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Accurate frictional contact is critical in simulating the assembly of rod-like structures in the practical
world, such as knots, hairs, flagella, and more. Due to their high geometric nonlinearity and elasticity,
rod-on-rod contact remains a challenging problem tackled by researchers in both computational
mechanics and computer graphics. Typically, frictional contact is regarded as constraints for the
equations of motions of a system. Such constraints are often computed independently at every

Keywords: time step in a dynamic simulation, thus slowing down the simulation and possibly introducing
Contact numerical convergence issues. This paper proposes a fully implicit penalty-based frictional contact
Friction

method, Implicit Contact Model (IMC), that efficiently and robustly captures accurate frictional contact
responses. We showcase our algorithm’s performance in achieving visually realistic results for the
challenging and novel contact scenario of flagella bundling in fluid medium, a significant phenomenon
in biology that motivates novel engineering applications in soft robotics. In addition to this, we offer a
side-by-side comparison with Incremental Potential Contact (IPC), a state-of-the-art contact handling
algorithm. We show that IMC possesses comparable performance to IPC while converging at a faster
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Computer graphics
Flagella

Solid-fluid interaction

rate.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout human history, flexible filamentary structures
have been essential to human society, serving various purposes
such as fastening, sailing, climbing, weaving, and hunting. As our
understanding of material properties improved, so did our ability
to engineer rods with enhanced material properties (e.g., flex-
ibility, strength, and resilience). This in turn has resulted in
the need to study and better understand the complicated me-
chanics of filaments. Thus, several previous works have sought
out to understand the various mechanics of rod-like structures
including the deployment of rods [1-3], elastic gridshells [4-
6],plant growth [7], knots [8-12], and propulsion of bacterial
flagella [13-15].

With real-world experiments being costly and tedious to im-
plement, the need for accurate physics-based numerical simula-
tions is prevalent. Such simulations not only allow for advanced
mechanics-based study, they also open up the avenue to chal-
lenging problems in robotics ranging from simulating soft robot
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dynamics to closing the sim2real gap for deformable material ma-
nipulation. In recent times, discrete differential geometry-based
(DDG-based) simulations have shown surprisingly successful per-
formance in capturing the nonlinear mechanical behaviors of rod
structures [16,17]. However, frictional contact handling still lacks
a descriptive understanding.

Indeed, frictional contact formulations are usually diverse and
based on the scaling of the system and/or the physical sce-
nario. In this manuscript, we mainly focus on Coulomb friction,
an adequate approximation of dry friction. Note that Coulomb
friction degrades when contacted surfaces are conjoined. For
engineering problems in which cohesion is important (e.g., co-
hesive granular media simulation [18-20]), a more elaborated
contact theory such as Johnson-Kendall-Roberts (JKR), Derjaguin-
Muller-Toporov (DMT), or Maugis models [21-23] are required.
Some prior works use these elastic cohesive contact models to
simulate incipient sliding of cohesive contacts [24,25]. Despite
this, Coulomb friction is still the de facto friction model for
non-cohesive contact due to its simplicity and high empirical
accuracy, where it can be seen implemented in a wide variety of
engineering applications, including, contact in elastic structures,
most granular media simulations, and more. We therefore build
a novel numerical framework based on Coulomb friction.
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Fig. 1. Rendered snapshots of flagella bundling with varying amounts of flagella. Rows contain (a) M = 2, (b) M = 3, (c) M = 5, and (d) M = 10 flagella. Each
column indicates the flagella configuration at the moment of time indicated in the top row.

Aside from friction formulations, contact handling methods
can generally be divided into three distinct categories: impulse
methods, constraint-based optimization methods, and penalty
energy methods. As the name suggests, impulse methods com-
pute contact forces based on the required impulse to keep rod
segments from penetrating, with an example being the impulse
force model by Spillmann et al. [26]. Although computationally
efficient and straightforward to implement, unrealistic visual jit-
tering often occurs when simulations use sufficiently large time
steps as the generated forces are handled explicitly [27]. There-
fore, impulse methods often must either deal with insufficient
physical accuracy or use sufficiently small time steps.

Constraint-based methods treat frictional contact as a con-
strained optimization problem. Jean and Moreau [28,29] imple-
mented convex analysis to propose using unilateral constraints
to solve dry friction in granular media. Alart and Curnier. [30]
developed the first approach to solving constraint-based contact
dynamics using Newton’s method to find the root of a non-
smooth function. In graphics, Daviet et al. [31] combined an
analytical solver with the complementary condition from [30]
to capture Coulomb friction in elastic fibers. In Ref. [32], the
algorithm from [31] was incorporated with a nonlinear elastic-
ity solver to simulate frictional contacts in assemblies of Dis-
crete Elastic Rods [16,17]. Based on previous work, Daviet [33]

proposed a general constraint-based framework for simulating
contact in thin nodal objects. Overall, constraint-based methods
can often produce physically realistic results but are inherently
more difficult to implement than impulse and penalty meth-
ods (though the growth of open source code has alleviated this
considerably). Arguably the largest drawback of constraint-based
methods, additional computational costs are incurred at each
solving iteration as frictional contact forces must be introduced as
additional degrees of freedom in order to satisfy the complemen-
tary condition between frictional contact responses and the status
of contact regions. This is in contrast to impulse and penalty
methods which can obtain contact responses directly based on
just configuration-based degrees of freedom.

The final contact method type, penalty energy methods, utilize
a formulated “contact energy” whose gradient is treated as the
contact force. Due to the requirement of a smooth differentiable
gradient (and Hessian for implicit formulations), such methods
utilize smooth differentiable functions to best approximate the
behavior of frictional contact [10,27,34]. These methods have
become popular in recent times as they have been shown capable
of generating accurate frictional contact [10,27] while remain-
ing simple to implement (relative to constraint-based methods)
and computationally efficient. Building upon this, we propose
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Implicit Contact Model (IMC), a fully-implicit penalty-based con-
tact model for frictional contact based on our previous work in
Ref. [27]. We improve upon this iteration by (1) reformulating
frictional contact to be fully-implicit for enhanced physical accu-
racy, (2) squaring our contact energy term for more rigid contact,
(3) changing our smoothly approximated distance formulation to
a more stable piecewise analytical formulation, and (4) adding a
line search method for increased robustness. Our proposed nu-
merical framework can generate contact for any rod-rod contact
scenario and can also generate contact for 3D meshes with proper
alterations.

In this paper, we choose to showcase our frictional contact
model by simulating the novel and difficult contact scenario
of flagella bundling [35-43], a significant natural phenomena
that occurs when micro-organisms with multiple flagella swim
in fluid (e.g., Escherichia coli and Salmonella typhimurium [44]).
Each flagellum consists of a rotary “head”, a short flexible hook,
and a helical filament. By rotating their filaments, these micro-
organisms can navigate their environments through sophisticated
manipulation of the solid-fluid interaction between their flexible
structures and the surrounding flows. This has led to biomimicry,
where flagella have inspired the design of several soft robot
locomotion strategies in viscous fluids [45-49]. However, study-
ing the mechanics of flagella is exceptionally challenging due to
flagella possessing radii smaller than their optical wavelengths as
well as having high rotational speeds [13].

This highlights the necessity for accurate simulators, the
development of which is nontrivial due to the multifaceted prob-
lem of having to deal with hydrodynamic interactions, geometri-
cally nonlinear deformations, and realistic contact handling. Prior
works [37,41,42] usually consider the contact forces as simple
repulsive forces. We instead incorporate our more principled
frictional contact framework for the task of flagella bundling.
Extensive validation of our generated frictional contact forces
can be seen in Appendix C [50]. We note that despite this, our
simulation results have not been validated for the task of flagella
bundling in particular. Still, to the best of our knowledge, this
paper is the first to design a fast and visually realistic simulator
that can capture the bundling phenomena of multiple flagella
rotating in low Reynolds number fluids. We believe our simulator
has promise for aiding the study of flagella bundling where we
conduct an informative parametric study for the bundling process
using our framework in Appendix D [50]. It is also a first step
towards efficient, physically realistic data generators for training
bio-inspired flagellar robots for data-driven control approaches.

The primary contributions of our work are outlined below.

e We propose a fully-implicit penalty-based frictional con-
tact model that has improved computational efficiency and
accuracy compared with our previous work in Ref. [27].

e We formulate a full end-to-end framework for the novel
and difficult contact scenario of flagella bundling in low
Reynolds number fluids, which incorporates a DDG-based
simulation framework, our frictional contact framework,
and fluid-solid interaction.

e We conduct an in-depth side-by-side comparison between
our proposed method (IMC) with the state-of-the-art
(IPC) [34] and show that we are able to achieve faster con-
vergence at the price of losing guarantee of non-penetration.

e We show visually convincing results for the sticking slipping
phenomena of friction.

The remainder of the paper is as follows. In Section 2, we
introduce the DDG-based framework for simulating a flexible rod.
Next, in Section 3, we formulate our frictional contact model.
Simulation results for IMC are then shown in Section 4 along
with side-by-side comparisons with IPC and analysis of friction
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Fig. 2. (a) Discrete schematic of a flagellar elastic rod. Nodes xo, x;, and
the edge between X, and Xx; is clamped along the dashed centerline and
rotated with an angular velocity w. The rest of the nodes constitute the helical
flagellum which revolves around the centerline. (b) A zoomed in snapshot of
two edges showcasing their reference frame, material frame, turning angles,
and twist angles. (c) Illustration of two edges approaching contact. The green
dots showcase the nodes of the edges while the green dashed lines denote the
centerlines of the edges. The red dashed line denotes the vector A whose norm
is the minimum distance A between the edges. A is connected to edges i and
J by € = Xi + Bi(Xiy1 — Xi) and ¢; = X; + Bj(X;11 — X;) where B;, B € [0, 1]. As A
approaches the contact threshold 2h, repulsive forces increase at an exponential
rate, thus enforcing non-penetration. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

performance. Finally, in Section 5, we provide concluding remarks
as well as potential future research directions. Further details on
the fluid-solid interaction model, IMC algorithmic components,
and miscellaneous information can be found in Supplementary
Information Appendices A, B, and E, respectively [50]. All source
code used in this paper is released publicly and can be found at
https://github.com/StructuresComp/rod-contact-sim.

2. Discrete elastic rods

In order to simulate the geometric nonlinear behaviors of
flagella in viscous fluids, we utilize the DDG-based framework
Discrete Elastic Rods (DER) [16,17]. As shown in Fig. 2(a), DER
expresses the centerline of an elastic rod with N discrete nodes:
Xo, X1, .. . XN_2, Xn_1. This results in a total of N — 1 edges where
e’ = X;;1 — Xx;. Note that for DER, we use subscripts to denote
indices for quantities associated with nodes and superscripts for
indices for quantities associated with edges. Following this, each
edge el is described using two orthogonal frames: a reference
frame (t', d|, d}} and a material frame {t', m, m}} as shown in
Fig. 2(b). The reference frame is predefined at initial time t = Os.
The material frame shares the same director t = e'/|/€/|| as
the reference frame and is obtainable through a twist angle 6!
with respect to the reference frame. A total of N nodes, each
represented by a Cartesian coordinate x; € R?, and N — 1 twist
angles constitute a total of 4N — 1 degrees of freedom: q =
[X(), 00, X1,...,XN-2, 9N_2, XN_]].

To simulate the elastic properties of a rod, we must compute
elastic energies as defined by strain. Based off of Kirchhoff's rod
model [51], strains can be divided into three categories: stretch-
ing, bending, and twisting. Starting off, the stretching strain of an
edge e' is described by

el
€]

i

1, (1)
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where ||@|| is the undeformed length of edge e'. From hereafter,
quantities with a ~ represent their values in their undeformed
state.

Moving forwards, the bending strain for a node x; is evalu-
ated by a curvature binormal which captures the misalignment
between two consecutive edges:

2ei~1 x @
[le= T Jlef]| 4+ ef-1 - el

(«b); (2)
Here, ||(«b);|| = 2 tan(¢;/2), where ¢; is the turning angle shown
in Fig. 2(b). The material curvatures are the components of the
curvature binormal (kb); via the directors of the material frame:
1 . .

g = S(my" +mb) (cb),

1 (3)
K = E(m’fl +m)) - (kb).

Finally, the twisting strain for a node x; is computed as

T = Qi — 91‘—1 + mi (4)

ref

where m! is the difference between the two consecutive refer-
ence frames of the i and i — 1-th edges.

With all strains defined, we can now formulate the stretching,
bending, and twisting energy of a discretized elastic rod:

N
1 .
Es = 5;Iz"f\(e'fue'n,
1=l

i=1
where E is Young’'s Modulus; A is the cross-sectional area; G
is the shear modulus; J is the polar second moment of area
along tangent t'; I; and I, are moments of inertia along material
directors m’, and m); and Al; = (|l€'|| + |le"1||)/2 is the Voronoi
length.

Next, the internal forces (for each nodal degree of freedom)
and moments (for each twist degree of freedom) can be obtained
via the partial derivative of the sum of elastic energies given in
Eq. (5) as shown:

d(Es + Ep + Et)
ag;

These quantities result in a 4N — 1 sized force vector F"t. Fol-

lowing this, we can write the system of equations of motions

as the sum of inertial terms, internal forces, and external forces
(e.g. contact, friction, gravity). This results in the equation

int __
F" =—

Vie[0,4N — 1]. (6)

F=M{j—F" —F* =0, (7)

where M is the diagonal mass matrix, q is the second derivative
of the DOFs with respect to time, F*t is the external force vector,
and F is the total force. This external force vector will be made up
of our contact forces described in Section 3 as well as viscous drag
forces from solid-fluid interactions described in Supplementary
Information [50]. As Eq. (7) is a root-finding problem, we use
Newton’s method to solve the system of equations to march
through time. Note that the Jacobian of the viscous drag forces is
unobtainable. Therefore, viscous drag forces are treated explicitly,
i.e. their Jacobian is simply ignored. Still, as our contact model is
fully implicit, we are able to robustly simulate flagella bundling
regardless of the explicitly added forces, as we will soon show.
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3. Contact model methodology

Moving forwards, we denote the following vector concatena-
tion describing an edge-to-edge contact pair:
Xj = (Xi,Xit1, X}, Xj41) € R'2, where |j—i| > 1 to exclude
consecutive edges from consideration when enforcing contact.
We describe the set of all valid edge combinations as X In future
equations, we simply denote the subscriptless x as an arbitrary
edge combination for clarity. We design a contact energy E(A(xX))
to increase as the minimum distance A between two bodies
approaches a contact threshold (2h for our application where
h is the radius of the flagella). With this, the contact energy
gradient —kVyE(x) € R'? is used as the contact forces while the
contact energy Hessian —kV2E(x) € R'2*12 s used as the contact
force Jacobian, where k is the contact stiffness which scales
the contact forces appropriately to enforce non-penetration. In
the upcoming sections, we will now formulate contact energy
E(A(x)), minimum distance between two edges A(X), as well as
friction.

3.1. Contact energy

In the ideal setting, contact energy must satisfy two prop-
erties: (1) it is zero for any distance A > 2h and (2) it is
non-zero at exactly distance A = 2h. A Heaviside step function
can essentially describe these properties. Such a function is non-
smooth with a very sudden discontinuous change in value, and
therefore, cannot be solved reliably by root-finding algorithms
such as Newton’s method. To remedy this, IPC uses the following
energy formulation to smoothly approximate contact:

—(A—(2h+8)?*In(535). A € (2h,2h+56)

E]PCA,5=
(4.9) {0 A>2h+56,

(8)

where § is the distance tolerance that defines the region (2h, 2h+
8) for which non-zero forces are experienced. This contact en-
ergy approaches oo when A decreasingly approaches 2h and
is therefore undefined for the region A < 2h. Although this
barrier formulation allows IPC to strictly enforce non-penetration,
the solver must be careful never to allow any contact pairs in
the penetration zone and/or venture into this undefined region
during the optimization process. This is ensured by the inclusion
of a custom line search method which conservatively sets an
upper bound for the Newton update coefficient «.

In contrast to this, we design our energy formulation to allow
for optimization into the penetrated region, thus expanding the
range contact forces are experienced from A € (2h,2h + §) to
A € (0,2h + §). This in turn allows us to take advantage of
more aggressive line search methods, which leads to faster con-
vergence for the flagella contact problem. Although this in theory
allows our model to be susceptible to penetration, a sufficient
contact stiffness k remedies this issue. We provide a method that
adaptively sets an appropriate stiffness value in Supplementary
Information [50]. In addition, to further ensure non-penetration,
we take our previous energy formulation from [27] and square
it so that our gradient grows exponentially instead of linearly. In
the end, we use the smooth approximation

E(A, 8)
(2h — AY? A € (0,2h — 8]

= (% log(1 + exp(K;(2h — A)))>2 Ae(2h—8,2h+35) (9)
0 A >2h+34,

where K; = 15/4 indicates the stiffness of the energy curve.
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Fig. 3. Plots for the approximation functions in (a) Eq. (9) and (b) Eq. (17) with varying tolerance values. Note that some of the tolerances displayed are unrealistically

large for clarity.

We incorporate the piecewise term (2h — A)? for two rea-
sons. First, this term equivalently models our energy formulation
for the region A < 2h — § and has a simpler gradient and
Hessian, resulting in computational efficiency. Second, and more
importantly, the piecewise term also ensures numeric stability by
preventing the exponential term in Eq. (9) from exploding. We
show our plotted energy term in Fig. 3(a) for various § values.
As shown, the energy starts to increase at an exponential rate
as A decreases towards the contact limit which is shown as 0
here. As § decreases, more realistic contact is achieved (enhancing
accuracy) in exchange for a stiffer equation (more difficult to
converge).

3.2, Computing distance

As mentioned in [34], the minimum distance between two
edges (X;, X;+1) and (X;, Xj;1) can be formulated as the constrained
optimization problem

A= rgnﬂn 1%; + Bi(Xit1 —Xi) — (X + Bi(Xj11 —x)) 20 < B, B < 1,
i.Bj

(10)

where B; and B; represent the contact point ratios along the
respective edges. Minimum distance between two edges can be
classified into three distinct categories: point-to-point, point-to-
edge, and edge-to-edge. As the names suggest, these classifica-
tions depend on which points of the edges the minimum distance
vector A lies as described by g; and g; shown in Fig. 2(c).

In our previous work [27], we altered Lumelsky’s edge-to-
edge minimum distance algorithm [52] (which implicitly com-
putes the B values) to be fully differentiable through smooth
approximations. In this work, we now change the distance for-
mulation to use piecewise analytical functions as shown below in
Eq. (11), (12), and (13), similar to [34], as we found more stable
performance compared to our smooth formulation despite the
non-smooth Hessian when changing between contact categories.

We now describe the conditions for each contact type clas-
sification. First, if A lies on the ends of both edges (i.e. both 8
constraints are active), then the distance formulation degenerates
to the point-to-point case which can easily be solved using the

Euclidean distance formula,
A" =%, — %, (11)

where x, and x, are the nodes for first and second edges in
contact, respectively.

Algorithm 1: Implicit Contact Model

Input: x, Xg, k, §, v
Output: F¢, J, FT_ |

Function IMC (X, Xo, k, 8, v):
V < X — Xg // compute velocity
F¢, J¢ < genContact(x, 4) // Eq. (9)
F¢ < kF° // scale by contact stiffness
J¢ <~ KJ° // J¢ = VyF¢
FfT « genFriction(x, v, F, v) // Eq. (18)

Vif, Vicf < genFrictionPartials(x,v, F,v)
/] B = f(x, F)

JF < Vif + Vicf ViFC

return F¢, J°, F, J

// Eq.(21)

If A only lies on one end of one rod (i.e. only one 8 constraint
is active), then the contact type degenerates to point-to-edge.
This can be solved as

PE __ ”(xa - xb) X (xb _xc)”
1Xa — ol
where X, and x; are the nodes of the edge for which the minimum
distance vector does not lie on an end and X, is the node of the
edge which the minimum distance vector does lie on. Finally,

edge-to-edge distance (i.e. no active constraints) for the ith and
jth edges can be solved as

A

(12)

u = (X1 —X;) X (Xj+1 - Xj),

. (13)
AP = |(x; — x) - 4,

where indicates a unit vector. With A fully defined, this
concludes our contact energy formulation. To correctly classify
contact pairs, we use Lumelsky’s algorithm to compute S values.

3.3. Adding friction

Similar to before, we model friction according to Coulomb’s
friction law, which describes the conditions necessary for two
solids to transition between sticking and sliding. This law states
that the frictional force F™ is (1) equal to uF™ during sliding, (2) is
in the region of [0, wF") when sticking, and (3) is independent of
the magnitude of velocity. Here, u is the friction coefficient and
F" is the normal force experienced by the body.

Let us denote the following equivalencies for clarity: F¢
kVxE and J¢ = kV2E. Following this, for a contact pair x; =
(Xi, Xi+1, X, Xj1), we can obtain the normal force on the ith and
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i+ 1-th nodes as F" = ||F;|| and F{}; = ||F;, ||, respectively. This
in turn allows us to obtain the contact norm vector
F; +Ff
n = : i+1 ) (14)
IF; + Fiy4
The direction of friction is then the tangential relative velocity
between edges i and j. To compute this, we must first compute
the relative velocities of the edges at the point of contact, which
can be done using §;, ; € [0, 1] as shown below:

Vi = (1= Bi)vi + Biviy1,
Ve (1= Bjvj + Bivjs1, (15)
Vrel _ ve _ ve
=V e

where v;, Vi1, Vj, and vj; are the velocities of the ith, i4-1-th, jth,
and j + 1-th nodes, respectively. The tangential relative velocity
of edge i with respect to edge j can then be computed as

o)y, (16)

VTrel — vrel _ (V
where V'™ = v /||y™!|| is our friction direction.

Now, we must also make our contact model capable of simu-
lating the transition between sticking and sliding. Coulomb’s law
tells us that ||v'™|| = 0 during static friction and that |[v"™!| > 0
for sliding friction. Sticking occurs up until the tangential force
threshold wF™ is surpassed, after which sliding begins. This rela-
tion (similar to ideal contact energy) can also be described by a
modified Heaviside step function. For the same reasons as before,
we replace this step function for another smooth approximation
described by

2

Trel _
(” ” V) - —1+exp (_KZHVTre]”)

where v (m/s) is our desired slipping tolerance and K,(v) = 15/v
is the stiffness parameter. As shown in Fig. 3(b), y € [0, 1]
smoothly scales the friction force magnitude from zero to one
as ||v™|| increases from zero. The slipping tolerance describes
the range of velocities (0, v) for which a friction force < wF" is
experienced. In other words, we consider velocities within this
range to be “sticking”.

Finally, the friction experienced by a node i for a contact pair
X;; can be described as

—1, (17)

F,fr _ luvarean (]8)

With friction fully defined, we can now formulate the friction
Jacobian VF™. Note that due to Eq. (15), our formulation depends
on B(x), which means that the gradient V3 is required. We can
avoid this computation through the realization that the magni-
tudes of the contact forces F; and F;, ; have an underlying linear
relationship with g8 where

Fi = (1= B)F +F,),

(19)
Fi,y = B(F +F )
Therefore, we can obtain 8 by simply solving
IFE
B= e (20)
IF; + Fi 4]

We can now treat § as a function of F€, resulting in a simplified
chain ruling procedure. Let us denote Eq. (18) as the functional
f(x, FE(x)). The friction Jacobian can then be computed through
chain rule as

Vof + Vief ViFC. (21)

This concludes our fully implicit friction scheme. Full pseudocode
for the IMC algorithm can be found in Algorithm 1.

vfor —
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4. Simulation results

In this section, we showcase extensive quantitative and quali-
tative results for IMC. First, we discuss all our simulation param-
eters. We then conduct a detailed comparison between IMC and
the state-of-the-art contact handling method: Incremental Poten-
tial Contact (IPC) [34]. Afterwards, we showcase comprehensive
results concerning friction and display IMC'’s ability to simulate
the sticking sliding transition.

4.1. Parameters and setup

In the simulation, we design the flagella as right-handed he-
lical rods manufactured with linear elastic material. We set the
material properties as follows: Young’s modulus was set to E =
3.00 MPa; Poisson’s ratio was set to 0.5; density of the rod was
set to p = 1000 kg/m>; the cross-sectional radius was set to
h = 1 mm, and the fluid viscosity was set to 0.1 Pa-s. Here, a
Poisson’s ratio of 0.5 was chosen to enforce the flagella to be an
incompressible material. The topologies of the flagella are helices
with helical radius a = 0.01 m, helical pitch A = 0.05 m, and
axial length zog = 0.2 m. These parameters were chosen as they
best mimic the geometries of biological flagella found in nature
[13,15,42,53].

We explore the bundling phenomena with M flagella (M =
[2, 3, 5, 10]) where the rotating ends of each flagella is fixed along
the z-axis as shown in Fig. 2(a). These rotating ends are treated
as boundary conditions and are spaced out equidistantly so as to
form a regular polygon with M angles with side length AL = 0.03
m as shown in Fig. 4(c). We set the rotation speed of the flagella
ends to w = 15 rad/s which keeps the Reynolds number in our
numerical simulation to be always smaller than 4 x 1072, thus
satisfying the Stokes flow.

Finally, we discretize each flagella into 68 nodes for a total
of 67 edges. We found this discretization to have the best trade-
off between computational efficiency and accuracy. Furthermore,
we set the time step size to At = 1 ms. As the forces generated
from our fluid model are handled explicitly, we found 1 ms to be
the largest stable time step size before convergence performance
became hampered. A distance tolerance of § = 1x 10~ was used
for all simulations.

4.2. Comparison between IMC and IPC

Both IMC and IPC were used to simulate 250 s of rotation for
scenarios with 2, 3, 5, and 10 flagella as shown in Fig. 1. As the
friction coefficient between structures is usually trivial in viscous
fluids, we consider purely contact without friction (« = 0). First,
a side-by-side visual comparison for M = 5 is shown for IMC
and IPC in Fig. 4(a). For various time steps, we can see that the
configurations of the flagella are near identical, indicating that
both methods have comparable performance. To further study
this similarity, we define normalized average difference e to
measure the difference in flagella nodal configurations between
IMC and IPC:

M—1N—1

MNh Z Z H iIMC _ :lpc

i=0 j=0

(22)

The relationship between normalized average difference e and
time t is shown in Fig. 4(d). Here, we can find that the difference
between the configurations is quite minimal, further cementing
the notion that IMC has comparable performance to IPC despite
the loss of non-penetration guarantee.

Where IMC starts to improve upon IPC is in terms of com-
putational efficiency. Detailed metrics for all runs can be seen
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Fig. 4. Rendered snapshots for M = 5 flagella simulated by (a) IMC and (b) IPC. We can observe that there is great qualitative agreement between both methods at
the shown time steps. (c) A top down visualization of boundary conditions applied to the highest nodes (filled in red circles) of each flagella as well as the angular
rotation w applied to them. The larger hollow red circles represent the rest of the helical flagella. (d) The norm of the average difference in the nodal positions for
the flagella simulated by IMC and IPC with respect to time. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Table 1

IMC vs. IPC [34] run time data. Simulations are run for a total of 250 s with a time step size of At =1 ms and a
rotation speed of w = 15 rad/s. The contact model used can be seen in the far left column. Next to this, M indicates
the number of flagella. AIPTS stands for average iterations per time step. ATPTS stands for average time per time
step. Total Iters indicates the total number of Newton’s iterations that were necessary to complete the simulation.
The Total Run Time is the total computational time to completion. Finally, RTI stands for run time improvement
and is the ratio of improvement between IMC's and IPC’s total run time.

Model M AIPTS ATPTS [ms] Total Iters Total Run Time [h] RTI
2 3.00 10.2 6.01 x 10° 0.57 1.82
IMC 3 3.01 213 6.04 x 10° 1.19 1.82
5 3.02 67.5 5.39 x 10° 3.34 1.40
10 3.12 3894 6.56 x 10° 22.77 122
2 4.00 18.75 7.98 x 10° 1.04 N/A
IPC 3 4.00 39.5 7.93 x 10° 2.17 N/A
5 4.01 95.3 7.09 x 10° 4.68 N/A
10 4.02 477.47 8.45 x 10° 27.88 N/A

in Table 1 which showcase the average iteration per time step
(AIPTS), average time per time step (ATPTS), total iterations, and
total run time. All metrics were recorded using time steps with
at least one contact. Here, we can see that IMC was able to
converge with less average iterations than IPC for all flagella cases
resulting in significant reductions in total run time. These run
time improvements are most drastic for M = 2 and M = 3
and start to decrease as M increases further as the RSS force
computation starts to become a bottleneck. Regardless, a clear
monotonic decrease can still be seen.

4.3. Friction example
Although friction is usually negligible in a viscous fluid

medium, influence of friction on flagella bundling is still in-
triguing since the effect of friction can become significant as

the environment changes (e.g., granular medium). We assume
an imaginary viscous environment where the friction coeffi-
cient between structures is non-negligible. We present simulation
data for two flagella (M = 2) with friction coefficients u =
[0.1,0.2, ..., 1.0]. For all simulations, a slipping tolerance of v =
1 x 10~* was used. All other parameters are kept the same as
before.

We first showcase the sticking slipping phenomena with snap-
shots for © = [0, 0.3,0.7] in Fig. 5. Intuitively, as wu increases,
we also see the amount of sticking increase as well. Convergence
results for all friction examples can be seen in Table 2 where
average iterations per time step and simulation length are re-
ported. Here, we notice two trends. First, for 4 > 0.7, the time
at which the simulation ends starts to decrease from 250 s. This
is because u = 0.7 is the point at which the flagella become
completely tangled as shown in the bottom right frame of Fig. 5.
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Fig. 5. Rendered snapshots for M = 2 with varying friction coefficients. Each column indicates a moment in time as indicated by the time stamp in the top row.
The first row shows the frictionless case ;= 0 as a baseline. The second row has u = 0.3 where minor sticking can be observed as the point at where the flagella
no longer contact is higher than the frictionless case. Still, © = 0.3 still has plenty of slipping allowing the flagella to not become coiled. As we increase u to 0.7
in the third row, we can see the amount of sticking increase, ultimately resulting in the flagella becoming completing coiled.

Table 2

Friction results for varying friction coefficients. AIPTS stands for average iter-
ations per time step. Total Iterations indicate the total number of Newton’s
method iterations that were necessary to complete the simulation. Sim End
indicates the total simulated time. All simulations were set to run for 250 s.
As can be seen, simulations with u > 0.7 end earlier due to excessive tangling
of the flagella.

nw AIPTS Total Iterations Sim End [sim s]
0.1 3.01 6.02 x 10° 250
0.2 3.01 6.04 x 10° 250
0.3 361 7.25 x 10° 250
0.4 489 9.83 x 10° 250
0.5 6.67 1.34 x 10° 250
0.6 8.71 1.76 x 10° 250
0.7 14.47 2.72 x 108 235.89
0.8 14.16 1.89 x 10° 180.98
0.9 11.1 1.05 x 10° 142.72
1.0 11.65 1.02 x 10° 135.32

As 1 increases past 0.7, the tangling happens earlier and earlier
as shown. Furthermore, we observe that the number of average
iterations starts to increase as p increases. This is in line with our
expectations as larger p values result in greater sticking.

5. Conclusion

In this paper, we introduced an improved version of our fully-
implicit and penalty-based frictional contact method, Implicit
Contact Model. To test the performance of our contact model,
we formulated an end-to-end simulation framework for the novel
and difficult contact scenario of flagella bundling in viscous fluid.
For this contact problem, we showed that IMC has comparable

performance to the state-of-the-art while maintaining faster con-
vergence. Furthermore, we showcased visually convincing fric-
tional results in an imaginary viscous environment where friction
is non-negligible.

For future work, we wish to improve upon the stability and
robustness of our friction model. Despite the implicit formulation,
the number of iterations necessary to converge starts to increase
as u increases. Another interesting avenue of research is the use
of deep learning to learn physics-based dynamics for simulation.
Neural networks, when properly trained, have been known to be
able to generate nearly identical outputs as numerical simulations
while achieving orders of magnitude reduction in computation.
Thus, utilizing the computational efficiency and differentiabil-
ity of neural networks while maintaining physical realism is a
promising direction.
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