
Algorithms and Lower Bounds for Replacement

Paths under Multiple Edge Failures*

Virginia Vassilevska Williams

EECS

MIT

Cambridge, MA, USA

virgi@mit.edu

Eyob Woldeghebriel

EECS

MIT

Cambridge, MA, USA

eyobw@mit.edu

Yinzhan Xu

EECS

MIT

Cambridge, MA, USA

xyzhan@mit.edu

Abstract—This paper considers a natural fault-tolerant short-
est paths problem: for some constant integer f , given a directed
weighted graph with no negative cycles and two fixed vertices s
and t, compute (either explicitly or implicitly) for every tuple of
f edges, the distance from s to t if these edges fail. We call this
problem f -Fault Replacement Paths (fFRP).

We first present an Õ(n3) time algorithm for 2FRP in n-vertex
directed graphs with arbitrary edge weights and no negative cy-
cles. As 2FRP is a generalization of the well-studied Replacement
Paths problem (RP) that asks for the distances between s and t for
any single edge failure, 2FRP is at least as hard as RP. Since RP
in graphs with arbitrary weights is equivalent in a fine-grained
sense to All-Pairs Shortest Paths (APSP) [Vassilevska Williams
and Williams FOCS’10, J. ACM’18], 2FRP is at least as hard as
APSP, and thus a substantially subcubic time algorithm in the
number of vertices for 2FRP would be a breakthrough. Therefore,

our algorithm in Õ(n3) time is conditionally nearly optimal. Our

algorithm immediately implies an Õ(nf+1) time algorithm for
the more general fFRP problem, giving the first improvement
over the straightforward O(nf+2) time algorithm.

Then we focus on the restriction of 2FRP to graphs with
small integer weights bounded by M in absolute values. We
show that similar to RP, 2FRP has a substantially subcubic time
algorithm for small enough M . Using the current best algorithms
for rectangular matrix multiplication, we obtain a randomized

algorithm that runs in Õ(M2/3n2.9153) time. This immediately

implies an improvement over our Õ(nf+1) time arbitrary weight
algorithm for all f > 1. We also present a data structure variant
of the algorithm that can trade off pre-processing and query time.

In addition to the algebraic algorithms, we also give an n8/3−o(1)

conditional lower bound for combinatorial 2FRP algorithms in
directed unweighted graphs, and more generally, combinatorial
lower bounds for the data structure version of fFRP.

Index Terms—Replacement paths, fine-grained complexity.

I. INTRODUCTION

Shortest paths problems are among the most basic prob-

lems in graph algorithms, and computer science in general.

An important practically motivated version considers shortest

paths computation in failure-prone graphs. The simplest such

problem is the Replacement Path (RP) problem (studied e.g.

by [1]–[13]) in which one is given a graph and two vertices

A full version of this paper can be found at https://arxiv.org/abs/2209.07016.
Virginia Vassilevska Williams is supported by an NSF CAREER Award, NSF
Grant CCF-2129139, a Google Research Fellowship and a Sloan Research
Fellowship. Yinzhan Xu is supported by an NSF CAREER Award and NSF
Grant CCF-2129139.

s and t and one needs to return for every edge e, the shortest

path from s to t in case edge e fails.

RP has several motivations. The first is, preparing for

roadblocks or bad traffic in road networks, and similar sit-

uations in which edge links are no longer available. The

second motivation is in Vickrey pricing for shortest paths in

mechanism design (see [14], [15]).

It is natural to consider the generalization of RP to the case

where up to f edges can fail for f > 1: given a graph G and

two vertices s and t, for every set F of up to f failed edges,

determine the distance between s and t in G with F removed.

Let us call this the fFRP problem. Then similar to RP, fFRP

is well-motivated: more than one roadblock can occur in road

networks, and more than one link in a computer network can

fail.

Since there are Θ(mf) sets of f edges in an m edge graph,

intuitively, the output of fFRP would have to be at least of

size Θ(n2f) in a dense graph. However, just as in RP, one can

show that the output only needs to be Θ(nf).
Consider for instance f = 2. For every pair of edges (e, e′),

at least one of them, say e should be on the shortest path P
between s and t, as otherwise the s-t distance in G\F would

be the same as that in G. Thus there are only ≤ n−1 choices

for e. Similarly, e′ should be on the shortest path between s
and t in G \ {e}, and there are only ≤ n − 1 choices for e′.
Thus the output size of 2FRP is only Θ(n2), and by a similar

argument, the output size of fFRP is Θ(nf).
It is natural to ask how close to nf the best possible running

time for fFRP can be. For graphs with nonnegative weights,

fFRP can always be solved in O(nf+2) time as follows. First,

using Dijkstra’s algorithm, compute in O(n2) time the shortest

s-t path P . Then for every edge e on P , recursively solve

(f − 1)FRP in G \ {e}, where 0FRP is just a shortest paths

computation.

Can we do better than O(nf+2) time for fFRP in directed

weighted graphs?

Let us consider RP (i.e. 1FRP). For graphs with m edges,

n vertices, and arbitrary edge weights, RP can be solved in

Õ(m) time1 in undirected graphs [2] and can be solved in

1The Õ notation in this paper hides subpolynomial factors.

907

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS)

978-1-6654-5519-0/22/$31.00 ©2022 IEEE
DOI 10.1109/FOCS54457.2022.00090

2
0
2
2
 I

E
E

E
 6

3
rd

 A
n
n
u
al

 S
y
m

p
o
si

u
m

 o
n
 F

o
u
n
d
at

io
n
s

o
f

C
o
m

p
u
te

r
S

ci
en

ce
 (

F
O

C
S

)
| 9

7
8
-1

-6
6
5
4
-5

5
1
9
-0

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/F

O
C

S
5
4
4
5
7
.2

0
2
2
.0

0
0
9
0

Authorized licensed use limited to: MIT Libraries. Downloaded on June 16,2023 at 18:17:27 UTC from IEEE Xplore. Restrictions apply.

O(mn + n2 log logn) time in directed graphs [3]. In dense

directed graphs RP with arbitrary edge weights is subcubically

equivalent to All-Pairs Shortest Paths (APSP) [5], [16], whose

runtime has remained essentially cubic for 70 years, except

for no(1) factors.

Thus, (directed) fFRP for f = 1 does not have an

O(nf+2−ε) time algorithm for ε > 0, under the APSP

hypothesis. Furthermore, there is no known O(nf+2−ε) time

algorithm for any f > 1.

The special case of f = 2, 2FRP, is particularly interesting

since its output has size only O(n2). The APSP-based lower

bound for RP implies that 2FRP also requires n3−o(1) time to

solve. However, there is a gap between the best known upper

bound of O(n4) and the n3−o(1) lower bound.

This brings us to the following open question, stated for

instance in [17]2.

Can 2FRP be solved in essentially cubic time in directed

weighted graphs?

Our first result is a resolution of the open question above

for 2FRP.

Theorem 1. In the Word-RAM Model with O(log n)-bit

words, the 2FRP problem on n-vertex O(log n)-bit integer

weighted directed graphs with no negative cycles can be

solved in O(n3 log2 n) time by a deterministic algorithm or

in O(n3 log n) time by a randomized algorithm that succeeds

with high probability.

Since even RP is known to require n3−o(1) time under the

APSP hypothesis [16], our algorithm for 2FRP is conditionally

tight, up to no(1) factors.

Moreover, our theorem has an immediate corollary for

fFRP for f > 2 as well.

Corollary 2. For all f ≥ 2, fFRP in n-vertex directed

weighted graphs with no negative cycles can be solved in

Õ(nf+1) time.

Thus, for all f > 1, there is an algorithm for fFRP that runs

polynomially faster than the trivial O(nf+2) time, even though

for f = 1 this was impossible under the APSP hypothesis!

For directed weighted graphs, replacement paths with ver-

tex failures can be reduced to replacement paths with edge

failures.3 Thus, Corollary 2 works even if fFRP is replaced

with f vertex-failure replacement paths.

For unweighted graphs, or graphs with small integer edge

weights, there are better known running times for RP in

directed graphs. Here there is a distinction between algebraic

2Bhosle and Gonzalez [17] claimed an O(n3) time algorithm for the special
case where both failed edges are on the original shortest path. However, their
approach doesn’t quite work as written, and we include a discussion about
the issue in the full version.

3Given a graph G = (V,E), we create a graph G′ as follows. For every
v ∈ V , we create two vertices vin and vout in G′, and add an edge (vin, vout)
with weight 0 to G′. For every (u, v) ∈ E with weight w, we add an edge
(uout, vin) to G′ with weight w. Let U ⊆ V be any set of f failed vertices
in G. We define eU to be {(uin, uout) : u ∈ U}. For any s, t ∈ V \ U , it is
not difficult to verify that dG\U (s, t) = dG′\eU

(sin, tout), which completes
the reduction.

and combinatorial algorithms. While the terms themselves

are not well-defined, combinatorial algorithms usually refer

to algorithms that do not use algebraic techniques such as

fast matrix multiplication while algebraic algorithms refer to

algorithms that use such techniques. The study of combinato-

rial algorithms is motivated by the real-world inefficiency of

fast matrix multiplication algorithms and by a desire to get

algorithms that can perform better on sparser graphs, as it is

usually difficult for algebraic algorithms to take full advantage

of the sparsity of graphs.

In the case of unweighted graphs, directed RP has a

combinatorial algorithm with an Õ(m
√
n) running time [10],

which is essentially optimal as any further improvement would

imply a breakthrough in Boolean Matrix Multiplication [5],

[16]. For graphs with small integer edge weights in the

range {−M, . . . ,M}, there is an algebraic algorithm for

directed RP with an Õ(Mnω) running time [12], [13], where

ω ∈ [2, 2.373) denotes the exponent for multiplying two n×n
matrices [18]–[20].

Can we solve fFRP in subcubic time in graphs with

bounded integer weights when f > 1? Due to the output size,

fFRP for f ≥ 3 cannot have a subcubic time algorithm. Thus

the only generalization of RP that can still have a subcubic

time algorithm in bounded weight graphs is 2FRP.

Does 2FRP in graphs with small integer weights have a

truly subcubic time algorithm?

Similar to Corollary 2, if 2FRP in small weight graphs has

an O(n3−ε) time algorithm, then for every f ≥ 2, we would

get an O(nf+1−ε) time algorithm for fFRP in small weight

graphs, which is close to the output size Θ(nf) and always

better than our new Õ(nf+1) time algorithm for the arbitrary

weight case.

A reason to believe that a subcubic time algorithm may be

possible for 2FRP is that the output size is only quadratic.

Another generalization of RP that has only quadratic output

size, the Single Source Replacement Paths problem (SSRP),

can be solved in Õ(Mnω) time for graphs with edge weights

in {1, . . . ,M} [13] or in O(M0.8043n2.4957) time for graphs

with edge weights in {−M, . . . ,M} [21]. Hence it is possible

that 2FRP also has a subcubic time algorithm for small weight

graphs.

Meanwhile, current techniques do not seem to yield sub-

cubic time algorithms: replacement paths problems have been

studied (e.g. in [22]) as a special case of f -failure distance

sensitivity oracles (DSO), which are data structures that can

support replacement path queries for any set of f edge faults.

To solve 2FRP, one would need to pre-process a 2-failure DSO

and then perform O(n2) queries on it, assuming that the O(n2)
queries are known.

The best known DSO for graphs with small integer edge

weights and more than one fault is by van den Brand and

Saranurak [23]. For every α ∈ [0, 1], their oracle can achieve

Õ(Mnω+(3−ω)α) pre-processing time and Õ(Mn2−α) query

time for any constant number of failures on n-vertex graphs

with edge weights in {−M, . . . ,M}. Balancing the pre-

908

Authorized licensed use limited to: MIT Libraries. Downloaded on June 16,2023 at 18:17:27 UTC from IEEE Xplore. Restrictions apply.

processing time and the O(n2) queries needed results in an

Õ(Mn3) running time for 2FRP – a running time that is never

subcubic, even if M = O(1).

We overcome the difficulties that come from using existing

DSO techniques, and are able to provide a new sensitivity

oracle for 2FRP with fast pre-processing and query times.

Theorem 3. For any given positive integer parameter g ≤
O(n), there exists a data structure that can pre-process

a given directed graph G with integer edge weights in

{−M, . . . ,M} and no negative cycles and fixed vertices s
and t, in Õ(Mnω+1/g + Mn2.8729) time, and can answer

queries of the form dG\{e1,e2}(s, t) in Õ(g2) time. This data

structure has randomized pre-processing which succeeds with

high probability. The size of the data structure is Õ(n2.5).

If the edge weights of G are positive, the pre-processing

time and the size of the data structure can be improved

to Õ(Mnω+1/g + M0.3544n2.7778 + Mn2.5794) and Õ(n2)
respectively.

We note that the running time exponents shown above

with 4 digits after the decimal points all follow from fast

rectangular matrix multiplication [24]. As a corollary we

obtain the first truly subcubic time algorithm for 2FRP in

graphs with bounded integer weights.

Corollary 4. The 2FRP problem on n-vertex directed graphs

with integer edge weights in {−M, . . . ,M} and with no

negative cycles can be solved in Õ(M2/3n2.9153) time by a

randomized algorithm that succeeds with high probability.

Our new algorithms for 2FRP for bounded and arbitrary

weight graphs are interesting as they show that 2FRP is

not much more difficult than RP– both admit a cubic time

algorithm for general graphs and subcubic time algorithms for

bounded integer weight graphs.

We also immediately obtain the following corollary for f >
2, beating our algorithm for the arbitrary weight case for small

enough M :

Corollary 5. For any f ≥ 2, fFRP on n-vertex directed

graphs with integer edge weights in {−M, . . . ,M} and with

no negative cycles can be solved in Õ(M2/3nf+0.9153) time by

a randomized algorithm that succeeds with high probability.

We remark that, if given the failed edges, all (except one)

of our algorithms are able to report an optimal replacement

path P in Õ(|P |) time. The exception is the positive weight

case in Theorem 3, as it uses Gu and Ren’s DSO [25] as a

subroutine, which does not support path reporting.

So far our algorithms have used fast matrix multiplication.

Often one desires more practical combinatorial algorithms.

How fast can combinatorial algorithms for fFRP in un-

weighted graphs be?

Since the output size for fFRP with f > 2 is supercubic,

only distance sensitivity oracles can give subcubic bounds. We

show (conditionally) that any combinatorial f -failure sensitiv-

ity oracle for a fixed pair of vertices that can answer queries

faster than running Dijkstra’s algorithm at each query, must

have high pre-processing time.

Our conditional lower bound is based on the Boolean

Matrix Multiplication (BMM) hypothesis which says that

any “combinatorial” algorithm for n × n Boolean matrix

multiplication requires n3−o(1) time. By [5], [16], the BMM

hypothesis is equivalent to the hypothesis which states that any

combinatorial algorithm for Triangle Detection, which asks

whether a given graph contains a triangle, in n-vertex graphs

requires n3−o(1) time.

Theorem 6. Let k ≥ 1 be any constant integer. Suppose that

there is a combinatorial data structure that can pre-process

any directed unweighted n-vertex graph G and fixed vertices

s, t in Õ(n2+k/(k+1)−ε) time, and can then answer k-fault

distance sensitivity queries between s and t in Õ(n2−ε) time,

for ε > 0. Then there is a combinatorial algorithm for Triangle

Detection running in Õ(n3−ε) time.

The proof of the theorem can be found in the full version.

For k = 2, the above theorem implies that (combinatorial)

2FRP requires n8/3−o(1) time under the BMM hypothesis.

This means that RP is slightly easier than 2FRP in the com-

binatorial setting since it has an Õ(n2.5) time algorithm [10].

We leave it as an open problem to obtain an Õ(n8/3) time

combinatorial algorithm for unweighted 2FRP. One reason to

suspect the existence of such an algorithm is the existence of

2-fault-tolerant BFS trees of size O(n5/3) [26]. Note that for

RP there are fault-tolerant BFS trees of size O(n3/2) and a

combinatorial algorithm of runtime Õ(n5/2) [10], [27], though

there is no direct reduction between algorithm running times

and the sparsity of fault-tolerant subgraphs.

Related work: The running time for APSP in a graph with

arbitrary polylog(n) bit integers has remained essentially cubic

in the number of vertices for almost 70 years, with the current

best running time being n3/2Ω(
√
logn) by Williams [28], [29].

A truly subcubic time algorithm for APSP with arbitrary

weights would be a significant breakthrough.

The restriction of APSP to graphs with small integer edge

weights does have truly subcubic algorithms. Seidel gave

an Õ(nω) time algorithm for APSP in an undirected un-

weighted graph [30]. This algorithm was later generalized

by Shoshan and Zwick to yield an Õ(Mnω) time algo-

rithm for APSP in an undirected graph with integer edge

weights in {0, 1, . . . ,M} [31]. For directed graphs with edge

weights in {−M, . . . ,M}, the current best algorithm is by

Zwick [32] that runs in Õ(M1/(4−ω)n2+1/(4−ω)) time, or

Õ(M0.7519n2.5286) time using the current best algorithm for

rectangular matrix multiplication [19].

For graphs with m edges, n vertices and arbitrary in-

teger weights, RP can be solved in Õ(m) time in undi-

rected graphs [2], and in O(mn + n2 log logn) time in

directed graphs [3]. For graphs with small integer weights

in {−M, . . . ,M}, Vassilevska Williams [12] showed an

Õ(Mnω) time randomized algorithm for RP. For unweighted

directed graphs, there is an Õ(m
√
n) time deterministic com-

binatorial algorithm for RP [33]. RP has also been studied in

909

Authorized licensed use limited to: MIT Libraries. Downloaded on June 16,2023 at 18:17:27 UTC from IEEE Xplore. Restrictions apply.

the approximate setting [4], in planar graphs [6], [7] and in

DAGs [8], [9].

In the more general Single-Source Replacement Paths

(SSRP) problem, we are asked to compute all the replacement

path distances for a single source s but for all possible

targets t and all possible edges e on one s to t shortest path.

Grandoni and Vassilevska Williams [13], [34] generalized the

RP algorithm of Vassilevska Williams [12] to compute SSRP.

Their randomized algorithm runs in Õ(Mnω) time for graphs

with weights in {1, . . . ,M} and in Õ(M0.7519n2.5286) time

for graphs with weights in {−M, . . . ,M}. The latter case was

recently improved by Gu, Polak, Vassilevska Williams and

Xu to O(M0.8043n2.4957) time [21]. For unweighted directed

graphs with n vertices and m edges, Chechik and Magen [35]

showed an Õ(m
√
n + n2) time combinatorial algorithm and

an mn1/2−o(1) conditional lower bound for combinatorial

algorithms.

There is a significant body of work on single-fault dis-

tance sensitivity oracle. The first nontrivial DSO for weighted

graphs was given by Demetrescu, Thorup, Chowdhury and

Ramachandran [36], who gave a deterministic oracle with

constant query time and O(n3.5) construction time. They

also had an alternative DSO that needs O(n4) construction

time, but only uses Õ(n2) space and keeps constant query

time. Bernstein and Karger [37] gave a deterministic DSO for

weighted graphs with Õ(n3) pre-processing time and Õ(1)
query time. This is essentially optimal barring improvements

in APSP. On the other hand, single-fault DSOs for graphs

with small integer edge weights do not have a (conditionally)

optimal algorithm. The first DSO for small integer weighted

graphs with subcubic pre-processing time and sublinear query

time is given by Grandoni and Vassilevska Williams [13],

[34]. Their DSO for directed graphs with integer edge weights

in {−M, . . . ,M} has an Õ(Mnω+1/2 + Mnω+α(4−ω)) pre-

processing time and an Õ(n1−α) query time for any param-

eter α ∈ [0, 1]. Chechik and Cohen improved the DSO to

Õ(Mn2.873) pre-processing time and Õ(1) query time [38].

An algorithm by Ren improves the pre-processing time to

Õ(Mn2.733) and the query time to O(1), but it only works

for graphs with positive integer weights in {1, . . . ,M} [39].

Gu and Ren [25] recently improved the pre-processing time

to Õ(Mn2.5794) for constructing DSO for such graphs.

The first major step in multiple-fault DSOs was a DSO by

Weimann and Yuster [22] which can efficiently handle up to

f = O(log n/ log logn) edge failures (for larger number of

failures it will not be faster than brute-force). Their DSO is

randomized, and has an Õ(Mnω+1−α) pre-processing time

and an Õ(n2−(1−α)/f) query time for graphs with weights in

{−M, . . . ,M}, for any chosen parameter α ∈ (0, 1). They

also have an alternative DSO which has Õ(M0.68n3.529−α)
pre-processing time and Õ(n2−2(1−α)/f) query time for any

chosen parameter α ∈ (0, 1) using the current best algorithm

for rectangular matrix multiplication [24]. For graphs with

arbitrary edge weights, their DSO has an Õ(n4−α) pre-

processing time and an Õ(n2−2(1−α)/f) query time [22].

Their DSO for graphs with arbitrary edge weights was later

derandomized by Alon, Chechik, and Cohen in [33]. The

current best multiple-fault DSO for small integer weighted

graphs is a randomized DSO by van den Brand and Sara-

nurak, which has an Õ(Mnω+(3−ω)α) pre-processing time

and an Õ(Mn2−αf2+Mnfω) query time, for any parameter

α ∈ [0, 1] [23].

Duan and Pettie designed an Õ(n2) space two-fault DSO

with Õ(1) query time [40]. Since their focus is space com-

plexity instead of pre-processing time, their result is not

directly comparable to ours. Recently, Duan and Ren [41]

generalized [40] to f failures: they designed an Õ(fn4) space

f -fault DSO with fO(f) query time, though it only works for

undirected weighted graphs.

II. PRELIMINARIES

Throughout this paper, use πG(u, v) to denote a shortest

path from u to v in G and use dG(u, v) to denote its distance.

We also use πG(u, v, e) to denote a shortest path from u to v
in the graph G with edge e removed, and use dG(u, v, e) to

denote its distance. We sometimes drop the subscript G if it

is clear from the context. All graphs considered in this paper

don’t have negative cycles.

Let s, t be the source and target vertices in a graph G and

let πG(s, t) be a shortest path from s to t in G. Suppose we

remove a set of edges S from G. We say a path P is canonical

(with respect to πG(s, t) and S) if for any vertices u, v that

appear both on P and on πG(s, t) such that u appears before v
in both P and πG(s, t) and the subpath from u to v on πG(s, t)
is not disconnected by S, then the subpath from u to v in P
is the same as the subpath from u to v in πG(s, t). Clearly,

at least one of the replacement path πG\S(s, t) is canonical.

This is a light-weighted tie-breaking scheme. See Figure 1a

and Figure 1b for examples.

For a graph G, we use Ĝ to denote a copy of G with

all directions of the edges reversed. We use Ĝ for notational

succinctness. For instance, instead of saying computing single-

target replacement paths to t in G, we can say computing

SSRP from t in Ĝ.

We use ω < 2.3729 [18]–[20] to denote the square matrix

multiplication exponent. For any k > 0, we also use ω(1, k, 1)
to denote the exponent for multiplying an n×nk matrix and an

nk ×n matrix. Currently, the fastest algorithm for rectangular

matrix multiplication is by Le Gall and Urrutia [24]. It is well-

known that the function ω(1, k, 1) with respect to k is convex

when k > 0 (see e.g. [42]).

III. TECHNICAL OVERVIEW

In this section, we describe the high-level ideas and key

components in our algorithms for 2FRP in arbitrary weighted

graphs and in small integer weighted graphs.

Let G = (V,E) be a weighted graph with no negative

cycles, and let s, t ∈ V be the fixed source and target of

the 2FRP instance. Let πG(s, t) be a shortest path from s
to t. Both algorithms handle the following cases of two-fault

replacement paths queries separately: the case where only one

910

Authorized licensed use limited to: MIT Libraries. Downloaded on June 16,2023 at 18:17:27 UTC from IEEE Xplore. Restrictions apply.

s te1 e2

Fig. 1a. An example of a canonical path. The horizontal line (including e1 and e2) is the shortest path πG(s, t) from s to t in G, and the set of edges we
remove is S = {e1, e2}.

s te1 e2u v

Fig. 1b. An example of a non-canonical path. The horizontal line (including e1 and e2) is the shortest path πG(s, t) from s to t in G, and the set of edges
we remove is S = {e1, e2}. The path is not canonical because the subpath from u to v on πG(s, t) is not disconnected by {e1, e2} while the path is not
using that subpath.

of the two failed edges e1, e2 is on the original shortest path

πG(s, t), and the case where both failed edges are on πG(s, t).

First, we consider the case where only one of the two failed

edges e1, e2, say e1, is on πG(s, t). Let H = G \ {e2}.

We aim to compute dG\{e1,e2}(s, t) = dH\{e1}(s, t), i.e., a

one-fault replacement path query in H . Since e2 is not on

πG(s, t), πG(s, t) is still a shortest path from s to t in H .

Given a shortest path πH(s, t) = πG(s, t), the structure of

one-fault replacement paths is well-understood. It is known

(see e.g. [22]) that one of the optimal one-fault replacement

paths shares a prefix and a suffix with the shortest path, and

contains a detour part that connects the prefix and the suffix.

Importantly, the detour part does not use any edge on the

original shortest path πH(s, t) = πG(s, t). Therefore, in order

to understand the distances of the detours, we need to compute

the distance in the graph H \ πG(s, t),
4 which is exactly the

graph G \ πG(s, t) \ {e2}. Thus, the detour distances can

be efficiently computed by a one-fault DSO on the graph

G\πG(s, t). Based on this intuition, a key component in both

of our algorithms is a one-fault DSO on the graph G\πG(s, t).
Depending on the range of edge weights of the input graph,

we will use different DSOs accordingly.

One-fault DSO does not seem to help the case where

both failed edges e1, e2 are on πG(s, t). The structure of

dG\{e1,e2}(s, t) is more complicated than the structure of one-

fault replacement paths. One can show that one optimal 2-fault

replacement path still shares a prefix and a suffix with πG(s, t),
but the middle part between the prefix and the suffix is not

simply a detour that does not use any edge on πG(s, t). In

fact, it is possible that the middle part enters and leaves the

subpath of πG(s, t) between e1 and e2 an arbitrary number of

4Throughout this paper, a path P formally denotes the set of its edges.
Thus, H \ πG(s, t) is a subgraph of H that removes all edges on the s to t
shortest path, but keeps all the vertices on it.

times, as shown in Figure 2b. To understand the middle part

better, we study the following problem as a key subroutine

in our algorithms: for every two vertices u, v on πG(s, t)
where u appears earlier than v, we aim to compute f(v, u)
which is defined as dG\πG(s,u)\πG(v,t)(v, u), i.e., the distance

of a shortest path from v to u that is not allowed to use

edges before u or after v on πG(s, t). Intuitively, f(v, u)
captures the structure of the middle part of dG\{e1,e2}(s, t),
as the optimal path for f(v, u) can also enter and leave the

shortest path πG(s, t) multiple times. In the full version, we

will give efficient algorithms for computing these distances

f(v, u) in both arbitrary weighted graphs and small integer

weighted graphs. The running times of these two algorithms

are summarized below.

Lemma 7. There exists a deterministic algorithm that can

compute f in n-vertex weighted graphs with no negative cycles

in O(n3) time.

Lemma 8. There exists a randomized algorithm that can

compute f in n-vertex graphs with integer edge weights

in {−M, . . . ,M} in Õ(M1/3n2+ω/3) time. Using rectan-

gular matrix multiplication, the running time improves to

Õ(M0.3544n2.7778).

Our algorithm for 2FRP on small integer weighted graphs

needs to run SSRP multiple times on different subgraphs of G
(and related graphs) with different sources (see Section V-A

for an overview of the algorithm). However, the best run-

ning time for SSRP on graphs with integer edge weights

in {−M, . . . ,M} is O(M0.8043n2.4957) by Gu, Polak, Vas-

silevska Williams and Xu [21]. Simply running their algorithm

the required amount of times easily exceeds the running time

we aim for. Fortunately, in most of our SSRP computations,

we only need the replacement path distances dG′\{e}(s, t)
for t ∈ T and e ∈ πG′(s, t), where the size of T is much

smaller than n. In the full version, we will adapt Grandoni

911

Authorized licensed use limited to: MIT Libraries. Downloaded on June 16,2023 at 18:17:27 UTC from IEEE Xplore. Restrictions apply.

s te1u v

πG(s, u)

πG\πG(s,t)\{e2}(u, v)

πG(v, t)

Fig. 2a. A typical 2-fault replacement path where e1 is on the original shortest path while e2 is not.

s te1 e2u v

Fig. 2b. A typical 2-fault replacement path where both e1 and e2 are on the original shortest path. All paths shown that do not lie on the original shortest
path do not use any edge on it.

and Vassilevska Williams’s algorithm for SSRP on graphs with

integer edge weights in {−M, . . . ,M} [13] to achieve a more

efficient algorithm when T is small:

Lemma 9. Given an n-vertex graph G whose edge weights

are in {−M, . . . ,M}, a source vertex s ∈ V (G), and a subset

T ⊆ V (G), there is a randomized algorithm that computes

dG(s, t, e) for every t ∈ T and e ∈ Ts where Ts is a shortest

path tree rooted at s in Õ(Mnω +M
1

4−ω n1+ 1

4−ω · |T |) time

with high probability.

Note that we can potentially use ideas from [21] to make

Lemma 9 faster for large enough T , but this lemma won’t be a

bottleneck of our whole algorithm. In fact, for the value of |T |
we end up using for our 2FRP algorithm, the Mnω term in the

above lemma dominates the other term, and [21]’s techniques

cannot avoid the Mnω term either. Therefore, we choose

to adapt the simpler algorithm by Grandoni and Vassilevska

Williams [13].

All (except the positive weight case of Theorem 3) of

our algorithms can be used to report paths efficiently, by

using known techniques for finding solutions of dynamic

programming and finding witnesses for matrix multiplication

problems [43].

IV. NEARLY CUBIC TIME ALGORITHM FOR WEIGHTED

GRAPHS

In this section, we show our Õ(n3) time algorithm for 2FRP.

We use two drastically different algorithms for the case where

only one failed edge is on the original s to t shortest path and

the case where both failed edges are on the original shortest

path.

When only one failed edge is on the original s to t shortest

path, our algorithm is essentially a simple reduction to the

(one-fault) distance sensitivity oracle problem. For the other

case where both failed edges are on the shortest path, we

carefully design algorithms that can capture the patterns of

optimal replacement paths.

A. Only One Failed Edge on Original Shortest Path

Let G = (V,E) be our input graph, and let πG(s, t) be a

shortest path from s to t in G. We will compute all replace-

ment path distances dG\{e1,e2}(s, t) for e1 ∈ πG(s, t) and

e2 �∈ πG(s, t). Our algorithm relies on the following efficient

data structure for one-failure distance sensitivity oracle by

Bernstein and Karger [37].

Theorem 10 ([37]). Given a weighted graph H = (V,E) with

n vertices and no negative cycles, there exists a deterministic

data structure that can pre-process H in O(n3 log2 n) time

and then answer queries in the form dH\{e}(u, v) for any

u, v ∈ V and e ∈ E in O(1) time. Allowing randomized

data structure that succeeds with high probability, the pre-

processing time can be improved to O(n3 log n).

Even though they only stated their DSO for graphs with

nonnegative edge weights, their DSO also works for graphs

with possibly negative edge weights but no negative cycles,

after an O(n3) pre-processing step that replaces all edges with

nonnegative edges [44], [45].

Given our graph G, we create another graph G′ with O(n)
vertices. First, we copy G to G′ and remove all edges on

πG(s, t). Let h = O(n) be the number of vertices on πG(s, t)
and let p1, . . . , ph be vertices on the path πG(s, t), in order

they appear on πG(s, t). In particular, s = p1 and t = ph. We

add h vertices a1, . . . , ah to G′. For any 1 ≤ i ≤ j ≤ h, we

add an edge from aj to pi with weight dG(s, pi). Finally, we

add another h vertices b1, . . . , bh and for any 1 ≤ i ≤ j ≤ h,

we add an edge from pj to bi with weight dG(pj , t).

912

Authorized licensed use limited to: MIT Libraries. Downloaded on June 16,2023 at 18:17:27 UTC from IEEE Xplore. Restrictions apply.

The following lemma relates dG\{e1,e2}(s, t) with replace-

ment path distances in G′.

Lemma 11. For any e1 = (pi, pi+1) ∈ πG(s, t) and any

e2 �∈ πG(s, t),

dG\{e1,e2}(s, t) = dG′\{e2}(ai, bi+1).

Proof: First, we notice that πG(s, t) is still a shortest

path from s to t in G \ {e2}. Also, πG\{e1,e2}(s, t) is a

one-fault replacement path on the graph G \ {e2}. It is well-

known that (at least one) one-fault replacement path consists

of the following three parts: a prefix that is a prefix of the

original shortest path, a detour that does not use any edge

on the original shortest path, and a suffix that is also a

suffix of the original shortest path (see e.g. [13]). Therefore,

dG\{e1,e2}(s, t), when viewed as a one-fault replacement path

in G \ {e2} can be expressed as

dG\{e1,e2}(s, t) = min
1≤x≤i<y≤h

{
dG\{e2}(s, px)

+dG\{e2}\πG(s,t)(px, py) + dG\{e2}(py, t)
}

= min
1≤x≤i<y≤h

{dG(s, px)

+dG\{e2}\πG(s,t)(px, py) + dG(py, t)
}
.

On the other hand, we consider dG′\{e2}(ai, bi+1). Clearly, ai
must first go to some neighbor px for some x ≤ i where the

edge weight of (ai, px) is dG(s, px). Similarly, the last edge

on any ai to bi+1 path must travel from a neighbor of bi+1 to

bi+1. Thus, the last edge must be from py for some y ≥ i+1
with weight dG(py, t). Also, the subpath from px to py lies

entirely in G′ \ {e2}; this subpath cannot use any vertex aj
or bj for 1 ≤ j ≤ h either because these vertices either have

0 out-degree or 0 in-degree. Thus, the subpath from px to py
actually lies entirely in G \ {e2} \ πG(s, t). We can therefore

express dG′\{e2}(ai, bi+1) as

dG′\{e2}(ai, bi+1) = min
1≤x≤i<y≤h

{dG(s, px)

+dG\{e2}\πG(s,t)(px, py) + dG(py, t)
}
,

which matches exactly with the formula for dG\{e1,e2}(s, t).

Using Lemma 11 and Theorem 10, we can easily solve

the case where only one failed edge is on πG(s, t) in Õ(n3)
time. We first construct G′ and use Theorem 10 to pre-

process G′. Then for any two-fault replacement path query

dG\{e1,e2}(s, t) where e1 ∈ πG(s, t) and e2 �∈ πG(s, t), we

query dG′\{e2}(ai, bi+1) from the DSO in O(1) time. By

Lemma 11, this distance equals dG\{e1,e2}(s, t). Since there

are only O(n2) queries, the pre-processing is the bottleneck

and thus this case takes O(n3 log2 n) deterministic time or

O(n3 log n) randomized time with high probability.

B. Both Failed Edges on Original Shortest Path

In this section, we will describe an algorithm that computes

all replacement path distances dG\{e1,e2}(s, t) for e1, e2 ∈
πG(s, t). Again, we let p1, . . . , ph be vertices on the path

πG(s, t), in the order they appear on πG(s, t). Without loss

of generality, e1 = (pi, pi+1) and e2 = (pj , pj+1) for some

1 ≤ i < j < h.

Let P be a shortest path from s to t in G \ {e1, e2} that

is canonical (recall the definition of canonical in Section II).

There are essentially two cases in this section: the case where

P does not use any vertex on πG(s, t) between e1 and e2 and

the case where P uses at least one such vertex.

We first consider the case where P does not use any vertex

on πG(s, t) between e1 and e2. This can be thought as a

generalization of the RP algorithm in [3].

Lemma 12. In O(n3) time, we can compute the replacement

path distances dG\{e1,e2}(s, t) for every pair of e1, e2 ∈
πG(s, t) where e1 = (pi, pi+1) and e2 = (pj , pj+1) for some

1 ≤ i < j < h and the replacement path does not use any

vertex pk for i < k ≤ j.

Proof: First we fix some e1, e2 and consider their corre-

sponding replacement path P . Without loss of generality, we

assume P is canonical. Let px be the rightmost vertex (furthest

from s) P uses on πG(s, t) before e1. Similarly, let py be the

leftmost vertex (furthest from t) P uses on πG(s, t) after e2.

Since P is canonical, its subpath from s to px must use the

portion from s to px on πG(s, t) and thus has length dG(s, px).
Also, it implies that py must appear after px on P . Similarly,

the subpath of P from py to t must use the portion from py
to t on πG(s, t) and thus has length dG(py, t).

Now we consider the subpath of P from px to py . It cannot

use any edge between s and px on πG(s, t), since otherwise,

the subpath from s to this edge does not match the portion

from s to this edge on πG(s, t), making P not canonical.

Similarly, it cannot use any edge between py and t on πG(s, t).
The subpath of P from px to py cannot use any edge between

px and e1 on πG(s, t) either, due to the definition of px.

Similarly, it cannot use any edge between e2 and py . We also

assumed that P does not use any vertex between e1 and e2 on

πG(s, t), and thus it does not use any edge between e1 and e2
either. Therefore, the subpath from px to py completely avoids

πG(s, t) and thus its length is dG\πG(s,t)(px, py).

Thus, we have shown that dG\{e1,e1}(s, t) = dG(s, px) +
dG\πG(s,t)(px, py) + dG(py, t). In general, for any e1 =
(pi, pi+1) and e2 = (pj , pj+1) for some 1 ≤ i < j < h,

dG\{e1,e2}(s, t) = min
1≤x≤i

j+1≤y≤h

{dG(s, px)

+dG\πG(s,t)(px, py) + dG(py, t)
}
,

as long as the replacement path does not use any vertex pk,
for i < k ≤ j.

Let T (x, y) be dG(s, px) + dG\πG(s,t)(px, py) + dG(py, t).
After running APSP in G \ πG(s, t) in O(n3) time, we can

compute all values T (x, y) and store points (x, y) in a 2D

range tree and associate a value T (x, y) with point (x, y) in

Õ(n2) time, so that the 2D range tree can support orthogonal

range minimum queries. Then for any e1 = (pi, pi+1) and

e2 = (pj , pj+1) for some 1 ≤ i < j < h, we can query the

2D range tree to get the minimum value of T (x, y) such that

913

Authorized licensed use limited to: MIT Libraries. Downloaded on June 16,2023 at 18:17:27 UTC from IEEE Xplore. Restrictions apply.

1 ≤ x ≤ i and j + 1 ≤ y ≤ h. Each query takes Õ(1) time.

Overall, the running time for this case is O(n3).

It remains to consider the case where P uses some vertex

on πG(s, t) between e1 and e2. We again show that there is

an O(n3) time algorithm for it.

Lemma 13. In O(n3) time, we can compute the replacement

path distances dG\{e1,e2}(s, t) for every pair of e1, e2 ∈
πG(s, t) where e1 = (pi, pi+1) and e2 = (pj , pj+1) for some

1 ≤ i < j < h and the replacement path uses some vertex pk
for i < k ≤ j.

Proof: First we fix some e1, e2 and consider it’s corre-

sponding replacement path P . Without loss of generality, we

assume P is canonical. Let k be the largest integer where

i < k ≤ j and P contains pk. Also, let k′ be the smallest

integer where i < k′ ≤ k and the subpath of P from pk to t
(including pk and t) uses pk′ .

Now we consider three subpaths of P separately: the

subpath from s to pk, the subpath from pk to pk′ and the

subpath from pk′ to t.

On the s to pk subpath, let px be the rightmost vertex

before e1 and let py be the leftmost vertex after e1. Since

P is canonical and all edges between s and px do not include

e1 or e2, the portion from s to px is πG(s, px), so py appears

after px on the subpath. Thus, we can further decompose the

s to pk subpath to three parts: from s to px, from px to py and

from py to pk. Since P is canonical, the subpath from s to px
and from py to pk use edges entirely from πG(s, t), and we

know these edges don’t include e1 or e2. Thus, the lengths of

these two subpaths are dG(s, px) and dG(py, pk) respectively.

We then argue that the px to py subpath cannot use any edge

on πG(s, t). It does not use any edge between s and px or

between py and pk since that would imply P is not canonical.

It does not use any edge between px and py by definitions

of px and py . It does not use any edge between pk and pj
by definition of k. Finally, it does not use any edge between

pj+1 and t because if it does, a canonical path P should go

directly to t from that edge instead of going back to py . Thus,

the subpath from px to py has length dG\πG(s,t)(px, py). By

the above discussion, the length of the subpath from s to pk
can be expressed as

min
1≤x≤i

i+1≤y≤k

{
dG(s, px) + dG\πG(s,t)(px, py) + dG(py, pk)

}
.

We can denote this value by gs(e1, pk), and by using 2D range

tree, we can compute gs(e1, pk) for all values of e1 and pk in

Õ(n2) time after computing APSP of G \ πG(s, t) in O(n3)
time. More specifically, since

gs(e1, pk) = min
1≤x≤i

i+1≤y≤k

{
dG(s, px) + dG\πG(s,t)(px, py)

+(dG(s, pk)− dG(s, py))}
= dG(s, pk) + min

1≤x≤i
i+1≤y≤k

{dG(s, px)

+dG\πG(s,t)(px, py)− dG(s, py)
}
,

we can create a table T where T (x, y) = dG(s, px) +
dG\πG(s,t)(px, py)−dG(s, py) and store it in a 2D range tree,

and then computing each gs(e1, pk) essentially costs a 2D

range minimum query.

The subpath from pk′ to t is similar. On the pk′ to t
subpath, let px′ be the rightmost vertex before e2 and let py′

be the leftmost vertex after e2. Since P is canonical, we can

decompose the subpath from pk′ to t to three subpaths: from

pk′ to px′ , from px′ to py′ and from py′ to t. Since P is

canonical, the subpath from pk′ to px′ and the subpath from

py′ to t have lengths dG(pk′ , px′) and dG(py′ , t) respectively.

Now we consider the portion from px′ to py′ . It cannot use any

edge before pi or after py′ since P is canonical. It cannot use

any edge between pi+1 and pk′ by definition of pk′ . It cannot

use any edge between pk′ and px′ since P is canonical. It

cannot use any edge between px′ and py′ by definitions of px′

and py′ . Thus, it entirely avoids πG(s, t) and its length should

be dG\πG(s,t)(px′ , py′). Therefore, the length of the subpath

from pk′ to t can be expressed as

min
k′≤x′≤j

j+1≤y′≤h

{
dG(pk′ , px′) + dG\πG(s,t)(px′ , py′) + dG(py′ , t)

}
.

We denote this value by gt(e2, pk′). By using 2D range tree,

we can compute gt(e2, pk′) for all values of e2 and pk′ in

Õ(n2) time after computing APSP of G \ πG(s, t) in O(n3)
time. We omit the details for the 2D range tree in this case

since it is almost identical to the s to pk subpath case.

Finally, we consider the pk to pk′ subpath. It does not use

any edge on πG(s, t) before e1 or after e2 because P is canoni-

cal. It does not use any edge after e1 and before pk′ or any edge

after pk and before e2 by definitions of k and k′. Therefore,

this subpath lies entirely in G\πG(s, pk′)\πG(pk, t). Thus, the

length of this subpath is exactly dG\πG(s,p
k′)\πG(pk,t)(pk, pk′),

which was denoted by f(pk, pk′) in Section III. All values of

f(pk, pk′) for any pk and pk′ can be computed deterministi-

cally in O(n3) time by Lemma 7.

Therefore, for any e1 = (pi, pi+1) and e2 = (pj , pj+1) for

some 1 ≤ i < j < h,

dG\{e1,e2}(s, t)

= min
i+1≤k′≤k≤j

{gs(e1, pk) + f(pk, pk′) + gt(e2, pk′)} ,

as long as the replacement path uses some vertex on πG(s, t)
between e1 and e2. To compute the right hand side of the

above equation efficiently, we first create an array Ak,e2(k
′) =

f(pk, pk′) + gt(e2, pk′) for every k and e2 and build a data

structure that supports range minimum queries for each array.

Then for every e1 = (pi, pi+1), e2 = (pj , pj+1), we enumerate

k ∈ [i+ 1, j]. We can write

min
i+1≤k′≤k

{gs(e1, pk) + f(pk, pk′) + gt(e2, pk′)}

as

gs(e1, pk) + min
i+1≤k′≤k

Ak,e2(k
′).

Thus, it essentially costs one range minimum query for every

triple of e1, e2, k. If we use range minimum query data

914

Authorized licensed use limited to: MIT Libraries. Downloaded on June 16,2023 at 18:17:27 UTC from IEEE Xplore. Restrictions apply.

s px tpi pi+1

e1

pj pj+1

e2

pk′ px′ py′pkpy

Fig. 3. This figure depicts the vertex labels for Lemma 13.

structures that supports linear time pre-processing and O(1)
range minimum queries (see e.g. [46]), this step takes O(n3)
time.

Therefore, the overall running time is O(n3).

C. Putting It All Together

Recall our Theorem 1 is the following:

Theorem 1. In the Word-RAM Model with O(log n)-bit

words, the 2FRP problem on n-vertex O(log n)-bit integer

weighted directed graphs with no negative cycles can be

solved in O(n3 log2 n) time by a deterministic algorithm or

in O(n3 log n) time by a randomized algorithm that succeeds

with high probability.

Proof: All components in our algorithm run in O(n3)
time deterministically except the pre-processing phase of the

distance sensitivity oracle from Theorem 10. Since the DSO

has an O(n3 log n) randomized pre-processing time or an

O(n3 log2 n) deterministic pre-processing time, our algorithm

for 2FRP has O(n3 log n) randomized time or O(n3 log2 n)
deterministic time.

Using Theorem 1, we immediately obtain Corollary 2.

Corollary 2. For all f ≥ 2, fFRP in n-vertex directed

weighted graphs with no negative cycles can be solved in

Õ(nf+1) time.

Proof: Since the graph has no negative cycles, we can first

use an O(n3) pre-processing step that replaces all edges with

nonnegative edges [44], [45]. Then we compute a shortest path

P1 from s to t in Õ(n2) time using Dijkstra’s algorithm. For

every edge e1 on P1, we compute a shortest s-t path P2 from

s to t in G \ {e1}. More generally, for each i ≤ f − 2, and

each choice of (e1, . . . , ei) and computed paths P1, . . . , Pi

where each Pj is a shortest s-t path in G \ {e1, . . . , ej−1}
and ej ∈ Pj , we compute a shortest s-t path Pi+1 in G \
{e1, . . . , ei}. This computation takes Õ(nf) time. Then for

each of the O(nf−2) choices of (e1, . . . , ef−2), we compute

2FRP using Theorem 1 in G \ {e1, . . . , ei} in overall time

Õ(nf+1).

V. SUBCUBIC TIME ALGORITHM FOR GRAPHS WITH

BOUNDED INTEGER WEIGHTS

In this section, we show how to improve the running time

of 2FRP when we restrict the graphs to graphs with small

integer edge weights and no negative cycles, providing proofs

for Theorem 3 and Corollary 4.

A. General Approach and Intuitions

We first give some intuitions and high-level ideas of our

algorithm.

Let G = (V,E) be an n-vertex directed graph with integer

edge weights in {−M . . .M} and no negative cycles. Let s
be the source and t be the target for our 2FRP instance. The

general approach to our algorithm is to divide πG(s, t) into

intervals of g vertices each for a positive integer parameter

g = O(n).5 Let I be one of the intervals, then we use V (I)
to denote the vertices inside the interval, and E(I) to denote

the edges inside the interval. The intervals are created in

such a way that the last vertex in the previous interval is the

first vertex in the next interval. Once we have created these

intervals we can classify all the two-fault replacement paths

queries to the following three cases: (1) only one failed edge

is on πG(s, t), (2) both failed edges are on πG(s, t) in the

same interval, and (3) both failed edges are on πG(s, t) in

different intervals. Note that we don’t need to consider cases

where neither of the failed edges is on πG(s, t) as the original

shortest path will exist in G \ {e1, e2}. Now, we can create

three separate sub-algorithms that handle each of these cases,

and combine them to get the overall 2FRP algorithm.

We will have a general precomputation step and some sub-

algorithms will also have their own precomputation steps to

compute any needed information that was not computed in

the general precomputation step. Our approach to querying

the length of the replacement path in all of the sub-algorithms

is to construct a weighted auxiliary graph to aid with the query.

To build one such auxiliary graph, we first determine a set of

critical vertices that break down the replacement path into a

series of subpaths between them. These vertices will form the

vertex set of the auxiliary graph, and the edges in the auxiliary

graph will represent subpaths between these vertices.

We say that the auxiliary graph encodes a subpath from u to

v in G\{e1, e2} if there is a path from u to v in the auxiliary

graph with the same length as the subpath. We also say that

an edge (u, v) in the auxiliary graph encodes a subpath from

u to v in G \ {e1, e2} if the weight of that edge equals the

length of the subpath. We will show many of those subpaths

are encoded in the auxiliary graph, and eventually, show that

5For instance, we will set g = n(ω−1)/3 = O(n) when M = O(1).

915

Authorized licensed use limited to: MIT Libraries. Downloaded on June 16,2023 at 18:17:27 UTC from IEEE Xplore. Restrictions apply.

the s-t shortest path in G \ {e1, e2} is encoded. Thus, we can

run a Single-Source Shortest Paths (SSSP) algorithm on the

auxiliary graph to get the length of the shortest replacement

path.

B. Precomputed Distances

In the general precomputation step and the precomputa-

tion steps specific to each sub-algorithm, we will use the

SSRP algorithm from [13] that has the same running time

as Zwick’s APSP algorithm for graphs with edge weights in

{−M, . . . ,M} and our algorithm for SSRP with a small set

of targets from Lemma 9. In the precomputation steps and

the query step, we will also use the near-linear time SSSP

algorithm by Bernstein, Nanongkai and Wulff-Nilsen [47]. On

n-vertex dense graphs, their algorithm runs in Õ(n2) time.

In this general precomputation step we compute sets of

distances that will be needed for all three sub-algorithms:

1) Run SSSP and SSRP from s in G, and store the results.

2) Run SSSP and SSRP from t in Ĝ, where Ĝ represents

G with the directions of all of its edges reversed, and

store the results.

3) For each interval I , create the graphs G \ E(I) and
̂G \ E(I), then:

a) Run SSSP and SSRP with target set V (I) ∪ {t}
from s in G \ E(I), and store the results.

b) Run SSSP and SSRP with target set V (I) ∪ {s}
from t in ̂G \ E(I) and store the results.

4) Run Zwick’s All-Pairs Shortest Paths algorithm [32] on

the graph with all the edges of πG(s, t) removed and

store the results.

Overall, steps 1, 2 and 4 take Õ(M1/(4−ω)n2+1/(4−ω))
time, and each iteration of step 3 takes Õ(Mnω +
M1/(4−ω)n1+1/(4−ω)g) time, so these pre-processing steps

take Õ(Mnω+1/g + M1/(4−ω)n2+1/(4−ω)) time. The space

complexity of the stored results in this step is Õ(n2).

C. Only One Failed Edge on Original Shortest Path

First, we consider the case where only one of the failed

edges is on πG(s, t). Let e1 be the failed edge on πG(s, t), I1
be the interval containing e1, and e2 be the failed edge that

is not on πG(s, t). Our auxiliary graph requires distances not

computed in the general precomputation step of the algorithm,

so we will have a precomputation step for this algorithm. Dur-

ing this precomputation step, we compute a single-fault DSO

for G \ πG(s, t). Using Chechik and Cohen’s DSO [38], the

pre-processing time is Õ(Mn2.8729) and the space is Õ(n2.5).
If all edge weights are positive integers in {1, . . . ,M}, we can

instead use Gu and Ren’s DSO [25], which has Õ(Mn2.5794)
pre-processing time and Õ(n2) size. Note that although Gu

and Ren’s DSO has Õ(n2) size, it could use Õ(n2.4207) space

during pre-processing [25].

Let G′ be the auxiliary graph, and let its vertex set be

{s, t} ∪ V (I1). We will add edges in the following steps:

1) Add an edge from s to t with weight dG\E(I1)(s, t, e2).

2) For every v ∈ V (I), add an edge (s, v) with weight

dG\E(I1)(s, v, e2).
3) For every v ∈ V (I), add an edge (v, t) with weight

dG\E(I1)(v, t, e2).
4) Add all of the edges in I1 that are not one of the two

failed edges. Then, for every u, v ∈ V (I1), add the edge

(u, v) with weight dG\πG(s,t)(u, v, e2).

Now we can run SSSP from s in G′. Since there are O(g)
vertices in each interval, there are O(g) vertices in G′, so

building G′ and running the query takes Õ(g2) times.

Theorem 14. dG′(s, t) is equal to dG\{e1,e2}(s, t).

Proof: Here are two main cases for the shortest s-t path

that avoids e1 and e2: (1) the path does not use any edge in

E(I1) or (2) the path does use edges in E(I1). The path for

the first case is encoded in G′ via the edge added in step 1.

For the second case, let P be a canonical replacement path.

We know that the shortest path P must use a vertex in V (I1).
Let u be the first vertex on the replacement path that is in

V (I1), and v be the last vertex on the replacement path that

is in V (I1). Then, the replacement path can be broken down

into three subpaths: (1) a subpath from s to u, (2) a subpath

from u to v, and (3) a subpath from v to t. If G′ encodes each

of these subpaths for every possible value of u and v, and the

replacement path does use edges in E(I1), then πG′(s, t) will

use the optimal choices for u and v, which will give us the

length of the replacement path.

First, we will focus on the subpaths from s to u for all

choices of u. Since u will be the first vertex in V (I1) on

the replacement path, this subpath will not use any edge in

E(I1). Similarly, the subpaths from v to t will not use any

edge in E(I1) either, since v is the last vertex in V (I1) on the

replacement path. All of the subpaths must also avoid e2, since

it is a failed edge. Therefore, the edges added in steps 2 and

3 are sufficient to encode the s-u subpaths and v-t subpaths

into G′.
Next, we will focus on the subpaths between u and v for all

choices of u and v. If a canonical replacement path does travel

between two vertices in V (I1), then it will not use any edge

on πG(s, t) outside of I1 to do so, as that would prevent it

from being canonical. For example, if the path between u and v
reached a vertex w in πG(s, t) before I1, then the replacement

path should go directly from s to w, instead of going to u
first, because it is canonical. The mirror situation occurs if it

touches a vertex after I1 and cannot happen for similar reasons.

Therefore, when traveling between two vertices in V (I1), the

replacement path will only use edges in E(I1) and edges not

on πG(s, t). As a result, every u-v subpath can be broken into

a series of smaller paths consisting of edges in E(I1) and

paths between vertices in V (I1) that do not use any edge on

πG(s, t). The edges in step 4 encode all of these smaller paths

into G′, and as a result every u-v subpath is encoded in G′.
In total, G′ encodes every possible subpath which the

replacement path could be constructed from, so the shortest

s-t path in G′ can not be longer than the replacement path

in G \ {e1, e2}. It is impossible for dG′(s, t) to be smaller

916

Authorized licensed use limited to: MIT Libraries. Downloaded on June 16,2023 at 18:17:27 UTC from IEEE Xplore. Restrictions apply.

than dG\{e1,e2}(s, t) because all of the edges in G′ have

weights that correspond to the lengths of some paths that are

present in G \ {e1, e2}. Therefore, dG′(s, t) must be equal to

dG\{e1,e2}(s, t).

D. Both Failed Edges on Original Shortest Path: Same Inter-

val

Next, we will consider the case where both failed edges

e1, e2 are on πG(s, t) in the same interval I . We start by

constructing the auxiliary graph for this query. Let G′ be the

auxiliary graph, and let its vertex set be {s, t}∪V (I). We will

add edges in the following steps:

1) Add an edge from s to t with weight dG\E(I)(s, t).
2) For every v ∈ V (I), add an edge (s, v) with weight

dG\E(I)(s, v).
3) For every v ∈ V (I), add an edge (v, t) with weight

dG\E(I)(v, t).
4) Add all of the edges in I that are not one of the two

failed edges. Then, for every u, v ∈ V (I), add an edge

(u, v) with weight dG\πG(s,t)(u, v).

Now we can run SSSP from s in G′. Since there are O(g)
vertices in each interval, there are O(g) vertices in G′, so

building G′ and running the query takes Õ(g2) time. All of

the edge weights of G′ were already calculated in the general

precomputation step, so there is no additional precomputation

step for this sub-algorithm.

Theorem 15. dG′(s, t) is equal to dG\{e1,e2}(s, t).

The proof for this case is similar to the proof of Theorem 14.

We defer its proof to the full version.

E. Both Failed Edges on Original Shortest Path: Different

Intervals

Due to space limitation, we will defer this case to the

full version. The precomputation step of this case takes

Õ(Mnω+1/g + M1/(4−ω)n2+1/(4−ω) + M1/3n2+ω/3) time.

We can improve the third term to Õ(M0.3544n2.7778) using

rectangular matrix multiplication. The query time is Õ(g2)
and the space complexity is again Õ(n2).

F. Putting It All Together

Now we have all the necessary components for proving

Theorem 3, which is recalled here:

Theorem 3. For any given positive integer parameter g ≤
O(n), there exists a data structure that can pre-process

a given directed graph G with integer edge weights in

{−M, . . . ,M} and no negative cycles and fixed vertices s
and t, in Õ(Mnω+1/g + Mn2.8729) time, and can answer

queries of the form dG\{e1,e2}(s, t) in Õ(g2) time. This data

structure has randomized pre-processing which succeeds with

high probability. The size of the data structure is Õ(n2.5).
If the edge weights of G are positive, the pre-processing

time and the size of the data structure can be improved

to Õ(Mnω+1/g + M0.3544n2.7778 + Mn2.5794) and Õ(n2)
respectively.

Proof: In total, the running time for the general pre-

computation phase and the precomputation phase of each

sub-algorithm is Õ(Mnω+1/g + M1/(4−ω)n2+1/(4−ω) +
M1/3n2+ω/3 + Mn2.8729). The fourth term dominates the

second and third term, so the pre-processing time simplifies to

Õ(Mnω+1/g+Mn2.8729). The space complexity is Õ(n2.5),
where the space of the DSO is the bottleneck.

If all edge weights are positive, the pre-processing time

can be improved to Õ(Mnω+1/g + M1/(4−ω)n2+1/(4−ω) +
M1/3n2+ω/3+Mn2.5794). The third term can be improved to

Õ(M0.3544n2.7778) using rectangular matrix multiplication by

Lemma 8. Note that the second term is always dominated by

the third term or the fourth term, so the pre-processing time

simplifies to Õ(Mnω+1/g+M0.3544n2.7778+Mn2.5794). The

space complexity is Õ(n2).
The query time is Õ(g2) in both cases, since we always

run the near-linear time SSSP algorithm [47] on an auxiliary

graph with O(g) vertices.

We can easily obtain our algorithm for 2FRP from Theo-

rem 3 by setting the parameter appropriately. Recall Corrol-

lary 4:

Corollary 4. The 2FRP problem on n-vertex directed graphs

with integer edge weights in {−M, . . . ,M} and with no

negative cycles can be solved in Õ(M2/3n2.9153) time by a

randomized algorithm that succeeds with high probability.

Proof: We run the near-linear time SSSP algorithm [47]

to find πG(s, t) in Õ(n2) time, and then run the Õ(Mnω) time

RP algorithm by Vassilevska Williams [12] to find πG\{e}(s, t)
for every e ∈ πG(s, t).

Then we can easily generate all (e1, e2) pairs such that

e1 ∈ πG(s, t) and e2 ∈ πG\{e1}(s, t) in O(n2) time. Using

Theorem 3, it will take Õ(g2n2+Mnω+1/g+Mn2.8729) time

to handle all the queries, which is

Õ(M2/3n2(ω+2)/3 +Mn2.8729)

by setting g = M1/3n(ω−1)/3. Using the current upper bound

ω < 2.3729, the running time becomes Õ(M2/3n2.9153 +
Mn2.8729). Note that the second term is larger than the

first term only when M2/3n2.9153 = Ω(n3), so we can just

run the Õ(n3) time algorithm from Theorem 1 in this case.

Thus, the running time is always Õ(min(M2/3n2.9153, n3)) =
Õ(M2/3n2.9153).

Finally, we need to check g = O(n) by the requirement

of Theorem 3. Note that this value of g is O(n) when

M = O(n4−ω). When M = Ω(n4−ω), our claimed running

time exceeds Ω(n3) and thus we can just run the Õ(n3) time

algorithm from Theorem 1.

REFERENCES

[1] K. Malik, A. K. Mittal, and S. K. Gupta, “The k most vital arcs in the
shortest path problem,” Operations Research Letters, vol. 8, no. 4, pp.
223–227, 1989.

[2] E. Nardelli, G. Proietti, and P. Widmayer, “A faster computation of
the most vital edge of a shortest path,” Information Processing Letters,
vol. 79, no. 2, pp. 81–85, 2001.

917

Authorized licensed use limited to: MIT Libraries. Downloaded on June 16,2023 at 18:17:27 UTC from IEEE Xplore. Restrictions apply.

[3] Z. Gotthilf and M. Lewenstein, “Improved algorithms for the k simple
shortest paths and the replacement paths problems,” Information Pro-

cessing Letters, vol. 109, no. 7, pp. 352–355, 2009.

[4] A. Bernstein, “A nearly optimal algorithm for approximating replace-
ment paths and k shortest simple paths in general graphs,” in Proc. 21st

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010,
pp. 742–755.

[5] V. Vassilevska Williams and R. Williams, “Subcubic equivalences be-
tween path, matrix, and triangle problems,” J. ACM, vol. 65, no. 5, pp.
1–38, 2018.

[6] Y. Emek, D. Peleg, and L. Roditty, “A near-linear-time algorithm for
computing replacement paths in planar directed graphs,” ACM Trans.

Algorithms, vol. 6, no. 4, pp. 1–13, 2010.

[7] P. N. Klein, S. Mozes, and O. Weimann, “Shortest paths in directed
planar graphs with negative lengths: A linear-space O(n log2 n)-time
algorithm,” ACM Trans. Algorithms, vol. 6, no. 2, pp. 1–18, 2010.

[8] A. M. Bhosle, “Improved algorithms for replacement paths problems in
restricted graphs,” Oper. Res. Lett., vol. 33, no. 5, pp. 459–466, 2005.

[9] C.-W. Lee and H.-I. Lu, “Replacement paths via row minima of concise
matrices,” SIAM J. Discrete Math., vol. 28, no. 1, pp. 206–225, 2014.

[10] L. Roditty and U. Zwick, “Replacement paths and k simple shortest
paths in unweighted directed graphs,” ACM Trans. Algorithms, vol. 8,
no. 4, Oct. 2012. [Online]. Available: https://doi.org/10.1145/2344422.
2344423

[11] O. Weimann and R. Yuster, “Replacement paths via fast matrix mul-
tiplication,” in Proc. 51st Annual IEEE Symposium on Foundations of

Computer Science (FOCS), 2010, pp. 655–662.

[12] V. Vassilevska Williams, “Faster replacement paths,” in Proc. 22nd

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011,
pp. 1337–1346.

[13] F. Grandoni and V. Vassilevska Williams, “Faster replacement
paths and distance sensitivity oracles,” ACM Trans. Algorithms,
vol. 16, no. 1, pp. 15:1–15:25, Dec. 2020. [Online]. Available:
https://doi.org/10.1145/3365835

[14] N. Nisan and A. Ronen, “Algorithmic mechanism design,” Games Econ.

Behav., vol. 35, no. 1-2, pp. 166–196, 2001.

[15] J. Hershberger and S. Suri, “Vickrey prices and shortest paths: What
is an edge worth?” in Proc. 42nd IEEE Symposium on Foundations of

Computer Science (FOCS), 2001, pp. 252–259.

[16] V. Vassilevska Williams and R. Williams, “Subcubic equivalences be-
tween path, matrix and triangle problems,” in Proc. 51th Annual IEEE

Symposium on Foundations of Computer Science (FOCS), 2010, pp.
645–654.

[17] A. M. Bhosle and T. F. Gonzalez, “Replacement paths for pairs of short-
est path edges in directed graphs,” in Proc. 16th IASTED International

Conference on Parallel and Distributed Computing and Systems (PDCS),
2004.

[18] J. Alman and V. Vassilevska Williams, “A refined laser method and
faster matrix multiplication,” in Proc. 2021 ACM-SIAM Symposium on

Discrete Algorithms (SODA), 2021, pp. 522–539.

[19] F. Le Gall, “Powers of tensors and fast matrix multiplication,” in Proc.

39th International Symposium on Symbolic and Algebraic Computation

(ISSAC), 2014, pp. 296–303.

[20] V. Vassilevska Williams, “Multiplying matrices faster than Coppersmith-
Winograd,” in Proc. 44th Annual ACM Symposium on Theory of

Computing (STOC), 2012, pp. 887–898.

[21] Y. Gu, A. Polak, V. Vassilevska Williams, and Y. Xu, “Faster Monotone
Min-Plus Product, Range Mode, and Single Source Replacement Paths,”
in Proc. 48th International Colloquium on Automata, Languages, and

Programming (ICALP), ser. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 198, 2021, pp. 75:1–75:20. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2021/14144

[22] O. Weimann and R. Yuster, “Replacement paths and distance
sensitivity oracles via fast matrix multiplication,” ACM Trans.

Algorithms, vol. 9, no. 2, Mar. 2013. [Online]. Available: https:
//doi.org/10.1145/2438645.2438646

[23] J. van den Brand and T. Saranurak, “Sensitive distance and reachability
oracles for large batch updates,” in Proc. 60th Annual IEEE Symposium

on Foundations of Computer Science (FOCS), 2019, pp. 424–435.

[24] F. Le Gall and F. Urrutia, “Improved rectangular matrix multiplication
using powers of the Coppersmith-Winograd tensor,” in Proc. 29th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018,
pp. 1029–1046.

[25] Y. Gu and H. Ren, “Constructing a Distance Sensitivity Oracle
in O(n2.5794M) Time,” in Proc. 48th International Colloquium

on Automata, Languages, and Programming (ICALP), ser. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 198, 2021,
pp. 76:1–76:20. [Online]. Available: https://drops.dagstuhl.de/opus/
volltexte/2021/14145

[26] M. Gupta and S. Khan, “Multiple source dual fault tolerant BFS trees,”
in Proc. 44th International Colloquium on Automata, Languages, and

Programming (ICALP), ser. LIPIcs, vol. 80, 2017, pp. 127:1–127:15.
[27] M. Parter and D. Peleg, “Sparse fault-tolerant BFS structures,” ACM

Trans. Algorithms, vol. 13, no. 1, pp. 11:1–11:24, 2016.
[28] R. Williams, “Faster all-pairs shortest paths via circuit complexity,” in

Proc. 46th Annual ACM Symposium on Theory of Computing (STOC),
2014, pp. 664–673.

[29] R. R. Williams, “Faster all-pairs shortest paths via circuit complexity,”
SIAM J. Comput., vol. 47, no. 5, pp. 1965–1985, 2018.

[30] R. Seidel, “On the all-pairs-shortest-path problem in unweighted undi-
rected graphs,” J. Comput. Syst. Sci, vol. 51, no. 3, pp. 400–403, 1995.

[31] A. Shoshan and U. Zwick, “All pairs shortest paths in undirected
graphs with integer weights,” in Proc. 40th Annual IEEE Symposium

on Foundations of Computer Science (FOCS), 1999, pp. 605–614.
[32] U. Zwick, “All pairs shortest paths using bridging sets and rectangular

matrix multiplication,” J. ACM, vol. 49, no. 3, pp. 289–317, 2002.
[33] N. Alon, S. Chechik, and S. Cohen, “Deterministic combinatorial

replacement paths and distance sensitivity oracles,” in Proc. 46th In-

ternational Colloquium on Automata, Languages, and Programming

(ICALP), 2019.
[34] F. Grandoni and V. Vassilevska Williams, “Improved distance sensitivity

oracles via fast single-source replacement paths,” in Proc. 53rd Annual

IEEE Symposium on Foundations of Computer Science (FOCS), 2012,
pp. 748–757.

[35] S. Chechik and O. Magen, “Near Optimal Algorithm for the Directed
Single Source Replacement Paths Problem,” in Proc. 47th International

Colloquium on Automata, Languages, and Programming (ICALP), ser.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 168,
2020, pp. 81:1–81:17. [Online]. Available: https://drops.dagstuhl.de/
opus/volltexte/2020/12488

[36] C. Demetrescu, M. Thorup, R. A. Chowdhury, and V. Ramachandran,
“Oracles for distances avoiding a failed node or link,” SIAM J. Comput.,
vol. 37, no. 5, pp. 1299–1318, 2008.

[37] A. Bernstein and D. Karger, “A nearly optimal oracle for avoiding failed
vertices and edges,” in Proc. 41st Annual ACM Symposium on Theory

of Computing (STOC), 2009, pp. 101–110.
[38] S. Chechik and S. Cohen, “Distance sensitivity oracles with subcubic

preprocessing time and fast query time,” in Proc. 52nd Annual ACM

SIGACT Symposium on Theory of Computing (STOC), 2020, pp. 1375–
1388.

[39] H. Ren, “Improved distance sensitivity oracles with subcubic prepro-
cessing time,” J. Comput. Syst. Sci., vol. 123, pp. 159–170, 2022.

[40] R. Duan and S. Pettie, “Dual-failure distance and connectivity oracles,”
in Proc. 20th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2009, pp. 506–515.
[41] R. Duan and H. Ren, “Maintaining exact distances under multiple

edge failures,” in Proc. the 54th Annual ACM SIGACT Symposium on

Theory of Computing (STOC), 2022, p. 1093–1101. [Online]. Available:
https://doi.org/10.1145/3519935.3520002

[42] F. Le Gall, “Faster algorithms for rectangular matrix multiplication,”
in Proc. 53rd Annual IEEE Symposium on Foundations of Computer

Science (FOCS), 2012, pp. 514–523.
[43] N. Alon, Z. Galil, O. Margalit, and M. Naor, “Witnesses for boolean

matrix multiplication and for shortest paths,” in Proc. 33rd Annual

Symposium on Foundations of Computer Science, 1992, pp. 417–426.
[44] D. B. Johnson, “Efficient algorithms for shortest paths in sparse net-

works,” J. ACM, vol. 24, no. 1, pp. 1–13, 1977.
[45] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in

improved network optimization algorithms,” J. ACM, vol. 34, no. 3, pp.
596–615, 1987.

[46] D. Harel and R. E. Tarjan, “Fast algorithms for finding nearest common
ancestors,” SIAM J. Comput., vol. 13, no. 2, pp. 338–355, 1984.

[47] A. Bernstein, D. Nanongkai, and C. Wulff-Nilsen, “Negative-weight
single-source shortest paths in near-linear time,” arXiv preprint

arXiv:2203.03456, 2022.

918

Authorized licensed use limited to: MIT Libraries. Downloaded on June 16,2023 at 18:17:27 UTC from IEEE Xplore. Restrictions apply.

