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Snap Buckling in Overhand Knots

When an overhand knot tied in an elastic rod is tightened, it can undergo a sudden change
in shape through snap buckling. In this article, we use a combination of discrete differential
geometry (DDG)-based simulations and tabletop experiments to explore the onset of buck-
ling as a function of knot topology, rod geometry, and friction. In our setup, two open ends
of an overhand knot are slowly pulled apart, which leads to snap buckling in the knot loop.
We call this phenomenon “inversion” since the loop appears to move dramatically from one
side of the knot to the other. This inversion occurs due to the coupling of elastic energy
between the braid (the portion of the knot in self-contact) and the loop (the portion of the
knot with two ends connected to the braid). A numerical framework is implemented that
combines discrete elastic rods with a constraint-based method for frictional contact to
explore inversion in overhand knots. The numerical simulation robustly captures inversion
in the knot and is found to be in good agreement with experimental results. In order to gain
physical insight into the inversion process, we also develop a simplified model of the knot
that does not require simulation of self-contact, which allows us to visualize the bifurcation
that results in snap buckling. [DOL: 10.1115/1.4056478]
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1 Introduction

Found all throughout the world, knots are complex geometrical
patterns of slender elastic rods in self-contact. They exist for
various purposes in daily life, ranging from practical (shoelaces)
to decorative (Chinese knotting). Given their importance as well
as their topological and mechanical complexity, knots remain a
valuable yet challenging research topic. One particular application
of importance lies in the medical sciences as knots have been
shown to almost always be present in the chains of sufficiently
long polymers [1]. For example, DNA—a particularly long
polymer—is known to have various knots arise in its twists and
coils. Some specific enzymes, such as topoisomerases, even help
to unwind such entanglements [2]. The implications of these
knots in DNA molecules are numerous: knots can block DNA rep-
lication (promoting replicon loss), increase antibiotic sensitivity,
and even block gene transcription [3]. In addition, Marenduzzo
et al. [4] stated that self-contact in DNA plays a vital role in chang-
ing the ejection speed of a virus from the capsid. Aside from DNA,
many proteins also contain knots; as many as 750 knotted configu-
rations are included in the protein data base [5]. Such knotted pro-
teins have even been shown to be present in the photoreceptors of
plants [6], and their complex topologies are identified to catalyze
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various enzymatic reactions [7]. Going further, knots also possess
an essential effect on the mechanical properties of polymers, as
shown by knotted DNA having more muscular rigidity than actin
[8]. With all these effects of knots being discovered, researchers
in the field of chemistry have started focusing on developing
methods for the synthesis of molecular knots [9]. Even when limit-
ing our scope to the medical sciences, the implications of knots in
structures are endless.

In order to fully understand and utilize knots in these structures,
many questions concerning the mathematical and mechanical prop-
erties of knots must be addressed. In this article, we analyze the
mechanics of overhand knots that are being tightened by force
applied at the knot’s ends. For some knots, this tightening can
lead to a snap buckling instability causing a sudden change in the
knot’s shape. An important contributing factor in this mechanical
phenomenon is self-contact, which occurs along the knotted rod.
From the standpoint of mathematics, a knot is a closed loop that
is infinitely thin. However, in reality, the thickness of a knot is
finite, and the two ends are often open. Mechanically, researchers
are more interested in the strength, equilibrium configuration, and
dynamic behavior of a knotted filament [10]. Hence, self-contact
should be carefully considered when handling problems of knots
in mechanics.

Self-contact is a problematic field in continuum mechanics due to
the fact that an elastic structure’s contact zones and configurations
are unknown in advance. Furthermore, there exist multiple
models for the contact between elastic objects. In this article, we
focus on the Coulomb frictional contact model for self-contact in
knots since Coulomb frictional contact is an adequate
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approximation for contact dynamics at the macroscopic scale.
Various approaches have been developed in the prior work to
account for Coulomb frictional contact. These approaches can be
categorized into three main methods: impulse-based methods,
penalty energy-based methods, and constraint-based methods (non-
smooth mechanics). Here, we discuss the pros and cons of these
methods and describe the method used in this article for studying
the mechanics of knots.

Impulse-based methods take the displacements at contact zones into
account to compute the required impulse for preventing these zones
from penetrating. This method is widely used in simulations for engi-
neering applications for its simplicity, for example, contact in fila-
ments [11,12] and granular media simulations [13]. However, such
methods tend to suffer from unrealistic “jittering” when large time-
steps are used, as the contacted forces are usually computed explicitly
[14]. In addition, using displacements at contact zones to compute fric-
tion cannot return a rigorous formulation of Coulomb friction.

Penalty energy-based methods are also prevalent. In the work of
Lietal. [15], Patil et al. [16], Choi et al. [14], and Tong et al. [17], a
penalty energy term is formulated in which the gradient of the
penalty energy is used as the contact force promoting nonpenetra-
tion. Such methods are attractive due to their low computational
cost since contact forces are computed based on the simulated
objects’ own degrees-of-freedom (DOFs) and are visually realistic.
However, except for the work in Ref. [16], few of those listed prior
works compared the simulation results with experiments. Further-
more, the hyper-parameters of the penalty energy term typically
require careful tuning to achieve robust numerical results.

The last class of methods are the constraint-based methods. Jean
and Moreau [18,19] proposed unilateral constraints to solve dry fric-
tion in granular media. Alart and Curnier [20] developed the first
approach to solve constraint-based contact dynamics with Newton’s
method to find the root of a nonsmooth complementary function.
Building upon the work of Alart and Curnier [20], Bertails-
Descoubes et al. [21] implemented this approach to simulate fibers;
however, convergence issues for high contact ratios were noted.
Daviet et al. [22] combined an analytical solver with the complemen-
tary function for contacts to capture Coulomb friction in hair dynam-
ics robustly. The algorithm in Davie et al. [22] is implemented in
Ref. [23] to capture the frictional contact in assemblies of discrete
elastic rods (DERs) [11,24]. Based on the previous nonsmooth opti-
mization method, Daviet [25] proposed a general framework for sim-
ulating contact in thin nodal objects. Since constraint-based methods
have clear mathematical definitions of contact and its accuracy has
been supported in the prior work, for example, sound generated by
objects in contact [26], we choose to use the constraint-based
method to simulate the contact that occurs in overhand knots.

Snap buckling in a tightened overhand knot is just one of the
countless instabilities that can be observed in slender filaments.
More broadly, thin elastic structures can showcase intriguing
mechanical properties when appropriate boundary conditions are
applied. For example, buckling instabilities, which are an essential
consideration in the design of stable, flexible structures, and intelli-
gent systems, are highly nonlinear in geometry. Snapping and bifur-
cation, a process of rapid, sudden change between different stable
configurations caused by external stimuli, can be seen extensively
in nature and engineering. For example, Forterre et al. [27] dis-
cussed the snapping of Venus flytraps; Kebadze et al. [28]
studied bistable configurations of slap bracelets; Pandey et al.
[29] analyzed snap-through of a toy popper, Tong et al. [30]
studied the buckling in helical rods with robotics, and Chen et al.
[31] explored bistability in soft robots.

So far, many pioneering works in snap buckling have studied thin
elastic structures without contact. Gomez et al. [32] and Sano et al.
[33] discussed the asymmetric constraints of two ends for one-
dimensional systems. Starostin and van der Heijden [34] studied
the multistability in inextensible helical ribbons induced by stretch-
ing. Morigaki et al. [35] explored the snap of a thin looped paper
induced by stretching. Sano and Wada [33] explored the snap buck-
ling of a rod-like structure under the twisting of two ends. Yu and
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Hanna [36] investigated bifurcations of a ribbon under shearing.
Finally, Zhang et al. [37] and Wan et al. [38] characterized the bist-
ability of ribbon-like systems under loading out of the plane. In addi-
tion to these works, the bulking instability of two-dimensional curved
surfaces has also been studied in prior works, e.g., snapping transi-
tions in cylinders [39-42] and snap buckling in spheres and hemi-
spheres [39,43-48]. Self-contact, which is usually expressed as an
inequality constraint, also plays an important role in the buckling
instabilities of slender structures, although the inclusion of self-
contact typically makes buckling analysis significantly more chal-
lenging. Reference [49] studied the stability of supercoiled plasmids
with self-contact to mimic DNA configurations. In the work of
Ref. [50], the buckling analysis of twisted DNA was implemented
to study the bounds of topoisomerase relaxation.

Our work, which focuses on snap buckling in overhand knots with
self-contact, builds upon the previous work that focused on character-
izing the equilibrium properties of knots in thin elastic rods. The iconic
overhand knot is one of the most fundamental knots, ubiquitous in
nature, and daily life. Previous works studying overhand knots have
considered the effects of tightening forces and equilibrium shapes.
For example, in the study by Audoly et al. [S1], the relationship
between traction forces and shortening of a trefoil knot (3;) and
cinquefoil knot (5,) was given. Przybyl and Pieranski [52] analyzed
the curvature and torsion of a tightening trefoil knot. Jawed et al.
[53] formulated an analytical expression for the relationship
between tightening forces, friction, and shortening of overhand
knots with different values of crossing number. Moulton et al. [10]
found the stable configuration of an open trefoil knot without self-
contact. Most closely related to our work is the phenomenon shown
in Fig. 1 of Ref. [11] and the subsequent work by Clauvelin et al.
[54]. In Fig. 1 of Ref. [11], a trefoil knot is shown to have both con-
tinuous and discontinuous shape changes when rotating the ends.
Building upon this observation, Clauvelin et al. [54] derived an
asymptotic solution for trefoil and cinquefoil knots tied on an infinitely
long rod, consisting of straight tails and a circular loop. They then
showed that a combination of tension and twist can cause the asymp-
totic knot solution to buckle via either helical buckling of the knot’s
tails or out-of-plane buckling of the circular loop.

Motivated by this phenomenon, we use a combination of simula-
tions and experiments to show that overhand knots can experience a
sudden change in shape simply due to tightening of the knot, and
without any external twist applied at the two ends, as shown in
Fig. 1. This change in the knot’s shape is referred to as “inversion”
going forward in this article. Since the boundary conditions of the
tightening process are straightforward, we argue that this process
is topology induced, and we explore how and why inversion
occurs during tightening. Our contributions are as follows: (1) we
implement the constraint-based method from Refs. [20,21] with a
well-known DDG model (DERs) from Refs. [11,24] in a simple
way to simulate overhand knots; (2) we quantify the mechanical
responses when tightening an overhand knot through simulations
and experiments and discuss the contributing factors of inversion
in detail, and (3) we develop a simplified knot model that quantita-
tively captures the inversion process, but does not require the simu-
lation of self-contact, which we then use to gain further insight into
the bifurcation underlying the inversion process.

The remainder of this article is organized as follows. In Sec. 2,
both the problem of inversion and the geometry of an overhand
knot are formulated. In Sec. 3, the numerical framework for the
DDG model and frictional responses are discussed. Next, results
from experiments and simulations are compared in Sec. 4. The sim-
plified model, which is based on the geometry of overhand knots,
and its use in analyzing inversion are described in Sec. 5. Finally,
conclusions and avenues for future work are laid out in Sec. 6.

2 Problem Statement

In Fig. 2, the topology of an overhand knot is shown. These knots
are made up of a braid with arc length /,, a loop with arc length /,,
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Fig. 1 Snapshots of overhand knots in the tightening process
from both experiments and simulations: (a1) n=2, I./L=0.61;
(@) n=2,1/L=0.75; (a3) n=2, I./L=0.79; (b1) n=3, I./L =0.68;
(b2) n=3, I/L=0.78; (b3) n=3, I/L=0.79; (c1) n=4, I./L=0.59;
(c2) n=4,1./L=0.66; (c2) n=4, I./L=0.68

loop

(b) n=3

Fig. 2 Configurations of overhand knots with different unknot-
ting numbers

and two tails where boundary conditions are applied. The topology
of the braid can be characterized by the unknotting number n,
which is the number of times one end must pass the loop to fully
untie the knot. The cross-sectional radius of the rod forming the
knot is h. The two ends of the overhand knot are clamped, and
the clamped-to-clamped length is /.. When pulling two ends of an
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overhand knot, there is another intrinsic quantity not shown in
Fig. 2, which is the friction coefficient y.

As shown in Fig. 1, when pulling two ends of an overhand knot
with n> 1, the loop will suddenly invert and contact the braid region
at a specific point. This is a snap buckling process caused by the
geometry of the overhand knot. In this problem, the overhand
knot is formed with a naturally straight elastic rod, and the boundary
conditions consist of the two clamped ends, which are pulled apart
at a steady velocity. Note that when applying the boundary condi-
tions, the two manipulated ends of the rod have the same material
frames, and the two ends have zero relative rotation. When the
two manipulated ends have nonzero relative rotation, more compli-
cated behavior of the knot can arise. For example, Bergou et al. [11]
showed that applying relative rotations on these two material frames
results in a change of topology of a trefoil knot. In this article, we
focus on the case when the relative rotation is zero to show the influ-
ence of the knot’s topology on the nonlinear behavior of the struc-
ture rather than the influence of the boundary rotations. Indeed,
inversion is a geometry-dependent phenomenon, and the influence
of Young’s Modulus is ignorable, which we validate in the
Supplemental Material on the ASME Digital Collection. The rods
used in the experiments are made up of rubber, and Young’s
Modulus is measured by first quantifying the gravito-bending
length Lo, =(E h*8pg)'", where p is density and g is gravity
[55]. When a rod is in contact with a rigid substrate, its shape is gov-
erned by the gravito-bending length L,;,. Young’s modulus E can be
computed by measuring this shape. Young’s modulus E was set to
1.8 MPa, and Poisson’s ratio v was set to 0.5 (incompressible) in the
experiments and simulations, resulting in a shear modulus G =E/
(2(14+v))=0.6 MPa. The inversion point is experimentally mea-
sured in terms of the clamped length /., and the influence of the con-
tributing factors n, i, and p on the inversion point is fully analyzed
in Sec. 4.

3 Numerical Framework for Knots

In this section, we discuss how to incorporate a constraint-based
method motivated by the work of Refs. [18-21] with DER [11,24]
to simulate a knot with frictional contact. Constraint-based methods
for simulating frictional contact responses usually require complex
and careful numerical treatment. In this section, we present a simple
two-step approach to combine DER and the constraint-based
method in an explicit way. In the first step, we compute the friction
contact forces explicitly, and in the second step, we introduce the
computed friction forces into DER to update the status of the sim-
ulated rod. In this section, we first show the equations of motion
(EOM) based on DER; then, we discuss how to compute the friction
contact forces within the EOM. This two-step approach is able to
accurately capture the nonlinear behaviors of the knot.

3.1 Discrete Elastic Rods Method. DER is an algorithm
developed by [11] to capture the nonlinear mechanical properties
of a Kirchhoff elastic rod. Here, we discuss how to construct the
EOM of a rod with frictional contact responses. As shown in
Fig. 3(a), the centerline of the elastic rod is discretized into K
nodes [Xg, ..., Xg_1], resulting in K—1 edges [ey, ..., ex_»]. In
this discrete model, each edge e; has an orthogonal reference
frame [di', df, t;] and a material frame [m,.l, miz, t;]. The shared
director t; in these two frames is the edge tangent between succes-
sive nodes so that t;=e/||¢;||. The reference frame [d} , d?, t;] is pre-
defined at initial time, and a time marching scheme matches the
orthogonal directors at time ¢ to their status at time 7+ At, where
At is the time-step size. In Fig. 3(b), the material frame at the ith
edge is obtained from the reference frame at the ith edge with rota-
tion 0;. In other words, the twist of each edge can be obtained
through the reference and material frames. This suggests that the
rod centerline can be represented with a total of 4K-—1
degrees-of-freedom (3K for the nodal positions and K — 1 for the
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(a XK1

Fig. 3 (a) Discrete schematic diagram of an elastic rod. (b)
Closeup of two connected edges showcasing its reference
frame, material frame, turning angle, and twisting angle in the
discrete model. (c) Discrete schematic of two contacted rod
segments.

twist angles of each edge), which can be expressed as the following
vector:
q = [Xo, 60, X1, 01, X2, 0, ..., X2, Ox—2, Xg—11" (D
where T is the transpose operator.
With the discretization scheme from Eq. (1) defined, the formu-
lation of elastic strains, energies and the time marching scheme will
be discussed in the remaining part of this section. The strains of a

deformed Kirchhoff rod are made up of stretching, bending, and
twisting strains. The stretching strain of an edge is simply

L el
TN
I

(@)

Hereafter, quantities with a (?) indicate the undeformed status, e.g.,
||&: is the undeformed length of the ith edge. Bending strain can
be captured with the help of a curvature binormal vector, which
represents the misalignment between two consecutive edges:

(kb) = - X ¢ 3)

lle—illllell +e1-e

The norm ||(xb);|| =2 tan (¢;/2) is the value of the curvature, and
¢; s the turning angle between two consecutive edges, which can be
observed in Fig. 3(b). The material curvatures are then given by the
inner products between the curvature binormal vector and the mate-
rial frame directors [m}, m?]:

1
Kl = E(ml.z_1 + miz) - (xb);

“
2 L 1
K, = —E(m,-_1 +m;) - (xb);
Finally, the twisting strain of an edge is
7,=0,—0,_1 + A’L’;ef 5)

where Arref is the discrete integrated reference twist, which can be

obtained through the parallel transport between two neighboring
reference frames.

041008-4 / Vol. 90, APRIL 2023

Given the elastic strains, the expressions for the discrete elastic
energies of an elastic rod can be formulated as follows:

1 K-2
=3 ;EA(ei)znéiu (6a)

K 2
1
Te [EL! - &) + EL (k] — %7)] (6b)

=32

K-2

1 1
E = EZT Gl(x; - %) (60)
1

where A is the rod’s cross-sectional area; £ is Young’s modulus; G
is the shear modulus; J is the geometrical factor of the torsional
rigidity, which is equal to the second polar moment of the area
along the tangent t; when the cross section is circular; and /; and
I, are the second moments of the area along the material frames
m} and m?, respectively. By using the potential elastic energies
in Eq. (6), a first-order implicit Euler method is used to integrate
the equations of motion numerically from f#,)q tO fpew =7fo1a + At.
The final equations of motion are given as follows:

M - .
A7 (7(1"6“/ AL Qota _ qold) F, —Fr, =0 (Ta)
8(E + E, + Ef)
le — s b 7b
new a(ll'leW ( )
F =FC + F" (Te)

In Eq. (7), F"‘et is the internal force FeX is the external force,
which constitute of the gravity F€ and fnctlonal contact responses
F/, M is the diagonal mass matrix; and the subscript new refers to
the state at time f,,.,y. Note that the formulation of F‘n“e‘W is given and
F€ is constant during simulation. We next outline the formulation
of the frictional contact responses F/ so that Newton’s method

can be implemented to solve the EOM stated in Eq. (7).

3.2 Frictional Contact. In our numerical framework, friction
is modeled with Coulomb’s friction. We have found that treating
frictional contact responses as linear complementary constraints
can describe Coulomb’s friction accurately. Since the linear com-
plementary constraints describing frictional contact were first for-
mulated by Jean and Moreau [18], many modern numerical
frameworks have implemented these constraints to simulate fric-
tional responses [20-23]. In this article, we implemented the formu-
lation from Refs. [20,21] to compute the frictional contact between
two contacting edges, as shown in Fig. 3(c).

In Fig. 3(¢), when two edges are in contact, linear complementary
constraints exist between contact forces F/ and the contact points.
Each segment is treated as a cylinder, and contact points C, and C,
can be computed with the algorithm presented by Ref. [56]. The rel-
ative tangent velocity (C, relative to Cp) is u, and the contact force
isF/r = F + Ff’ Note that n=(C, — C,)/d is the normal direction,
and t =u,/||u,|| is the tangential direction. Based on the linear com-
plementary constraints from Refs. [18,20], the relationship between
contact distance d and the normal component of the frictional
contact force is given by Signorini’s condition:

F/f n>0L0<d-2h ®)

When two segments contact (d — 24 =0), the linear complementary

condition between the friction force Ff' and tangential relative
velocity u, is expressed as follows:
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The relative velocity u at the contact point, the minimal distance d,
the contact normal direction n, and tangential direction t can be
acquired from the DER formulation. Therefore, we can solve for
the frictional contact responses F” with the linear complementary
condition. In the work by Alart and Cunier [20], an augmented
Lagrangian formulation is proposed so that the linear complemen-
tary constraints in Eqgs. (8) and (9) can be rewritten as follows:

Foc (Ffr) =0

F/.n—Pg (F"-n—pd) (10)
| =Tt = Py iy, (—FT - Ot = puy)

Equation (10) is the linearized formulation of Egs. (8) and (9) pro-
posed by Alart and Cunier [20]. In this formulation, P(:) is the pro-
jection operator and p is the penalty coefficient defined by users.
(Details can be found in the Supplemental Material.) Equation
(10) can be solved with Newton’s method. However, Bertails-
Descoubes et al. [21] found that when the contact ratio is high,
solving Eq. (10) globally will cause convergence issues. Daviet
et al. [22,25] later developed a relatively complicated Gauss—
Sidel solver that treats different contact pairs locally to improve
convergence performance. In this article, we use an explicit
method to solve the linear complementary conditions in Egs. (8)
and (9) since we study the behavior of the knot under quasi-static
conditions. We used the configuration of the knot at the previous
time-step (which is known) to approximate the required quantities,
e.g., contact distance d, contact normal n, and tangent direction t in
the linear complementary constraints so that we can find the fric-
tional contact responses with Eq. (10) in a robust way. The full algo-
rithm of solving for the frictional contact responses and the
validation of the frictional contact framework is presented in the
Supplemental Material. _

Once the frictional contact response F” are computed for all con-
tacting segments with the explicit method, we have all the items in
Eq. (7). The DOFs vector q for the knot can be updated via time
marching with Newton’s method.

4 Results From Simulation and Experiments

In this section, we present the results from the numerical frame-
work stated in Sec. 3 and compare them with experimental data. We
discretize the elastic rod into K =301 nodes in our simulations. A
validation of our frictional model is provided in the Supplemental
Material. In our rod model, 14 DOFs [xq, 0y, Xi, Xx_2, Ox_2, Xx
_1] are constrained; recall that each node, e.g., X,, corresponds to
three DOFs. These 14 DOFs correspond to the Cartesian coordi-
nates and twist at the two ends. We applied this clamped boundary
at the two ends for both our simulations and experiments. All other
nodes are free to deform. In our simulation, we assume that (1) the
effects of gravity are negligible and (2) the rod material is homoge-
neous. However, if desired, the effect of gravity can be easily
accounted for in the discrete model as an additional external
force. In the Supplemental Material, we show that gravity has
minimal influence on the inversion point through simulation.

4.1 Experimental Setup and Illustration of Inversion
Point. We now introduce the setup for our experiments as well
as provide a formal description of the inversion point. In our exper-
iments, two fixtures are used to clamp and pull the two ends of a
suspended overhand knot. These fixtures move collinearly in oppo-
site directions, as shown in Fig. 4. Recall that the end-to-end length,
also referred to as the clamped length, is /.. With this, we define two
new quantities, H and W, to measure the geometry of the closed
loop of the overhand knot. As shown in Fig. 4, H is the height of
the knot as defined by the distance along the vertical symmetric
division of the knot and W is the width of the knot as defined by
the distance between the two ends of the braid region. As the
knot tightens, /. increases while H and W smoothly decrease.

Journal of Applied Mechanics

Fig. 4 Experimental setup used to observe the inversion point
of overhand knots

However, for knots with unknotting numbers n>1, there will be
a specific point during the tightening process, where H suddenly
drops to zero, which we define as the inversion point. A formal def-
inition of the inversion point is shown in Fig. 5.

Mathematically, the geometry of the knot is most relevant with
the closed loop. The size of the closed loop in Fig. 4 can be approx-
imated by L—I., where [. is the end-to-end length and L is the
total length of the rod used to tie the knot. In our experiments, we
use [, =L —I. to measure the inversion point. In the simulations,
the inversion point is measured using two quantities: traction
force and geometrical changes. We convert all quantities to be
dimensionless and use (-) to denote this. We nondimensionalize
I, F, and H as follows:

o _h_L-L
TR T h
2
L (11)
El
_H
H=""
%

where El=(n/4)E h* (EI= EI, = EL) is the bending stiffness;  is
the cross-sectional radius of the rod; E is Young’s modulus; and
F is the traction force. In our simulations, Young’s modulus of
the rod is set to £=1.8 MPa, which is the same as the measured
Young’s modulus of the rods used in experiments. Poisson’s ratio
is set to 0.5, which means the material is assumed to be
incompressible.

As shown in Fig. 5(a), it can be seen that the traction force F
increases initially as the knot is tightened and then proceeds to
rapidly decrease and then rebound once /; reaches the inversion
point. Similarly, in Fig. 5(b), H drops to zero at the inversion
point. The inversion points obtained from both simulation and
experiments are the same. Therefore, in this article, we will use H

(a) (b)
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Fig.5 lllustration of the inversion point in plots of (a) I, versus F
and (b) I versus H. A graphic of the rod state (c) before inversion
and (d) post-inversion are also displayed.
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Fig. 6 Effect of normalized rod radius h on inversion point: (a) the relationship between normalized traction force F and nor-
malized knot closed-loop length I for different h, (b) the relationship between normalized height H and normalized knot
closed-loop length I, for different h, and (c) comparison between simulated and experimental results of normalized height H

versus normalized knot closed-loop length I.

to compare the inversion points from the simulations and
experiments.

Since the problem is geometry based, the contributing factors are
the ones that have a direct effect on the geometry of the closed loop.
With this in mind, there are three quantities that play a key role in
inversion: rod radius A, unknotting number #n, and friction coeffi-
cient . Going forward, we will see how these quantities impact
the inversion point in the system. For both the simulations and
experiments shown in Fig. 5, the parameters #=1.6 mm, L=1m,
n=3, and u=0.1 were used.

4.2 Inversion Points and Contributing Factors. Through the
numerical framework and desktop experiments, we explore the
influence of the three contributing factors, #, n, and y, systemati-
cally. For simulations, we performed a parameter sweep for each
parameter (n, h, and p) where varying values were used for each
parameter, while the other two remained constant. Due to the
restrictions of the rods’ material in the real world, we perform
experiments covering only parts of the full parameter sweep done
in simulation. Regardless of this, all experimental results still ade-
quately show the influence of the contributing factors (n, A, and
1) on the inversion point.

4.2.1 Effect of Rod Radius. First, we quantitatively study the
influence of 4 on inversion. When studying each contributing

| —— Sim A Exp ‘
=4 0.5
=
2
3 0.4
o)
15)
0 503
g 200
w
< 0.2
~ 250 —— ‘
8
'.T'é 300 Before inversion 0.1
=1
> |
Z 350 0

2 25 3 fi
Rod radius, h [mm]

Fig. 7 Phase diagram of normalized rod radius h versus inver-
sion point with n=3 and z =0.1
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factor, we set the remaining contributing factors to be constant in
order to most accurately discover the direct influence of the param-
eter in question. For each contributing factor, a total of four plots are
created: simulation results of the normalized traction forces F' with
respect to the normalized knot close-loop length /;, simulation
results of the normalized height H with respect to Iy, comparison
of simulation and experimental results, and a phase diagram.

When studying the effect of 4, the unknotting number n was set to
3 and u was set to 0.1. Furthermore, the pull speed at both ends was
set to Au=1 mm/s in order to ensure quasi-static responses from
the system. Figure 6(a) shows the evolution of F with respect to
1, for different rod radii values, h €[1.6, 2.0, 2.4, 2.8, 3.2] mm. In
this plot, the sudden jump in force magnitude appears at similar
values of [, as h increases. In other word, the inversion point
always happen at the similar nondimensionalized length of the
closed knot loop no matter how the rod radius changes. Indeed,
the closed knot loop length is nondimensionalized with /, and there-
fore, inversion happens more easily with larger rod radii. Likewise,
Fig. 6(b) plots H with respect to /; and the inversion points can also
be located from the sudden drops in H. For the experimental com-
parison, two rods with different rod radii were used: one with 7=
1.6 mm and another with #=3.4 mm. As can be seen in Fig. 6(c),
we find excellent agreement between both the simulation and exper-
iments for both rod radii. Finally, in Fig. 7, the phase diagram of the
overhand knot with n=3 and y=0.1 is given. Overall, when the
nondimensionalized length of the closed knot loop is the same,
the instability behaviors are approximately the same for different
rod radii.

4.2.2  Effect of Unknotting Number. Moving forward, we now
turn to the next contributing factor, the unknotting number n. Sim-
ilarly to before, we set the remaining contributing factors to constant
in order to observe the influence of n on the system. The remaining
contributing factors are set to #=1.6 mm and y=0.1.

In Figs. 8(a) and 8(b), the relationship between F and H with
respect to I is given, respectively, for several values of n. For
both plots, the jump points correspond to the inversion points.
For the experiments, a rod with 4#=1.6 mm and ¢ =0.1 was used
to make overhand knots of n=3 and n=4. As shown in
Fig. 8(c), we once again find excellent agreement between the sim-
ulated and experimental results. In Fig. 9, a phase diagram showcas-
ing the influence of n is shown. Overall, it has been shown that the
critical value of J; tends to increase as the unknotting number 7
increases (corresponding to a decreasing clamped length /). We
also note that, to observe the inversion phenomena, n should
always be larger than 1. In other words, when n =1, there will be
no inversion in the system.

4.2.3  Effect of Friction Coefficient. Finally, we look at the
effect of the friction coefficient y on the system. Once again, we
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make the remaining contributing factors constant: n is set to 3 and &
is set to 3.4 mm. Figures 10(az) and 10(b) show the relationship
between F and H with respect to I, respectively, for several
values of p. For both plots, the jump points correspond to the inver-
sion points. Here, we can see that as u increases, the normalized
clamped length at which inversion occurs decreases. For the exper-
iments, a rod with normalized rod radius #=3.4 mm and unknot-
ting number n=3 was used. In addition, chalk and glycerin were
used to change the surface of the rod for the purpose of manually
adjusting the frictional coefficient y. We found that when we
added chalk to the surface of rod, ; became 0.7, while glycerin pro-
duced x=0.1. By using this setup, we once again find excellent
agreement between simulation results and experiments as shown
in Fig. 10(c). Finally, in Fig. 11, the phase diagram is shown.
Overall, we conclude that the threshold for inversion decreases as
the friction coefficient increases.

Through desktop experiments and numerical simulations, we
have discovered that &, y, and n all play positive roles in the inver-
sion process of overhand knots. So far, we have clarified the effects
of h, u, and n on the inversion points of overhand knots. However,
exactly how these contributing factors influence the system and why
inversion happens remains to be explained. In Sec. 5, we develop a
simplified model of the knot, which does not require the simulation
of self-contact, to explain why inversion happens and what role the
contributing factors play in the system.

| —— Sim A Exp I

o

Normalized closed loop length, I
(&)}
o

S il
After inversion

=
o
o

-
o
o

2 3 4
Unknotting number, n

Fig. 9 Phase diagram of unknotting number n versus inversion
point with x=0.1 and h=1.6 mm
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5 A Simplified Knot Model

In this section, we introduce a simplified model for the overhand
knot with the goal of investigating why inversion occurs during the
knot tightening process. The primary goal of this simplified model
is to eliminate the need to simulate frictional self-contact in the
numerical simulations of the knot. However, to capture the geomet-
rically nonlinear behavior of the rod, the simplified model still
depends on numerical simulation of the contact-free knot loop.
As shown in Fig. 2, an overhand knot can be divided into three
parts: the loop, the braid, and the tails. In the simulations and exper-
iments described in the previous section, it was observed that the
braided region loosens, and portions of the braid are fed into
the loop region when inversion occurs. Furthermore, the length of
the tail regions remain constant before and after inversion. We
therefore conclude that inversion occurs due to a coupling of
elastic energy within the braid and loop regions. In the simplified
model, we ignore the tails and instead focus solely on the closed
loop, which consists of the braided region and the loop region.

A schematic of the simplified knot model is shown in Fig. 12.
Within the simplified model, rods with helical centerlines are
used to approximate the braided region, friction within the
braided region is neglected, and self-contact within the loop
region is neglected. As shown in Fig. 12(a), and consistent with
the formulation in Sec. 2, /; is the loop’s arc length and [, is arc
length of the braided region. We also use t; and t, to denote the
tangent directions at the ends of the loop. As the knot in
Fig. 12(a) is tightened, it will deform into the knot shown in
Fig. 12(b). Throughout this process, we assume that the knot’s
shape remains antisymmetric about the YZ plane. We can therefore
parameterize the rod’s boundary conditions using two angles, 6 and
¢, as shown in Figs. 12(c) and 12(d). The angle O is the rotation of
the tangent vectors t; and t, about the z-axis. Due to continuity in
the closed loop, the corresponding end of the braid will also
rotate about the z-axis, and this rotation angle will also be 0. As
shown in Fig. 12(d), the angle ¢ is the rotation of the tangent
vectors t; and t, about the x-axis.

Since the tails of the rod are neglected in the simplified model,
there are six geometric parameters to consider: /,, [, h, n, 6, and ¢.
We note that for a sufficiently small radius A, the axial length of
the rod within the braided portion is approximately 2 /,, and we
have [, =, + 1. From the three length-dependent parameters I, I,
and h, we can obtain two nondimensional parameters, which we
choose to be =1L/ h and € = I;,/I;. We note that the nondimensional
lengths I, =1, /h and [; = [;/h can be recovered from /; and € via

—_€7k T 7k
"TTve T 1+e

As mentioned previously, we have observed that inversion occurs due
to coupling of elastic energy within the braid and loop regions.
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Therefore, with E,, denoting the elastic energy of the braid and E;
denoting the elastic energy of the loop, we define the following non-
dimensional energies:

_ Eyh - Eh
E, =2 Ei=" (12)

To compute the nondimensional braid energy Ej,, we first param-
eterize the helical rods that comprise the braid region as follows:

X =cos(r)
y =sin(?)
7=bt
_ (13)
_ I,
b= =10

t € [—nn+06, nr—0]

Neglecting the twisting energy of the helical rods within the braided
region, we can use Eq. (13) to obtain the nondimensional bending
energy of the braided region E, in terms of the nondimensional
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Fig. 11 Phase diagram of friction coefficient u versus inversion
point with n=3 and h=3.4 mm
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curvature K:

1
72

K=

E,=2R% i — O 1 +b°

Next, we describe the energy of the loop E;. Since the loop is a sus-
pended elastic rod in three-dimensional space, determining its config-
uration and elastic energy is nontrivial. However, we can use
DER-based numerical simulations described in earlier sections to
find the loop’s shape. Doing so, we can express E; as the function:

El =f(¢’ 99 7]{’ 8) (15)

where the value of f(-) is found with DER.

We can now express the total knot energy E(¢, 0, i, €) of the
closed loop as Ej, + E;. Equilibrium configurations of the simplified
knot must satisfy VE = 0. However, rather than coupling the analyt-
ical expression for the braid energy E; with the numerically com-
puted loop energy E;, we will instead focus on the influence of a
single variable on the equilibrium configurations and their stability.
Specifically, we will investigate how the rotation angle 0 affects
knot configurations. From the numerical simulations described in
previous sections, it was observed that inversion typically occurs
at the approximate parameter values ¢ = /3 and € = 0.7. Therefore,
these nondimensional parameter values will be used in the remain-
der of this section.

To observe the effects of 8 on equilibrium configurations for the
parameters ¢ =z/3 and € =0.7, we used DER-based numerical

@ ® i,

Fig. 12 Simplified model of the overhand knot
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bility observed in previous sections

simulations to solve for the total energy E with a rod radius of &=
1.6 mm, unknotting number of n =3, a clamped length correspond-
ing to [, = 137.5, and with fixed rotation angles in the range 6 €
[0, 5] radians. Equilibrium configurations of the knot correspond
to rotation angles at which 0E/060 = 0. Figure 13(a) shows the
value of E for 8 €[0, 5]. Here, we see that there are three critical
points, with the outer two critical points being stable and the inter-
mediate critical point being unstable. We emphasize that the config-
urations corresponding to these critical points are equilibria with
respect to variations in 0 only, and the other parameters (specifi-
cally, ¢ and ¢) are held fixed. Figure 13(b) shows the value of
OE /00 for the range of 0, where we again see that there are three
critical points.

We can now observe how the number of critical points changes
as the knot closed-loop length /; changes. Figure 13(c) shows the
values of 0 at the critical points as the clamped length varies. For
sufficiently large I, there is a single stable critical point. As I;
decreases, two additional critical points, one stable and one unsta-
ble, appear in a fold bifurcation. Further decreasing J; causes the
unstable critical point to collide with the original stable critical
point in a second fold bifurcation, leaving a single stable critical
point for sufficiently small 7. The second fold bifurcation corre-
sponds to the snap-through instability observed in previous sec-
tions. We note that although the simplified model exhibits a
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Fig. 14 Comparison between simplified model, the full DER

simulation, and the experimental measurements for different
values of h withn=3 and z=0.1
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hysteresis loop between the twofold bifurcations, this hysteretic
behavior is not observed in experiments since increasing I
causes the knot to sag due to gravity, which is not included in our
model.

This simplified knot model can now be used to predict how
changes in the rod’s radius and the unknotting number affect the
critical clamped length at which inversion occurs. This in turn
allows us to compare our simplified knot model’s output with the
simulated and experimental results from previous sections. For
values of the rod radius 4 in the range [1.5, 3.5] mm and an unknot-
ting number of n =3, we computed the critical closed-loop length /.
at which the snap-through instability occurs. These results are
shown by the dashed line in Fig. 14, along with the experimental
results and the simulation results based on the full DER model
that includes contact and friction, with a friction coefficient of y=
0.1. A similar comparison is shown in Fig. 15, where the radius
is fixed at A=1.6 mm and the unknotting number is varied. We
again emphasize that € and ¢ are held fixed in the simplified
model for the data shown in Figs. 14 and 15.

From Figs. 14 and 15, we can observe both qualitative and quan-
titative agreement between the simplified model, the full DER simu-
lation, and the experiments. Particularly, we see that I, is invariant
under changes in the rod radius / and grows with the unknotting
number 7, corresponding to a decreasing clamped length /..
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Fig. 15 Comparison between simplified model, the full DER

simulation, and the experimental measurements for different
values of n with h=1.6 mm and x=0.1
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6 Conclusion

In this article, we studied the snap-through buckling of overhand
knots during the pulling of the knot’s clamped ends. For this
purpose, a discrete differential geometry-based model, one-
dimensional discrete elastic rods, with a constraint-based method
for frictional contact was introduced in order to study the effect
of overhand knot topology on physical behavior when tightened.
Through both experiments and simulations, we found that
complex topologies of knots can induce intriguing phenomena
such as snap buckling and that parameters such as y, h, and n
have an influence on the geometry of overhand knots and thus, an
influence on the snap buckling point itself. As p, h, and n increase,
inversion, which is the process of snap buckling, occurs earlier with
an increasingly loose overhand knot. To make it clear that inversion
is a result of the energy coupling in the system, we analyzed the
topology of overhand knots and formulated a simplified model to
predict the inversion point. Furthermore, we have observed that
as the closed loop of the knot tightens, some parts of the braid
(the self-contact zone) loosen suddenly, which directly causes
inversion, and beyond this point, the loop will stay in contact
with the braided region.

Although a few previous studies on snap buckling in elastic struc-
tures have considered the influence of self-contact, contact-
dependent buckling is still a challenging topic both numerically
and analytically. Therefore, we believe our work to be promising.
The inversion in overhand knots shows that topologies caused by
self-contact can introduce interesting behaviors of elastic structures.
Because of the energy coupling between the contact zones and
regions without contact, inversion occurs, resulting in overhand
knots that self-tangle in complex ways. Such an understanding of
inversion may prove helpful in the explanations of tangles for
polymers like DNA and proteins or even be a motivation in the
design of soft robotics.
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