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Out-of-time-order correlator for the van der Waals potential
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The quantum-to-classical correspondence is often quantified in dynamics by the out-of-time-order correlator

(OTOC). In chaotic systems, the OTOC is expected to grow exponentially at early time, characteristic of a

Lyapunov exponent; however, exponential growth can also occur for integrable systems. Here we investigate

the OTOC for realistic diatomic molecular potentials in one degree of freedom, finding that the OTOC can

grow exponentially near the dissociation energy of the molecule. Further, this dynamics is tied to the classical

dynamics of the atoms at the outer classical turning point of the potential. These results should serve to guide

and interpret dynamical chaos in more complex molecules.
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I. INTRODUCTION

The link between quantum-mechanical and classical

physics remains an elusive one. Currently, one of the frontline

efforts in forging this link seeks quantum-mechanical quan-

tities whose time evolution depends sensitively on an initial

condition, reminiscent of the Lyapunov exponent in classical

chaos [1–15]. One such quantity, and the one we consider

here, is the out-of-time-order correlator (OTOC) [4,16,17].

We will introduce and define this quantity in our context

below, but here we note that it is at least a partial success:

For example, in a model problem such as a pair of nonlinearly

coupled harmonic oscillators, the quantum-mechanical OTOC

grows exponentially in time under the same circumstances in

which the classical system exhibits positive Lyapunov expo-

nents [18].

Not all mechanical systems are chaotic, however. In partic-

ular, nondissipative motion in a single degree of freedom, with

a time-independent Hamiltonian, is always integrable (having

at least total energy as a constant of the motion). The OTOC

has been studied in various such instances, finding that it does

indeed show exponential growth in certain situations, such

as an inverted harmonic-oscillator potential, where classical

trajectories also depend exponentially sensitively on initial

conditions [7,19–21]. If not chaotic, let us at least refer to this

kind of behavior as sensitive. Conversely, in restoring poten-

tials such as a regular harmonic oscillator [17] or a power-law

potential proportional to x2N [22], exponential growth is seen

in neither the classical dynamics nor in the OTOC, a situation

that might be termed regular. Thus it appears that the OTOC

may serve as a quantum-to-classical link in dynamics, irre-

spective of the chaotic nature of that dynamics.

In this paper we extend the work on OTOCs in one-

dimensional systems to potentials that exist between atoms in

a molecule, for example, a schematic Lennard-Jones potential,

as well as the realistic singlet potential between ground-state

rubidium atoms. Such potentials present a unique opportunity

to explore the behavior of the OTOC for the following reasons.

(i) The low-lying energy eigenstates are well represented

by harmonic oscillators and hence show no exponential sensi-

tivity to either classical initial conditions or the OTOC.

(ii) By contrast, higher-lying very anharmonic states can

show an exponential dependence on both these quantities.

Thus a transition from regular to sensitive behavior can be

described.

(iii) Wave functions of the high-lying states are strongly

concentrated at the outer classical turning point rc of the

potential. As we will see, this emphasizes the essentially local

character of the quantum-to-classical link, at least at short

times, and its ultimate origin in the sign of the curvature of

the potential near rc.

Ruminations of this sort are of interest beyond a single

degree of freedom. For example, it has been established ex-

perimentally that weakly bound dimers of lanthanide atoms,

explored in ultracold gases, show hints of quantum chaos

via a standard signature, namely, their nearest-neighbor level

spacings exhibit statistics close to those implied by the Gaus-

sian orthogonal ensemble in random matrix theory [23,24].

This kind of chaos is expected to be driven by strong non-

linear couplings between the rovibrational and spin degrees

of freedom of these highly multichannel molecules [25,26].

Demonstrable chaos in the molecules’ dynamics is however

yet to be addressed, either theoretically or experimentally. It

is conceivable that the OTOC would be the means to do so, but

for this approach to be viable, we must first understand how

the OTOC works in a single molecular channel so that mere

sensitivity will not be mistaken for truly chaotic behavior. It

is also worth noting that exponentially growing OTOCs also

correlate to classical Lyapunov exponents in the spectra of

polyatomic molecules [15].

The remainder of this work is structured as follows. After a

brief definition in Sec. II, we describe the model systems used

and the numerical methods to calculate the OTOC in Sec. III.

Numerical results are presented in Sec. IV, and in Sec. V we

detail an approximation to deduce the dependence of the ex-

ponential growth behavior. Finally, we draw our conclusions
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with a discussion on the further possible research directions in

Sec. VI.

II. DEFINITION

We begin in this section by explaining the definition of the

OTOC in one dimension, using the generic coordinate x to

represent this dimension. The quantum-mechanical OTOC is

defined by a close analogy with classical dynamics. In one

degree of freedom this is formulated as follows. For a generic

classical Hamiltonian

H =
p2

2m
+ V (x), (1)

Hamilton-Jacobi theory posits the ability to transform be-

tween alternative representations of coordinate and momen-

tum [27]. In particular, a set of phase-space coordinates may

be described by the initial position and momentum (x0, p0)

and related to the time-evolving coordinates (x(t ), p(t )) by

an appropriate time-dependent canonical transformation [28].

The time-evolving coordinates are then explicit functions of

the initial conditions, which in our immediate case can be

written

x(t ) = x0 f (t ) +
p0

mχ
g(t ). (2)

Here f (t ) and g(t ) are solutions to the equations of mo-

tion, with initial conditions f (0) = 1, ḟ (0) = 0, g(0) = 0,

ġ(0) = χ , and χ is a constant carrying units of frequency.

Written this way, the relation between x, at some time

t , and its initial value x0 is fairly explicit. This relation is

revealed by computing the Poisson bracket

{x(t ), p0}x0,p0
=

∂x(t )

∂x0

∂ p0

∂ p0

−
∂x(t )

∂ p0

∂ p0

∂x0

=
∂x(t )

∂x0

, (3)

which therefore denotes the dependence of x(t ) on the initial

condition x0. Thus, for a harmonic oscillator with V (x) =
mω2x2/2 and ∂x(t )/∂x0 = cos ωt , the dependence is regular

rather than sensitive, whereas for an antioscillator, V (x) =
−mλ2x2/2 and ∂x(t )/∂x0 = cosh λt soon evolving to approx-

imately eλt , showing that the dependence is exponentially

sensitive, where λ is analogous to the frequency scale ω in

the harmonic oscillator. Note that classical sensitivity in these

two cases is tied to the sign of the potential’s curvature.

Thus defined, the quantity of interest is transported to the

quantum realm in the conventional way, by replacing the

Poisson bracket by a commutator, i.e., quantization, and by

presenting operators in the Heisenberg representation. That is

to say, given the quantum-mechanical Hamiltonian

Ĥ =
p̂2

2m
+ V̂ (x̂) (4)

and the Heisenberg-representation coordinate operator

x̂(t ) = eiĤt/h̄x̂(0)e−iĤt/h̄, (5)

sensitivity to the initial condition would be expressed by the

quantity

[x̂(t ), p̂(0)]/ih̄, (6)

which is the quantum analog of Eq. (3). Two addenda are

made to this procedure. First, one squares the commutator,

lest its interesting parts average out, and second, one takes its

average over a quantum state of interest; for us, this will be an

energy eigenstate |n〉.
Thus, the OTOC for state n is defined as

Cn(t ) = −〈n|[x̂(t ), p̂(0)]2|n〉/h̄2. (7)

This is a four-point correlation function evaluated between op-

erators with the times appearing out of order, hence the name

out-of-time-order correlator. The quantity Cn(t ) therefore de-

fines a time-dependent number, allowing us to ascertain, for

each n, whether Cn(t ) grows exponentially in time. More

generally, one sometimes computes a thermal average of the

Cn(t )’s, but we do not do so here. Using the classical-quantum

correspondence [ , ]/ih̄ → { , } and then

−〈n|[x̂(t ), p̂(0)]2|n〉
h̄2

→ {x(t ), p0}2 =
(

∂x(t )

∂x0

)2

. (8)

Thus, Cn(t ) = cos2(ωt ) for a harmonic oscillator [17],

whereas for an antioscillator Cn(t ) = cosh2(λt ) ∼ e2λt [21],

indicating that the quantum sensitivity to the initial condition

is twice that in the classical case.

III. MODEL AND COMPUTING METHODS

For the remainder of this article, we specialize to the case

of vibrational motion of a diatomic molecule. To this end, we

replace the generic coordinate x of the preceding section with

the distance r between atoms. Further, we will denote the

momentum conjugate to r by simply p, hopefully without

causing confusion. We will use atomic units throughout.

We consider two similar situations. The first consists of

identical structureless atoms, interacting via the Lennard-

Jones potential

V (r) =
C12

r12
−

C6

r6
, (9)

where r is the interatomic separation. The second situation

consists of two ground-state rubidium atoms, interacting via

their X 1�g
+ ground-state potential [29]. We keep the two

situations similar, if not identical, by setting C6 = 4710Eha6
0

in the Lennard-Jones potential equal to the C6 coefficient for

rubidium and by choosing C12 = 3.05×108Eha12
0 so that the

two potentials have the same depth of 0.018Eh, where Eh is

the Hartree energy and a0 is the Bohr radius. In both cases,

we use the reduced mass μ = 43.454 59 amu of two rubidium

atoms, where amu denotes the unified atomic mass unit. To

constrain the motion in a single degree of freedom, we discard

the molecular rotation in our model, i.e., the atoms interact in

an s-wave channel.

The bound energy eigenstates of either potential are |n〉,
with energy En. In terms of these, the OTOC as defined in

Eq. (7) can be rewritten as

Cn(t ) =
∑

l

bnl (t )b∗
nl (t ), (10)
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FIG. 1. Potential (also the second-order derivatives) as a function of (a) interatomic separation, (b) eigenstate spectra, and (c) matrix

elements of operator r̂ sorted by eigenvalues for the Lennard-Jones potential. (d)–(f) Same results for the X 1�g
+ potential of two interacting

rubidium atoms [29].

where

bnl (t ) = −i〈n|[r̂(t ), p̂(0)]|l〉

= −i
∑

k

(eiEnkt rnk pkl − eiEkl t pnkrkl ), (11)

with Enl ≡ En − El , rnl ≡ 〈n|r̂(0)|l〉, and pnl ≡ 〈n| p̂(0)|l〉.
Since [Ĥ , r̂(0)] = −i p̂(0)/μ, the matrix elements of the

momentum operator can be written as pnl = iμEnlrnl . Sub-

stituting this relation into Eq. (11), we have

bnl (t ) = μ
∑

k

rnkrkl (Ekle
iEnkt − EnkeiEkl t ). (12)

This method provides a concise framework for calculating the

OTOC [17].

The eigenstate energy levels and wave functions are nu-

merically solved by diagonalizing the exact Hamiltonian of

the nuclear motion with an equidistant grid in the discrete-

variable representation (DVR) method [30], where we choose

the interatomic distance from 3a0 to 1500a0 with a step size

of 0.01a0. Note that computing the OTOC for eigenstate |n〉
requires a sum over eigenstates |l〉 and |k〉 distinct from |n〉.
For |n〉 too high in energy, this sum may require states above

the dissociation threshold, which are not computed by the

DVR method. For this reason, in what follows we restrict n to

somewhat below the last bound state of the potentials, where

we can ensure convergence of Cn(t ) to approximately 1%.

IV. RESULTS

A. Potential and eigenvalue spectrum

The two potentials are shown in Figs. 1(a) and 1(d) (red

lines). Also depicted are the energy spectrum [Figs. 1(b) and

1(e)] and the mean interatomic separation rNN [Figs. 1(c) and

1(f)] of these potentials. We can see that even with the same

well depth, the Lennard-Jones potential supports fewer bound

states than the realistic X 1�g
+ potential due to its narrower

potential shape.

A key component in describing the OTOC in a one-

dimensional potential, as described above, is the curvature

of the potential: Regions of coordinates where this curvature

is negative are expected to correlate roughly to exponential

OTOC growth. For this reason, the second derivative of the

potentials is also shown (blue) in Figs. 1(a) and 1(d). Also

shown is the range of n where the potential at the classical

outer turning point nearly coincides with the transition from

positive to negative curvature. As shown, this point is between

n = 6 and 7 for the Lennard-Jones potential and between

n = 22 and 23 for the realistic rubidium dimer potential. This

is therefore the scale of n on which the transition to an expo-

nentially growing OTOC may be expected to set in.

B. OTOC calculation

Beginning with the low-energy part of the spectrum,

Fig. 2(a) shows the time evolution of the OTOC for selected

energy eigenstates |n〉 of the Lennard-Jones potential. For

the vibrational ground state n = 0 and first-excited (n = 1)

states, the OTOC merely oscillates in time, consistent with

the bottom of this potential being approximately harmonic.
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FIG. 2. OTOCs of lower-energy modes for (a) the Lennard-Jones potential and (b) the Rb2 X 1�g
+ potential.

The period of oscillation is about 5520 a.u., consistent with

the equivalent harmonic oscillator. Slightly higher in the spec-

trum, for n = 6, 7, the OTOC experiences a brief burst of

exponential-like growth up to approximately 10−4 a.u., before

again varying quasisinusoidally. Recall that this is the approx-

imate value of n at which exponential growth may be expected

to start, but it has not yet taken over decisively.

Similarly, for the realistic rubidium X 1�g
+ potential as

shown in Fig. 2(b), the OTOC for the low-lying states n = 0, 4

varies sinusoidally. Higher in the spectrum, at n = 22, 23, the

brief exponential behavior occurs. This behavior is again sug-

gestive of the transition to exponential growth of the OTOC,

as expected.

We compute the OTOCs as a function of t for each en-

ergy level n in the high-energy modes, which better exhibit

exponential growth, at least for a short time. This behavior is

shown for several values of n in Fig. 3. For the states shown,

there is a clear region where the OTOC grows exponentially,

and the time interval over which the exponential growth oc-

curs is different for each eigenstate n. For each potential, a

representative exponential fit is shown as a green dashed line,

fitting the OTOC for the n = 20 level of the Lennard-Jones

potential and the n = 70 level of the rubidium dimer potential.

Fitting each such curve to the form α exp(λOTOC t ) defines

an n-dependent sensitivity parameter λOTOC. We refer to this

quantity as a sensitivity parameter, rather than a Lyapunov

exponent, recognizing that these one-dimensional systems are

integrable. The sensitivity parameters extracted from this kind

of exponential fit, for a number of different eigenstates n,

are shown as the red circles in Figs. 4(a) and 4(c), for the

two potentials. The error bars represent a 95% confidence

interval for the fits. The parameter λOTOC shows a definite

trend, first rising and then falling, as a function of n in

this part of the spectrum. The cyan squares and green tri-

angles represent simple approximations, given in the next

section.

An essential feature in any exponential growth trend is

that the growth occurs for a sufficient time to identify it as

exponential. In the present case, each OTOC grows exponen-

tially over some time interval �t , over which time the fit is

FIG. 3. OTOCs of high-energy modes for (a) the Lennard-Jones potential and (b) the Rb2 X 1�g
+ potential. The green dashed line is fitted

with the exponential expression, as discussed in the text.
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FIG. 4. Plots for (a) the Lennard-Jones potential and (b) the Rb2 X 1�g
+ potential. (a) and (c) The n dependence of the quantum sensitivity

parameters λOTOC. The red closed circles are the fit values, the cyan open squares are the antiharmonic approximation at the outer classical

turning points, and the green open triangles are the antiharmonic approximation at the wave-function maxima. (b) and (d) Confidence of the

fit process, with �t the fitting time interval.

constructed. If this time is short compared to the derived ex-

ponential time constant, then it is difficult to say the behavior

is truly exponential. Therefore, we track the product λOTOC�t

versus n in Figs. 4(b) and 4(d). If this product is greater than

unity, then the exponential growth endures for at least one time

constant. Over most of the spectrum shown, the product is

indeed larger than one, meaning that the exponential growth is

meaningful. This condition breaks down near the transition re-

gion, n = 6, 7 for the Lennard-Jones potential and n = 22, 23

for the rubidium dimer X 1�g
+ potential, where the transition

to exponential growth is incomplete.

V. INTERPRETATION

As we can see in Fig. 2, the OTOC is reasonably oscillatory

for low-energy levels of the potentials we have considered,

which are approximately harmonic. It is only higher in the

spectrum in which Cn(t ) can grow exponentially, as shown in

Fig. 3. Concomitant with this, the higher-energy levels have

wave functions with large amplitude at the outer classical

turning point rc. Since the OTOC is an average over the wave

function, it therefore arises rather locally from points near

rc. This is not unreasonable, as the sensitive dependence on

the initial condition can surely depend on what that initial

condition actually is.

A. Classical sensitivity

In any event, this localization in r allows a closer compari-

son to be made between the classical and quantum-mechanical

versions. For example, the classical motion may as well be

something that starts at r = r0, close to rc, and remains close

to that point. In the neighborhood of rc, we expand the poten-

tial to quadratic order,

V (r) ≈ V (rc) + V ′(rc)(r − rc) + 1
2
V ′′(rc)(r − rc)2

= 1
2
V ′′(rc)(r − rd )2, (13)

where in the second line we ignore an overall constant and

define rd = rc − V ′(rc)/V ′′(rc). For the initial condition r0

in the vicinity of rc, the solution to the equation of motion

mr̈ = −∂V (r)/∂r is

r(t ) = rd + (r0 − rd ) cos

⎛

⎝

√

V ′′(rc)

μ
t

⎞

⎠

+
p0√

μV ′′(rc)
sin

⎛

⎝

√

V ′′(rc)

μ
t

⎞

⎠ (14)

if V ′′(rc) > 0 and

r(t ) = rd + (r0 − rd ) cosh

⎛

⎝

√

−V ′′(rc)

μ
t

⎞

⎠

+
p0√

−μV ′′(rc)
sinh

⎛

⎝

√

−V ′′(rc)

μ
t

⎞

⎠ (15)

if V ′′(rc) < 0. From these expressions it is clear that classical

sensitivity to the initial condition occurs, approximately, only

when the potential has local negative curvature, leading to

divergence eλct , in terms of a classical sensitivity parameter

λc =

√

|V ′′(rc)|
μ

. (16)

B. Quantum sensitivity

A completely analogous situation holds in the quantum-

mechanical case. Assuming a quadratic potential in the

quantum Hamiltonian

Ĥ =
p̂2

2μ
+

1

2
V ′′(rc)(r̂ − rd )2, (17)
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the Heisenberg position operator is evaluated using the Baker-

Campbell-Hausdorff lemma, similar to what one does for the

standard harmonic oscillator [31]. For our present purposes,

we consider only the case of negative curvature of the poten-

tial, where the operator becomes

r̂(t ) = rd + [r̂(0) − rd ] cosh

⎛

⎝

√

−V ′′(rc)

μ
t

⎞

⎠

+
p̂(0)

√
−μV ′′(rc)

sinh

⎛

⎝

√

−V ′′(rc)

μ
t

⎞

⎠. (18)

Thus

[r̂(t ), p̂(0)] = i cosh

⎛

⎝

√

−V ′′(rc)

μ
t

⎞

⎠. (19)

Because the OTOC is defined in terms of the square of this

quantity, its exponential growth in this approximation would

be proportional to {exp[
√

V ′′(rc)/μt]}2 = e2λct , that is, at a

rate twice that of the classical exponential growth. The growth

rate 2λc is plotted in Fig. 4.

A slightly better estimate of the OTOC’s growth rate would

evaluate the commutator, not at the classical turning point rc

but at a nearby point rm where the wave function is maximal.

To this end, we make a linear approximation of the potential

near the turning point,

V (r) ≈ E + V ′(rc)(r − rc). (20)

Defining the characteristic length scale r̄ = ( 1
2μV ′(rc )

)1/3 and

in terms of the dimensionless variable z = (r − rc)/r̄, the

resulting Schrödinger equation becomes

d2ψ

dz2
− zψ = 0. (21)

The solution to this is the usual Airy function, which,

to a good approximation, is maximal at z = −1, whereby

our bound-state wave functions are maximal at r = rm,

where

rm = rc − r̄ = rc −
(

1

2μV ′(rc)

)1/3

. (22)

Using this result, we define a corrected semiclassical version

of the OTOC growth rate 2λsc, where

λsc =

√

|V ′′(rm)|
μ

. (23)

This quantity of course takes a different value for each bound

state n. The results of this approximation are also plotted in

Fig. 4. The agreement with the quantum OTOC is slightly

improved, especially at high n.

VI. CONCLUSIONS AND OUTLOOK

We have verified, in realistic molecular potentials, a trend

that has been seen elsewhere, namely, that exponential growth

of the classical sensitivity and the quantum-mechanical OTOC

are linked, even in the absence of chaotic behavior. In the

molecular system we have considered, the characteristic long-

range van der Waals tail of these potentials produces a fairly

explicit transition between regular and sensitive behavior of

the dynamics as a function of the energy level. Molecules are

thus revealed as objects of variable sensitivity by this measure.

The lessons learned from this work should inform the

investigation of far more complex molecules, in particular

the ultracold lanthanide dimers alluded to at the outset. Such

molecules are expected to be truly chaotic, rather than merely

sensitive, as the models presented here were. Thus, for ex-

ample, Dy2 molecules just below their dissociation threshold

should exhibit exponential growth of their OTOCs in some

way distinct from the sensitivity we have described, which

may lead to additional insight into their dynamics. This dy-

namics has the advantage that the OTOC will depend not only

on the level considered, but also on the magnetic field applied

in the laboratory, which is suspected to increase the degree of

chaos in the molecules [25].

Looking ahead, we note that the exponential growth of the

OTOC at relatively short times is not the only characteristic

designating chaotic behavior. Indeed, quantum chaotic sys-

tems have been identified for which the quantum-mechanical

OTOC does not appear to grow exponentially [32,33]. Never-

theless, the long-time behavior was shown to oscillate in non-

chaotic systems, but to saturate in chaotic systems [2,33–35].

Though we have not emphasized this, in the present integrable

Lennard-Jones and rubidium dimer examples, the OTOC in-

deed oscillates at long times. It is expected that, instead,

saturation will occur for the case of Dy2.
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