||FFT(|agq 40|

Firstly, yp now predicts the 2D Cartesian velocities as
opposed to the displacement and heading rates, and is robust
to singularities in heading rates caused by motion primitives
dominated by rotational artifacts. Secondly, magnetometer
readings ﬁléz 4+n Provide an additional global anchor N/ (the
3D magnetic north) besides gl. This makes yy robust to

3)

varying sensor orientation, gravity pollution, and continuous
movements. Lastly, to prevent false triggering of yg due to
varying sensor placement, noise, and rotational motion, g
is fed the absolute value of the mean discrete Fourier trans-
form coefficients of the accelerometer norm, signifying the
transportation mode of the object (e.g., static, accelerating,
decelerating, constant velocity, etc.). This is known as the
physics metadata channel ¢ [17]. For window length n and
stride s, the 2D position L at epoch k is:

S Vg k
Lx,k = Lx,kfl + s’

S Uy k
Ly,k = Ly,kfl + n,ys .

“4)

The network parameters # are optimized using the strided
velocity loss [20]:

Ly =E[(va.gk = va)’] + KE[(vy g6 — vy6)°] (5)

B. Neural-Kalman Fusion Formulation

The discrete-time extended Kalman filter (EKF) [63]
[64][65] propagate and update steps are:

X1k = f(Xes U1, Wi 1),
P =Fi1PFY |+ Gp1QGL
k+1lk = Fpp1Pely ) + Grp1Qr Gy,

_of _of
Frpi1= B y Gri1= 90 , (6)

X Wk 41,Wh1 Xpo Up4+1,Wh41

—1

T T
Kit1 =PrppeHe g | Het1PrppHyg g + R ;

innovation covariance

Xpy1kr1 = Xegifk + Kegr | 2o — R(Xeqape, vie) |

measurement residual
(7

In propagate state, the predicted state X at the current epoch
k+1 is a non-linear function f of the past state, the current
control input u, and the additive white Gaussian process
noise w with covariance Q. The predicted process covariance
P, given by the Lyapunov equation [66], is computed using
the Jacobians of f w.r.t. X and w at k, linearizing the process
model about current states. During update state based on
measurements, the near-optimal Kalman gain K is computed
by linearizing the observation model h. The measurement z is
mixed with additive white Gaussian noise v with covariance
R. The measurement residual is multiplied by K and added
to the predicted state to yield the updated state. The process
covariance is updated using algebraic Riccati recursion [66].
Consider a dynamical system such that Ty : X1 —
Xp | Tj is linear, and g : Xj41x — Up41 | g is non-linear.
If T and g are linearly separable, the system evolution is:

_ __ Oh
Priijprr = (0= Kep1He 1) Pryap, Hiyr = %‘f(kﬂ‘k'

X 1jk = AXp + g(Upy1),

P, 1 = AP,AT + By UBl |, By =22 . (8)

R Uk 41
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TABLE III: (Left) Position resolution and model size of our method (Neurl-KF) versus state-of-the-art baselines. (Right)
Abalation study showing the effect of velocity (V), physics (P) and magnetometer (M) on the sequence learning formulation.

Phase 1 Phase 2 Phase 3 . \4 P M Pha. 1 ATE (m)
Method ATE (m) RTE (m) | ATE (m) RTE (m) | ATE (m) RTE () | Model Size (MB)*
TONet [19] 3.08[165 025[1.12 | 733843  1.07]0.03 | 634[5.04  1.44[0.17 71 v v 1.66|7.85
L-IONet [23] 406164  0.13[1.17 | 159257  1.05[2.05 | 437|137  1.55/0.97 0.55
AbolDeeplO [22] 525]157  043[1.06 | 129]21.0 0.81]056 | 3.57]25.0  1.65]1.16 125 vy v x 2.04129.8
VeTorch [21] 1.93]14.8  0.11]0.99 | 3.83[152  0.26/1.30 | 2.84]168  0.95/0.24 29.6
Neurl-KF (no GPS) | 1.66]7.85 0.13]L.10 | 272105 0.44/0.97 | 0.89]9.02  0.26[2.58 1.10 s ox 226(9.13
Method Dataset ATE (m) RTE (m) Model Size (MB) . o
RoNIN [20] RoNIN [20] 173 121 65
TLIO [46] TLIO [46] 25 0.15 ~6.5 x v v 2.53|16.4
AL-IMU DR [45] KITTI [26] 16.8 1.10 0.67
Neurl-KF (no GPS) AgroBot 1.76]9.12 0.28]1.55 1.10 o X X 1.86 21.0
@ Phase 1 Phase 2 Phase 3 .
Method ATE (m) RTE (m) | ATE (m) RTE (m) | ATE (m) _RTE Gm) | Code Size (MB) X v X 2.00 [16.3
UKE-M INS+GPS [61] 7.06 0.18 i35 021 8.00 .07 0.192
EKF INS+GPS [62] 222 035 224 0.35 5.48 1.05 0.077 X x v 3.22/16.3
GPS only (no INS) 1.90 0.40 1.88 0.40 1.89 0.45 ;
Neurl-KF (with GPS) | 037]1.07  0.16/0.30 | 1.08]2.20 041]|1.16 | 163]2.17  0.28]0.45 112 X X X 2.46 |16.6

* unfrozen (.hdf5) model size; @ GPS rate: 1 Hz

first term in ATE/RTE is on seen trajectory, second term is on unseen trajectory; single term is on unseen trajectory

best method, second best method

For physics, velocity, and magnetometer-centric NI navi-
gation, under loose nonholonomic constraints, the Kalman
propagation is given as:

I}I aé:qun
X — Ly = Woig+n A= Lo 0242 9
X Vg e m(}:q—i-n ’ 02><2 02><2 ’ ( )
Uy C(aq:q+n)
At -1 S

The neural network yy(-) provides a non-linear black-box
mapping between u and X, supplying velocity pseudo-
measurements from raw IMU readings. Thus, By is the
linearized Jacobian of yy(-) w.r.t. the 9-DoF IMU readings
and the physics channel in the current input window:

error and velocity estimation error.

C. Backbone Neural Architecture

To extract spatial and temporal features jointly and
hierarchically, we use a temporal convolutional network
(TCN) [69][70] to model yg [45][23][21]. Firstly, the use
of dilated convolution kernels allows TCNs to have a larger
receptive field with lower layer count, memory footprint,
and parameters than CNNs, allowing yy to discover global
context in long sequences at high input resolution. Sec-
ondly, TCNs use causal convolution to maintain temporal
ordering without using computationally-expensive recurrent
units, which suffer from the exploding and vanishing gradient
problem [71]. Thirdly, TCNs fuse layers using gated residual
blocks for non-linear temporal interaction modeling [23].

V. EVALUATION

At@yez Atayez Ataygz Ataygz
‘Zat%qm aA“;:I:qu" i“;%qm 30&*;%,,%) We used 80% of the AgroBot dataset for training the NI
— Yoy — Yoy o You 5ot Yoy ) models and 20% for testing (split by sequence). The window
a’ . W m_ cla,. . .

Bopi= | g™ Cohart T ana oge | - (11)  size, n was 100 (1 second), and the stride, s was 20 (0.2
oal . owL .., oml .. Oclal,.,) second). The backbone TCN had 8 layers (dilation factors:

Yoy Yoy Yoy Yoy 1,2,4,8,16,32,64,128), 32 filters, a kernel size of 5, and ski

08y gpn  MWogrn  OMg,y,  Oc(ag,,,) P

U consists of Allan variance parameters [67] of the IMU,
including the accelerometer noise variance (02(n,r)), vari-
ance in gyroscope angular random walk (0’2(W£RW\/B>)
and bias instability (0%(wg;)), gyroscope noise variance
(0%(nyr)), and the magnetometer noise variance o2 (7).
The following U also contains the sum of the accelerometer
noise variances in each axis owing to c:

U = diag(c0?(nar), o2 (WhawVAL) + o2 (wh))+
Uz(nwf)v UQ(nmI)v Z 02(naf)).

The measurement update z comes from the GNSS module.
h denotes the inverse mapping from longitude-latitude to
2D Cartesian coordinates and the resulting 2D Cartesian
velocities with the WGS-84 ellipsoid geodetic model of the
Earth [68]. R is the covariance of GNSS position estimation

12)

connections. The outputs of the TCN were reshaped, pooled,
flattened, and fed to a 32-unit dense layer. The batch size,
optimizer, and training epochs were set to 256, Adam (learn-
ing rate: 0.001), and 3000, respectively. The models were
implemented in Keras [72] using TensorFlow backend [73]
on a Lambda GPU workstation. The final models were
deployed on the robot’s Nvidia Jetson Nano board, featuring
1.43 GHz ARM A57 CPU, 128-core Maxwell GPU, and 4-
GB RAM [74]. The NN baselines [19], [21], [22], [23] were
implemented by us and trained fresh on the AgroBot dataset.

A. Localization Performance and Resource Usage

Table III (left) summarizes the absolute trajectory er-
ror (ATE, root-mean-squared-error between predicted and
ground truth locations for the whole sequence) [20] and
relative trajectory error (RTE, ATE over 1 minute inter-
vals) [20] of our model (Neurl-KF) and competing proposals
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Fig. 3: (Left) Sample trajectory reconstruction (no GPS, traveling 100 m) for Neurl-KF and competing proposals. (Center)
Sample trajectory reconstruction (1 Hz GPS, traveling 100 m) for Neurl-KF and competing proposals. (Right) Error evolution
(RTE) versus GPS outage time of Neurl-KF and competing proposals. The left graph is a zoomed-in part of the right graph.

on the AgroBot dataset. Compared to competing NI models
(no GPS) [19][22][21][20], Neurl-KF lowers code size and
ATE by 1.5 - 27x and 1.4 - 5.8x, respectively while
having comparable RTE, tracking the robot within 1.4 m.
The lightweight neural backbone, combined with robust se-
quence learning constrains both the error and the model size.
Compared to classical GPS-enabled techniques [61][62], at
1 Hz GNSS updates, Neurl-KF lowers the ATE and RTE
by 1.2 - 11x and 1.1 - 3.8x, respectively. Fig. 3 (left,
center) shows sample trajectory plots for Neurl-KF and
baselines. Competing NI models are smooth but drift rapidly,
unable to handle wheel slippage, rotational artifacts, uneven
terrain, and motor vibrations. GPS-enabled baselines trust the
noisy GPS updates more than the IMU, leading to a noisy
trajectory. Neurl-KF, on the other hand, learns to retain the
smoothness of NI odometry and the accuracy of GPS.

B. Ablation Study for Sequence Learning Formulation

Table III (right) shows the importance of each component
in our velocity, magnetometer, and physics-centric sequence-
learning formulation. Our formulation lowers the ATE by 1.1
- 3.8%. The addition of magnetometer data and changing
the output of yy to regress velocity instead of (Alg, Ady)
reduces the ATE the most.

C. Error Evolution with GPS Outage

Fig. 3 (right) shows the RTE of Neurl-KF and baselines
under varying GPS outage times. Our technique constrains
the RTE and ATE to 0.4 m and 2.75 m, respectively, even
with 20 minutes of GPS outage. Competing INS+GNSS
baselines drift quickly due to IMU double integration error
explosion. While the GPS-only baseline has similar ATE and
RTE with our Neurl-KF, direct GNSS updates are noisy and
unusable, as shown in Fig. 3 (center). Note that the sudden
drop in RTE for baselines at 5 minutes and 20 minutes is
likely due to the measurement updates coinciding with less
noisy GNSS measurements closer to the ground truth.

D. Fine-Tuning Performance

Table IV illustrates the performance of pre-trained models
on unseen datasets, as well as RTE comparison between pre-
trained models and models trained from scratch. Without
fine-tuning, NI models trained on one dataset are not directly

TABLE IV: Fine-tuning performance (RTE, m)

Training Dataset RTE (m) on Inference Dataset (Unseen Trajectory)
P1 P1 (FT) P2 P2 (FT) P3 P3 (FT)
P1 1.10 14.5 1.45 15.0 4.96
P2 2.71 1.09 0.97 - 4.25 2.63
P3 1.85 0.76 1.93 1.15 2.58
RTE (m) with T minutes of data in the new domain*
Method T=1 T=5 T=120
Train from scratch 26.8 3.29 2.55
Fine-tune* 1.92 1.62 1.45

PI: Phase 1, P2: Phase 2, P3: Phase 3
FT: Fine-tuning with 20 minutes of data in the new domain for 100 epochs
* The pre-trained model was trained on Phase 1 data; target dataset: Phase 2

transferable on another dataset, as the RTE on the unseen
dataset is 1.6 - 13.6x higher than on the trained dataset. The
difference in IMU noise characteristics and motion artifacts
leads to high RTE in the new domain. With transfer learning
on small amounts of labeled data in the target domain, the
RTE in the target domain matches the in-domain RTE. In
fact, fine-tuning pre-trained models in a targeted domain
requires <20x data than training a model from scratch. Fine-
tuning with 1 minute of labeled data outperforms training
from scratch with 20 minutes of data by 1.3x.

VI. DISCUSSION AND FUTURE WORK

This paper presents a dataset, ground truth data collection
tools, and a robust yet lightweight neural-Kalman formu-
lation for developing high-resolution localization solutions
for precision agricultural robots. Our solution tracks robots
within 1.4m with 1 Hz GNSS updates, and within 2.75 m
with 20 minutes of GNSS outage. Neurl-KF balances the
trust between GPS and IMU better than existing conventional
and neural INS, providing 1.1-5.8x higher resolution while
being resource-efficient and robust to inertial disturbances.
The user-friendly vision pipeline allows pre-trained models
to be adapted to the target domain with only a minute
of labeled data, improving deployability in the wild. The
main drawback of our solution is the need for fine-tuning
pre-trained models with high-resolution labeled data in the
target domain. Possible use of on-device domain adaptation,
on-device learning, and use of BERT-like pre-trained IMU
embeddings [75] need to be explored to automate the tuning
process with unlabelled data [17].
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