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Abstract—This paper considers a natural fault-tolerant short-
est paths problem: for some constant integer f, given a directed
weighted graph with no negative cycles and two fixed vertices s
and t, compute (either explicitly or implicitly) for every tuple of
f edges, the distance from s to ¢ if these edges fail. We call this
problem f-Fault Replacement Paths (fFRP).

We first present an O(n®) time algorithm for 2FRP in n-vertex
directed graphs with arbitrary edge weights and no negative cy-
cles. As 2FRP is a generalization of the well-studied Replacement
Paths problem (RP) that asks for the distances between s and ¢ for
any single edge failure, 2FRP is at least as hard as RP. Since RP
in graphs with arbitrary weights is equivalent in a fine-grained
sense to All-Pairs Shortest Paths (APSP) [Vassilevska Williams
and Williams FOCS’10, J. ACM’18], 2FRP is at least as hard as
APSP, and thus a substantially subcubic time algorithm in the
number of vertices for 2FRP would be a breakthrough. Therefore,
our algorithm in O(n?) time is conditionally nearly optimal. Our
algorithm immediately implies an O(n/*!) time algorithm for
the more general fFRP problem, giving the first improvement
over the straightforward O(n?*?) time algorithm.

Then we focus on the restriction of 2FRP to graphs with
small integer weights bounded by ) in absolute values. We
show that similar to RP, 2FRP has a substantially subcubic time
algorithm for small enough /. Using the current best algorithms
for rectangular matrix multiplication, we obtain a randomized
algorithm that runs in O(M?%/ 3n2~'9153) time. This immediately
implies an improvement over our O(n’ ') time arbitrary weight
algorithm for all f > 1. We also present a data structure variant
of the algorithm that can trade off pre-processing and query time.
In addition to the algebraic algorithms, we also give an n%/37°(!)
conditional lower bound for combinatorial 2FRP algorithms in
directed unweighted graphs, and more generally, combinatorial
lower bounds for the data structure version of fFRP.

Index Terms—Replacement paths, fine-grained complexity.

I. INTRODUCTION

Shortest paths problems are among the most basic prob-
lems in graph algorithms, and computer science in general.
An important practically motivated version considers shortest
paths computation in failure-prone graphs. The simplest such
problem is the Replacement Path (RP) problem (studied e.g.
by [1]-[13]) in which one is given a graph and two vertices
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s and ¢ and one needs to return for every edge e, the shortest
path from s to t in case edge e fails.

RP has several motivations. The first is, preparing for
roadblocks or bad traffic in road networks, and similar sit-
uations in which edge links are no longer available. The
second motivation is in Vickrey pricing for shortest paths in
mechanism design (see [14], [15]).

It is natural to consider the generalization of RP to the case
where up to f edges can fail for f > 1: given a graph G and
two vertices s and t, for every set F' of up to f failed edges,
determine the distance between s and ¢ in G with F' removed.
Let us call this the fFRP problem. Then similar to RP, fFRP
is well-motivated: more than one roadblock can occur in road
networks, and more than one link in a computer network can
fail.

Since there are ©(m/ ) sets of f edges in an m edge graph,
intuitively, the output of fFRP would have to be at least of
size ©(n2/) in a dense graph. However, just as in RP, one can
show that the output only needs to be ©(n/).

Consider for instance f = 2. For every pair of edges (e, '),
at least one of them, say e should be on the shortest path P
between s and ¢, as otherwise the s-t distance in G\ F' would
be the same as that in G. Thus there are only < n— 1 choices
for e. Similarly, e’ should be on the shortest path between s
and ¢t in G \ {e}, and there are only < n — 1 choices for ¢'.
Thus the output size of 2FRP is only ©(n?), and by a similar
argument, the output size of fFRP is ©(nf).

It is natural to ask how close to n/ the best possible running
time for fFRP can be. For graphs with nonnegative weights,
fFRP can always be solved in O(n/*?) time as follows. First,
using Dijkstra’s algorithm, compute in O(n?) time the shortest
s-t path P. Then for every edge e on P, recursively solve
(f — 1)FRP in G\ {e}, where OFRP is just a shortest paths
computation.

Can we do better than O(nf*2) time for fFRP in directed
weighted graphs?

Let us consider RP (i.e. 1FRP). For graphs with m edges,
n vertices, and arbitrary edge weights, RP can be solved in
O(m) time' in undirected graphs [2] and can be solved in

The O notation in this paper hides subpolynomial factors.
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O(mn + n%loglogn) time in directed graphs [3]. In dense
directed graphs RP with arbitrary edge weights is subcubically
equivalent to All-Pairs Shortest Paths (APSP) [5], [16], whose
runtime has remained essentially cubic for 70 years, except
for n°(M) factors.

Thus, (directed) fFRP for f = 1 does not have an
O(nf+?7¢) time algorithm for ¢ > 0, under the APSP
hypothesis. Furthermore, there is no known O(nf+27°) time
algorithm for any f > 1.

The special case of f = 2, 2FRP, is particularly interesting
since its output has size only O(n?). The APSP-based lower
bound for RP implies that 2FRP also requires n°>~°(!) time to
solve. However, there is a gap between the best known upper
bound of O(n*) and the n?~°(1) lower bound.

This brings us to the following open question, stated for
instance in [17]>.

Can 2FRP be solved in essentially cubic time in directed
weighted graphs?

Our first result is a resolution of the open question above
for 2FRP.

Theorem 1. In the Word-RAM Model with O(logn)-bit
words, the 2FRP problem on n-vertex O(logn)-bit integer
weighted directed graphs with no negative cycles can be
solved in O(n® log2 n) time by a deterministic algorithm or
in O(n®logn) time by a randomized algorithm that succeeds
with high probability.

Since even RP is known to require n~°(") time under the
APSP hypothesis [16], our algorithm for 2FRP is conditionally
tight, up to n°(!) factors.

Moreover, our theorem has an immediate corollary for
fFRP for f > 2 as well.

Corollary 2. For all f > 2, fFRP in n-vertex directed
weighted graphs with no negative cycles can be solved in
O(nf+1) time.

Thus, for all f > 1, there is an algorithm for fFRP that runs
polynomially faster than the trivial O(n/*2) time, even though
for f =1 this was impossible under the APSP hypothesis!

For directed weighted graphs, replacement paths with ver-
tex failures can be reduced to replacement paths with edge
failures.® Thus, Corollary 2 works even if fFRP is replaced
with f vertex-failure replacement paths.

For unweighted graphs, or graphs with small integer edge
weights, there are better known running times for RP in
directed graphs. Here there is a distinction between algebraic

2Bhosle and Gonzalez [17] claimed an O(n?®) time algorithm for the special
case where both failed edges are on the original shortest path. However, their
approach doesn’t quite work as written, and we include a discussion about
the issue in the full version.

3Given a graph G' = (V, E), we create a graph G’ as follows. For every
v € V, we create two vertices vj, and vou in G’, and add an edge (vin, Vout)
with weight 0 to G’. For every (u,v) € E with weight w, we add an edge
(tout, Vin) to G’ with weight w. Let U C V be any set of f failed vertices
in G. We define ey to be {(uin, uou) : w € U}. For any s,t € V\ U, it is
not difficult to verify that dg\ (s, t) = dgr\ ey, (Sins tout), Which completes
the reduction.
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and combinatorial algorithms. While the terms themselves
are not well-defined, combinatorial algorithms usually refer
to algorithms that do not use algebraic techniques such as
fast matrix multiplication while algebraic algorithms refer to
algorithms that use such techniques. The study of combinato-
rial algorithms is motivated by the real-world inefficiency of
fast matrix multiplication algorithms and by a desire to get
algorithms that can perform better on sparser graphs, as it is
usually difficult for algebraic algorithms to take full advantage
of the sparsity of graphs.

In the case of unweighted graphs, directed RP has a
combinatorial algorithm with an O(m+/n) running time [10],
which is essentially optimal as any further improvement would
imply a breakthrough in Boolean Matrix Multiplication [5],
[16]. For graphs with small integer edge weights in the
range {—M,..., M}, there is an algebraic algorithm for
directed RP with an O(]V[n‘*’) running time [12], [13], where
w € [2,2.373) denotes the exponent for multiplying two n x n
matrices [18]-[20].

Can we solve fFRP in subcubic time in graphs with
bounded integer weights when f > 1? Due to the output size,
fFRP for f > 3 cannot have a subcubic time algorithm. Thus
the only generalization of RP that can still have a subcubic
time algorithm in bounded weight graphs is 2FRP.

Does 2FRP in graphs with small integer weights have a
truly subcubic time algorithm?

Similar to Corollary 2, if 2FRP in small weight graphs has
an O(n37¢) time algorithm, then for every f > 2, we would
get an O(nf+17°) time algorithm for fFRP in small weight
graphs, which is close to the output size @(nf ) and always
better than our new O(n/*1) time algorithm for the arbitrary
weight case.

A reason to believe that a subcubic time algorithm may be
possible for 2FRP is that the output size is only quadratic.
Another generalization of RP that has only quadratic output
size, the Single Source Replacement Paths problem (SSRP),
can be solved in O(M n*) time for graphs with edge weights
in {1,..., M} [13] or in O(MO-804324957) time for graphs
with edge weights in {—M, ..., M} [21]. Hence it is possible
that 2FRP also has a subcubic time algorithm for small weight
graphs.

Meanwhile, current techniques do not seem to yield sub-
cubic time algorithms: replacement paths problems have been
studied (e.g. in [22]) as a special case of f-failure distance
sensitivity oracles (DSO), which are data structures that can
support replacement path queries for any set of f edge faults.
To solve 2FRP, one would need to pre-process a 2-failure DSO
and then perform O(n?) queries on it, assuming that the O(n?)
queries are known.

The best known DSO for graphs with small integer edge
weights and more than one fault is by van den Brand and
Saranurak [23]. For every « € [0, 1], their oracle can achieve
O(Mn@+B=w)a) pre-processing time and O(Mn>~%) query
time for any constant number of failures on n-vertex graphs
with edge weights in {—M,..., M}. Balancing the pre-
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processing time and the O(n?) queries needed results in an
O(Mn?) running time for 2FRP — a running time that is never
subcubic, even if M = O(1).

We overcome the difficulties that come from using existing
DSO techniques, and are able to provide a new sensitivity
oracle for 2FRP with fast pre-processing and query times.

Theorem 3. For any given positive integer parameter g <
O(n), there exists a data structure that can pre-process
a given directed graph G with integer edge weights in
{=M,..., M} and no negative cycles and fixed vertices s
and t, in O(Mn“*t'/g + Mn>8729) time, and can answer
queries of the form dcn fe, e, (8,1) in O(g?) time. This data
structure has randomized pre-processing which succeeds with
high probability. The size of the data structure is O(n?®).

If the edge weights of G are positive, the pre-processing
time and the size of the data structure can be improved
to ON(Mn“’“/g 4 )f0-35442.7778 | Mn2'5794) and O(nZ)
respectively.

We note that the running time exponents shown above
with 4 digits after the decimal points all follow from fast
rectangular matrix multiplication [24]. As a corollary we
obtain the first truly subcubic time algorithm for 2FRP in
graphs with bounded integer weights.

Corollary 4. The 2FRP problem on n-vertex directed graphs
with integer edge weights in {—M,... .M} and with no
negative cycles can be solved in O(N[2/3n2'9153) time by a
randomized algorithm that succeeds with high probability.

Our new algorithms for 2FRP for bounded and arbitrary
weight graphs are interesting as they show that 2FRP is
not much more difficult than RP— both admit a cubic time
algorithm for general graphs and subcubic time algorithms for
bounded integer weight graphs.

We also immediately obtain the following corollary for f >
2, beating our algorithm for the arbitrary weight case for small
enough M:

Corollary 5. For any f > 2, fFRP on n-vertex directed
graphs with integer edge weights in {—M, ..., M} and with
no negative cycles can be solved in O(M2/3nf+0'9153) time by
a randomized algorithm that succeeds with high probability.

We remark that, if given the failed edges, all (except one)
of our algorithms are able to report an optimal replacement
path P in O(|P|) time. The exception is the positive weight
case in Theorem 3, as it uses Gu and Ren’s DSO [25] as a
subroutine, which does not support path reporting.

So far our algorithms have used fast matrix multiplication.
Often one desires more practical combinatorial algorithms.
How fast can combinatorial algorithms for fFRP in un-
weighted graphs be?

Since the output size for fFRP with f > 2 is supercubic,
only distance sensitivity oracles can give subcubic bounds. We
show (conditionally) that any combinatorial f-failure sensitiv-
ity oracle for a fixed pair of vertices that can answer queries
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faster than running Dijkstra’s algorithm at each query, must
have high pre-processing time.

Our conditional lower bound is based on the Boolean
Matrix Multiplication (BMM) hypothesis which says that
any ‘“combinatorial” algorithm for n x n Boolean matrix
multiplication requires n3=°M) time. By [5], [16], the BMM
hypothesis is equivalent to the hypothesis which states that any
combinatorial algorithm for Triangle Detection, which asks
whether a given graph contains a triangle, in n-vertex graphs
requires 73 ~°(1) time.

Theorem 6. Let k > 1 be any constant integer. Suppose that
there is a combinatorial data structure that can pre-process
any directed unweighted n-vertex graph G and fixed vertices
s,t in Ot/ FHD=¢) time and can then answer k-fault
distance sensitivity queries between s and t in O(n*=¢) time,
for € > 0. Then there is a combinatorial algorithm for Triangle
Detection running in O(n3~¢) time.

The proof of the theorem can be found in the full version.
For k = 2, the above theorem implies that (combinatorial)
2FRP requires n8/3~°() time under the BMM hypothesis.
This means that RP is slightly easier than 2FRP in the com-
binatorial setting since it has an O(n?%) time algorithm [10].

We leave it as an open problem to obtain an O(n%/3) time
combinatorial algorithm for unweighted 2FRP. One reason to
suspect the existence of such an algorithm is the existence of
2-fault-tolerant BFS trees of size O(n°/?) [26]. Note that for
RP there are fault-tolerant BFS trees of size O(n®/?) and a
combinatorial algorithm of runtime O(n5/ 2) [101, [27], though
there is no direct reduction between algorithm running times
and the sparsity of fault-tolerant subgraphs.

Related work: The running time for APSP in a graph with
arbitrary polylog(n) bit integers has remained essentially cubic
in the number of vertices for almost 70 years, with the current
best running time being n3/29(‘/10gi”) by Williams [28], [29].
A truly subcubic time algorithm for APSP with arbitrary
weights would be a significant breakthrough.

The restriction of APSP to graphs with small integer edge
weights does have truly subcubic algorithms. Seidel gave
an O(n®) time algorithm for APSP in an undirected un-
weighted graph [30]. This algorithm was later generalized
by Shoshan and Zwick to yield an O(]VI n¥) time algo-
rithm for APSP in an undirected graph with integer edge
weights in {0, 1,..., M} [31]. For directed graphs with edge
weights in {—M,..., M}, the current best algorithm is by
Zwick [32] that runs in O(MY/(4=)p2+1/(4=2)) time, or
O(MO-75192-5286) time using the current best algorithm for
rectangular matrix multiplication [19].

For graphs with m edges, n vertices and arbitrary in-
teger weights, RP can be solved in O(m) time in undi-
rected graphs [2], and in O(mn + n%loglogn) time in
directed graphs [3]. For graphs with small integer weights
in {—M,..., M}, Vassilevska Williams [12] showed an
O(Mn*) time randomized algorithm for RP. For unweighted
directed graphs, there is an O(m./n) time deterministic com-
binatorial algorithm for RP [33]. RP has also been studied in
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the approximate setting [4], in planar graphs [6], [7] and in
DAGs [8], [9].

In the more general Single-Source Replacement Paths
(SSRP) problem, we are asked to compute all the replacement
path distances for a single source s but for all possible
targets ¢ and all possible edges e on one s to ¢ shortest path.
Grandoni and Vassilevska Williams [13], [34] generalized the
RP algorithm of Vassilevska Williams [12] to compute SSRP.
Their randomized algorithm runs in O(M n*) time for graphs
with weights in {1,..., M} and in O(M°75192:5286) (ime
for graphs with weights in {—M, ..., M}. The latter case was
recently improved by Gu, Polak, Vassilevska Williams and
Xu to O(MO-8043p2-4957) time [21]. For unweighted directed
graphs with n vertices and m edges, Chechik and Magen [35]
showed an O(m\/ﬁ + n?) time combinatorial algorithm and
an mn'/?2=°() conditional lower bound for combinatorial
algorithms.

There is a significant body of work on single-fault dis-
tance sensitivity oracle. The first nontrivial DSO for weighted
graphs was given by Demetrescu, Thorup, Chowdhury and
Ramachandran [36], who gave a deterministic oracle with
constant query time and O(n®°) construction time. They
also had an alternative DSO that needs O(n?*) construction
time, but only uses é(n2) space and keeps constant query
time. Bernstein and Karger [37] gave a deterministic DSO for
weighted graphs with O(n?®) pre-processing time and O(1)
query time. This is essentially optimal barring improvements
in APSP. On the other hand, single-fault DSOs for graphs
with small integer edge weights do not have a (conditionally)
optimal algorithm. The first DSO for small integer weighted
graphs with subcubic pre-processing time and sublinear query
time is given by Grandoni and Vassilevska Williams [13],
[34]. Their DSO for directed graphs with integer edge weights
in {—M,..., M} has an O(Mn“*1/2 4 Mn“+*(4=)) pre-
processing time and an O~(n1_°‘) query time for any param-
eter « € [0,1]. Chechik and Cohen improved the DSO to
O(Mn?2873) pre-processing time and O(1) query time [38].
An algorithm by Ren improves the pre-processing time to
O(Mn?733) and the query time to O(1), but it only works
for graphs with positive integer weights in {1,..., M} [39].
Gu and Ren [25] recently improved the pre-processing time
to O(Mn?574) for constructing DSO for such graphs.

The first major step in multiple-fault DSOs was a DSO by
Weimann and Yuster [22] which can efficiently handle up to
f = O(logn/loglogn) edge failures (for larger number of
failures it will not be faster than brute-force). Their DSO is
randomized, and has an O(M n@+1=) pre-processing time
and an O(n?~(1=®)/f) query time for graphs with weights in
{=M,..., M}, for any chosen parameter o € (0,1). They
also have an alternative DSO which has O(M?63p3529-)
pre-processing time and O(n2~2(1-2)/f) query time for any
chosen parameter o € (0, 1) using the current best algorithm
for rectangular matrix multiplication [24]. For graphs with
arbitrary edge weights, their DSO has an O(n*~®) pre-
processing time and an O(n2~2(1-®)/1) query time [22].
Their DSO for graphs with arbitrary edge weights was later
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derandomized by Alon, Chechik, and Cohen in [33]. The
current best multiple-fault DSO for small integer weighted
graphs is a randomized DSO by van den Brand and Sara-
nurak, which has an O(Mn®+(3=%)®) pre-processing time
and an O(Mn2~°f2+ Mnf*) query time, for any parameter
a € [0,1] [23].

Duan and Pettie designed an O(n?) space two-fault DSO
with 0(1) query time [40]. Since their focus is space com-
plexity instead of pre-processing time, their result is not
directly comparable to ours. Recently, Duan and Ren [41]
generalized [40] to f failures: they designed an O( fn*) space
f-fault DSO with f°() query time, though it only works for
undirected weighted graphs.

II. PRELIMINARIES

Throughout this paper, use wg(u,v) to denote a shortest
path from u to v in G and use dg(u,v) to denote its distance.
We also use 7 (u, v, e) to denote a shortest path from u to v
in the graph G with edge e removed, and use dg(u,v,e) to
denote its distance. We sometimes drop the subscript G if it
is clear from the context. All graphs considered in this paper
don’t have negative cycles.

Let s, be the source and target vertices in a graph G and
let 7 (s,t) be a shortest path from s to ¢ in G. Suppose we
remove a set of edges S from GG. We say a path P is canonical
(with respect to wg(s,t) and S) if for any vertices u, v that
appear both on P and on 7 (s, t) such that u appears before v
in both P and 7 (s, t) and the subpath from u to v on 7 (s, t)
is not disconnected by S, then the subpath from w to v in P
is the same as the subpath from u to v in 7g(s,t). Clearly,
at least one of the replacement path 7y g(s,t) is canonical.
This is a light-weighted tie-breaking scheme. See Figure la
and Figure 1b for examples.

For a graph G, we use G to denote a copy of G with
all directions of the edges reversed. We use GG for notational
succinctness. For instance, instead of saying computing single-
target replacement paths to ¢ in G, we can say computing
SSRP from ¢ in G.

We use w < 2.3729 [18]-[20] to denote the square matrix
multiplication exponent. For any k& > 0, we also use w(1, k, 1)
to denote the exponent for multiplying an n x n* matrix and an
n* x n matrix. Currently, the fastest algorithm for rectangular
matrix multiplication is by Le Gall and Urrutia [24]. It is well-
known that the function w(1, k, 1) with respect to k is convex
when k£ > 0 (see e.g. [42]).

III. TECHNICAL OVERVIEW

In this section, we describe the high-level ideas and key
components in our algorithms for 2FRP in arbitrary weighted
graphs and in small integer weighted graphs.

Let G = (V,E) be a weighted graph with no negative
cycles, and let s,t¢ € V be the fixed source and target of
the 2FRP instance. Let mg(s,t) be a shortest path from s
to t. Both algorithms handle the following cases of two-fault
replacement paths queries separately: the case where only one
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Fig. 1a. An example of a canonical path. The horizontal line (including e and e2) is the shortest path 7 (s, t) from s to ¢ in G, and the set of edges we

remove is S = {e1, ez}

S el
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Fig. 1b. An example of a non-canonical path. The horizontal line (including e; and e2) is the shortest path 7w (s, ) from s to ¢ in G, and the set of edges
we remove is S = {e1, e2}. The path is not canonical because the subpath from u to v on w¢(s, t) is not disconnected by {e1, ez} while the path is not

using that subpath.

of the two failed edges e, es is on the original shortest path
ma(s,t), and the case where both failed edges are on 7 (s, t).

First, we consider the case where only one of the two failed
edges ej, e, say e, is on 7wg(s,t). Let H = G\ {ez2}.
We aim to compute da\ (e, ,e,}(5:1) = di\fe,3(5:1), i€, a
one-fault replacement path query in H. Since ez is not on
ma(s,t), ma(s,t) is still a shortest path from s to ¢ in H.
Given a shortest path my(s,t) = mg(s,t), the structure of
one-fault replacement paths is well-understood. It is known
(see e.g. [22]) that one of the optimal one-fault replacement
paths shares a prefix and a suffix with the shortest path, and
contains a detour part that connects the prefix and the suffix.
Importantly, the detour part does not use any edge on the
original shortest path 7 (s,t) = mg(s,t). Therefore, in order
to understand the distances of the detours, we need to compute
the distance in the graph H \ mg(s,t),* which is exactly the
graph G \ mg(s,t) \ {e2}. Thus, the detour distances can
be efficiently computed by a one-fault DSO on the graph
G\ (s, t). Based on this intuition, a key component in both
of our algorithms is a one-fault DSO on the graph G\ 7 (s, t).
Depending on the range of edge weights of the input graph,
we will use different DSOs accordingly.

One-fault DSO does not seem to help the case where
both failed edges e1,es are on wg(s,t). The structure of
dc\{ey,e5} (5, 1) is more complicated than the structure of one-
fault replacement paths. One can show that one optimal 2-fault
replacement path still shares a prefix and a suffix with 7 (s, t),
but the middle part between the prefix and the suffix is not
simply a detour that does not use any edge on wg(s,t). In
fact, it is possible that the middle part enters and leaves the
subpath of 7 (s,t) between e; and eo an arbitrary number of

“Throughout this paper, a path P formally denotes the set of its edges.
Thus, H \ 7 (s, t) is a subgraph of H that removes all edges on the s to ¢
shortest path, but keeps all the vertices on it.
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times, as shown in Figure 2b. To understand the middle part
better, we study the following problem as a key subroutine
in our algorithms: for every two vertices u,v on wg(s,t)
where u appears earlier than v, we aim to compute f(v,u)
which is defined as de\ g (s,u)\r (v,¢) (U, 1), i.e., the distance
of a shortest path from v to u that is not allowed to use
edges before u or after v on 7w (s,t). Intuitively, f(v,u)
captures the structure of the middle part of den fe, e,y (5, 1),
as the optimal path for f(v,u) can also enter and leave the
shortest path 7 (s,t) multiple times. In the full version, we
will give efficient algorithms for computing these distances
f(v,u) in both arbitrary weighted graphs and small integer
weighted graphs. The running times of these two algorithms
are summarized below.

Lemma 7. There exists a deterministic algorithm that can
compute [ in n-vertex weighted graphs with no negative cycles
in O(n®) time.

Lemma 8. There exists a randomized algorithm that can
compute f in n-vertex graphs with integer edge weights
in {=M,...,M} in O(MY3*n?>t</3) time. Using rectan-
gular matrix multiplication, the running time improves to
O(N[0.3544n2.7778).

Our algorithm for 2FRP on small integer weighted graphs
needs to run SSRP multiple times on different subgraphs of G
(and related graphs) with different sources (see Section V-A
for an overview of the algorithm). However, the best run-
ning time for SSRP on graphs with integer edge weights
in {—M,...,M} is O(M?8043p2-4957) by Gu, Polak, Vas-
silevska Williams and Xu [21]. Simply running their algorithm
the required amount of times easily exceeds the running time
we aim for. Fortunately, in most of our SSRP computations,
we only need the replacement path distances dgn (e} (s,?)
for t € T and e € wg(s,t), where the size of T' is much
smaller than n. In the full version, we will adapt Grandoni
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Fig. 2a. A typical 2-fault replacement path where e is on the original shortest path while ez is not.

€1 U
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Fig. 2b. A typical 2-fault replacement path where both e; and e2 are on the original shortest path. All paths shown that do not lie on the original shortest

path do not use any edge on it.

and Vassilevska Williams’s algorithm for SSRP on graphs with
integer edge weights in {—M, ..., M} [13] to achieve a more
efficient algorithm when 7" is small:

Lemma 9. Given an n-vertex graph G whose edge weights
arein {—M, ..., M}, a source vertex s € V(Q), and a subset
T C V(QG), there is a randomized algorithm that computes
dg(s,t,e) for every t € T and e € T, where T is a shortest
path tree rooted at s in O(Mn* + Mspttas . |T|) time
with high probability.

Note that we can potentially use ideas from [21] to make
Lemma 9 faster for large enough 7', but this lemma won’t be a
bottleneck of our whole algorithm. In fact, for the value of |T'|
we end up using for our 2FRP algorithm, the Mn“ term in the
above lemma dominates the other term, and [21]’s techniques
cannot avoid the Mn“ term either. Therefore, we choose
to adapt the simpler algorithm by Grandoni and Vassilevska
Williams [13].

All (except the positive weight case of Theorem 3) of
our algorithms can be used to report paths efficiently, by
using known techniques for finding solutions of dynamic
programming and finding witnesses for matrix multiplication
problems [43].

IV. NEARLY CUBIC TIME ALGORITHM FOR WEIGHTED
GRAPHS

In this section, we show our O(n?) time algorithm for 2FRP.
We use two drastically different algorithms for the case where
only one failed edge is on the original s to ¢ shortest path and
the case where both failed edges are on the original shortest
path.

When only one failed edge is on the original s to ¢ shortest
path, our algorithm is essentially a simple reduction to the
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(one-fault) distance sensitivity oracle problem. For the other
case where both failed edges are on the shortest path, we
carefully design algorithms that can capture the patterns of
optimal replacement paths.

A. Only One Failed Edge on Original Shortest Path

Let G = (V, E) be our input graph, and let mg(s,t) be a
shortest path from s to ¢ in G. We will compute all replace-
ment path distances de (e, e,1(5,t) for e; € mg(s,t) and
es & wg(s,t). Our algorithm relies on the following efficient
data structure for one-failure distance sensitivity oracle by
Bernstein and Karger [37].

Theorem 10 ( [37]). Given a weighted graph H = (V, E)) with
n vertices and no negative cycles, there exists a deterministic
data structure that can pre-process H in O(n3 log2 n) time
and then answer queries in the form dg\ ey (u,v) for any
u,v € V and e € E in O(1) time. Allowing randomized
data structure that succeeds with high probability, the pre-
processing time can be improved to O(n®logn).

Even though they only stated their DSO for graphs with
nonnegative edge weights, their DSO also works for graphs
with possibly negative edge weights but no negative cycles,
after an O(n?) pre-processing step that replaces all edges with
nonnegative edges [44], [45].

Given our graph G, we create another graph G’ with O(n)
vertices. First, we copy G to G’ and remove all edges on
7 (s,t). Let h = O(n) be the number of vertices on 7 (s, t)
and let py,...,p, be vertices on the path 7 (s,t), in order
they appear on mg(s,t). In particular, s = p; and ¢ = pj. We
add h vertices aq,...,ap to G'. For any 1 < i < j < h, we
add an edge from a; to p; with weight d(s, p;). Finally, we
add another h vertices by,...,by and for any 1 <i < j <h,
we add an edge from p; to b; with weight de(p;, ).
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The following lemma relates den fe,,e,} (S, ) With replace-
ment path distances in G’

Lemma 11. For any e; = (pi,piv1) € 7g(s,t) and any
e2 & Ta(s,t),

denfer,e2} (8, 1) = dan (e} (@i, big1)-

Proof: First, we notice that mg(s,t) is still a shortest
path from s to t in G\ {e2}. Also, TG\ {fey,e,}(5,t) is a
one-fault replacement path on the graph G \ {ez}. It is well-
known that (at least one) one-fault replacement path consists
of the following three parts: a prefix that is a prefix of the
original shortest path, a detour that does not use any edge
on the original shortest path, and a suffix that is also a
suffix of the original shortest path (see e.g. [13]). Therefore,
dc\{ey,e5}(5,1), when viewed as a one-fault replacement path
in G\ {e2} can be expressed as

min
1<z<i<y<h

e feaPvra(s.t) (Pas Py) + A6 fen) (Pyo 1) }
min

de (¢
1§w§i<y§h{ c(5,pa)

Fda\fesp\r (s.t) (P Py) + da(py, ) } -

On the other hand, we consider dG/\{ez}(ai7 bi+1). Clearly, a;
must first go to some neighbor p, for some x < ¢ where the
edge weight of (a;,p,) is dg(s,ps). Similarly, the last edge
on any a; to b;11 path must travel from a neighbor of b;; to
bi1+1. Thus, the last edge must be from p, for some y > ¢+ 1
with weight d¢(py,t). Also, the subpath from p, to p, lies
entirely in G’ \ {ez}; this subpath cannot use any vertex a;
or b; for 1 < j < h either because these vertices either have
0 out-degree or 0 in-degree. Thus, the subpath from p, to p,
actually lies entirely in G \ {e2} \ mg(s,t). We can therefore
express dgn fe,) (@i, biy1) as

denfer e} (5,1) = {de\fes1 (s, p2)

i d
1§xr§nilgygh { G(S7px)

+de fes P\res (5,6) Pz Py) + da(py, 1) }

which matches exactly with the formula for de\ (e, e, (5, 1)

dan fesy (@is big1) =

Using Lemma 11 and Theorem 10, we can easily solve
the case where only one failed edge is on 7 (s,t) in O(n?)
time. We first construct G’ and use Theorem 10 to pre-
process G'. Then for any two-fault replacement path query
dcn\fe1 e} (5,1) Where e; € mg(s,t) and ex & Ta(s,t), we
query dgn e} (@i, bir1) from the DSO in O(1) time. By
Lemma 11, this distance equals dg\ (e, e,}(5,t). Since there
are only O(n?) queries, the pre-processing is the bottleneck
and thus this case takes O(n®log®n) deterministic time or
O(n®logn) randomized time with high probability.

B. Both Failed Edges on Original Shortest Path

In this section, we will describe an algorithm that computes
all replacement path distances den fe, e, (5, 1) for e1,ex €
ma(s,t). Again, we let pq,...,pn be vertices on the path
mg(s,t), in the order they appear on mg(s,t). Without loss
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of generality, e; = (p;,pi+1) and es = (p;, p;j4+1) for some
1<i<j<h.

Let P be a shortest path from s to ¢t in G \ {ey, ez} that
is canonical (recall the definition of canonical in Section II).
There are essentially two cases in this section: the case where
P does not use any vertex on 7g(s,t) between e; and e; and
the case where P uses at least one such vertex.

We first consider the case where P does not use any vertex
on mg(s,t) between e; and es. This can be thought as a
generalization of the RP algorithm in [3].

Lemma 12. In O(n?) time, we can compute the replacement
path distances dg\ (e, ,}(5;t) for every pair of ej,es €
(s, t) where e1 = (p;, pi+1) and ea = (pj, pjt+1) for some
1 < i < j < h and the replacement path does not use any
vertex py for i < k < j.

Proof: First we fix some eq, es and consider their corre-
sponding replacement path P. Without loss of generality, we
assume P is canonical. Let p,, be the rightmost vertex (furthest
from s) P uses on 7 (s,t) before e;. Similarly, let p, be the
leftmost vertex (furthest from ¢) P uses on 7w (s,t) after eo.

Since P is canonical, its subpath from s to p, must use the
portion from s to p, on 7 (s, t) and thus has length dg (s, pz ).
Also, it implies that p, must appear after p,, on P. Similarly,
the subpath of P from p, to ¢ must use the portion from p,
to t on mg(s,t) and thus has length dg(py,t).

Now we consider the subpath of P from p, to p,,. It cannot
use any edge between s and p, on 7¢(s,t), since otherwise,
the subpath from s to this edge does not match the portion
from s to this edge on 7g(s,t), making P not canonical.
Similarly, it cannot use any edge between p,, and ¢ on w¢ (s, ).
The subpath of P from p, to p, cannot use any edge between
p. and e; on mg(s,t) either, due to the definition of p,.
Similarly, it cannot use any edge between ez and p,. We also
assumed that P does not use any vertex between e; and e; on
ma(s,t), and thus it does not use any edge between e; and e
either. Therefore, the subpath from p, to p, completely avoids
7G(s,t) and thus its length is den g (s,¢) (Pes Dy )-

Thus, we have shown that de (e, e,1(5,t) = dg(s,pz) +
de\re(s,0) PerDy) + da(py.t). In general, for any e; =
(pi,pit1) and eg = (p;,pj+1) for some 1 <i < j < h,

e\ fer ey (5:1) = min - {dg(s,pz)

z<i
J+1I<y<h
+dG\7rc(s,t) (pzvpu) + dG(py7 t)} ’

as long as the replacement path does not use any vertex pg,
fori <k <j.

Let T(l’, y) be dG(57pz) + dG\ﬂ'c(s,t) (pac7py) + dG(py7 t)~
After running APSP in G \ mg(s,t) in O(n®) time, we can
compute all values T'(z,y) and store points (z,y) in a 2D
range tree and associate a value T'(x,y) with point (z,y) in
@(nz) time, so that the 2D range tree can support orthogonal
range minimum queries. Then for any e; = (p;,piy+1) and
e2 = (pj,p;j+1) for some 1 < i < j < h, we can query the
2D range tree to get the minimum value of T'(z,y) such that
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1<z <iand j+ 1<y < h. Each query takes O(l) time.
Overall, the running time for this case is O(n?3). |

It remains to consider the case where P uses some vertex
on 7 (s,t) between e; and eo. We again show that there is
an O(n?) time algorithm for it.

Lemma 13. In O(n3) time, we can compute the replacement
path distances dg e, e,y (8,t) for every pair of ey, ez €
ma(s,t) where ey = (pi, pi+1) and ex = (p;, pj+1) for some
1 <i < j < h and the replacement path uses some vertex py
fori <k <j.

Proof: First we fix some e, ez and consider it’s corre-
sponding replacement path P. Without loss of generality, we
assume P is canonical. Let k& be the largest integer where
i < k < j and P contains p;. Also, let &’ be the smallest
integer where ¢ < k' < k and the subpath of P from py, to ¢
(including py and t) uses py.

Now we consider three subpaths of P separately: the
subpath from s to pg, the subpath from pj to py- and the
subpath from pys to t.

On the s to p; subpath, let p, be the rightmost vertex
before e; and let p, be the leftmost vertex after e;. Since
P is canonical and all edges between s and p, do not include
€1 Or ey, the portion from s to p, is g (s, px), SO Dy appears
after p, on the subpath. Thus, we can further decompose the
5 to py, subpath to three parts: from s to p,, from p, to p, and
from p,, to py. Since P is canonical, the subpath from s to p,
and from p, to pj use edges entirely from 7mg(s,t), and we
know these edges don’t include e; or e,. Thus, the lengths of
these two subpaths are d¢(s, p;) and dg(py, pr) respectively.
We then argue that the p, to p, subpath cannot use any edge
on (s, t). It does not use any edge between s and p, or
between p, and p;, since that would imply P is not canonical.
It does not use any edge between p, and p, by definitions
of p, and p,. It does not use any edge between pj, and p;
by definition of k. Finally, it does not use any edge between
pj+1 and t because if it does, a canonical path P should go
directly to ¢ from that edge instead of going back to p,. Thus,
the subpath from p, to p, has length de\x (s,t) (P2s Py). By
the above discussion, the length of the subpath from s to pj
can be expressed as

min, {da(s,p2) + de\re (s,6) (P2 Dy) + di (Py, Pr) } -

i+I<y<k

We can denote this value by gs(e1, px), and by using 2D range
tree, we can compute gs(e1, px) for all values of e; and py, in
O(n?) time after computing APSP of G \ 7¢(s,t) in O(n?)
time. More specifically, since

gs(er,pr) = min. {da(s,p2) + de\rg(s.t) (Pas Py)
i+1<y<k
+(da(s,pr) — da(s,py))}
=dg(s,px) + min, {da(s,pz)
iti<y<k
+de\rg(s,0) (Pes Py) — da(s,py)
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we can create a table 7" where T'(z,y) da(s,pz) +
A\ (s,t) (Pes Py) — da (s, py) and store it in a 2D range tree,
and then computing each g,(e1,px) essentially costs a 2D
range minimum query.

The subpath from pg to t is similar. On the py to ¢
subpath, let p,/ be the rightmost vertex before ep and let p,
be the leftmost vertex after e5. Since P is canonical, we can
decompose the subpath from pys to ¢ to three subpaths: from
Di’ 10 pg, from p,s to p, and from p, to t. Since P is
canonical, the subpath from py/ to p,s and the subpath from
Py to ¢ have lengths de (pr, par) and dg(py,t) respectively.
Now we consider the portion from p, to p,/. It cannot use any
edge before p; or after p,, since P is canonical. It cannot use
any edge between p; 1 and pys by definition of py.. It cannot
use any edge between pgs and p,s since P is canonical. It
cannot use any edge between p,- and p,, by definitions of p,
and p,. Thus, it entirely avoids 7 (s, t) and its length should
be dg\re(s,t)(Pars Py ). Therefore, the length of the subpath
from py/ to t can be expressed as

min  {dg(prr; Par) + dang (s,0) (Par s Py ) + da(py s 1) } -
k' <a'<j

JHI<y’<h

We denote this value by g;(ez, pr/). By using 2D range tree,
we can compute g;(es,pys) for all values of es and pys in
O(n?) time after computing APSP of G'\ m¢(s,t) in O(n?)
time. We omit the details for the 2D range tree in this case
since it is almost identical to the s to p; subpath case.

Finally, we consider the pj to pys subpath. It does not use
any edge on 7 (s, t) before ey or after es because P is canoni-
cal. It does not use any edge after e; and before py- or any edge
after py and before e; by definitions of k and k’. Therefore,
this subpath lies entirely in G\ 7 (s, pr/)\7c(pk, t). Thus, the
length of this subpath is exactly da\ r (s,p )\ we (pi,t) (P> PR? )5
which was denoted by f(pk,prs) in Section III. All values of
f(pg, pr) for any py and pys can be computed deterministi-
cally in O(n?) time by Lemma 7.

Therefore, for any e; = (p;, pit1) and ea = (p;,pj41) for
some 1 <i<j<h,

dG\{ehez}(Svt)

"+1SH%}IS1]€S] {gs(elapk) + f(pk7pk/) —+ gt(€27pk/)} ,

as long as the replacement path uses some vertex on 7g(s,t)
between e; and ez. To compute the right hand side of the
above equation efficiently, we first create an array Ay ., (k') =
f 0k, prr) + ge(ea, prr) for every k and e, and build a data
structure that supports range minimum queries for each array.
Then for every ey = (p;, pi+1), €2 = (pj, Pj+1), We enumerate
k € [i +1,7]. We can write

L {gs(er,pr) + f(pr, prr) + gele2, prr) }

as

gs(er,pp) + min  Ag ., (k).

i+1<k'<k

Thus, it essentially costs one range minimum query for every
triple of eq,es, k. If we use range minimum query data
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Fig. 3. This figure depicts the vertex labels for Lemma 13.

structures that supports linear time pre-processing and O(1)
range minimum queries (see e.g. [46]), this step takes O(n?)
time.

Therefore, the overall running time is O(n3). |

C. Putting It All Together

Recall our Theorem 1 is the following:

Theorem 1. In the Word-RAM Model with O(logn)-bit
words, the 2FRP problem on n-vertex O(logn)-bit integer
weighted directed graphs with no negative cycles can be
solved in O(n®log®n) time by a deterministic algorithm or
in O(n3logn) time by a randomized algorithm that succeeds
with high probability.

Proof: All components in our algorithm run in O(n®)
time deterministically except the pre-processing phase of the
distance sensitivity oracle from Theorem 10. Since the DSO
has an O(n®logn) randomized pre-processing time or an
O(n?log? n) deterministic pre-processing time, our algorithm
for 2FRP has O(n?logn) randomized time or O(n®log®n)
deterministic time. u

Using Theorem 1, we immediately obtain Corollary 2.

Corollary 2. For all f > 2, fFRP in n-vertex directed
weighted graphs with no negative cycles can be solved in
O(nf+1) time.

Proof: Since the graph has no negative cycles, we can first
use an O(n?®) pre-processing step that replaces all edges with
nonnegative edges [44], [45]. Then we compute a shortest path
Py from s to t in O(n?) time using Dijkstra’s algorithm. For
every edge e; on P}, we compute a shortest s-¢ path P, from
stotin G\ {e1}. More generally, for each i < f — 2, and
each choice of (ey,...,e;) and computed paths Pi,..., P,
where each P; is a shortest s-t path in G\ {e1,...,e;_1}
and e; € Pj, we compute a shortest s-¢t path P;yq in G\
{e1,...,e;}. This computation takes O(n/) time. Then for
each of the O(n/~2) choices of (eq,...,es_2), we compute
2FRP using Theorem 1 in G \ {e1,...,e;} in overall time
O(n/+1). ]

V. SUBCUBIC TIME ALGORITHM FOR GRAPHS WITH
BOUNDED INTEGER WEIGHTS

In this section, we show how to improve the running time
of 2FRP when we restrict the graphs to graphs with small
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integer edge weights and no negative cycles, providing proofs
for Theorem 3 and Corollary 4.

A. General Approach and Intuitions

We first give some intuitions and high-level ideas of our
algorithm.

Let G = (V, E) be an n-vertex directed graph with integer
edge weights in {—M ... M} and no negative cycles. Let s
be the source and ¢ be the target for our 2FRP instance. The
general approach to our algorithm is to divide 7¢(s,t) into
intervals of g vertices each for a positive integer parameter
g = O(n).> Let I be one of the intervals, then we use V(1)
to denote the vertices inside the interval, and E(I) to denote
the edges inside the interval. The intervals are created in
such a way that the last vertex in the previous interval is the
first vertex in the next interval. Once we have created these
intervals we can classify all the two-fault replacement paths
queries to the following three cases: (1) only one failed edge
is on wg(s,t), (2) both failed edges are on 7g(s,t) in the
same interval, and (3) both failed edges are on 7mg(s,t) in
different intervals. Note that we don’t need to consider cases
where neither of the failed edges is on m¢(s, t) as the original
shortest path will exist in G \ {e1,e2}. Now, we can create
three separate sub-algorithms that handle each of these cases,
and combine them to get the overall 2FRP algorithm.

We will have a general precomputation step and some sub-
algorithms will also have their own precomputation steps to
compute any needed information that was not computed in
the general precomputation step. Our approach to querying
the length of the replacement path in all of the sub-algorithms
is to construct a weighted auxiliary graph to aid with the query.
To build one such auxiliary graph, we first determine a set of
critical vertices that break down the replacement path into a
series of subpaths between them. These vertices will form the
vertex set of the auxiliary graph, and the edges in the auxiliary
graph will represent subpaths between these vertices.

We say that the auxiliary graph encodes a subpath from u to
v in G\ {ey, ex} if there is a path from u to v in the auxiliary
graph with the same length as the subpath. We also say that
an edge (u,v) in the auxiliary graph encodes a subpath from
u to v in G\ {e1,es} if the weight of that edge equals the
length of the subpath. We will show many of those subpaths
are encoded in the auxiliary graph, and eventually, show that

5For instance, we will set g = n(“~1)/3 = O(n) when M = O(1).
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the s-¢ shortest path in G\ {e1, ez} is encoded. Thus, we can
run a Single-Source Shortest Paths (SSSP) algorithm on the
auxiliary graph to get the length of the shortest replacement
path.

B. Precomputed Distances

In the general precomputation step and the precomputa-
tion steps specific to each sub-algorithm, we will use the
SSRP algorithm from [13] that has the same running time
as Zwick’s APSP algorithm for graphs with edge weights in
{—M,..., M} and our algorithm for SSRP with a small set
of targets from Lemma 9. In the precomputation steps and
the query step, we will also use the near-linear time SSSP
algorithm by Bernstein, Nanongkai and Wulff-Nilsen [47]. On
n-vertex dense graphs, their algorithm runs in O(n?) time.

In this general precomputation step we compute sets of
distances that will be needed for all three sub-algorithms:

1) Run SSSP and SSRP from s in G/a and store. the results.

2) Run SSSP and SSRP from ¢ in G, where G represents
G with the directions of all of its edges reversed, and
store the results.

3) For each interval I, create the graphs G \ E(I) and
GTE\(I ), then:
a) Run SSSP and SSRP with target set V(I) U {t}
from s in G\ E(I), and store the results.
b) Run SSSP and SSRP with target set V(I) U {s}
from ¢ in G\ E(I) and store the results.
4) Run Zwick’s All-Pairs Shortest Paths algorithm [32] on

the graph with all the edges of mg(s,t) removed and
store the results.

Overall, steps 1, 2 and 4 take O(Ml/(‘l*“)n%l/(‘l*“’))
time, and each iteration of step 3 takes O(Mn* +
MY/ (A=w)pl+1/(4=w) gy time, so these pre-processing steps
take O(Mn“*1/g + M'/(4=«)p2+1/(4=2)) time. The space
complexity of the stored results in this step is O(n?).

C. Only One Failed Edge on Original Shortest Path

First, we consider the case where only one of the failed
edges is on mg(s,t). Let e; be the failed edge on wg(s,t), I
be the interval containing e;, and ey be the failed edge that
is not on 7wg(s,t). Our auxiliary graph requires distances not
computed in the general precomputation step of the algorithm,
so we will have a precomputation step for this algorithm. Dur-
ing this precomputation step, we compute a single-fault DSO
for G \ mg(s,t). Using Chechik and Cohen’s DSO [38], the
pre-processing time is O(Mn28729) and the space is O (n?").
If all edge weights are positive integers in {1,..., M}, we can
instead use Gu and Ren’s DSO [25], which has O(Mn2-5794)
pre-processing time and O(nQ) size. Note that although Gu
and Ren’s DSO has O(n?) size, it could use O(n?4207) space
during pre-processing [25].

Let G’ be the auxiliary graph, and let its vertex set be
{s,t} UV (I1). We will add edges in the following steps:

1) Add an edge from s to t with weight dey g(1,) (8, 1, €2).
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2) For every v € V(I), add an edge (s,v) with weight
dG\E(Il)(Sv v, 62).
For every v € V(I), add an edge (v,t) with weight
dG\E(Il) (v,t,e2).
Add all of the edges in I; that are not one of the two
failed edges. Then, for every u,v € V(I;), add the edge
(u,v) with weight dg re; (s,0) (4, v, €2).

Now we can run SSSP from s in G’. Since there are O(g)
vertices in each interval, there are O(g) vertices in G’, so
building G’ and running the query takes O(g?) times.

3)

4)

Theorem 14. dg:(s,t) is equal to dey e, ey} (5, 1)

Proof: Here are two main cases for the shortest s-¢ path
that avoids e; and es: (1) the path does not use any edge in
E(I;) or (2) the path does use edges in F(I;). The path for
the first case is encoded in G’ via the edge added in step 1.

For the second case, let P be a canonical replacement path.
We know that the shortest path P must use a vertex in V' (I7).
Let u be the first vertex on the replacement path that is in
V(I1), and v be the last vertex on the replacement path that
is in V(I1). Then, the replacement path can be broken down
into three subpaths: (1) a subpath from s to u, (2) a subpath
from u to v, and (3) a subpath from v to ¢. If G’ encodes each
of these subpaths for every possible value of u and v, and the
replacement path does use edges in E(I1), then mg (s, t) will
use the optimal choices for v and v, which will give us the
length of the replacement path.

First, we will focus on the subpaths from s to w for all
choices of u. Since u will be the first vertex in V(I1) on
the replacement path, this subpath will not use any edge in
E(Iy). Similarly, the subpaths from v to ¢ will not use any
edge in FE(I,) either, since v is the last vertex in V(1) on the
replacement path. All of the subpaths must also avoid es, since
it is a failed edge. Therefore, the edges added in steps 2 and
3 are sufficient to encode the s-u subpaths and v-t subpaths
into G'.

Next, we will focus on the subpaths between v and v for all
choices of v and v. If a canonical replacement path does travel
between two vertices in V' (I7), then it will not use any edge
on mg(s,t) outside of I3 to do so, as that would prevent it
from being canonical. For example, if the path between u and v
reached a vertex w in w(s, t) before I, then the replacement
path should go directly from s to w, instead of going to u
first, because it is canonical. The mirror situation occurs if it
touches a vertex after /; and cannot happen for similar reasons.
Therefore, when traveling between two vertices in V' (I7), the
replacement path will only use edges in F(/;) and edges not
on wg(s,t). As a result, every u-v subpath can be broken into
a series of smaller paths consisting of edges in E(I;) and
paths between vertices in V' (I;) that do not use any edge on
mg(s,t). The edges in step 4 encode all of these smaller paths
into G’, and as a result every u-v subpath is encoded in G'.

In total, G’ encodes every possible subpath which the
replacement path could be constructed from, so the shortest
s-t path in G’ can not be longer than the replacement path
in G\ {e1,es}. It is impossible for dg/(s,t) to be smaller
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than de fe, e,)(5,1) because all of the edges in G’ have
weights that correspond to the lengths of some paths that are
present in G \ {e1, es}. Therefore, d¢-(s,t) must be equal to

dG\fer,e2} (85 1) n

D. Both Failed Edges on Original Shortest Path: Same Inter-
val

Next, we will consider the case where both failed edges
e1,es are on wi(s,t) in the same interval I. We start by
constructing the auxiliary graph for this query. Let G’ be the
auxiliary graph, and let its vertex set be {s,t}UV (). We will
add edges in the following steps:

1) Add an edge from s to ¢ with weight dey (1) (s, 1)

2) For every v € V(I), add an edge (s,v) with weight
da\e(1)(8,0)-

3) For every v € V(I), add an edge (v,t) with weight
dG\E(I) (U, t)

4) Add all of the edges in I that are not one of the two
failed edges. Then, for every u,v € V(I), add an edge
(u,v) with weight dG\ﬂG(S,t)(u, v).

Now we can run SSSP from s in G’. Since there are O(g)
vertices in each interval, there are O(g) vertices in G’, so
building G’ and running the query takes O(g?) time. All of
the edge weights of G’ were already calculated in the general
precomputation step, so there is no additional precomputation
step for this sub-algorithm.

Theorem 15. dg(s,t) is equal to defe, ey} (5, 1)

The proof for this case is similar to the proof of Theorem 14.
We defer its proof to the full version.

E. Both Failed Edges on Original Shortest Path: Different
Intervals

Due to space limitation, we will defer this case to the
full version. The precomputation step of this case takes
O(]V[?’Lw+l/g + Ml/(47u)n2+l/(47w) + M1/3n2+w/3) time.
We can improve the third term to O(M%3544n27778) ysing
rectangular matrix multiplication. The query time is O(g?)
and the space complexity is again O(n?).

FE. Putting It All Together

Now we have all the necessary components for proving
Theorem 3, which is recalled here:

Theorem 3. For any given positive integer parameter g <
O(n), there exists a data structure that can pre-process
a given directed graph G with integer edge weights in
{=M,...,M} and no negative cycles and fixed vertices s
and t, in O(Mn“*t'/g + Mn>8729) time, and can answer
queries of the form den fe, ey} (8,1) in O(g?) time. This data
structure has randomized pre-processing which succeeds with
high probability. The size of the data structure is O(n2"%).

If the edge weights of G are positive, the pre-processing
time and the size of the data structure can be improved
to O(Zv[nw-}—l/g 4 M0-3544,2.7778 Mn2.5794) and O(nQ)
respectively.

Proof: In total, the running time for the general pre-
computation phase and the precomputation phase of each
sub-algorithm is O(Mn®t1/g + MYV (@-w)p2+1/(-w) 4
MY3p2+w/3 4 Mn28729) The fourth term dominates the
second and third term, so the pre-processing time simplifies to
O(Mn“+1/g+ Mn28729). The space complexity is O(n2?),
where the space of the DSO is the bottleneck.

If all edge weights are positive, the pre-processing time
can be improved to O(Mn®t! /g 4+ M/ (A=«)p2+1/(4-w) 4
MY/3n2+@/3 4 Mn2-5794) The third term can be improved to
O(MO-35442.T778) ysing rectangular matrix multiplication by
Lemma 8. Note that the second term is always dominated by
the third term or the fourth term, so the pre-processing time
simplifies to O(Mn<+! /g MO-354452-7778 4 \[2:5794) The
space complexity is O(n?).

The query time is O(g?) in both cases, since we always
run the near-linear time SSSP algorithm [47] on an auxiliary
graph with O(g) vertices. [ |

We can easily obtain our algorithm for 2FRP from Theo-
rem 3 by setting the parameter appropriately. Recall Corrol-
lary 4:

Corollary 4. The 2FRP problem on n-vertex directed graphs
with integer edge weights in {—M,...,M} and with no
negative cycles can be solved in O(M2/3n2'9153) time by a
randomized algorithm that succeeds with high probability.

Proof: We run the near-linear time SSSP algorithm [47]
to find 7 (s, t) in O(n?) time, and then run the O(Mn®) time
RP algorithm by Vassilevska Williams [12] to find 7¢ (e} (s, 1)
for every e € mg(s,t).

Then we can easily generate all (e, eq) pairs such that
e1 € ma(s,t) and ey € ma\qe,3(s,t) in O(n?) time. Using
Theorem 3, it will take O(g*n? 4+ Mn“*1/g+Mn>57) time
to handle all the queries, which is

O(M2/3p2@+2)/3 | 28729

by setting g = M'/3n(“=1)/3_ Using the current upper bound
w < 2.3729, the running time becomes O(M?/3p29153 4
Mn?8729), Note that the second term is larger than the
first term only when M?/3p29153 = (n3), so we can just
run the O(n3) time algorithm from Theorem 1 in this case.
Thus, the running time is always O(min(M?2/3n2-9153 pn3)) =
O(M2/3n2'9153).

Finally, we need to check ¢ = O(n) by the requirement
of Theorem 3. Note that this value of ¢ is O(n) when
M = O(n*=%). When M = Q(n*~*), our claimed running
time exceeds 2(n®) and thus we can just run the O(n?) time
algorithm from Theorem 1. |
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