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Slinky, a helical elastic rod, is a seemingly simple structure with unusual mechanical behavior; for
example, it can walk down a flight of stairs under its own weight. Taking Slinky as a test-case, we
propose a physics-informed deep learning approach for building reduced-order models of physical
systems. The approach introduces a Euclidean symmetric neural network (ESNN) architecture that is
trained under the neural ordinary differential equation framework to learn the 2D latent dynamics

Keywords: from the motion trajectory of a reduced-order representation of the 3D Slinky. The ESNN implements
Reduced-order model a physics-guided architecture that simultaneously preserves energy invariance and force equivariance
Data-driven

under Euclidean transformations of the input, including translation, rotation, and reflection. The
embedded Euclidean symmetry provides physics-guided interpretability and generalizability, while
preserving the full expressive power of the neural network. We demonstrate that the ESNN approach
is able to accelerate simulation by one to two orders of magnitude compared to traditional numerical
methods and achieve a superior generalization performance while classic neural networks fail to
learn the Slinky dynamics, i.e.,, the ESNN, trained on a single demonstration case, predicts the
motions accurately for unseen cases of different Slinky configurations and boundary conditions. Further
investigation into the ESNN reveals that it explicitly learns the nonlinear coupling between stretching
and bending of the Slinky.

Deep learning
Neural network
Neural ordinary differential equation

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Reduced-order models (ROMs) [1-4] are simplifications of
high-order complex models that are often derived from first prin-
ciples. ROMs, through ingenious reduction of degrees of freedom
(DoFs), gain significant advantages in computation cost com-
pared with high-order complex models without significant loss of
accuracy. Their application is crucial in scenarios where the com-
putation is expensive [5], repeated computations are required [6],
or the application is computation-time sensitive [7,8]. Tradition-
ally ROMs are built by experts with domain-knowledge through
repeated trial-and-error and time-consuming analysis. In this
paper, we seek a data-driven approach to automatically construct
ROMs from observed data. Recently, deep learning based on deep
neural networks [9,10] (DNNs) has demonstrated two critical fea-
tures making it a perfect candidate technique for automatic ROM
construction: on one hand, the data-driven models offer possi-
bilities for superior computation efficiency compared to classic
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methods [11-19]; on the other hand, it enables advances to-
wards human-like, automated rule discovery and learning of the
dynamics of a system from observations [20-26].

Unconstrained neural networks (NNs), trained to directly fit
time-series data generated by dynamical systems, however, often
cannot replicate the dynamics under unseen initial and boundary
conditions because they fail to learn the underlying physical con-
straints, such as Euclidean symmetry of space and conservation
of energy. Indeed, recent works have shown that incorporating
such constraints into deep learning is vital for generalization abil-
ity, learning efficiency, and interpretability [27,28]. For example,
Hamiltonian Neural Network [29] and Lagrangian Neural Net-
work [30] introduced the physical prior of energy conservation
to neural networks for learning dynamics. Geometric deep learn-
ing [28,31] and equivariant neural networks [32-36] leverage
geometric symmetry properties of the network input to improve
the quality of inherent knowledge learned by neural networks.
Successful applications include drug discovery [37,38], quantum
chemistry [39], and particle physics [40,41].

In this paper, we introduce a physics-informed deep learning
approach to learning 2D reduced-order dynamics of a Slinky.
Instead of a long elastic helix in 3D space, a Slinky is described
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Fig. 1. (color online). Overview of the proposed Euclidean symmetric neural network (ESNN). (a) Static deformation comparison across a real-world Slinky experiment,
the discrete elastic rod (DER) simulation, and the reduced-order model based on the ESNN. (b) Computation time comparison between DER simulation and the
proposed NN method. (c) The core features of the proposed NN method: the NN embeds energy invariance and force equivariance on Euclidean transformations of
the input Slinky configuration, including translation, rotation, and reflection. The NN is trained under the neural ordinary differential equation framework.

as a series of connected bars in a 2D plane [42]. The approach is
guided by two principles: (i) The system trajectories along time
are constructed by integrating the ordinary differential equation
(ODE) formulated by Newton'’s second law of motion; (ii) A neural
network is trained to predict the 2D surrogate forces on the
bars so that the observed trajectories can be generated following
the ODE. We endow the neural force predictor with Euclidean
symmetry and energy conservation and propose an Euclidean
symmetric neural network (ESNN) architecture. In addition, the
neural force predictor is faced with the challenge of compounding
error, i.e., the error in force prediction can accumulate through
integration, leading to an erroneous simulated trajectory that
seriously deviates from reality. We address this by going beyond
learning separated state-force pairs and use the neural ordinary
differential equation (NODE) framework [43] to match the entire
trajectory. Under such framework, the consequence of a force
prediction error in later time steps is considered in the loss,
encouraging the neural network to be prescient and not to overfit
proximate dynamics.

We show that this approach is able to accurately predict the
motion of a real-world Slinky, and by learning from a single
demonstration case, to generalize to unseen Slinky configura-
tions, boundary conditions, and even a softer Slinky by exploiting
“physics” - scaling the neural force predictor with the material
stiffness. The computational speed is increased by roughly 60
times compared with state-of-the-art 3D simulation method (dis-
crete elastic rod, DER [44], also see Supplementary Information
S1 and Fig. S1) due to the significantly reduced DoFs (Fig. 1).
To the best of the authors’ knowledge, we for the first time
demonstrate, with experimental validation, that a deep learning
approach is capable of extensively generalizing from one single
learning case, and that a complex system in the real world could
benefit from this reality-virtual-reality closed-loop pipeline.

2. Results
2.1. The Slinky triplet formulation

The 2D Slinky representation is shown in Fig. 2(a). The top and
bottom vertices of a 3D Slinky cycle are projected onto the XOY
plane. The vector pointing from the projected bottom vertex to
the projected top vertex is the 2D representation of that cycle,
referred to as a bar hereafter. The coordinates of the ith bar are

X; = [x;, Vi, ai] € R3: x; and y; are the coordinates of the center
point, and «; is the angle of the bar with respect to the y axis. For
a Slinky of N. cycles, its 2D representation has N, bars, and the
states of these N, bars along time constitute the 2D system trajec-
tory of the Slinky. Such a 2D reduced-order representation retains
the essential geometry of the 3D structure of a Slinky, based on
which a 3D helical shape is still reconstructable (Supplementary
Information S5) despite the substantial reduction in the number
of DoFs.

2.2. The Euclidean symmetric neural network

Fig. 2(c) shows the workflow of the ESNN. Three adjacent bars
are grouped into a triplet as an input unit. For a Slinky of N. 2D
bars, each bar is used as the central bar of a triplet, resulting
in N, triplets (N, instead of N, — 2 because of special boundary
treatment. See Supplementary Information S6). Consider a single
input of the NN, i.e, the global coordinates of the ith triplet
& = [x_..x],x{ ;]" € R% where the superscript T represents
transpose operation. For simplicity, we omit the triplet index i
and denote &; as &£. The first step in the ESNN is to make the
representation invariant to rigid body_translation and rotation,
by transforming the global coordinates & into relative coordinates
z € R (Supplementary Information S4). Then z and its 3 reflected
copies are passed through a DenseNet-like structure [45] param-
eterized by 0, denoted as fy(-). The outputs are 4 scalars, and their
summation is the energy surrogate E:

E(z) = fo(z) + fo(R(2)) + fo(Ry(2)) + fo(R(Ry(2))) (1)

where R,(-) and R,(-) stand for the reflection of the triplet coor-
dinates about x and y axes, respectively. Note that the reflections
are self-inverse and commutative, i.e.,

Rx(Re(:)) = 1(-), Ry(Ry(:)) =1(-), and Rx(Ry(-)) = Ry(R«("))

where I(-) is the identity transformation. Therefore, the energy
surrogate E satisfies the following property:

E(z) = E(R«(z)) = E(R,(z)) = E(R«(Ry(2))) (2)

That is, E is invariant to reflections on z and thus on E; E is also
invariant to rigid body transformation on & due to such invariance
of z. The output surrogate force on the middle bar of the triplet,
F € R3 is generated by taking the derivative of E with respect
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Fig. 2. (color online). Detailed schematic of the ESNN. (a) Construction of the 2D bars by projecting 3D Slinky cycles onto the XOY plane. (b) Time marching under
the NODE framework. At time t;, the Slinky system is partitioned into triplets and passed through the same ESNN. The output force vectors are stacked and fed into
an ODE solver to update the system state at t;.1. (c) Workflow of the ESNN. The “Net” in the chiral transformation module is a DenseNet-like neural network of 5
hidden layers (Supplementary Information S3). (d) Summary of the energy invariance and force equivariance properties of the ESNN. The original triplet configuration
and its Euclidean transformed copies generate the same energy surrogate (invariance) and equivariant force vectors.

to x; € R3 using the automatic differentiation mechanism in
PyTorch [46], i.e., F(§) = 0E(&£)/0x;. It is straightforward to prove
that F is equivariant to rigid body and chiral transformations on
& (Fig. 2(d)).

The entire ESNN can be considered as a general function
F = ESNNy(¢), with the aforementioned invariances and equivari-
ances guaranteed regardless of the parameters 6. Conventionally,
to obtain good performance with an unconstrained neural net-
work for all orientation and chirality of the input, the approach
is to augment the training dataset with various rotation and
reflection. In comparison, the advantages of ESNN are trifold:
(1) The Euclidean symmetry is strictly guaranteed (instead of
only approximated in the dataset-augmentation approach); (2)
Training cost is significantly lower due to the concise training
dataset without symmetry augmentation; (3) A more compact NN
architecture is possible since weights are dedicated to learning
the functional form of the surrogate elastic energy instead of the
symmetries. This bolsters the succeeding gain in computational
speed.

2.3. The neural ordinary differential equation training

Fig. 2(b) illustrates how a 2D state is evolved from time ¢; to
ti+1. At each time step, N, triplets are constructed, each of which
is passed through the ESNN. The output is N. 3-dimensional
vectors representing the predicted surrogate elastic forces on the
middle bars of the triplets. These vectors are then concatenated
to form the elastic force vector for the entire Slinky system.
Then the system state can be updated by any ODE solver, 5th
order Dormand-Prince method in this paper. By repeating this
update procedure from a known initial state, a predicted tra-
jectory for the reduced-order Slinky system is calculated. The
ESNN weights @ is optimized to minimize the mean-squared error
loss comparing the whole predicated trajectory and the ground
truth across multiple observation time steps (Fig. 1(c)). To enable
efficient optimization, the gradient of such loss w.r.t. the weights
is calculated by the adjoint method introduced in NODE [43]. The

NODE training scheme naturally aligns the optimization objective
with the ODE simulation framework and improves accuracy and
stability of the 2D dynamics dictated by the ESNN. To minimize
the loss, it requires not only that the ESNN predicts instantaneous
surrogate forces with small errors, but also that the errors do not
compound when the neural force function is integrated through
an ODE solver.

We test the ESNN on a commercially-available 76-cycle Slinky
(Poof-Slinky, Inc.) under large nonlinear deformation. The experi-
ment setup is shown in Fig. 3(a). We record a single Slinky motion
case using a camera and calibrate a 3D DER model [44,47-50]
for comparison and 2D training data generation. Based on the
calibrated model a 3D simulation is run with the same initial and
boundary conditions as the experiment and with the damping
removed. The 2D system trajectory is constructed based on the
projection of 3D data. During ESNN training, the trajectory length
is gradually increased from 2 to 70 to improve training efficiency.
The simulation time step is 0.01 s, making the final training
trajectory time span 0.7 s. Refer to Supplementary Information
S7 and S8 for details on DER model calibration and ESNN training.
A damping and a contact model [51] (Supplementary Information
S2) are added in the ESNN deployment to match the real-world
energy dissipation and non-penetration. The ESNN is trained on
this one case, and tested on other unseen cases.

2.4. Generalization to unseen conditions

After 1000 training epochs, a simulation is run with the trained
ESNN for 2.5 s. The predicted trajectory, of which the first 0.7 s
span is called train phase and the 0.7-2.5 s span extrapolation
phase, is compared with 3D DER simulation in Fig. 3(c). The ESNN
results match the ground truth well not only within the train
phase, but also in the extrapolation phase up to 2.5 s, i.e.,, more
than 2 times the training time span. Note that extrapolation here
refers to time-domain forecasting rather than making predictions
on “out-of-distribution” data. The final static deformations given
by the experiment, DER, and ESNN are in good agreement, as
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Fig. 3. (color online). Training and generalization results of the ESNN. (a) Experimental apparatus: a 76-cycle Slinky (D is supported by an experiment frame ).
A camera (@ records the Slinky motion. (b) The loss history of the NODE training for 1000 epochs. The training trajectory length is gradually increased from 2 to
70. (c) Comparison between 3D DER ground truth and reconstruction from the ESNN reduced-order model in train phase and extrapolation phase (Supplementary
Movie S1). Time shots are at 0.45 s, 2.03 s, and 2.50 s (from left to right). (d) Comparison of an unseen 40-cycle Slinky across the experiment, 3D DER simulation,
and reconstruction from the ESNN reduced-order model (Supplementary Movie S2). Time shots are at 0.53 s, 1.43 s, and static (from left to right). (e) Comparison
of testing on a 40-cycle Slinky with a different boundary condition and orientation (Supplementary Movie S3). Time shots are at 0.2 s, 0.53 s, and static (from left

to right).

shown in Fig. 1(a). In terms of computational speed, the ESNN
outperforms the DER method by roughly 60 times (Supplemen-
tary Information S10) as shown in Fig. 1(b). With the NN weights
and all physical parameters fixed, we test the generalization of
the ESNN on four previously unseen cases: on a Slinky (1) of a
different number of cycles; (2) under a different boundary condi-
tion; (3) of a different density; (4) of a different Young’s modulus
(refer to Supplementary Information S9, Movie S4, and Movie
S5 for (3) and (4)). In test case (1), the Slinky cycle number is
changed to 40 with both ends clamped, as shown in Fig. 3(d). The
Slinky is initially held horizontal and then dropped freely under
gravity. The motion time shots of the Slinky from experiment,
DER simulation, and ESNN simulation are compared in Fig. 3(d)
and show an excellent agreement. In test case (2), the 40-cycle
Slinky is held vertically, clamped at the upper end, and dropped
freely from its undeformed configuration. The motion time shots
from different methods are compared in Fig. 3(e) and again we
observe a good agreement. In these two test cases, a satisfactory
agreement is achieved without making any changes to the ESNN.
The agreement originates from the embedded Euclidean symme-
try and the fact that the NN is learning generalizable physics
locally. As a contrast, [6,52] construct NN-based surrogate models
for full-field solutions under a certain boundary condition. The
benefit is that the NN prediction is extremely fast since only
one forward-pass through the trained NN is required for each
prediction. The price paid is in the generalization ability. For a
new type of boundary condition, a new dedicated training dataset
is required and the NN needs to learn from scratch. However,
in our ESNN approach, different boundary conditions can be
readily incorporated after training since the ESNN learns local
physics which is boundary condition agnostic. In test case (2),
the orientation of the Slinky is shifted by 90 degrees. The ESNN is
still capable of generating the correct surrogate forces and system
trajectory prediction since it preserves rotation equivariance.

3. Discussion

We demonstrate through the construction of alternate data-
driven models why and how the three principal characteristics
of our physics-aware ESNN model play crucial roles in ensuring
accurate training based on data obtained from a single demonstra-
tion and then being able to generalize to unseen scenarios where
both initial and boundary conditions are varied.

3.1. The importance of physical knowledge

To provide a physics-agnostic, data-driven baseline for com-
parison, a convolutional neural network (CNN) architecture is
used to directly learn the one-step dynamics of the Slinky. Given
the 2D coordinates of a Slinky at a time step, the CNN predicts
the 2D Slinky coordinates at the next time step using a series
of non-linear filters convoluting along the Slinky cycles with
receptive field of three cycles. Such a convolutional architec-
ture assumes homogeneity of the Slinky across cycles (as other
methods do) and allows the application of the trained model
to Slinkies consisting of arbitrary number of cycles. Boundary
condition treatment is the same as that used in the ESNN (Supple-
mentary Information S6). As shown in Fig. 4(b), the training result
is fairly accurate. After training, the CNN is tested on a 40-cycle
Slinky vertically held at the upper boundary. The unreasonable
result in Fig. 4(c) shows that the CNN “memorizes” the data
pattern in the training dataset, but fails to learn the underlying
dynamics, therefore does not generalize to unseen conditions
(Fig. 4(f)).

3.2. The importance of equivariance

Two other comparison methods are the force method and the
energy method. The schematics of the methods are shown in
Fig. 4(a). The NNs in the force method (referred as “force NN”)
and in the energy method (referred as “energy NN”) share the
same structure as the ESNN in terms of the number of layers and
neurons per layer. See Materials and Methods section for training
data preparation.

The force NN is trained to directly learn the mapping between
the triplet coordinates and the elastic forces on the middle bars
without equivariance encoded in the NN architecture. Although
a reasonably low loss is achieved for training (Supplementary
Information S11 and Fig. S9(a)), the force NN still fails to for-
ward propagate using an ODE solver (Fig. 4(d)). Without the
equivariance property, the force NN fails to generate physically
reasonable and consistent predictions on unseen inputs. A natural
thought to solve this issue is to train an enlarged NN on an
augmented dataset with rotation and chiral transformations. This
approach is unrealistic because the rotation angle is a continu-
ous variable and the amount of data augmentation to enforce
rotation-equivariance can be prohibitively huge. This highlights
the necessity of incorporating physical symmetries to improve
the efficacy and efficiency of NN-based reduced-order models.



Q. Li, T. Wang, V. Roychowdhury et al. Extreme Mechanics Letters 58 (2023) 101925

(a)
CNN Force Method ESNN

Triplet coordinates at t; [ Coordinates [ Force |
[Coordinates| [ Force |
A
/ ““'—--—\ Energy Method -
[Coordinates| [ Force |
A
-

11 _—
/ __—%““X ckprup ./'/\l,/'_z' . ‘\"”J

Center bar coordinates at ¢,

') i y
Wil A

10 :
— ESNN Horizontal
— ——ESNN Vertical
=) ESNN HalfDensity
: 1 —— ESNN HalfElasticity
510 CNN Vertical =
£ =
5] >
T T 2 %D
i i
it ‘1‘”7?”11\']“%‘]“ ?“jﬂ 1072 [5 0.05
o
>
< e~ T
1073 0.04
0 0.5 1 1.5 0 0.5 1 1.5
Time (S) [e% (Rad)

Fig. 4. (color online). Comparison between the ESNN and 3 other methods (CNN, force method, energy method). (a) Schematic comparison between different
approaches. CNN takes the triplet coordinates at the current time step and predicts the center bar coordinates at the next time step without any physical symmetry
or dynamics encoded. The force method has the same input but predicts the forces on the center bar. The energy method incorporates invariances to predict the
energy first and then by backpropagation derives an equivariant force field. The force and energy methods perform data-fitting directly. The ESNN trains an invariant
NN under the NODE framework. (b) Comparison between 3D DER ground truth and CNN training results (Supplementary Movie S6). Time shots are at 0.20 s, 0.43
s, and 1.18 s (from left to right). (c) Comparison between 3D DER ground truth and CNN generalization results (Supplementary Movie S7). Time shots are at 0.03 s,
0.17 s, and 0.33 s (from left to right). (d) The training results of the force method (Supplementary Movie S8) at 9.4 ms, 11.4 ms, 13.4 ms, and 14.9 ms (from left
to right). The force method fails to generate a reasonable simulation. (e) The training results of the energy method (Supplementary Movie S9) at 7.5 ms, 8.5 ms,
9.5 ms, and 10.5 ms. The simulation diverges at 10.7 ms. (f) The error comparison between the ESNN (4 generalization cases) and CNN (generalization for a 40 cycle
Slinky). The error is the vertex distance between NN prediction and 3D DER averaged on all the Slinky vertices. The CNN generalization error is significantly larger
than those of the ESNN (capped at 1.0 for visualization). (g) The learnt energy of the ESNN at different bending angles «. The symmetric rotation configuration in
the inlet ensures that at different bending angles the stretching stays the same and the shear remains 0. The energy increase is purely caused by bending motion.
The bending energy and the associated bending moment are different for the same bending angle under different stretchings. This indicates a nonlinear coupling
between stretching and bending.

3.3. The importance of the NODE training 3.4. Comparison with classic 2D Slinky models

By investigating the prediction of the intermediate energy sur-
The results from the energy NN are shown in Fig. 4(e). The en-  rqgate of the ESNN, we show that it automatically discovers the
ergy NN is trained to predict the elastic energies given the triplet  nponlinear stretching-bending coupling of the Slinky without any
coordinates. Similar to the ESNN, the elastic force on the middle prior knowledge. Fig. 4(g) shows the triplet energy at different
bar, which is the negative energy gradient w.r.t. the coordinates bending angles with 3 initial stretching lengths. As the initial
of the middle bar, can be accordingly derived with backprop- stretching length increases, it takes more energy to bend the bars
agation. The energy NN differs from the ESNN in the training (O @ certain angle, ie, the instantaneous bending stiffness is a
scheme: the energy NN is trained on coordinates-energy data function Qf the sFretchmg length, which is a physical insight not
. . . . reflected in classic models [42].
pairs; the backpropagation to calculate forces is performed during
the testing phase 1_’or erward simulation. Re;all that f9f _the ESNN, 3.5. Other machine learning techniques for modeling physical sys-
the backpropagation is already embedded in the training phase tems
under the NODE framework to fit the Slinky trajectory along time.

The energy NN simulation diverges at 10.7 ms. The divergence Physics-informed neural networks (PINN) [53,54]. PINN is typi-
is due to two reasons: (1) Although it achieves a nearly perfect cally provided the governing partial differential equations (PDEs)
energy fitting (Supplementary Information S11 and Fig. S9(b)),  of a given system and then computes the solution. PINN can
there is no guarantee that the derivatives of energies, i.e. forces; also solve inverse problems such as inferring unknown field vari-

ables and parameters from measured data, but the system model
should typically be provided in a symbolic form. Thus, PINN is not
suitable for our task, where we aim at constructing the system
model from data without knowing the symbolic form.

(2) There will inevitably be errors in the energy prediction of the
NN and the associated force calculation after training. The errors
after propagating through an ODE solver should not diverge the

simulation. This property is guaranteed when the NN is trained Neural Operators [6,55-57]. Neural operator (NO) methods aim
under the NODE framework, but not when directly fitting input-  to Jearn “operators”, which map a function to another function,
output data pairs. This highlights the necessity of using NODE as  from data, e.g., the mapping from an arbitrary initial condition
the training scheme for NN-based reduced-order models. as a function of spatial coordinates to the state of a PDE system
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at a fixed time. NOs have demonstrated their effectiveness in
multiple PDE examples. However, such methods have limitations
preventing their application to the Slinky system. Tailored for
general end-to-end learning of PDE systems, NOs are not able
to incorporate the inductive bias of Newton’s Second Law, which
consequently also limits the incorporation of Euclidean symme-
try. Further, due to the end-to-end characteristics, a single neural
operator model is not applicable to Slinkies of different number
of cycles.

Sparse Identification of Nonlinear Dynamics (SINDy) [22,58].
SINDy is a machine learning method that uses data obtained from
observations of a physical system to construct analytical models
of the system in the form of compact symbolic expressions
chosen from a dictionary of predefined terms. Although SINDy
has shown considerable promise, e.g., in model construction of
systems with field variables such as vortex shedding behind an
obstacle, it is not suitable for our problem. To see this, one simply
needs to consider deriving the governing equations of a quadru-
ple pendulum. It is not clear how a dictionary of combinatorial
symbolic terms would be able to accurately and fully incorporate
the complex rational terms involved in such a system. In other
words, the curse of dimensionality would prevent SINDy from
being applied to the Slinky system.

4. Conclusions

We have proposed an ESNN-based approach for building data-
driven reduced-order models of physical systems under the NODE
framework. We have validated its accuracy and extensive gen-
eralization ability, a critical differentiation from purely surro-
gate models, on real-world Slinky experiments. A roughly 60
times computational acceleration is achieved compared with
classic simulation methods. The generalization ability originates
from incorporating data-driven deep neural network models with
physics principles including Euclidean symmetry and Newton'’s
second law of motion. With these features, the ESNN is able
to learn the reduced-order physics from a single demonstration
case, and perform numerically stable, accurate, and fast predic-
tions on a variety of unseen cases. We also show that the ESNN
automatically discovers the phenomenon of nonlinear stretching—
bending coupling that emerges in a Slinky without any prior
knowledge. By incorporating only a universal geometric symme-
try instead of any domain specific knowledge, the ESNN possesses
the promise to be applicable to a wide variety of physical systems
for automatic model construction and knowledge discovery.
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Appendix A. Discrete elastic rod simulation

Discrete Elastic Rod method simulates the dynamics of elas-
tic rods under large nonlinear deformations. We implemented
the Incremental Potential Contact model (Supplementary Infor-
mation S2) to deal with the contact between Slinky cycles in
both DER and NN-based simulations. For details, please refer to
Supplementary Information S1.

Appendix B. Data generation for force and energy methods

After the 3D simulation is run, the total energy of each discrete
elastic rod at each time step, including bending, stretching, and
twisting energy, is recorded. The total energy of each Slinky cycle
is the summation of the energies from the associated discrete
rods. The 2D triplet coordinates and the corresponding total
energy of the middle cycles constitute the inputs and outputs
of the training data pairs for the energy method. The NN in the
energy method is supposed to learn the mapping between triplet
coordinates and middle bar energies.

After converting the 3D Slinky trajectory to 2D bar trajectory,
the instantaneous acceleration of each bar is calculated with
finite difference method. The pseudo elastic force on each bar is
calculated by Newton'’s second law of motion. The NN in the force
method is supposed to directly learn the mapping between triplet
coordinates and middle bar pseudo forces.

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.eml1.2022.101925.
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