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Abstract—The goal of the paper is to give fine-grained hardness
results for the Subgraph Isomorphism (SI) problem for fixed size
induced patterns H ,  based on the k-Clique hypothesis that the
current best algorithms for Clique are optimal.

Our first main result is that for any pattern graph H  that is a
core, the SI problem for H  is at least as hard as t-Clique, where
t is the size of the largest clique minor of H .  This improves (for
cores) the previous known results [Dalirrooyfard-Vassilevska W.
STOC’20] that the SI for H  is at least as hard as k-clique where k is
the size of the largest clique subgraph in H ,  or the chromatic
number of H  (under the Hadwiger conjecture). For detecting
any graph pattern H ,  we further remove the dependency of
the result of [Dalirrooyfard-Vassilevska W. STOC’20] on the
Hadwiger conjecture at the cost of a sub-polynomial decrease
in the lower bound.

The result for cores allows us to prove that the SI problem
for induced k-Path and k-Cycle is harder than previously known.
Previously [Floderus et al. Theor. CS 2015] had shown that k-Path
and k-Cycle are at least as hard to detect as a bk/2c-Clique. We
show that they are in fact at least as hard as 3k/4−O(1)-Clique,
improving the conditional lower bound exponent by a factor of
3/2. This shows for instance that the known O (n5 ) combinatorial
algorithm for 7-cycle detection is conditionally tight.

Finally, we provide a new conditional lower bound for detect-
ing induced 4-cycles: n 2 − o ( 1 )  time is necessary even in graphs
with n nodes and O (n1 . 5 )  edges. The 4-cycle is the smallest
induced pattern whose running time is not well-understood. It can
be solved in matrix multiplication, O(nω ) time, but no conditional
lower bounds were known until ours. We provide evidence that
certain types of reductions from triangle detection to 4-Cycle
would not be possible. We do this by studying a new problem
called Paired Pattern Detection.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

A fundamental problem in graph algorithms, Subgraph
Isomorphism (SI) asks, given two graphs G  and H ,  does G
contain a subgraph isomorphic to H ?  While the problem is
easily NP-complete, many applications only need to solve the
poly-time solvable version in which the pattern H  has constant
size; this version of SI is often called Graph Pattern Detection
and is the topic of this paper.

There are two versions of SI: induced and not necessarily
induced, non-induced for short. In the induced version, the
copy of H  in G  must have both edges and non-edges pre-
served, whereas in the non-induced version only edges need
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to carry over, and the copy of H  in G  can be an arbitrary
supergraph of H .  It is well-known that the induced version of
H -pattern detection for any H  of constant size is at least as
hard as the non-induced version (see e.g. [16]), and that often
the non-induced version of SI has faster algorithms (e.g. the
non-induced k-independent set problem is solvable in constant
time).

It is well-known that the SI problem for any k-node pattern H
in n-node graphs for constant k, can be reduced in linear time
to detecting a k-clique in an O(n) node graph (see [30]).
Thus the hardest pattern to detect is k-clique. A natural question
is:

How does the complexity of detecting a particular fixed size
pattern H  compare to that of k-clique?

Let us denote by C(n, k) the best running time for k-clique
detection in an n node graph. When k is divisible by 3, Nesetril
and Poljak [30] showed that C(n, k) ≤  O(nωk/3) time, where
ω <  2.37286 [2] is the matrix multiplication exponent. For k
not divisible by 3, C(n, k) ≤  O(nω (bk/3c,dk /3e,d (k−1)/3e) )
time, where ω(a, b, c) is the exponent of multiplying an na ×nb

by an nb ×  nc matrix.
This k-clique running time has remained unchallenged since

the 1980s, and a natural hardness hypothesis has emerged (see
e.g. [33]):

Hypothesis 1 (k-clique Hypothesis): On a word-RAM with
O(log n) bit words, for every constant k ≥  3, k-clique requires
nω (bk /3c ,dk /3e,d (k−1)/3e )−o (1)  time.

A “combinatorial” version1 of the hypothesis states that the
best combinatorial algorithm for k-clique runs in nk−o ( 1 )  time.
Other hypotheses such as the Exponential Time Hypothesis
for SAT [10], [22] imply weaker versions of the k-Clique
Hypothesis, namely that k-clique requires nΩ ( k )  time [11]. We
will focus on the fine-grained k-Clique Hypothesis as we are
after fine-grained lower bounds that focus on fixed exponents.

Our goal is now, for every k-vertex pattern H ,  determine a
function f (H )  such that detecting H  in an n-vertex graph is at
least as hard (in a fine-grained sense, see [33]) as detecting

1“Combinatorial” is not well-defined, but it is a commonly used term to
denote potentially practical algorithms that avoid the generally impractical
Strassen-like methods for matrix multiplication.
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an f (H )-clique in an n-vertex graph. We then say that H  is
“at least as hard as f (H)-clique”.

Obtaining such results is interesting for several reasons.

• First, under the k-clique Hypothesis, we would get fine-
grained lower bounds for detecting H .  This would give us
a much tighter handle on the complexity of H-detection
than, say, results (such as results based on ETH, or [28])
that merely provide an nΩ ( k )  lower bound which only
talks about the growth of the exponent.

• Second, knowing the largest size clique that limits the
complexity of H -pattern detection can allow us to com-
pare between different patterns. The goal is to get to
something like: the complexity of k-node H1  is like the
complexity of k/10-clique, whereas the complexity of
k-node H2  is like the complexity of k/2-clique, so H2

seems harder.
• Third, this more structural approach uncovers interesting

combinatorial and graph theoretic results. For instance, in
[16] it was uncovered that the colorability of a pattern,
and the Hadwiger conjecture can explain the hardness of
pattern detection. This is not obvious at all apriori.

This approach has been taken by prior work (e.g. [5], [16],
[20]); see the related work section for more background.

II. OUR RESULTS

Our contributions are as follows:

1) First, we obtain a strengthening of a recent result of
[16] that implies that the hardness of certain patterns
called “cores” relates to the size of their maximum
clique minor. This hardness is stronger than what was
previously known, as previously only the chromatic
number, or the maximum size of a clique subgraph were
known to imply limitations, and both of these parameters
are upper-bounded by the clique minor size (under the
Hadwiger conjecture, for chromatic number).

2) We then apply the result above to obtain much higher
hardness for induced Path and Cycle detection in graphs:
a k-path or k-cycle contains an independent set of size
roughly k/2. Thus both k-Cycle and k-Path were shown
[20] to be at least as hard as bk/2c-Clique. We raise
the hardness to that of 3k/4 − O(1) clique, thus raising
the exponent of the lower bound running time by a
factor of 3/2. This allows us for instance to obtain a
tight conditional lower bound of n5−o (1)  for the running
time of combinatorial algorithms for 7-Clique; an O(n5)
algorithm was obtained by Blaser et al. [6].

3) Finally, we consider the smallest known case of induced
k-Cycle whose complexity is not well-understood: in-
duced 4-Cycle. We provide a new conditional lower
bound for the problem in sparser graphs based on a
popular fine-grained hypothesis, and also provide some
explanation for why reductions from triangle detection
to 4-Cycle have failed so far.

We now elaborate on our results.

a) New results for core graphs.: Dalirrooyfard, Vuong
and Vassilevska W. [16] related the hardness of subgraph
pattern detection to the size of the maximum clique or the
chromatic number of the pattern. In particular, they showed
that if H  has chromatic number t, then under the Hadwiger
conjecture, H  is at least as hard to detect as a t-clique.

The Hadwiger conjecture basically states that the chromatic
number of a graph is always at most the largest size of a
clique minor of the graph. As the result of [16] was already
assuming the Hadwiger conjecture, one might wonder if it can
be extended to show that every pattern H  is at least as hard to
detect as an η-clique, where η is the size of the largest clique
minor of H .

We first note that such an extension is highly unlikely to
work for non-induced patterns: the four-cycle C4  has a K 3

(triangle) minor, but a non-induced C4  has an O(n2) time
detection algorithm that does not use matrix multiplication,
whereas any subcubic triangle detection algorithm must use
(Boolean) matrix multiplication [35]. Thus any extension of
the result that shows clique-minor-sized clique hardness would
either only work for certain types of non-induced graphs, or
will need to only work in the induced case.

Here we are able to show that H-subgraph pattern detection,
even in the non-induced case, is at least as hard as η-clique,
where η is the largest clique minor size of H ,  as long as H  is a
special type of pattern called a core. Cores include many
patterns of interest, including the complements of cycles of
odd length. We also give several other hardness results, such as
removing the dependence on the Hadwiger conjecture from
some of the results of [16] with only a slight loss in the lower
bound.

We call a subgraph C  of a graph H  a core of H  if there is
a homomorphism H  → C  but there is no homomorphism
H  → C 0     for any proper subgraph C 0     of C .  Hell and
Nesetril [21] showed that every graph has a unique core (up to
isomorphism), and the core of a graph is an induced subgraph.
We denote the core of a graph H  by core(H ). A graph which
is its own core is called simply a core.

We prove strong hardness results for cores, relating the
hardness of detecting the pattern to the size of its maximum
clique minor. We then relate the hardness of detecting arbitrary
patterns to the hardness of detecting their cores.

We begin with a theorem that shows hardness for detecting
a “partitioned” copy of a pattern H .  Here the vertex set of the
host graph G� is partitioned into k parts, and one is required
to detect an induced copy of a k-node H  so that the image of
the ith node of H  is in the ith part of the vertex set of G�. This
version of SI is often called Partitioned Subgraph Isomorphism
(PSI). Marx [29] showed that under ETH, PSI for a pattern H
requires at least nΩ ( t w ( H ) /  log t w ( H ) )  time where tw(H ) is the
treewidth of H .  We give a more fine-grained lower bound for
PSI. We provide a reduction from η-clique detection in an n
node graph to PSI for a graph H  in an O(n) node host graph,
for any H  with maximum clique minor of size η.

Theorem 2.1: (Hardness of PSI) Let H  be a k-node pattern
with maximum clique minor of size η(H ), and let G  be an
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n-node graph. Then one can construct a k-partite O(n)-node
graph G� in O(n2) time such that G� has a colorful copy of H
if and only if G  has a clique of size η(H ).

Thus the hardness of Partitioned SI is related to the size of
the largest clique minor. To obtain a bound on the size of the
maximum clique minor of any graph we use a result of
Thomason [32] as follows: Let c(t) be the minimum number
such that every graph H  with |E(H)| ≥  c(t)|V (H)| has a K t

minor. Then c(t) =  (α +  o(1))t log t, where α ≤  0.32 is an
explicit constant. Since for t =  √

l o g ( | E ( H ) | / | V  ( H ) | )  
the above

inequality is true, we have the following corollary.

Corollary 2.1: Let H  be a k-node m-edge pattern. Then
the problem of finding a partitioned copy of H  in an n-node k-
partite graph is at least as hard as finding a clique of size √

l o g

m / k  
in an O(n)-node graph.

Hence, for example if m =  ck2 for some constant c, then

the PSI problem for H  cannot be solved in no √
l o g  k           time.

Thus, for dense enough graphs, we improve the lower bound of
nΩ ( t w ( H ) /  log t w ( H ) )  due to Marx [29], since tw(H ) ≤  k.

While Theorem 2.1 only applies to PSI, one can use it to
obtain hardness for SI as well, as long as H  is a core. In
particular, Marx [29] showed that PSI and SI are equivalent on
cores. Thus we obtain:

Corollary 2.2: (Hardness of cores in SI) Let G  be an
n-node m-edge graph and let H  be a k-node pattern with
maximum clique minor of size η(H ). If H  is a core, then
one can construct a graph G� with at most O(n) vertices in
O(m + n) time such that G� has a subgraph isomorphic to H
if and only if G  has a η(H)-clique as a subgraph.

As the complements of odd cycles are cores with a clique
minor of size at least b3k/4c, for C k  when k is odd, we
immediately obtain a lower bound of C(n, b3k/4c) for C k

detection. When k is even, more work is needed.

Corollary 2.2 applies to the non-induced version of SI. We
obtain a stronger result for the induced version in terms of the k
and the size of the largest clique subgraph.

Corollary 2.3: (Hardness for induced-SI for cores) Let H
be a k-node pattern which is a core. Suppose that w(H ) is the
size of the maximum clique in H .  Then detecting H  in an n-
node graph as an induced subgraph is at least as hard as detect-
ing a clique of size max{d     (k +  2w(H))/2e, d     k/1.95}e.

For comparison, the result of [16] shows that non-induced
SI for any k-node H  is at least as hard as detecting a clique of
size k, but the result is conditioned on the Hadwiger
conjecture. Corollary 2.3 is the strongest known clique-based
lower bound result for k-node core H  that is not conditioned
on the Hadwiger conjecture.

Our next theorem relates the hardness of detecting a pattern
to the hardness of detecting its core.

Theorem 2.2: Let G  be an n-node m-edge graph and let H
be a k-node pattern. Let C  be the core of H .  Then one can
construct a graph G� with at most O(n) vertices in O(n2) time
such that G� has a subgraph isomorphic to H  if and only if

G  has a subgraph isomorphic to C ,  with high probability2.
One consequence of Theorem 2.2 and Corollary 2.3 is that

induced-SI for any pattern H  of size k is at least as hard as
detecting a clique of size dk1/4/1.39e. Note that this is the first
lower bound for induced SI that is only under the k-clique
hypothesis.

Corollary 2.4: (Hardness of Induced-SI) For any k-node
pattern H ,  detecting an induced copy of H  in an n-node graph is
at least as hard as detecting a clique of size dk1/4/1.39e in an
O(n) graph.

b) Hardness for induced cycles and paths.: We now
focus on k-paths P k  and k-cycles C k  for fixed k and provide
highly improved fine-grained lower bounds for their detection
under the K -clique Hypothesis (for k larger than some con-
stant). The results can be viewed as relating how close induced
paths and cycles are to cliques. Our techniques for proving our
results can be of independent interest and can potentially be
implemented to get stronger hardness results for other classes
of graphs.

The fastest known algorithms for finding induced cycles or
paths on k nodes can be found in Table I. For larger k, the
best known algorithms are either the k-clique running time
C(n, k), or an O(nk−2) time combinatorial algorithm by [5].
For k ≤  7, slightly faster algorithms are known.

The best known conditional lower bounds so far [20] under
the k-clique hypothesis stem from the fact that the complement
of C k  contains a bk/2c-clique, and the complement of P k

contains a dk/2e-clique. These lower bounds show that the
best known running time of O(nω) for C5  and P5 are likely
optimal. Unfortunately, for larger k, these lower bounds are
far from the best known running times.

We obtain polynomially higher lower bounds, raising the
lower bound exponent from roughly k/2 to roughly 3k/4.

Theorem 2.3: (Hardness of P k  and C k )  Let H  be the
complement of a P k

 or the complement of a C k .  Suppose that t
is the size of the maximum clique minor of H .  Then the
problem of detecting H  in an O(n)-node graph is at least as
hard as finding a (t−2)-clique in an n-node graph. If k is odd,
then detecting an induced C k  is at least as hard as finding a t-
clique.

The largest clique minor3 of the complement of C k  has
size b3k/4c and of the complement of P k  has size at least
b(3k +  1)/4c.

Table I summarizes our new lower bounds. Aside from
obtaining a much higher conditional lower bound, our result
shows that the best known combinatorial algorithm for C7

detection is tight, unless there is a faster combinatorial algo-
rithm for 5-clique detection. For algorithms that may be non-
combinatorial, our lower bound for C7  is at least Ω(n4.08)
assuming that the current bound for 5-clique is optimal.

c) The curious case of Four-Cycle.: The complexity of
SI for all patterns on at most 3 nodes in n-node graphs is
well-understood, both in the induced and non-induced case:

2with probability 1/poly n
3A t-clique minor of a graph H  is a decomposition of H  into t connected

subgraphs such that there is at least one edge between any two subgraphs.
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2 K 2 C 4

TABLE I
KNOWN UPPER AND LOWER BOUNDS FOR PATHS AND CYCLES. THE ALGORITHMS FOR P 3  AND C 3  ARE FOLKLORE, FOR P 4  FROM [12], FOR C 4  FROM

[34], AND FOR C k  AND P k  FOR k ≥  5 FROM [5]. THE OLD LOWER BOUNDS ARE ALL FROM [20]; OUR NEW LOWER BOUNDS APPEAR IN THEOREM 2.3.

Pattern

P3 ,  P 4

C 4

C 3 ,  C 5 ,  P 5

C 6 ,  P 6

P 7

C 7

C k ,  P k ,  k  ≥  8
C k ,  odd k

Runtime

O (m +  n )
O (nω )
O (nω )
C ( n,  4)

=  O (nω ( 2 , 1 , 1 ) )
C ( n,  6)

=  O (n 2ω )
C ( n,  6)

=  O (n 2ω )
C ( n,  k )
C ( n,  k )

Lower Bound

nω − o ( 1 )

nω − o ( 1 )

nω − o ( 1 )

C ( n,  5) [new]
nω − o ( 1 )  [old]

C ( n,  b3k/4c −  2) [new]
C ( n,  b3k/4c) [new]

C ( n,  dk/2e) [old]

Comb. Runtime

O (m +  n )
O ( n 3 )
O ( n 3 )
O ( n 4 )

O ( n 5 )

O ( n 5 )

O ( n k − 2 )
O ( n k − 2 )

Comb. Lower Bound

n 3 − o ( 1 )

n 3 − o ( 1 )

n 3 − o ( 1 )

n 5 − o ( 1 )  [new]
n 3 − o ( 1 )  [old]

n b 3 k / 4 c − 2 − o ( 1 )  [new]
n b 3 k / 4 c − o ( 1 )  [new]

n d k / 2 e − o ( 1 )  [old]

all patterns except the triangle and (in the induced case) the
independent set can be detected in O(n2) time, whereas the
triangle (and independent set in the induced case) can be
detected in O(nω) time where ω <  2.373 is the exponent of
matrix multiplication [2]. The dependence on (Boolean)
matrix multiplication for triangle detection was proven to be
necessary [35].

Table 1 gives the best known algorithms and conditional
lower bounds for induced SI for all 4-node patterns. In the
non-induced case, the change is that, except for the 4-clique
K 4 ,  the diamond, co-claw and the paw whose runtimes and
conditional lower bounds stay the same, all other patterns can
be solved in O(n2) time.

All conditional lower bounds in Table 1 are tight, except
for the curious case of the induced 4-Cycle C4 . Non-induced
C4  can famously be detected in O(n2) time (see e.g. [31]).
Meanwhile, the fastest algorithm for induced C4      runs in
O(nω) time (see e.g. [34]). There is no non-trivial lower
bound known for C4  detection (except that one needs to read
the graph), and obtaining a higher lower bound or a faster
algorithm for C4  has been stated as an open problem several
times (see e.g. [19]).

The induced 4-cycle is the smallest pattern H  whose
complexity is not tightly known, under any plausible hardness
hypothesis.

We make partial progress under the popular 3-Uniform 4-
Hyperclique Hypothesis (see e.g. [1], [27]) that postulates that
hyperclique on 4 nodes in an n vertex 3-uniform hypergraph
cannot be detected in O(n4−ε) time for any ε >  0, in the
word-RAM model of computation with O(log n) bit words.
The believability of this hyperclique hypothesis is discussed at
length in [27] (see also [1]); one reason to believe it is that
refuting it would imply improved algorithms for many
widely-studied problems such as Max-3-SAT [36].

Theorem 2.4: Under the 3-Uniform 4-Hyperclique Hypoth-
esis, there is no O(m4/3−ε) time or O(n2−ε) time algorithm
for ε >  0 that can detect an induced 4-cycle in an n-node, m-
edge undirected graph.

While our result conditionally rules out, for instance, a
linear time (in the number of edges) algorithm for induced

Best known Best known
running time     lower bound

I4 K 4 nω (2,1,1) nω (2,1,1)

co-diamond diamond nω nω

co-paw paw
nω nω

m +  n
nω m4 / 3  or n 2

[new for C 4 ]

claw co-claw
nω nω

P4
m +  n ≤  n2 m +  n

Fig. 1. A list of all induced 4-node patterns with their best known algorithms
and conditional lower bounds. All runtime bounds are within polylogarithmic
factors, and can be found in [34] and [17]. All lower bounds except for the
new one in red are under the k-clique hypothesis for k =  3 or 4, and every
lower bound l  as a function of m or n  should be interpreted as l 1 − o ( 1 ) .  The
new lower bound is under the 3-uniform 4-hyperclique hypothesis, only holds
for C 4  and is in Theorem 2.4. All upper and lower bounds are tight except
that for C 4  and its complement.

C4 , it does not rule out an O(n2) time algorithm for induced
C4  in dense graphs since the number of edges in the reduction
instance is Θ(n3/2) in terms of the number of nodes n. Ideally,
we would like to have a reduction from triangle detection to
induced C4-detection, giving evidence that nω−o (1)  time is
needed. Our Theorem does show this if ω =  2, but we would
like the reduction to hold for any value of ω, and for it to be
meaningful in dense graphs. Note that even if ω =  2, a
reduction from triangle detection would be meaningful, as it
would say that a practical, combinatorial algorithm would be
extremely difficult to obtain (or may not even exist).
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All known reductions from k-clique to SI for other patterns
H  (e.g. [16], [20], [26]) work equally well for non-induced
SI. In particular, in the special case when H  is bipartite, such as
when H  =  C4 , the host graph also ends up being bipartite (e.g.
[26] for bicliques, and [16], [20] more generally).

Unfortunately such reductions are doomed to fail for C4 . In
bipartite graphs and more generally in triangle-free graphs, any
non-induced C4  is an induced C4 . Of course, any hypothetical
fine-grained reduction from triangle detection to non-induced
C4  detection in triangle-free graphs, combined with the known
O(n2) time algorithm for non-induced C4  would solve triangle
detection too fast.

The difference between induced C4  and non-induced C4
is that the latter calls for detecting one of the three patterns:
C4 , diamond or K 4 .  Could we have a reduction from triangle
detection to induced C4-detection in a graph that is not
triangle-free, but is maybe K4-free? In order for such a
reduction to work, it must be that detecting one of { C 4 , K 4 }
is computationally hard.

We show that such reductions are also doomed. We provide
a fast combinatorial algorithm that detects one of { C 4 , H }
for any H  that contains a triangle. The algorithm in fact runs
faster than the current matrix multiplication time, which (under
the k-clique Hypothesis) is required for detecting any H
containing a triangle. Thus, any tight reduction from triangle
detection to induced C4  must create instances that contain
every induced 4-node H  that has a triangle.

Theorem 2.5:     For any 4-node graph H  that contains a
triangle, detecting one of { C 4 , H }  as an induced subgraph of
a given n-node host graph can be done in O(n7/3) time. If H
is not a diamond or K 4 ,  then H  or C4  can be detected O(n2)
time.

The only case of Theorem 2.5 that was known is that for
{C4 ,  diamond } .  Eschen et al. [19] considered the recognition
of {C4 ,  diamond }-free graphs and gave a combinatorial
O(n7/3) time algorithm for the problem. We show a similar
result for every H  that contains a triangle.

The C4  OR H  problem solved by our theorem above is a
special case of the subgraph isomorphism problem in which
we are allowed to return one of a set of possible patterns.
This version of SI is a natural generalization of non-induced
subgraph isomorphism in which the set of patterns are all
supergraphs of a pattern. This generalized version of SI has
practical applications as well. Often computational problems
needed to be solved in practice are not that well-defined, so
that for instance you might be looking for something like a
matching or a clique, but maybe you are okay with extra edges or
some edges missing. In graph theory applications related to
graph coloring, one is often concerned with {H, F }-free
graphs for various patterns H  and F  (e.g. [13], [14], [23]).
Recognizing such graphs is thus of interest there as well.
We call the problem of detecting one of two given induced
patterns, “Paired Pattern Detection”.

Intuitively, if a set of patterns all contain a k-clique, then
returning at least one of them should be at least as hard as k-
clique. While this is intuitively true, proving it is not obvious

at all. In fact, until recently [16], it wasn’t even known that if
a single pattern H  contains a k-clique, then detecting an
induced H  is at least as hard as k-clique detection. We are
able to reduce k-clique in a fine-grained way to “Subset Pattern
Detection” for any subset of patterns that all contain the k-
clique as a subgraph4.

Theorem 2.6: Let S  be a set of patterns such that every H
� S  contains a k-clique. Then detecting whether a given graph
contains some pattern in S  is at least as hard as k-clique
detection.

While having a clique in common makes a subset of patterns
hard to detect, intuitively, if several patterns are very different
from each other, then detecting one of them should be easier
than detecting each individually. We make this formal for
Paired Pattern Detection in n node graphs for k ≤  4 as follows:

• Paired Pattern Detection is in O(n2) time for every pair
of 3 node patterns. Moreover, for all but two pairs of
patterns, it is actually in linear time.

• Paired Pattern Detection for any pair of 4-node patterns is
in O(nω) time, whereas the fastest known algorithm for
4-clique runs in supercubic, O(nω(1,2,1)) time where
ω(1, 2, 1) ≤  3.252 [25] is the exponent of multiplying an n
×  n2 by an n2 ×  n matrix.

• There is an O(n2) time algorithm that solves Paired
Pattern Detection for { H , H }  for any 4-node H ,  where H
is the complement of H .

The last bullet is a generalization of an old Ramsey the-
oretic result of Erdos and Szekeres [18] made algorithmic by
Boppana and Halldorsson [7]. The latter shows that in linear
time for any n-node graph, one can find either a log(n) size
independent set or a log(n) size clique. Thus, for every
constant k and large enough n, there is a linear time algorithm
that either returns a k-clique or an I k .

We note that our generalization for { H , H }  cannot be true in
general for k ≥  5: both H  and its complement 5 can contain a
clique of size dk/2e ≥  3, and thus by our Theorem 2.6, their
Paired Pattern Detection is at least as hard as dk/2e-clique,
and thus is highly unlikely to have an O(n2)-time algorithm.

A. Related work

There is much related work on the complexity of graph
pattern detection in terms of the treewidth of the pattern. Due to
the Color-Coding method of Alon, Yuster and Zwick [3], it is
known that if a pattern H  has treewidth t, then detecting H  as
a non-induced pattern can be done in O(nt+1) time. This
implies for instance that non-induced k-paths and k-cycles can
be found in 2O(k)poly(n) time.

Marx [29] showed that there is an infinite family of graphs of
unbounded treewidth so that under ETH, (non-induced) SI
on these graphs requires nΩ ( t /  log t )  time where t is the
treewidth of the graph. Recently, Bringmann and Slusallek [8]
showed that under the Strong ETH, for every ε >  0, there is

4Our reduction works in the weaker non-induced version and so it works
for the induced version as well.

5For k =  5, consider H  to be a triangle and two independent nodes. Both
H  and its complement contain a triangle.
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a t and a pattern H  of treewidth t so that detecting H  cannot be
done in O(nt +1−ε ) time. That is, for some non-induced
patterns, nt + 1  is essentially optimal.

In the induced case, many patterns are also easier than
k-clique, e.g. for k =  3, 4, 5, 6, any H  that is not the k-
independent set or the k-clique can be found in the current
best running time C(n, k −  1) for (k −  1)-clique [5], [16],
[34]. For k ≥  7, Blaser et al. [5] showed the weaker result
that all k-node H  that are not the clique or independent set can
be detected in O(nk−1) time combinatorially, whereas the best
known combinatorial algorithms for k-clique run in nk−o ( 1 )

time.
For induced pattern detection for patterns of size k ≥  8,

the best algorithm for almost all of the patterns has the
same running time as k-clique detection. If we only resort to
combinatorial algorithms there is a slight improvement: any
pattern that is not a clique or independent set can be detected in
O(nk−1) time [5].

Manurangsi, Rubinstein and Schramm [28] formulated a
brand new hypothesis on the hardness of planted clique. This
new hypothesis implies many results that are not known to
hold under standard hypotheses such as ETH or Strong ETH,
including that for every k-node H ,  its induced pattern detec-
tion problem requires nΩ ( k )  time. While identifying new plau-
sible hypotheses is sometimes worthwhile, our work strives to
get results under standard widely-believed hypotheses, and to
uncover combinatorial relationships between H -pattern detec-
tion and clique-detection, as cliques are the hardest patterns to
detect.

Note that the results of Marx [29] and Bringmann and
Slusallek [9] show hardness for specific classes of patterns,
whereas the the results of Dalirrooyfard et al. [16], Manurangsi
et al. [28] and this paper aim to determine hardness for any k-
node pattern. Our paper primarily focuses on giving lower
bounds for fixed patterns such as C4 , C7 etc., whereas the
focus of [28] is more asymptotic.

B. Organization of the paper

In Section III we give a high level overview of our tech-
niques, and a comparison to the past techniques. In Section II-
B we give the necessary definitions. In Section IV we first state
our hardness result for PSI (Theorem 2.1) in subsection IV-A,
and then in subsection IV-B we state our hardness result for SI
(Theorem 2.2). Finally, in subsection IV-C we show hardness
for paths and cycles (Theorem 2.3). We state our results on
Paired Pattern Detection and our lower bound for induced four
cycle detection from 3-Uniform 4-Hyperclique Hypothesis in
the full version of the paper [15].

For an integer k, let P k , C k , K k  and I k  be the path, cycle,
clique and independent set on k nodes.

Let G  be a graph and S  � V (G) be a subgraph of it. For
every node v � V (G), define NS (v) to be the neighbors of v in
S .  Define dS (v) =  |NS(v)|.

A k-partite graph G  can be decomposed into k partitions
G1 , . . . , Gk where each G i  is an independent set. For a pattern
H  of size k with vertices v1, . . . , vk , we say that a graph G

is H -partite if it is a k-partite graph with G1 , . . . , Gk as its
partitions such that there is no edge between G i  and G j  if
vi vj  is not an edge in H .

Let G  be an H -partite subgraph for a pattern H .  We say that
subgraph H 0 of G  is a colorful copy of H  if H 0 has exactly
one node in each partition of G.  Note that if the vertices of H 0

are u1, . . . , uk where ui
 is a copy of vi

 for all i, then ui
 must be

in G i  for all i6. This is because for every i , j  where vi vj  is an
edge, there must be an edge between the vertex of H 0 that is
in G i  and the vertex of H 0 that is in G j .  Otherwise, the
number of edges of H 0 is going to be smaller than the
number of edges of H .

For a set of patterns S ,  by (induced) S-detection we mean
finding a (induced) copy of one of the patterns in S ,  or
indicating that there is no copy of any of the patterns in S .

Let f  : {1, . . . , c} → V (H ) be a proper coloring of the
graph H  if the color of any two adjacent nodes is different. Let
the chromatic number of a graph H  be the smallest number c
such that there exists a proper coloring of H  with c colors. We
say that a graph H  is color critical if the chromatic number of
H  decreases if we remove any of its nodes.

We call the subgraph C  of a graph H  a core of H  if there
is a homomorphism H  → C  but there is no homomorphism
H  → C 0 for any proper subgraph C 0 of C .  Recall that a graph
which is its own core is called simply a core. Moreover, any
graph has a unique core up to isomorphisms, and the core of
a graph is an induced subgraph of it [21].

III. TECHNICAL OVERVIEW

Here we give high level overview of our techniques. To
understand our lower bounds for k-node patterns, we should
first give an overview of the techniques used in [16]. In their
first result [16] shows that if H  is t-chromatic and has a t-
clique, then it is at least as hard to detect as a t-clique.

a) Reduction (1) [16].: To prove the result of [16],
suppose that we want to reduce detecting a t-clique in a host
graph G  =  (V, E) to detecting H  in a graph G� built from G
and H .  We build G� by making a copy G� of the vertices of
G  for each node h � H  as an independent set. Then if hh0

� E (H ),  we put edges between G� and G�
0      using E :  if uw �

E ,  then we connect the copy of u in G� to the copy of w in G�
0

. Note that we have edges between G� and G�
0      if and only if

hh0 is an edge and this enforces an encoding of H  in G� (we
refer to G� as being H-partite).

To show that this reduction works, first suppose that there
is a t-clique {v1 , . . . , vt } in G.  To prove that there is a H  in
G�, we consider a t coloring of the vertices of H ,  and then
we pick a copy of vi from G� if h has color i. Using the
structure of G� and the fact that no two adjacent nodes in H
have the same color, one can show these |H| nodes form a
copy of H .  For the other direction, suppose that there is a copy
of H  inside G�. This copy contains a t-clique {w1 , . . . , wt}.
Since each G� is an independent set, no two nodes of the t-
clique are in the same G�. Moreover, the edges in G� mimic

6Note that this statement and many more in the paper are true up to
automorphisms
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Fig. 2.     Reduction (1) construction: Reducing K  -detection in G  to H -
detection in G� for H  being the Diamond. The pattern H  is 3 colorable
and has a 3-clique.

the edges in G  and this is sufficient to conclude that no two
nodes of the t-clique are copies of the same node in G,  and the
original nodes in G  that the nodes wi are the copies of, form a
t-clique. See Figure 2.

Now we show how we modify this reduction to prove our
first result, Theorem 2.1.

b) Reduction (2).: We prove that if the size of the largest
clique minor of a pattern H  is μ(H ), then detecting a μ(H)-
clique in a graph G  can be reduced to detecting a colorful
copy of H  in a graph G� that is constructed from G  and H
(Theorem 2.1). Reduction (1) above is good at catching cliques
that are in the pattern H ,  but H  might not have a clique of
size μ(H ) in it, so we need a way to encode the clique minor of
H  in G� so that it translates to a clique in G.  To do that, we
use a second method to put edges between G� and G�

0
 when

hh0 is an edge. We consider a clique minor of H  of size
μ(H ). Note that the clique minor partitions the vertices of H
into connected subgraphs with at least one edge between every
two partition. Now if hh0 is an edge in H  and h and h0 are
in the same partition in the clique minor, we want to treat
them as one node. So we put a “matching” between G� and G�

0

: for any node v � V (G), we put an edge between the copy
of v in G� and the copy of v in G�

0
 . This way we show that

whenever there is a colorful copy of H  in G�, if h and h0 are
in the same partition of the clique minor of H ,  the vertices that
are selected from G� and G�

0  must be copies of the same node
in G.  This means that each clique minor partition of H
represents one node in G.  For h and h0 that are not in the same
clique minor partition, we put edges between G� and G�

0  the
same as Reduction (1) (mimicking E ).  Using the rest of the
properties of the construction, we show that the set of nodes that
each clique minor partition represents are all distinct, and they
form a μ(H)-clique in G .

Note that [16] uses the idea in Reduction 2 (a second method
to define the edges of G�) in a separate result. However the
use of clique minors in [16] is indirect; it is coupled with the
chromatic number and proper colorings of H ,  and in our
results we directly use clique minors without using any other
properties, thus avoiding the Hadwiger conjecture.

Another thing to note about Reduction (2) is that we are re-
ducing a clique detection problem to a “partitioned” subgraph
isomorphism (PSI) problem. The reduction immediately fails if
one removes the partitioned constraint. The reason is that we
no longer can assume that if the reduction graph G� has a
copy of H ,  then the nodes are in different vertex subsets

G�. If G� has a copy of H  and two nodes v, u of this copy
are in one vertex subset G�, then we don’t know if v and u
are adjacent in G  or not. This can get in the way of finding a
clique of the needed size in G.  So if we want to get any result
stronger than Reduction (1) for SI (and not PSI), we need to
add new ideas. We introduce some of these new ideas below.

c) Reduction (3): paths and cycles.: In Theorem 2.3 we
show that if H  is the complement of a cycle or a path, then
we can reduce detecting a (μ(H ) −  2)-clique in a graph G  to
detecting a copy of H  in a graph G� constructed from G  and
H .

As mentioned above, removing the partitioned constraint
from reduction (2) doesn’t directly work. However, when the
graph is a core, it does work, and that is because PSI and SI
are equivalent for cores [29]. When H  is a core, there is only
one homomorphism from H  to itself, which means that there
is only one type of “embedding” of H  in the reduction graph
G�, and it is the embedding with exactly one vertex in each
vertex subset G� of G�. However, when H  is not a core, there
can be multiple embeddings of H  in G�, and these embeddings
do not necessarily result in finding a copy of a t-clique in H ,
for t ≈  μ(H ).

In order to solve this issue of multiple embeddings, we
“shrink” some of the vertex subsets (G�s) of the reduction
graph G�. More formally, we replace some of these subsets in
G� by a single vertex. We do it in such a way that the only
embedding of H  in G� is the one with exactly one vertex in
each subset. This way, the rest of the argument of Reduction
(2) goes through. There is a cost to shrinking these subsets:
shrinking more subsets results in reducing the size of the clique
that we reduce from. So the harder part of this idea is to
carefully decide which partitions to shrink, so that we only
lose a small constant in the size of the clique detection
problem that we are reducing from.

Recall that in Reduction (2) we consider a μ(H ) clique
minor of H  which partitions the vertex set of H  into μ(H )
connected subgraphs. Here we observe that for H  that is the
complement of a path or a cycle, we can select two particular
partitions of the clique minor, and shrink vertex subsets G� for
vertices h that belong to one of these two partitions. This way
we eliminate all the unwanted embeddings of the pattern H  in
G�, and reduce (μ(H ) −  2)-clique detection in G  to H
detection in G�. We note that the techniques in Reduction (3)
are of independent interest and can be potentially used for other
graph classes.

We now move on to our next reduction.
d) Reduction (4).: Our next main result is Theorem 2.2,

which states that if C  is the core of the pattern H ,  then
detecting C  in a graph G  =  (V, H ) can be reduced to detecting
H  in a graph G� which is constructed from G  and H .

First note that Reduction (1) doesn’t directly work here.
This is because if G  has a copy of C ,  we have no immediate
way of finding a copy of H  in G�. Recall that in Reduction (1)
we used a coloring property of H  to do this.

As a first attempt to such a reduction, one might use the
following idea of Floderus et al. [20]. They showed that any
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pattern that has a t-clique that is disjoint from all the other t-
cliques in the pattern is at least as hard as t-clique to detect.
Here we explain their idea in the context of reducing core(H)-
detection to H  detection. Let C 0 be a copy of C  in H .  The
idea is to build the reduction graph of Reduction (1) using C 0 as
the pattern, and to add the rest of the pattern H  to it. More
formally, for any node h in C0 , let G� be a copy of V , the set
of vertices of G.  Put edges between G� and G�

0
    

 same as
before if hh0 is an edge. Call this graph G� 

0 . To complete the
construction of G�, add a copy of the subgraph H  \ C 0 to G� 

0

, and connect a vertex h0 in this copy to all the nodes in G� for
h � C 0 if hh0 is an edge in H .

The reason we construct the Reduction (1) graph on C 0 is
that if G  has a copy of C ,  then we can find a copy of C  in G� 

0

using the arguments in Reduction (1). This copy of C  and all
the vertices in G� \  G� 

0
    

 =  H  \  C 0 form a copy of H .  For the
other direction, suppose that there is a copy H � of H  in G�.
We hope that this copy contains a subgraph C00 that is
completely inside G� 

0
 , so that then this leads us to a copy of C

in G  using the properties of G� 
0
    

 and the fact that C  is a core.
However, such a construction cannot guarantee this, and in fact
there might be no copies of C  in H � that are completely in G� 

0

.
So we need to find a subgraph H 0 of H ,  so that if we build

the reduction graph G� 
0
     

 of Reduction (1) on it, it has the
property that if G  has a copy of C ,  then we can find a copy of
H 0 in G� 

0 .
To do this, we simplify and use an idea of [16]. In particular,

[16] introduces the notion of (Kt , F )-minor colorability of a
pattern B ,  which is a coloring of B  with t colors such that the
coloring imposes a t-clique minor on any copy of F  in B .
Then using this definition, one finds a minimal covering of the
graph H  with (Kt , F )-minor colorable subsets and one argues
that one can take one of these subsets as H 0 .

We notice that the properties that [16] uses relating the
chromatic number and the clique minor of a pattern in this
construction can be summarized into the core of patterns. We
introduce the notion of F -coloring, which simply says that if B
is F -colorable then there is a coloring such that any copy of F  in
B  is a colorful copy under this coloring. Then we cover H  with
minimal number of C-colorable subsets. We show that we can
take one of these subsets as H 0 .

Finally, we generalize Theorem 2.2 to the problem of
detecting a pattern from a set S  of patterns in Theorem ??.
We show that if S  is a set of patterns, there is a pattern H  �
S ,  such that detecting the core of H ,  C ,  in a graph G  can be
reduced to detecting any pattern from S  in a graph G�

constructed from G  and S .  In fact, G� is the reduction graph of
Reduction (4) on H  as the pattern. The main part of Theorem
?? is to find the appropriate H  in S .  In order to find this
pattern H ,  we look at homomorphisms between the patterns in
S .  In particular, we form a graph with nodes representing
patterns in S  and directed edges representing homomorphisms.
We look at a strongly connected component of this graph
that has no edges from other components to it, so there is no
homomorphism from any pattern outside this component

?

Pattern H Host graph G Reduction graph G�

Fig. 3. Example of the Reduction of Theorem 2.1 for pattern C 4  with a
K3 -minor. From left to right: The pattern H  with with a K 3  minor function
shown as a coloring, the host graph G  in which we want to find a triangle
and the reduction graph G� built from G  and H .  The bold edges represent
the edges in G ,  whereas the double edge represents a perfect matching. Each
of the four colored parts in G� are a copy of G .

to any pattern inside the component. We show that all the
patterns in this component have the same core and we show
that the pattern H  can be any of the patterns in this component.

IV. LOWER BOUNDS

A. Hardness of PSI

In this section we prove Theorem 2.1, which reduces a
η(H)-clique detection to H-detection, where η(H ) is the size
of the largest clique minor of H .

We can represent a clique minor of H  of size t by a function
in the following definition.

Definition 4.1: Let f  : V (H ) → {1, . . . , t} be a func-tion
such that for any i  � {1, . . . , t}, the preimage of i, f −1 ( i),
induces a connected subgraph of H  and for every i , j  �
{1, . . . , t}, there is at least one edge between the preimages
f −1 ( i)  and f −1 ( j ).  We call such f  a Kt-minor function of
H .

One can think of f  as a coloring on vertices of H  that
imposes a clique minor on H .  Figure 3 shows an example of a
K3-minor function of C4  as a coloring. In the reduction we are
going to consider a Kt-minor function f  for t =  η(H ). We
can find a maximum clique minor of H  and its associated
function in Ok(1)7 as follows: Check for all functions f  : V
(H ) → {1, . . . , k} if f  is a Kt -minor function for some t, and
then take the f  that creates a maximum Kt-minor.

Theorem 2.1: (Hardness of PSI) Let H  be a k-node pattern
with maximum clique minor of size η(H ), and let G  be an n-
node graph. Then one can construct a k-partite O(n)-node
graph G� in O(n2) time such that G� has a colorful copy of H
if and only if G  has a clique of size η(H ).

Proof. Let the size of the maximum clique minor of H  be
t, i.e. η(H ) =  t and let f  : V (H ) → {1, . . . , t} be a Kt-minor
function of the pattern H .  Using the function f  and the graph
G,  we construct the reduction graph G� as follows:

The vertex set of G� consists of partitions G� for each
v � V (H ), where the partition G� is a copy of the vertices
of G  as an independent set for all v � V (H )

The edge set of G� is defined as follows. For every two
vertices v and u in the pattern H  where vu is an edge and
f (v) =  f (u), we add the following edges between G v  and

7Any function that has dependency on k  and no other parameter is of
O k (1 )
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G�: for each w1 and w2 in G,  add an edge between the copy
of w1 in G v  and the copy of w2 in G u  if and only if w1w2

is an edge in G.  In other words, we put the same edges as
E (G)  between G� and G� in this case. For any two vertices
v and u in H  where vu is an edge and f (v) =  f (u), add the
following edges between G� and G�: for any w � G,  connect
the two copies of w in G� and G�. In other words, we put
a complete matching between G� and G� in this case. This
completes the definition of G�. See Figure 3 for an example.

Note that G� is an H -partite graph with nk vertices and
since for each pair of vertices u, v � H  we have at most m
edges between G� and G�, the construction time is at most

O(k2m +  kn) ≤  O(k2n2).
Now to prove the correctness of the reduction, first we show

that the reduction graph G� has a subgraph isomorphic to H  if
G  has a t-clique. Suppose that the vertices w1, . . . , wt � V
(G) form a t-clique. Let H � be the subgraph induced on the
following vertices in the reduction graph G�: For each v � H ,
pick w f ( v )  from G�. We need to show that if vu � E (H ),
then there is an edge between the vertices picked from G�

and G�. This is because if f (v) =  f (u) =  i, then we picked wi

from both G� and G� and hence they are connected. If f (v)
=  f (u), then since w f ( v )  is connected to w f ( u )  in G,  we have
that their copies in G� and G� are connected as well. So H � is
isomorphic to H .

Now we show that G  has a t-clique if G� has a colorful
subgraph H � isomorphic to H .  Let v� � V (H�) be the vertex
picked from G�, for v � V (H ). Since there is no edge between
G� and G� if uv is not an edge in H ,  we have that there must be
an edge between v� and u� if uv is an edge in H ,  so that the
number of edges of H � matches that of H .  So if uv � E (H )
and f (u) =  f (v), then u� and v� must be the copies of the
same vertex in G.  Since the vertices with the same value of f
are connected, the vertices of H � are the copies of exactly t
vertices in G,  say {w1 , . . . , wt}, where v� is the copy of wi if
f (v) =  i. For each i , j  � {1, . . . , t}, there are two vertices u, v
� V (H ) such that f (u) =  i, f (v) =  j  and uv � E (H ).  So u�v�

� E (H �), and hence wi wj     � E (G). So the set {w1 , . . . , wt}
induces a t-clique in G.  Recall
that Corollary 2.2 gives a hardness result for cores in SI. This
Corollary comes from the result of Marx [29] that PSI and SI
are equivalent when the pattern is a core.

Corollary 2.2: (Hardness of cores in SI) Let G  be an
n-node m-edge graph and let H  be a k-node pattern with
maximum clique minor of size η(H ). If H  is a core, then
one can construct a graph G� with at most O(n) vertices in
O(m + n) time such that G� has a subgraph isomorphic to H
if and only if G  has a η(H)-clique as a subgraph.

We are going to use this result later for proving tighter
hardness results for paths and cycles. Now we prove Corollary
2.3 that gives a lower bound for induced SI when the pattern is
a core.

Corollary 2.3: (Hardness for induced-SI for cores) Let H
be a k-node pattern which is a core. Suppose that w(H ) is the
size of the maximum clique in H .  Then detecting H  in an n-
node graph as an induced subgraph is at least as hard as detect-

Fig. 4. C-coloring with C  being the 5-cycle. The pattern has 2 copies of
C 5 ,  and each copy is colorful with respect to the coloring given.

ing a clique of size max{d
p

(k
 
+

 
2w(H ))/2e, d

p
k/1.95}e.

Proof.     To get a lower bound for induced SI when the
pattern is a core, we use two results on the connection of the
maximum independent set α(H ), maximum clique size w(H )
and the size of the maximum clique minor η(H ) of a
pattern H .  Kawarabayashi [24] showed (2α(H) −  1) · η(H )
≥  |V (H)| +  w(H ), and Balogh and Kostochka [4] showed
that α(H )η(H ) ≥  |V (H)|/(2 −  c) for a constant c >
1/19.5. Since η(H ) ≥  w(H ), these results imply that
α(H )η(H ) ≥  max{(|V (H)|+2w(H))/2, |V (H)|/1.95}.
Since η(H ) ≥  w(H ) =  α(H ) and all these numbers are
integers, we get Corollary 2.3 from Corollary 2.2.

B. Patterns are at least as hard to detect as their core

In this section we prove that detecting a pattern is at least
as hard as detecting its core. In order to do so we define the
notions of C-coloring and C-covering for a core subgraph C .

Definition 4.2: Let F  be a graph and let C  be a c-node sub-
graph of it. We say that the function f  : V (F ) → {1, . . . , c}
is a C-coloring of F  if for any copy of C  in F ,  the vertices
of this copy receive distinct colors. We say that a graph is
C-colorable if it has a C-coloring.

Note that a C-coloring of F  partitions F  into c sections such
that any copy of C  in F  is a colorful copy, i.e. it has exactly
one vertex in each partitions8. See figure 4 for an example of C-
coloring for C  being the 5-cycle.

Definition 4.3: Let H  be a graph and C  be a core of H .  We
say that a collection C =  {C1 , . . . , Cr }, C i  � V (H ) is a C-
covering for H  of size r , if the following hold.

1) For every copy of C  in H  there is an i  such that this
copy is in the subgraph induced by C i .

2) For every i  the subgraph induced by C i  is C-colorable.

For any pattern H  with core C  there is a simple C-covering:
Let the sets in the collection be the copies of C  in H .  However,
we are interested in the “smallest” C-covering.

Definition 4.4: Define the C-covering number of H  as the
minimim integer r  such that there is a C-covering for H  of
size r .
One can find a C-covering of minimum size in Ok(1) by first
enumerating all copies of C  in H ,  and then considering all
ways of partitioning the copies into sets, and testing if these
sets are C-colorable. Before proving Theorem 2.2, we prove
the following simple but useful lemma.

8Note that this is different than F  being a C-partite graph. The colors are
not assigned to any node of C ,  and there is no constraints on the edges of F
with respect to the partitions.
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Lemma 4.1: Let G  be an H -partite graph where for each
v � V (H ), G v

 � G  is the partition of G  associated to v. Let F
be a subgraph in G.  Then there is a homomorphism g from F
to H ,  defined as g : V (F ) → V (H ) where g(u) =  v if u
� Gv ,  for every u � V (F ).

Proof. To prove that g is a homomorphism, we need to
show that if v1v2 � E (F ), then g(v1)g(v2) � E (H ).  This

is true because the edge v1v2 is between Gg ( v  )  and Gg ( v  ) ,
and from the definition of H -partite graphs this means that

g(v1)g(v2) � E (H ).
Theorem 2.2: Let G  be an n-node m-edge graph and let H

be a k-node pattern. Let C  be the core of H .  Then one can
construct a graph G� with at most O(n) vertices in O(n2) time
such that G� has a subgraph isomorphic to H  if and only if

G  has a subgraph isomorphic to C ,  with high probability9.
Proof. We use the color-coding trick of Alon, Yuster and

Zwick [3]: Consider a random assignment of colors {1, . . . , c}
to the vertices of the host graph G,  and a random assignment of
numbers {1, . . . , c} to the vertices of C .  We can assume that
if G  has a copy of C ,  then the copy of vertex i  has color i  with
high probability (we can repeat this reduction to produce
O(log n) instances to achieve this high probability). Let the
partition G ( i )  be the vertices with color i.

Let the C-covering number of the pattern H  be r , and let
C =  {C1 , . . . , Cr } be a C-covering of size r . Note that as
explained before, we can find r  and C in Ok(1) time. Let
f  : C1  → {1, . . . , c} be a C-coloring of C1 , where c =  |V (C)|
is the size of the core C .

We define the vertex set of the H-partite reduction graph G�

by adding a subset of vertices of G  for each vertex v � C1  as the
partition associated to v, and then simply adding a copy of the
rest of the vertices of H  to G�. More formally, for each
vertex v � C1 , let G� be a copy of the partition G (

f
( v ) )

as an independent set. For each vertex v � V (H ) \  C1 , let G�

=  {v�}  include a copy of v in G�. This finishes the vertex set
definition.

We define the edge set of the reduction graph G� as follows:
For each pair of vertices u, v � C1 , if uv is an edge and
f (u) =  f (v), then we add a perfect matching between G� and
G� as follows: For each w � G ,  we add an edge between the
copy of w in G� and the copy of w in G�. If uv is an edge and
f (u) =  f (v), then we add all the edges in G ( f ( u ) )  ×  G (

f
( v ) )  to

G� ×  G� as follows: for each w1 and w2 in G ,  we add an edge
between the copy of w1 in G� and the copy of w2 in G� if and
only if w1w2 is an edge in G.  For each pair of vertices u � C1
and v � V (H ) \  C1  such that uv is an edge in H ,  we add an
edge between v� � G� and all vertices in G�. For each pair of
vertices u, v � V (H ) \ C1  such that uv is an edge in H ,  we add
an edge between u� � G� and v� � G�.

Note that the number of edges of G� is at most O(mk2)
where m is the number of edges of G. This is because for every v
� V (H ) \  C1 , the number of edges attached to G� =  {v�}  is at
most O(nk), and for every u, v � C1 , there are at most

9with probability 1/poly n

m edges between G� and G�. So the construction time is
O(mk2) ≤  O(n2).

Before proceeding to the proof of the reduction, note that
if uv �/ E (H ),  there is no edge between G u  and Gv .  So we
have the following observation.

Observation 4.1: G� is H -partite.
Now we prove that the reduction works. First suppose that G

has a colorful copy C 0 =  {v1 , . . . , vc} of C ,  such that vi has
color i. We are going to pick k vertices in the reduction graph
G�, one from each partition, and prove that they induce a copy
of H  in G�. For every v � C1 , we pick the copy of vi in the
partition G�, where i  is the color of v in the C-coloring f  of C1 ,
i.e. f (v) =  i. For u � V (H ) \  C1  we pick the only vertex in G�

=  {u�}.
To prove that these k nodes induce a copy of H ,  consider

u, w � V (H ) where uw � E (H ).  We show that the vertices
picked from G� and G� are connected. If one of u and w is not
in C1 , then all nodes in G� is connected to all nodes in G� .
If both u, w are in C1 , we have two cases. If u and w have the
same color, i.e. f (u) =  f (w) =  i, then we have picked copies
of vi from both G� and G� , and from the definition of G�

they are connected. If u and w don’t have the same color, i.e.
f (u) =  f (w), then we have picked v f ( u )  from G� and vf (w )

from G� . Since v f ( u )  and vf (w )  are connected in G,  from the
definition of G� they are also connected in G�. So the vertices
we picked from G� induce a copy of H .

Now we are going to show that if there is a copy of H  in the
reduction graph G�, then there is a copy of C  in G.  For i  �
{1, . . . , r}, let S i  =  �v�C  G�. Suppose that G� has a
subgraph H � isomorphic to H .  To show that G  has a copy of C ,
we prove that H � has a copy of C  with all its vertices in S1 ,
and then we show that this subgraph leads us to a copy of C  in
G.

First, consider a copy C � of C  in H �. By observation 4.1, we
can consider the homomorphism that Lemma 4.1 defines from
C � to H :  u � V (C�) → v � H  if u � G�. Since C  is the core,
the image of C � defined by the homomorphism must be
isomorphic to C .  So this copy of C  in H �

 is mapped to a copy
of C  in H .

Thus each copy of C  in H � maps to a copy of C  in H .
Note that this copy is in C i  if and only if the copy of C  in H � is
in S i .  Now suppose that there is no copy of C  in H � ∩ S1 . Then
each copy of C  in H � is mapped to a copy of C  in H  that is
not in C1 , and thus it is in C i  for i  ≥  2. So the copies of C  in
H � are covered by S  =  {S 2  ∩ H�, . . . , Sr ∩ H �} .  If we show
that for all i, S i  ∩ H � is C-colorable, then S  is a C-covering
of size r  −  1 for H � and since H � is a copy of H ,  this is a
contradiction to the C-covering number of H .

To see that S i  ∩ H � is C-colorable, let f i  : C i  → {1, . . . , c} be
the C-coloring of C i ,  for i  =  2, . . . , r. We color each node v �
H � as follows. There is u � V (H ) such that v � G�. We color
v the same as u, with fi(u). Now we show that each copy C �

of C  in S i  ∩ H � has distinct colors. Consider the mapping of
Lemma 4.1 from C � in the H -partite graph G� to H :  for v �
V (C�), we let g(v) =  u if v � G�. Note that if C � � H � ∩ S i ,
the map g preserves colors. Since the image
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of C � in H  is also a copy of C  (because C  is a core) and f i  is
a C-coloring, this image is a colorful copy of C .  So C � is also a
colorful copy of C  with the coloring defined. Thus S i  ∩ H � is
C-colorable.

So from above we conclude that H � must have a copy C � =
{w1 , . . . , wc} of C  in S1 , such that wi � G v  for some vi � C1

and vi =  vj  for each i  =  j .  Moreover, the mapping wi → vi

is a homomorphism from C � to H  and since C  is a core, we
have that v1, . . . , vc form a a copy of C  in H .  Now since f
is a C-coloring, f (vi) =  f (vj ) for all i  =  j .  This means that
w1, . . . , wc are copies of distinct vertices in G ,  and hence they
are attached in G� if and only if they are attached in G.  So

they form a subgraph isomorphic to C  in G.
Now we prove Corollary 4.1 and 2.4 on induced subgraph

isomorphism of all patterns.
Corollary 2.4: (Hardness of Induced-SI) For any k-node

pattern H ,  detecting an induced copy of H  in an n-node graph is
at least as hard as detecting a clique of size dk1/4/1.39e in an
O(n) graph.

Proof. Denote the chromatic number of a graph F  by
X (F ) .  We know that for a k node pattern H ,  the chromatic
number of either H  or its complement is at least k. WLOG
assume that X (H )  ≥ k. Lemma 4.2 proven below states that
a color critical graph is a core. Since the core of H  is its largest
subgraph that is a core, we have that X (core(H )) ≥ k,
and so in particular the size of the core of H  is at least d
ke. By Theorem 2.2 we have that detecting H  is at least as hard
as detecting core(H ), and by Corollary 2.3 we have that

detecting core(H ) is at least d         k/1.95e hard. This gives
the result that we want.

Corollary 4.1: (Hardness of Induced-SI) For any k-node
pattern H ,  the problem of detecting an induced copy of H  in
an n-node graph requires nΩ (      k /  log k )  time under ETH.

Proof. Similar to the proof of Corollary 2.4, we have
that X (core(H )) ≥ k. Now since by inductive coloring
we have that for any graph F ,  tw(F ) +  1 ≥  X (F ) ,  then
tw(core(H)) ≥ k − 1. Recall that Marx [29] shows that un-
der ETH, for any pattern F  partitioned subgraph isomorphism
of F  in an n node graph requires nΩ (

l o g  t w ( F  )  
)  time. Since for

cores PSI and SI are equivalent [29], we get Corollary 4.1.
Lemma 4.2: Color critical graphs are cores.

Proof. Let H  be a color critical graph, and suppose that there is
a homomorphism f  from H  to H 0 where H 0 is a proper
subgraph of H .  Let cH 0      : V (H 0) → {1, 2, . . . , X (H 0)} be a
coloring of H 0 . Then let c H  be the following coloring for H .
For each v � H 0 , color all vertices of f −1 (v) the same as v.
This means that for any u � V (H ), cH (u) =  cH 0  (f (u)). Since
f −1 (v) is an independent set and c 0      is a proper coloring,
c−1(i) =  f −1 (c−1 ( i)) is an independent set for any color
i. So c H  is a proper coloring for H  of size X (H 0 ). This is a
contradiction because H  is color critical and we have that
X (H 0 ) <  X (H ) .

C. Hardness of Paths and Cycles

In this section, we prove a stronger lower bound for induced
path and cycle detection than what the previous results give

us. More precisely, we show that a cycle or path of length k is
at least as hard to detect as an induced subgraph as a clique of
size roughly 3k/4. This number comes from the largest
clique minor of the complement of paths and cycles. This is
formalized in the next lemma which is proved in the appendix.

Lemma 4.3: Let H  be a k-node pattern that is the
complement of a path or a cycle. Then η(H ) =  b k +ω ( H ) c ,
where ω(H ) is the size of the maximum clique of H .  Table II
shows the value of η(H ).

number of vertices (k) η ( C k ) η ( P k )
4t                             3t*             3t*

4t +  1 3t 3t +  1*
4t +  2                      3t +  1        3t +  1
4t +  3 3t +  2 3t +  2

TABLE II
MAXIMUM CLIQUE MINORS. (*) FOR t =  1, THE MAXIMUM MINOR OF

P4 ,  C 4 ,  P 5  IS 2,2,3 RESPECTIVELY

Recall the main result of this section below.
Theorem 2.3: (Hardness of P k  and C k )  Let H  be the

complement of a P k  or the complement of a C k .  Suppose that t
is the size of the maximum clique minor of H .  Then the
problem of detecting H  in an O(n)-node graph is at least as
hard as finding a (t−2)-clique in an n-node graph. If k is odd,
then detecting an induced C k  is at least as hard as finding a t-
clique.

First, we show the easier case of odd cycles which was also
mentioned in Section IV-A. With a simple argument we can
show that the complement of an odd cycle is a color critical
graph. We prove this in the appendix for completeness.

Lemma 4.4: The complement of an odd cycle is color-
critical.

Lemma 4.4 together with Lemma 4.2 show that the com-
plement of an odd cycle is a core. Using Corollary 2.2 and
Lemma 4.3, we have that detecting a C k  for odd k is at least as
hard as detecting a b3k/4c-clique. Since induced detection of
a pattern H  is at least as hard as not-necessarily-induced
detection of H ,  we have the following Theorem.

Theorem 4.1: For odd k, Induced-Ck detection is at least
as hard as b3k/4c-clique detection.

Now we move to the harder case of even cycles and odd
and even paths. We would like to get a hardness as strong as
the one offered by Theorem 2.1 and Corollary 2.2, but we can’t
use these results directly since paths and even cycles (and
their complements) are not cores.

As mentioned in the section III, we are going to use the
construction of Theorem 2.1 and shrink a few partitions of
the reduction graph G�, i.e. replacing each of these partitions
with a single vertex. The next lemma helps us characterize
automorphisms of paths and cycles, and so it helps us find the
appropriate partitions of G� to shrink.

Lemma 4.5: Any automorphism of paths or cycles that has
a proper subset of vertices as its image has the following
properties:
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• Let C k  =  v1 . . . vkv1 be a k-cycle for even k. Then any
homomorphism from C k  to a proper subgraph of C k  has
two vertices both being mapped to either v1 or vk .

• Let P k  =  v1 . . . vk be a k-path. Then any homomorphism
from P k  to a proper subgraph of P k  has two vertices both
being mapped to either v1 or vk .

We include the proof Theorem 2.3 in the full version of this
paper [15].

Using Lemma 4.3 and Theorem 2.3 we have the following
Corollary.

Corollary 4.2: Detecting C k  or P k  as an induced subgraph
is at least as hard as detecting a (b3k/4c −  2)-clique.
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