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Out-of-time-order correlator for the van der Waals potential
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The quantum-to-classical correspondence is often quantified in dynamics by the out-of-time-order correlator
(OTOC). In chaotic systems, the OTOC is expected to grow exponentially at early time, characteristic of a
Lyapunov exponent; however, exponential growth can also occur for integrable systems. Here we investigate
the OTOC for realistic diatomic molecular potentials in one degree of freedom, finding that the OTOC can

grow exponentially near the dissociation energy of the molecule. Further, this dynamics is tied to the classical
dynamics of the atoms at the outer classical turning point of the potential. These results should serve to guide
and interpret dynamical chaos in more complex molecules.
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I. INTRODUCTION

The link between quantum-mechanical and classical
physics remains an elusive one. Currently, one of the frontline
efforts in forging this link seeks quantum-mechanical quan-
tities whose time evolution depends sensitively on an initial
condition, reminiscent of the Lyapunov exponent in classical
chaos [1-15]. One such quantity, and the one we consider
here, is the out-of-time-order correlator (OTOC) [4,16,17].
We will introduce and define this quantity in our context
below, but here we note that it is at least a partial success:
For example, in a model problem such as a pair of nonlinearly
coupled harmonic oscillators, the quantum-mechanical OTOC
grows exponentially in time under the same circumstances in
which the classical system exhibits positive Lyapunov expo-
nents [18].

Not all mechanical systems are chaotic, however. In partic-
ular, nondissipative motion in a single degree of freedom, with
a time-independent Hamiltonian, is always integrable (having
at least total energy as a constant of the motion). The OTOC
has been studied in various such instances, finding that it does
indeed show exponential growth in certain situations, such
as an inverted harmonic-oscillator potential, where classical
trajectories also depend exponentially sensitively on initial
conditions [7,19-21]. If not chaotic, let us at least refer to this
kind of behavior as sensitive. Conversely, in restoring poten-
tials such as a regular harmonic oscillator [17] or a power-law
potential proportional to x>V [22], exponential growth is seen
in neither the classical dynamics nor in the OTOC, a situation
that might be termed regular. Thus it appears that the OTOC
may serve as a quantum-to-classical link in dynamics, irre-
spective of the chaotic nature of that dynamics.

In this paper we extend the work on OTOCs in one-
dimensional systems to potentials that exist between atoms in
amolecule, for example, a schematic Lennard-Jones potential,
as well as the realistic singlet potential between ground-state
rubidium atoms. Such potentials present a unique opportunity
to explore the behavior of the OTOC for the following reasons.
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(i) The low-lying energy eigenstates are well represented
by harmonic oscillators and hence show no exponential sensi-
tivity to either classical initial conditions or the OTOC.

(i1) By contrast, higher-lying very anharmonic states can
show an exponential dependence on both these quantities.
Thus a transition from regular to sensitive behavior can be
described.

(iii) Wave functions of the high-lying states are strongly
concentrated at the outer classical turning point r. of the
potential. As we will see, this emphasizes the essentially local
character of the quantum-to-classical link, at least at short
times, and its ultimate origin in the sign of the curvature of
the potential near r,.

Ruminations of this sort are of interest beyond a single
degree of freedom. For example, it has been established ex-
perimentally that weakly bound dimers of lanthanide atoms,
explored in ultracold gases, show hints of quantum chaos
via a standard signature, namely, their nearest-neighbor level
spacings exhibit statistics close to those implied by the Gaus-
sian orthogonal ensemble in random matrix theory [23,24].
This kind of chaos is expected to be driven by strong non-
linear couplings between the rovibrational and spin degrees
of freedom of these highly multichannel molecules [25,26].
Demonstrable chaos in the molecules’ dynamics is however
yet to be addressed, either theoretically or experimentally. It
is conceivable that the OTOC would be the means to do so, but
for this approach to be viable, we must first understand how
the OTOC works in a single molecular channel so that mere
sensitivity will not be mistaken for truly chaotic behavior. It
is also worth noting that exponentially growing OTOCs also
correlate to classical Lyapunov exponents in the spectra of
polyatomic molecules [15].

The remainder of this work is structured as follows. After a
brief definition in Sec. II, we describe the model systems used
and the numerical methods to calculate the OTOC in Sec. III.
Numerical results are presented in Sec. IV, and in Sec. V we
detail an approximation to deduce the dependence of the ex-
ponential growth behavior. Finally, we draw our conclusions
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with a discussion on the further possible research directions in
Sec. VL.

II. DEFINITION

We begin in this section by explaining the definition of the
OTOC in one dimension, using the generic coordinate x to
represent this dimension. The quantum-mechanical OTOC is
defined by a close analogy with classical dynamics. In one
degree of freedom this is formulated as follows. For a generic
classical Hamiltonian

P
H=—+V(), (1)
2m
Hamilton-Jacobi theory posits the ability to transform be-
tween alternative representations of coordinate and momen-
tum [27]. In particular, a set of phase-space coordinates may
be described by the initial position and momentum (xg, po)
and related to the time-evolving coordinates (x(¢), p(t)) by
an appropriate time-dependent canonical transformation [28].
The time-evolving coordinates are then explicit functions of
the initial conditions, which in our immediate case can be
written

x(t) = xof (1) + L2 g(0). @)
mx

Here f(¢) and g(r) are solutions to the equations of mo-
tion, with initial conditions f(0) =1, f(0) =0, g(0) =0,
8(0) = x, and x is a constant carrying units of frequency.

Written this way, the relation between x, at some time
t, and its initial value x¢ is fairly explicit. This relation is
revealed by computing the Poisson bracket

dx(t)dpo  9x(t) dpo

dxp dpo  9Ipo 0xo

ax(t)

= 3)

axo ’

{X(l), pO}xo,pg =

which therefore denotes the dependence of x(¢) on the initial
condition xy. Thus, for a harmonic oscillator with V(x) =
mw?x*/2 and dx(t)/dxo = cos wt, the dependence is regular
rather than sensitive, whereas for an antioscillator, V (x) =
—mA*x?/2 and 3x(t)/dxy = cosh At soon evolving to approx-
imately e, showing that the dependence is exponentially
sensitive, where A is analogous to the frequency scale w in
the harmonic oscillator. Note that classical sensitivity in these
two cases is tied to the sign of the potential’s curvature.

Thus defined, the quantity of interest is transported to the
quantum realm in the conventional way, by replacing the
Poisson bracket by a commutator, i.e., quantization, and by
presenting operators in the Heisenberg representation. That is
to say, given the quantum-mechanical Hamiltonian

A2

A= 1v® )
2m
and the Heisenberg-representation coordinate operator
)fz.(t) — eil‘?t/ﬁje(o)efil‘if/ﬁ, (5)

sensitivity to the initial condition would be expressed by the
quantity

[X(@), p(O))/in, (6)

which is the quantum analog of Eq. (3). Two addenda are
made to this procedure. First, one squares the commutator,
lest its interesting parts average out, and second, one takes its
average over a quantum state of interest; for us, this will be an
energy eigenstate |n).

Thus, the OTOC for state n is defined as

Co(t) = —(n|[%(2), pO)]*|n)/H*. (7)

This is a four-point correlation function evaluated between op-
erators with the times appearing out of order, hence the name
out-of-time-order correlator. The quantity C,(¢) therefore de-
fines a time-dependent number, allowing us to ascertain, for
each n, whether C,(t) grows exponentially in time. More
generally, one sometimes computes a thermal average of the
C,(t)’s, but we do not do so here. Using the classical-quantum
correspondence [, ]/ih — {, } and then

— (i), PO ox(1)\
AEOLPOI o = (520) - @

Thus, C,(t) = cos’(wt) for a harmonic oscillator [17],
whereas for an antioscillator C,(¢) = cosh?(At) ~ € [21],
indicating that the quantum sensitivity to the initial condition
is twice that in the classical case.

III. MODEL AND COMPUTING METHODS

For the remainder of this article, we specialize to the case
of vibrational motion of a diatomic molecule. To this end, we
replace the generic coordinate x of the preceding section with
the distance r between atoms. Further, we will denote the
momentum conjugate to r by simply p, hopefully without
causing confusion. We will use atomic units throughout.

We consider two similar situations. The first consists of
identical structureless atoms, interacting via the Lennard-
Jones potential

Cn G
V(V)Zm—ﬁ, ©)

where r is the interatomic separation. The second situation
consists of two ground-state rubidium atoms, interacting via
their X 'E,™ ground-state potential [29]. We keep the two
situations similar, if not identical, by setting Cs = 4710Eha8
in the Lennard-Jones potential equal to the Cg coefficient for
rubidium and by choosing Cj, = 3.05x 108Eha(1)2 so that the
two potentials have the same depth of 0.018E},, where E, is
the Hartree energy and ag is the Bohr radius. In both cases,
we use the reduced mass u = 43.454 59 amu of two rubidium
atoms, where amu denotes the unified atomic mass unit. To
constrain the motion in a single degree of freedom, we discard
the molecular rotation in our model, i.e., the atoms interact in
an s-wave channel.

The bound energy eigenstates of either potential are |n),
with energy E,. In terms of these, the OTOC as defined in
Eq. (7) can be rewritten as

Calt) =Y bu(t)bjy (1), (10)
!
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FIG. 1. Potential (also the second-order derivatives) as a function of (a) interatomic separation, (b) eigenstate spectra, and (c) matrix
elements of operator 7 sorted by eigenvalues for the Lennard-Jones potential. (d)—(f) Same results for the X', potential of two interacting

rubidium atoms [29].

where

bu(t) = —i(nl|[7(r), p(O)1]1)

. Bt Byt
= —i E (€™ ryxpr — €7 prxru),
X

(1)

with Ey = E, — E;, ry = (n|F(0)|1), and py = (n]p(0)]1).
Since [H, #(0)] = —ip(0)/u, the matrix elements of the
momentum operator can be written as p,; = iwEyr,. Sub-
stituting this relation into Eq. (11), we have

bu(t) =Y ruria(Ee™" — Eye™). (12)

k

This method provides a concise framework for calculating the
OTOC [17].

The eigenstate energy levels and wave functions are nu-
merically solved by diagonalizing the exact Hamiltonian of
the nuclear motion with an equidistant grid in the discrete-
variable representation (DVR) method [30], where we choose
the interatomic distance from 3ay to 1500a, with a step size
of 0.01ap. Note that computing the OTOC for eigenstate |n)
requires a sum over eigenstates |/) and |k) distinct from |n).
For |n) too high in energy, this sum may require states above
the dissociation threshold, which are not computed by the
DVR method. For this reason, in what follows we restrict n to
somewhat below the last bound state of the potentials, where
we can ensure convergence of C,(¢) to approximately 1%.

IV. RESULTS
A. Potential and eigenvalue spectrum

The two potentials are shown in Figs. 1(a) and 1(d) (red
lines). Also depicted are the energy spectrum [Figs. 1(b) and
1(e)] and the mean interatomic separation rny [Figs. 1(c) and
1(f)] of these potentials. We can see that even with the same
well depth, the Lennard-Jones potential supports fewer bound
states than the realistic X! Xt potential due to its narrower
potential shape.

A key component in describing the OTOC in a one-
dimensional potential, as described above, is the curvature
of the potential: Regions of coordinates where this curvature
is negative are expected to correlate roughly to exponential
OTOC growth. For this reason, the second derivative of the
potentials is also shown (blue) in Figs. 1(a) and 1(d). Also
shown is the range of n where the potential at the classical
outer turning point nearly coincides with the transition from
positive to negative curvature. As shown, this point is between
n=6 and 7 for the Lennard-Jones potential and between
n = 22 and 23 for the realistic rubidium dimer potential. This
is therefore the scale of n on which the transition to an expo-
nentially growing OTOC may be expected to set in.

B. OTOC calculation

Beginning with the low-energy part of the spectrum,
Fig. 2(a) shows the time evolution of the OTOC for selected
energy eigenstates |n) of the Lennard-Jones potential. For
the vibrational ground state n = 0 and first-excited (n = 1)
states, the OTOC merely oscillates in time, consistent with
the bottom of this potential being approximately harmonic.
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FIG. 2. OTOCs of lower-energy modes for (a) the Lennard-Jones potential and (b) the Rb, X' %, * potential.

The period of oscillation is about 5520 a.u., consistent with
the equivalent harmonic oscillator. Slightly higher in the spec-
trum, for n = 6,7, the OTOC experiences a brief burst of
exponential-like growth up to approximately 10~ a.u., before
again varying quasisinusoidally. Recall that this is the approx-
imate value of n at which exponential growth may be expected
to start, but it has not yet taken over decisively.

Similarly, for the realistic rubidium X'¥,* potential as
shown in Fig. 2(b), the OTOC for the low-lying states n = 0, 4
varies sinusoidally. Higher in the spectrum, at n = 22, 23, the
brief exponential behavior occurs. This behavior is again sug-
gestive of the transition to exponential growth of the OTOC,
as expected.

We compute the OTOCs as a function of ¢ for each en-
ergy level n in the high-energy modes, which better exhibit
exponential growth, at least for a short time. This behavior is
shown for several values of n in Fig. 3. For the states shown,
there is a clear region where the OTOC grows exponentially,
and the time interval over which the exponential growth oc-
curs is different for each eigenstate n. For each potential, a

10 E
—n=10 ]

— n=20 -

l00 — n=40 —§
[ T R

0 1 2 3 5 6 7

t(10% a.u.)

representative exponential fit is shown as a green dashed line,
fitting the OTOC for the n = 20 level of the Lennard-Jones
potential and the n = 70 level of the rubidium dimer potential.

Fitting each such curve to the form « exp(Agroc t) defines
an n-dependent sensitivity parameter Agroc. We refer to this
quantity as a sensitivity parameter, rather than a Lyapunov
exponent, recognizing that these one-dimensional systems are
integrable. The sensitivity parameters extracted from this kind
of exponential fit, for a number of different eigenstates n,
are shown as the red circles in Figs. 4(a) and 4(c), for the
two potentials. The error bars represent a 95% confidence
interval for the fits. The parameter Agroc shows a definite
trend, first rising and then falling, as a function of n in
this part of the spectrum. The cyan squares and green tri-
angles represent simple approximations, given in the next
section.

An essential feature in any exponential growth trend is
that the growth occurs for a sufficient time to identify it as
exponential. In the present case, each OTOC grows exponen-
tially over some time interval At, over which time the fit is
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o TTTIT
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w
o
D
~
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FIG. 3. OTOCsS of high-energy modes for (a) the Lennard-Jones potential and (b) the Rb, X! %, * potential. The green dashed line is fitted

with the exponential expression, as discussed in the text.
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FIG. 4. Plots for (a) the Lennard-Jones potential and (b) the Rb, X! 3, potential. (a) and (c) The n dependence of the quantum sensitivity
parameters Aoroc. The red closed circles are the fit values, the cyan open squares are the antiharmonic approximation at the outer classical
turning points, and the green open triangles are the antiharmonic approximation at the wave-function maxima. (b) and (d) Confidence of the

fit process, with At the fitting time interval.

constructed. If this time is short compared to the derived ex-
ponential time constant, then it is difficult to say the behavior
is truly exponential. Therefore, we track the product Aoroc At
versus n in Figs. 4(b) and 4(d). If this product is greater than
unity, then the exponential growth endures for at least one time
constant. Over most of the spectrum shown, the product is
indeed larger than one, meaning that the exponential growth is
meaningful. This condition breaks down near the transition re-
gion, n = 6, 7 for the Lennard-Jones potential and n = 22, 23
for the rubidium dimer X' g+ potential, where the transition
to exponential growth is incomplete.

V. INTERPRETATION

As we can see in Fig. 2, the OTOC is reasonably oscillatory
for low-energy levels of the potentials we have considered,
which are approximately harmonic. It is only higher in the
spectrum in which C,(¢) can grow exponentially, as shown in
Fig. 3. Concomitant with this, the higher-energy levels have
wave functions with large amplitude at the outer classical
turning point 7.. Since the OTOC is an average over the wave
function, it therefore arises rather locally from points near
r.. This is not unreasonable, as the sensitive dependence on
the initial condition can surely depend on what that initial
condition actually is.

A. Classical sensitivity

In any event, this localization in r allows a closer compari-
son to be made between the classical and quantum-mechanical
versions. For example, the classical motion may as well be
something that starts at » = ry, close to r., and remains close
to that point. In the neighborhood of 7., we expand the poten-
tial to quadratic order,

V() R V() + V() — 1)+ 3V () = re)?
= V") (r — ra)%, (13)

where in the second line we ignore an overall constant and
define r; = r. — V'(r.)/V"(r.). For the initial condition rq
in the vicinity of 7., the solution to the equation of motion
mi = —aV(r)/or is

r(t) =rqg+ (ro — rg)cos wt
"
Po . V”(rc)t (14)

+ —————=-sin
NV (re)

if V/(r.) > 0 and

r(t) = rqg + (ro — rg) cosh MI
V n
Po . [=V"(re)
+ m sinh TI (15)

if V”(r.) < 0. From these expressions it is clear that classical
sensitivity to the initial condition occurs, approximately, only
when the potential has local negative curvature, leading to
divergence e*, in terms of a classical sensitivity parameter

ho = |V (16)
u

B. Quantum sensitivity

A completely analogous situation holds in the quantum-
mechanical case. Assuming a quadratic potential in the
quantum Hamiltonian

N 72|
=21 v'e)6 - ), (17)
2u 2
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the Heisenberg position operator is evaluated using the Baker-
Campbell-Hausdorff lemma, similar to what one does for the
standard harmonic oscillator [31]. For our present purposes,
we consider only the case of negative curvature of the poten-
tial, where the operator becomes

#(t) = ry + [#(0) — ry] cosh | V),
"
p(0) . [ =V"(rc)
+ m sinh TI . (18)

Thus

—V”(rc)t
"

[7(t), p(0)] = icosh (19)

Because the OTOC is defined in terms of the square of this
quantity, its exponential growth in this approximation would
be proportional to {exp[/V"(ro)/ut]}> = e?*, that is, at a
rate twice that of the classical exponential growth. The growth
rate 2A. is plotted in Fig. 4.

A slightly better estimate of the OTOC’s growth rate would
evaluate the commutator, not at the classical turning point 7,
but at a nearby point r,, where the wave function is maximal.
To this end, we make a linear approximation of the potential
near the turning point,

VIR E+V () —r). (20)

Defining the characteristic length scale 7 = (2,uV1’(r-))1/ 3 and
in terms of the dimensionless variable z = (r — r.)/F, the

resulting Schrédinger equation becomes

4y v =0 (21
T =0.
dz?

The solution to this is the usual Airy function, which,
to a good approximation, is maximal at z = —1, whereby
our bound-state wave functions are maximal at r =r,,
where

1 1/3
)) . (22)

rm:rc_i:rc_(%bV—’(r
3

Using this result, we define a corrected semiclassical version
of the OTOC growth rate 2\, where

Ase = /M, (23)
n

This quantity of course takes a different value for each bound
state n. The results of this approximation are also plotted in
Fig. 4. The agreement with the quantum OTOC is slightly
improved, especially at high n.

VI. CONCLUSIONS AND OUTLOOK

We have verified, in realistic molecular potentials, a trend
that has been seen elsewhere, namely, that exponential growth
of the classical sensitivity and the quantum-mechanical OTOC
are linked, even in the absence of chaotic behavior. In the
molecular system we have considered, the characteristic long-
range van der Waals tail of these potentials produces a fairly
explicit transition between regular and sensitive behavior of
the dynamics as a function of the energy level. Molecules are
thus revealed as objects of variable sensitivity by this measure.

The lessons learned from this work should inform the
investigation of far more complex molecules, in particular
the ultracold lanthanide dimers alluded to at the outset. Such
molecules are expected to be truly chaotic, rather than merely
sensitive, as the models presented here were. Thus, for ex-
ample, Dy, molecules just below their dissociation threshold
should exhibit exponential growth of their OTOCs in some
way distinct from the sensitivity we have described, which
may lead to additional insight into their dynamics. This dy-
namics has the advantage that the OTOC will depend not only
on the level considered, but also on the magnetic field applied
in the laboratory, which is suspected to increase the degree of
chaos in the molecules [25].

Looking ahead, we note that the exponential growth of the
OTOC at relatively short times is not the only characteristic
designating chaotic behavior. Indeed, quantum chaotic sys-
tems have been identified for which the quantum-mechanical
OTOC does not appear to grow exponentially [32,33]. Never-
theless, the long-time behavior was shown to oscillate in non-
chaotic systems, but to saturate in chaotic systems [2,33-35].
Though we have not emphasized this, in the present integrable
Lennard-Jones and rubidium dimer examples, the OTOC in-
deed oscillates at long times. It is expected that, instead,
saturation will occur for the case of Dy,.
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