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Anisotropic acoustics in dipolar Fermi gases
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We consider plane wave modes in ultracold, but not quantum degenerate, dipolar Fermi gases in the hy-
drodynamic limit. Longitudinal waves present anisotropies in both the speed of sound and their damping,
and experience a small, undulatory effect in their flow velocity. Two distinct types of shear waves appear,
a “familiar” one, and another that is accompanied by nontrivial density and temperature modulations. We
propose these shear modes as an experimental means to measure the viscosity coefficients, including their
anisotropies.
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I. INTRODUCTION

Recent experiments have achieved the trapping and cooling
of magnetic lanthanide atoms [1–7] and heteronuclear polar
molecules [8–12] to ultracold temperatures, ushering in a
new era of dipolar physics. In particular, the realization of
collisional shielding in highly polar molecules with electric
fields [12,13] and microwaves [14,15] now permit investiga-
tions of collective dynamics influenced by both long-range
and collisional interactions. These two effects only become
comparable at large densities and dipole moments, establish-
ing the gas as hydrodynamic and therefore more appropriately
described as a fluid.

Classical fluids are known to host a vast variety of dy-
namical phenomena, attributed to the strong nonlinearities
in the governing equations of motion [16]. But even be-
fore the onset of nonlinear flows, linear hydrodynamics can
already be fascinating [17], made evermore so with dipo-
lar interactions. In polar molecular gases, tunability of the
dipole moment [18–20] and its orientation provide a handle
to control the influence of dipolar character on collective gas
behavior [21–23]. For instance, we find that a thermal gas with
comparable dipolar mean-field and kinetic energies hosts an
anisotropic speed of sound. Unlike its degenerate counterpart,
however, nondegenerate gases are prone to the incoherent
process of dipolar collisions which impede sound propaga-
tion. Of interest here are gases of fermionic molecules where
dipolar scattering is universal [24]. The thermalizing effect of
these collisions manifests in a continuum theory as thermal
conductivity and viscosity, quantities that require a tensorial
formulation by virtue of the scattering anisotropy. From a
microscopic description, we derive these so-called transport
tensors for fermions to first order in the Chapman-Enskog
fashion [25].

Although attributed to equilibration, viscosity can in fact
be utilize to take the gas out of equilibrium by means of shear
flows. When laminar, these flows decay away from the source
with characteristic penetration depths that are directly related
to the viscosity coefficients. We present these relations ex-
plicitly, which could allow for a measurement of the viscosity
coefficients from shear flow experiments.

The remainder of the paper is organized as follows: In
Sec. II, we present the general fluid equations of motion for
nondegenerate dipolar Fermi gases and linearize them. Prop-
agating modes of the fluid are studied in Sec. III, from which
a universal anisotropic speed of sound is obtained. A class of
mode solutions only present in thermoviscous fluids is studied
in Sec. IV, following which concluding remarks are drawn in
Sec. V.

II. LINEAR DIPOLAR HYDRODYNAMICS

A gas is said to be hydrodynamic when collisions result in
fast local thermalization, as occurs when the molecular mean
free path is much smaller than a characteristic physical length
of the system. This ratio of length scales is often referred to
as the Knudsen number, Kn [25]. When hydrodynamic, gases
are best described in terms of the continuous field variables
of mass density ρ, flow velocity U , and kinetic temperature
T [26], each of which are dependent on space and time.
These variables undergo dynamics governed by the continuity
[27], Navier-Stokes [28,29], and temperature balance equa-
tions [30]:

∂ρ

∂t
+ ∂ j (ρU j ) = 0, (1a)

∂ (ρUi )

∂t
+ ∂ j (ρU jUi ) = ∂ jτi j − ∂iP −

ρ

m
∂iV (r, t ), (1b)

∂ (ρT )

∂t
+ ∂ j (ρTU j ) =

2m

3kB

[(τi j − Pδi j )∂ jUi − κi j∂i∂ jT ],

(1c)

where P = nkBT is the thermodynamic pressure with number
density n = ρ/m, κi j is the rank-2 thermal conductivity tensor,
and τi j = μi jk�∂�Uk is the viscous stress tensor with rank-4
viscosity tensor μi jk�. Repeated indices are assumed to be
summed over. The external potential in consideration here
is that from the dipolar mean-field (DMF) V (r, t ) = n(r, t ) ∗
�dd(r) [31], where ∗ denotes a convolution and

�dd(r) =
d2

4πε0

1 − 3(r̂T
Ê )2

r3
(2)
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is the dipole-dipole interaction potential between two-point
electric dipoles of dipole moment d , aligned along the dipole
axis Ê . In the expression above, ε0 is the electric constant.

A. Linearization

In this paper, we limit ourselves to linear modes of an
initially uniform gas. To this end, the dynamical fields are
written as

ρ(r, t ) = ρ0[1 + χ (r, t )], (3a)

Ui(r, t ) = cξi(r, t ), (3b)

T (r, t ) = T0[1 + ε(r, t )], (3c)

only varying in space and time via the unit-free fluctuation
fields χ, ξi, ε � 1, with c =

√
5kBT0/(3m) being the ideal gas

thermal speed of sound. Dynamical quantities at equilibrium
are denoted with a naught subscript. To linear order in the
fluctuation field variables, the equations of fluid mechanics
become

∂χ

∂t
+ c∂ jξ j ≈ 0, (4a)

∂ξi

∂t
+

3

5
c∂i(ε + χ ) ≈

μi jk�

ρ0
∂ j∂�ξk (4b)

−
ρ0

m2c
∂i[χ (r, t ) ∗ �dd(r)],

∂ε

∂t
+

2

3
c∂ jξ j ≈

2

3n0kB

κi j∂i∂ jε. (4c)

Acoustic mode solutions for such a linear dynamical system
can be found by employing a plane wave ansatz χ, ξi, ε ∼
exp[i(KT

r − ωt )], with which we notice that the DMF poten-
tial just becomes a Fourier transform of �dd(r):

χ (r, t ) ∗ �dd(r) =
∫

d3r′χ (r − r
′)�dd(r′)

= χei(KT
r−ωt )

∫

d3r′e−iKT
r′
�dd(r′)

≡ χei(KT
r−ωt )ϕdd(K̂, Ê ), (5)

with ϕdd already computed in Ref. [32]. Computing dispersion
relations for the plane wave modes requires knowledge of the
thermal conductivity and viscosity tensors. Dipolar collisions,
however, necessitate that these objects maintain a construction
in their general tensorial forms since the collisional anisotropy
prevents the usual reduction to isotropic coefficients [30]. As
with dipolar bosons [22,23], analytic expressions for the these
tensors can be obtained using the first-order Chapman-Enskog
method [25,33] and utilizing the differential cross section for
dipolar fermions found in Ref. [24]. Details of this derivation
are provided in Appendices A and B, along with a list of the
explicit functional forms for each transport tensor element.

B. Plane waves

Employing a plane wave ansatz renders derivatives of fluc-
tuations variables ∂ j → iK j and ∂

∂t
→ −iω, so the differential

equations of Eq. (4) reduce to the eigensystem

ω

⎛

⎝

χ

ξ

ε

⎞

⎠ =

⎛

⎝

0 cK
T 0

(

3
5 c + ρ0ϕdd

m2c

)

K i� 3
5 cK

0 2
3 cK

T i�

⎞

⎠

⎛

⎝

χ

ξ

ε

⎞

⎠, (6)

having defined the thermal conductivity and viscosity associ-
ated rates

� = −
2

3n0kB

κi jKiK j, (7a)

�ik = −
1

ρ0
μi jk�K jK�, (7b)

respectively. With no other processes to break the symmetry
of the system, the anisotropy that arises in the mode solutions
only depends on the relative angle � between the dipole
orientation Ê and plane wave propagation direction K̂. Thus,
all essential physics is captured by setting K̂ = ẑ but allowing
� to vary. In these coordinates, which we assert for the re-
mainder of this paper, the transport associated rate functions
have the forms (see Appendix A)

�(�) =
875K2

12288a2
d
n0

√
πmβ0

(cos(2�) − 5), (8a)

�(�) =
5K2

2048a2
d
n0

√
πmβ0

⎛

⎝

9
4 (13 cos(4�) − 29) 0 3

4 (14 sin(2�) − 39 sin(4�))
0 9(5 cos(2�) − 9) 0

3
4 (14 sin(2�) − 39 sin(4�)) 0 1

4 (84 cos(2�) − 117 cos(4�) − 415)

⎞

⎠,

(8b)

where β0 = (kBT0)−1 is the usual inverse temperature, while
ϕdd reduces to the simple form

ϕdd(�) =
d2

3ε0
(3 cos2 � − 1). (9)

C. Mode frequencies

Any fluid dynamics resultant from Eq. (6) is fully described
by normal mode solutions, comprising mode frequencies ωa

and their corresponding mode amplitudes ψa = (χa, ξa, εa)
with a = 1 to 5. To obtain these normal modes analytically,
we consider long wavelength excitations such that δ = KL �
1, where L = (σn0)−1 is the molecular mean free path and
σ = 32πa2

d/15 is the angular averaged total cross section [24]
with dipole length ad = d2m/(8πε0h̄2). Since the transport
coefficients scale linearly with delta, μi jk�, κi j ∼ δ, long
wavelengths then permit series expansions of the mode solu-
tions in increasing powers of the transport tensors via Taylor
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expansions in δ. By diagonalizing Eq. (6) (refer to Ap-
pendix C), we obtain the following mode frequency solutions:

ω± = ±K
√

c2 + Edd(�) +
i

2

(

�33 +
2�c2

5(c2 + Edd )

)

, (10a)

ωμ,1 = i�11, (10b)

ωμ,2 = i�22, (10c)

ωκ = i�
(3c2 + 5Edd )

5(c2 + Edd )
, (10d)

to first order in δ, where Edd(�) = n0ϕdd(�)/m is the specific
DMF energy. The corresponding modes and their interpreta-
tion will be given in the following sections.

III. ANISOTROPIC SOUND

A. Sound velocity

The first two modes, with frequencies ω±, represent propa-
gating, longitudinal sound waves. Taking the long-wavelength
limit identifies the anisotropic speed of sound cdd(�) =
√

c2 + Edd(�). This is usefully written in terms of the dimen-
sionless parameter

η =
2πρ0

5

(

d2

ε0

)(

λth

h

)2

, (11)

which is a function of the thermal de Broglie wavelength
λth = h/

√
2πmkBT0 with h as Planck’s constant. The speed

of sound is given in terms of η as

cdd(�) = c

√

1 + η(3 cos2 � − 1). (12)

In this classical gas, quantum statistics enters only in the colli-
sion cross sections. Hence, the mean-field dominated result in
(12) applies equally to both bosons and fermions. As written,
the speed of sound in a normal dipolar gas has an anisotropy
similar to that for a dipolar Bose-Einstein condensate (DBEC)
[34–36], but with temperature replacing the role of quantum
fluctuations. The quantity η compares the magnitude of the
DMF with thermal energies, which at a fixed temperature
T0, varies by means of the background density ρ0 and dipole
moment d [13–15,20].

For propagation of sound waves along the direction of
dipole polarization, � ∼ 0, this propagation is stable, that
is, the value of cdd remains real valued. However, for suf-
ficiently large η, the speed of sound develops a significant
anisotropy due to the growing contribution from the DMF.
Going past the critical value of ηc(�) ≡ −(3 cos2 � − 1)−1,
DMF interactions may overcome the thermal kinetic energy,
causing cdd(�) to become imaginary [37]. An imaginary
speed of sound indicates a dipolar instability, also predicted
and observed in DBEC [34,38–42]. Notably, ηc is only well
defined within the interval bounded by the dipolar magic
angles �magic ≈ 54.7◦ and 125.3◦, at which ϕdd(�magic) = 0
[43]. Within the range of dipolar magic angles, ηc has a
minima of 1 at � = 90◦.

B. Undulating sound waves

The physics of sound gets more interesting at finite K ,
where transport tensors now enter the dynamical arena. To

FIG. 1. Imaginary part of the propagating mode frequency solu-
tions Im[ω±(�)] in Hertz (Hz), as a function of the dipole tilt angle
� in degrees (deg) at η ≈ 0.04. The figure inset plots the absolute
relative angle between K̂ and ξ̂, |cos−1(K̂ · ξ̂)|, also as a function
of �.

ground our discussions, we envision an experiment with
a box-trapped [44] uniform density sample of microwave
shielded 23Na 40K molecules cooled to T0 = 250 nK [15].
When η � 1, say at n0 = 1012 cm−3 and d = 0.75 D (η ≈
0.04), the DMF effects and therefore Edd become negligible
compared to kinetic processes. In this regime, we see that
the speed of sound reverts to that of an ideal gas cdd ≈ c,
while the imaginary part of ω± is strictly negative, leading to
sound attenuation. Resulting directly from dipolar collisions,
the observed attenuation for a long wavelength excitation of
δ = 0.1 is anisotropic, varying by a factor of ≈2 with � as
shown in Fig. 1.

The ω± modes have associated eigenvectors of the form

ψ± =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

0

0

± cdd

c

2
3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∓i �
cddK

i �13

cK

0

−i
(

�
5cK

(

4 + Edd

c2
dd

)

+ �33

2cK

)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (13)

defined up to an overall scale factor. The first term of the
sum in the expression above has nonzero and comparable
amplitudes in the fractional density shift χ , fractional z ve-
locity ξz, and fractional temperature shift ε, as expected for a
longitudinal wave propagating in the z direction. The second
term in ψ± shows the additional effects introduced by viscous
and thermal damping. Specifically, terms in the density and z

velocity are explicitly damped, while the temperature is not
yet damped at this level of approximation. Along with these
effects, a new one appears, namely, a damped motion in the x

velocity ξx.
These eigenvectors therefore indicate that, despite initi-

ating sound along K̂ = ẑ, the fluctuations in flow velocity
could occur in a slightly different direction depending on the
dipole orientation. That is, in these plane wave solutions, the
fluid flow along z alternately compresses and rarefies the gas,
while the fluid velocity simultaneously alternates between
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FIG. 2. The imaginary parts of the mode frequency solutions,
Im[ωκ ] (solid black curve), Im[ωμ,1] (dashed blue curve), and
Im[ωμ,2] (dotted red curve), as a function of � in a gas of 23Na 40K
molecules with n0 = 1012 cm−3 and d = 0.75 D (η ≈ 0.04).

flow along the +x and −x directions. The general fluid mo-
tion is therefore of a slightly undulatory nature. This effect,
albeit small, is one unique to anisotropic transport which we
illustrate with a plot of the absolute relative angle between
K̂ and ξ̂, |cos−1(K̂ · ξ̂)|, against � in the inset of Fig. 1. These
weak transverse motions are potentially observable in Doppler
spectroscopy of the undulating molecules.

IV. THERMOVISCOUS MODES

Even in the absence of sound, a silent hydrodynamic gas
of dipoles still has a story to tell. This narrative is populated
by the latter three modes of Eq. (10), all of which have
purely imaginary frequencies for any value of η and �. Once
again with η ≈ 0.04 and δ = 0.1, which suppresses effects
from the DMF, anisotropic damping is accentuated in these
silent modes with plots of the imaginary parts of their mode
frequencies in Fig. 2.

One of these modes, with frequency ωμ,2, has a particularly
simple form:

ψμ,2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

1

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (14)

This mode consists exclusively of flow velocity in the ±y

directions, the velocity being sinusoidally modulated along
z with wavelength 2π/K . If one were to “grab” the z = 0
layer of the fluid and shake it with frequency |ωμ,2|, a shear
wave would thus develop. This is an overdamped mode, and
hence its amplitude reaches only to approximately a certain
penetration depth, defined as the inverse absolute imaginary
part of the wave number [23,26]:

rμ,2 =
√

μ2323

2ωρ0
≈

3

64

√

5(9 − 5 cos(4�))

ωa2
d
n0

√
πmβ0

. (15)

The expression above is obtained from Eq. (10), by instead
solving for K in terms of a fixed driving frequency ω. Such
waves are, of course, already familiar in ordinary, isotropic
fluids.

A shear mode with fluid flow in the ±x direction is, how-
ever, affected by the anisotropy of the scattering (recall that
the dipolar orientation lies in the x, z plane). The x-shear mode
is given by

ψμ,1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
(

1 − �
�11

)

5c2
dd

2c2 + �
�11

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i �
cK

c2�13

c2
dd�11

0

0

0

−i 5�13

3cK

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (16)

Here again, the first term accounts for the dominant motion,
namely, oscillations in the ±x directions induced by shear.
The penetration depth for this x-shear mode under an os-
cillatory shear drive is, not surprisingly, also dipole angle
dependent, and given by the relation

rμ,1 =
√

μ1313

2ωρ0
≈

3

128

√

5(29 − 13 cos(4�))

ωa2
d
n0

√
πmβ0

. (17)

The second term in ψμ.1 denotes additional, accompanying
effects associated with this shear mode, in this case damped
modulations in the density and temperature fields. In this cir-
cumstance, where the dipoles are oriented somewhere in the
x, z plane, and the shear flow in the x direction, the anisotropy
of the collision cross section is capable of shoveling both
matter and kinetic energy preferentially into the ±z directions,
the same as it ordinarily does for momentum.

Because shear modes are a direct consequence of viscosity
in the gas, they present themselves as an experimental means
to measure the viscosity coefficients [45]. We propose an
oscillatory shear layer of constant frequency ω, realizable in
ultracold experiments with a time-dependent box trap bound-
ary condition. This oscillation would induce a shear excitation
that travels orthogonal to the shear layer with the �-dependent
penetration depths provided above. Seeing that the penetration
depths scale as ∼√

μi jk� ∼
√

L, ensuring rμ � L so as to
remain hydrodynamic can be enforced by tuning the dipole
moment appropriately. We therefore consider d = 2.5D at
n0 = 1012cm−3 (η ≈ 0.46), with an oscillation frequency of
ω = 2π100 Hz. These parameters result in rμ/L ≈ 18 to 35,
with values depending on the dipole orientation �.

To demonstrate this anomalous shear excitation, we plot
the time evolution of relative mode amplitudes ψ(t ) in Fig. 3,
after an impulse shear flow perturbation along x̂ with � =
π/4. We find that along with χ and ε, ξz is also subsequently
excited from this perturbation. In the plot, the relative ampli-
tudes for χ (t ), ε(t ) and ξz(t ) are rescaled by a factor of 103

for ease of visualization, but indicate that this effect is indeed
a small one. Temperature field variations via the introduction
of heat into a fluid are commonly referred to as entropy waves
[46,47], which if initiated by laminar shear flow, motivates the
title “shear-entropy waves.”

Not forgetting the fifth and final mode ψκ , we find that
in the range of � with Edd < 0, ωκ can vanish identically at
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FIG. 3. Relative fluid variable fluctuation amplitudes ξx (t ) (dash-
dotted black curve), χ (t ) (solid blue curve), ξz(t ) (dashed green
curve), and ε(t ) (dotted red curve) as a function of time t at z/L = 10,
after an impulse shear flow perturbation along x̂. The dipoles are
oriented with � = π/4. The relative amplitudes for χ (t ), ε(t ) and
ξz(t ) are rescaled by a factor of 103 for clarity of presentation.

suitably large values of n0 and ad such that Edd = −3c2/5
(i.e., η = 3ηc/5). Satisfying this condition would lead to a
mode where ε = ξx = ξy = ξz = 0 but χ �= 0, as made evi-
dent by its functional form

ψκ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

3
5

(

1 − �
�11

3c2+5Edd

5c2
dd

)

(

1 + 5Edd

3c2

)

0

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

i �13

cK

0

0

0

−i �13

cK

(

1 + 5Edd

3c2

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (18)

Such a mode implies the existence of long-lived density
modulations due to a balance between thermal and dipolar
mean-field energies. We leave further analysis of this phe-
nomenon to a future work.

V. CONCLUSIONS

We have formulated a comprehensive theory of normal
dipolar Fermi gases in the hydrodynamic regime, including
effects from both the DMF and collisions. When compara-
ble to the thermal energy, the DMF introduces a significant
anisotropy to the speed of sound. That is, sound travels
faster when parallel to the dipole orientation but slower
when orthogonal. If too large, the DMF can completely
overpower thermal molecular motion, triggering dynamical
instability (i.e., the speed of sound becomes imaginary). As a

consequence of the sound speed’s dipole angle dependence,
these instabilities only occur in waves that propagate at angles
within � ≈ 54.7◦ and 125.3◦, relative to the dipole orien-
tation. Outside this angular range, linear wave excitations
remain completely robust against dipolar collapse.

Collisions, on the other hand, serve to return the gas
to hydrodynamic equilibrium, the route of which is also
anisotropic. As in the case of bosons [22,23], thermal con-
ductivity and viscosity encompass these local thermalization
effects and result in the anisotropic damping of sound waves.
Additionally, we find that these transport tensors lead to a
minute undulatory divergence between the wave propagation
K̂ and fluid flow ξ̂ directions, an effect not possible in dipo-
lar superfluids. Not surprisingly, anisotropy is also present
in shear excitations that are directly consequent of viscous
stresses. We therefore suggest that experimental realizations
of shear waves could permit measurements of the viscosity
coefficients. A curiosity of laminar shearing a dipolar gas is
that the viscid flow could incite an anomalous density and
temperature excitation we identify as shear-entropy waves.

With dense long-lived samples of polar molecules now ac-
cessible to the ultracold community, we expect the phenomena
presented in this work and more yet to be explored with our
theory are experimentally achievable with current technolo-
gies. A direction for future work could therefore be to solve
the full nonlinear fluid equations, where we expect to find
a rich tapestry of hydrodynamic phenomena. Additionally,
recent experiments of electric field shielded KRb molecules
have suggested suppression of both two- and three-body
losses [13,48,49]. This opens opportunities for hydrodynamic
studies after the onset of dipolar collapse [40], where sus-
taining a large fraction of molecules past the instability could
permit turbulent cascades from strong nonlinear flows [17].

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
under Grant No. PHY2110327. The authors would like to
acknowledge referee II in the peer review process for their
thorough reading of the paper and detailed comments.

APPENDIX A: EVALUATION OF THE TRANSPORT

TENSORS

In a nondegenerate gas, local equilibrium occurs by means
of dipolar collisions parameterized by the dipole length ad .
Close to local thermal equilibrium, re-equilibration processes
are encapsulated by the transport tensors of viscosity and ther-
mal conductivity, derivable from a microscopic picture with
methods established by Chapman and Enskog [25]. Within
length scales on the order of the molecular mean-free path,
molecular interactions are dominated by collisional processes.
The local distribution of molecules thus has dynamics well
described by the Boltzmann transport equation

(

∂

∂t
+ vi∂i

)

f (r, v) = C[ f (r, v)], (A1a)

C[ f ] =
∫

d�′ dσ

d�′

∫

d3
v1|v − v1|

× ( f ′ f ′
1 − f f1), (A1b)
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where f (r, v) is the phase space distribution function and
C[ f ] is the two-body collision integral. All repeated indices
are summed over and primes denote postcollision velocities
for pairs of colliding molecules with incoming velocities v

and v1. We also adopt the compact notation f1 = f (r, v1) and
f ′ = f (r, v′). The gas number density is given by n(r, t ) =
∫

d3
v f (r, v, t ), which is only dependent on temperature at

thermal equilibrium, n0 = n0(β ). Thermal equilibrium also
imposes a Boltzmann velocity distribution

f0(u, β ) = n0(β )c0(u, β )

= n0(β )

(

mβ

2π

)3/2

exp

(

−
mβ

2
u

2

)

, (A2)

where β = (kBT )−1, u2 = ukuk , and u(r) = v − U (r) is the
peculiar velocity, defined as the molecular velocity v relative
to the flow velocity U (r, t ) = n(r, t )−1

∫

d3
v f (r, v, t )v.

Close to thermal equilibrium, the molecular distribution
fluctuates as

f (r, u, β ) ≈ f0(u, β )[1 + �(r, u, β )], (A3)

with a perturbation function �, that must satisfy
∫

d3u f0(u)�(r, u, β )m = 0, (A4a)

∫

d3u f0(u)�(r, u, β )mu = 0, (A4b)

∫

d3u f0(u)�(r, u, β )
1

2
mu

2 = 0, (A4c)

as a result of mass, momentum, and energy conservation,
respectively. Enskog’s prescription of successive approxi-
mations then renders the Boltzmann equation, to leading
nontrivial order, as

(

∂

∂t
+ vi∂i

)

f0 ≈ C[ f0�]. (A5)

The left-hand side of Eq. (A5) above evaluates to
(

∂

∂t
+ vk∂k

)

f0 = f0[Vk∂k (ln T ) + mβWk�Dk�], (A6)

as detailed in Appendix B, where

Vi(u) ≡
(

mβu2

2
−

5

2

)

ui, (A7a)

Wi j (u) ≡ uiu j −
1

3
δi ju

2, (A7b)

Di j (U ) ≡
1

2
(∂ jUi + ∂iU j ) −

1

3
δi j∂kUk . (A7c)

The collision integral on the right-hand side of Eq. (A5) is
then

C[ f ] ≈
∫

d3u1|u − u1| f0(u) f0(u1)

∫

d�′ dσ

d�′ ��, (A8)

where �� = �′ + �′
1 − � − �1. Since Eq. (A8) is linear in

� and Eq. (A6) is linear in the quantities ∂i ln T and Di j , one
can infer an ansatz for the scalar function � of the form

�(u, β ) = Bk∂k (ln T ) + mβAk�Dk�, (A9)

where B (vector) and A (2-rank tensor) are functions of u and
β. Upon comparing terms, B and A must have the forms

Ai j (u, n0, β ) = Wk�(u)ak�i j (u, n0, β ), (A10a)

Bi(u, n0, β ) = Vj (u)b ji(u, n0, β ), (A10b)

where u = |u|, and the coefficients ak�mn(u, n0, β ) and
bk�(u, n0, β ) are introduced as variational ansatz. The ak�mn

and bk� ansatze can only depend on the magnitude of u, which
follows from a comparison of terms between Eqs. (A5) and
(A6) after plugging the ansatz of Eq. (A9). At our level of ap-
proximation, the u dependence of these variational parameters
is completely ignored [25]. We are thus left with

�(u, β ) = V�(u)b�k (n0, β )∂k (ln T )

+ 2mβWi j (u)ai jk�(n0, β )Dk�. (A11)

Referring back to Eq. (A11), an average is taken over the
molecular distribution by multiplying Eq. (A5) by Vi(u) and
Wi j (u), then integrating over u to give

(∫

d3u f0(u)Vi(u)Vj (u)

)

∂ j (ln T )

≈
(∫

d3u Vi(u)C[ f0Vk]

)

bk j∂ j (ln T ), (A12)
(∫

d3u f0(u)Wi jWk�

)

Dk�

≈
(

2

∫

d3u Wi jC[ f0Wmn]

)

amnk�Dk�, (A13)

respectively. The integrals above can be evaluated with the
methods in Refs. [50,51] and the aid of MATHEMATICA [52].
Then using the relations [22,23]

κi j = −
5n0kB

2mβ0
bi j, (A14a)

μi jk� = −
2n0

β0
Ii jmnamnk�, (A14b)

where Ii jmn is the traceless symmetric isotropic rank-4 tensor,
and comparing them to the linear constitutive relations

Ji = −κi j∂ jT, (A15a)

τi j = 2μi jk�Dk�, (A15b)

we obtain the transport tensor of thermal conductivity

κ =
175μ0kB

8m

⎛

⎝

5 + cos(2�) 0 − sin(2�)
0 6 0

− sin(2�) 0 5 − cos(2�)

⎞

⎠, (A16)

and the 13 unique viscosity coefficients

μ1111 =
μ0

8
(117 cos(4�) + 84 cos(2�) + 415), (A17a)

μ1113 = −
3μ0

8
(39 sin(4�) + 14 sin(2�)), (A17b)

μ1122 = −
7μ0

2
(3 cos(2�) + 11), (A17c)

μ1133 = −
μ0

8
(117 cos(4�) + 107), (A17d)
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μ1212 =
9μ0

2
(5 cos(2�) + 9), (A17e)

μ1223 = −
45

2
μ0 sin(2�), (A17f)

μ1313 = −
9μ0

8
(13 cos(4�) − 29), (A17g)

μ1322 =
21

2
μ0 sin(2�), (A17h)

μ1333 =
3μ0

8
(39 sin(4�) − 14 sin(2�)), (A17i)

μ2222 = 77μ0, (A17j)

μ2233 =
7μ0

2
(3 cos(2�) − 11), (A17k)

μ2323 = −
9μ0

2
(5 cos(2�) − 9), (A17l)

μ3333 =
μ0

8
(117 cos(4�) − 84 cos(2�) + 415), (A17m)

where μ0 = 5
1024a2

d

√

m
πβ0

. Other nontrivial viscosity terms are

specified by the tensor symmetry identities

μi jmn = μ jimn = μ jinm = μmni j, (A18a)

μi jmnδi j = μi jmnδmn = μi jmnδi jmn = 0, (A18b)

where δi jmn is 1 if i = j = m = n and 0 otherwise. All other
unspecified μi jk� elements are zero.

APPENDIX B: EQUILIBRIUM BOLTZMANN EQUATION

In this Appendix, we extend the derivation of the equi-
librium Boltzmann equation found in Ref. [53] to include
arbitrary external potentials.

At thermal equilibrium, the left-hand side of the Boltzmann
equation is given as

D

Dt
f0 =

(

∂

∂t
+ vi∂i −

∂iV (r)

m

∂

∂ui

)

f0 (B1)

= f0

(

∂

∂t
+ vi∂i −

∂iV (r)

m

∂

∂ui

)

ln f0, (B2)

where f0 is of the form in Eq. (A2) and n0 is determined by
the form of V (r), so that

ln f0 =
3

2
ln

( m

2π

)

+ ln(n0β
3/2) − β

mu2

2
. (B3)

The material derivative is defined as

D

Dt
=

∂

∂t
+ Ui∂i, (B4)

so that the D/Dt operator can be rewritten as

D

Dt
=

D

Dt
+ ui∂i −

∂iV (r)

m

∂

∂ui

. (B5)

We now treat the derivatives term by term.

First considering ui∂i ln f0, we have

ui∂i ln f0 = ui∂i

[

ln(n0) +
3

2
ln(β ) − β

mu2

2

]

= ui∂i ln(n0) +
(

β
mu2

2
−

3

2

)

ui∂i ln T

+ βmuiu j∂iU j . (B6)

As for D ln f0/Dt , we first consider the equations of conser-
vation at thermal equilibrium which read

D

Dt
ln n0 = −∂ jU j, (B7a)

D

Dt
ln T = −

2

3
∂ jU j, (B7b)

D

Dt
Ui = −

kBT

m
∂i ln(n0T ) −

1

m
∂iV (r). (B7c)

The material derivative of ln f0 then becomes

D

Dt
ln f0 =

D

Dt

[

ln(n0) +
3

2
ln(β ) − β

mu2

2

]

= −
β

3
mu

2∂ jU j − βui∂iV (r)

− ui∂i ln(n0) − ui∂i ln T . (B8)

Finally, the term explicit in the potential is

−
∂iV (r)

m

∂ ln f0

∂ui

=
β∂iV (r)

2

∂u2

∂ui

= βui∂iV (r). (B9)

Putting all these terms together, we get

D

Dt
ln f0 =

D

Dt
ln f0 + ui∂i ln f0 −

∂iV (r)

m

∂

∂ui

ln f0

=
[

−
β

3
mu

2∂ jU j − ui∂i ln T

− βui∂iV (r) − ui∂i ln(n0)

]

+
[

βmuiu j∂iU j + ui∂i ln(n0)

+
(

β
mu2

2
−

3

2

)

ui∂i ln T

]

+ [βui∂iV (r)], (B10)

which gives the final result

D

Dt
ln f0 =

(

β
mu2

2
−

5

2

)

ui∂i ln T

+ βm

(

uiu j −
1

3
δi ju

2

)

∂iU j . (B11)

This shows that the external potential does not affect the
Chapman-Enskog derivation of transport tensors.

APPENDIX C: NORMAL MODE SOLUTIONS

The normal mode solutions of the fluid are obtained by
diagonalizing the matrix in Eq. (6), for which the eigenvectors
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will be the mode amplitudes, and eigenvalues the associated
mode frequencies. To obtain these modes analytically, we first
notice that the structure of � in Eq. (8) implies that ξy is
uncoupled from all other variables, leaving us to diagonalize
the matrix

� =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 cK 0

0 i�11 i�13 0
(

3
5 + Edd

c2

)

cK i�13 i�33
3
5 cK

0 0 2
3 cK i�

⎞

⎟

⎟

⎟

⎟

⎠

. (C1)

The frequency solution for ξy is then immediately read off as
ωμ,2 = i�22. The remaining solutions are obtained by solving
the characteristic polynomial of �,

ω4 − ω3i(� + �11 + �33)

− ω2
[(

�11�33 − �2
13

)

+ �(�11 + �33) + c2
ddK2

]

+ ωi

[

(

�11�33 − �2
13

)

� +
(

(� + �11)c2
dd −

2

5
�c2

)

K2

]

+ ��11

(

c2
dd −

2

5
c2

)

K2 = 0. (C2)

Solutions to the fourth-order polynomial above can be ob-
tained, to first order in δ, by using the ansatz ω = ±cddK + δω

for propagating solutions and ω = δω for damped (purely
imaginary) solutions, with δω ∝ �i j, �. Then plugging these
ansatze into Eq. (C2) and expanding to first order in �i j, �

lead to the mode frequencies in Eqs. (10). The associated
mode vectors of Eqs. (13), (14), (16), and (18) are subse-
quently obtained by Cramer’s rule.
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