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Abstract— As technology advances, the need for safe, effi-
cient, and collaborative human-robot-teams has become in-
creasingly important. One of the most fundamental collabo-
rative tasks in any setting is the object handover. Human-
to-robot handovers can take either of two approaches: (1)
direct hand-to-hand or (2) indirect hand-to-placement-to-pick-
up. The latter approach ensures minimal contact between the
human and robot but can also result in increased idle time
due to having to wait for the object to first be placed down
on a surface. To minimize such idle time, the robot must
preemptively predict the human intent of where the object will
be placed. Furthermore, for the robot to preemptively act in
any sort of productive manner, predictions and motion planning
must occur in real-time. We introduce a novel prediction-
planning pipeline that allows the robot to preemptively move
towards the human agent’s intended placement location using
gaze and gestures as model inputs. In this paper, we investigate
the performance and drawbacks of our early intent predictor-
planner as well as the practical benefits of using such a pipeline
through a human-robot case study.

I. INTRODUCTION

Industrial robots have traditionally been utilized in caged
or taped-off settings for the safety of nearby human opera-
tors. These robots, often “hard-coded”, are assigned highly
specified and repetitive tasks requiring a large amount of
precision. As technology advances, an increase in the need
for more intelligent robots has been seen as robots are
applied to more dynamic, human-populated settings such as
warehouses, restaurants, and public streets. One of the most
challenging aspects of integrating robots into everyday life
is in developing systems that can safely work with humans
with minimal human supervision. In order to ensure safe and
fluid operation, robots must be able to infer human intent
and factor in such information into their actions accordingly,
much like real human workers.

One of the most fundamental tasks between workers in
a team environment is the handover of tools or materials.
Direct mid-air hand-to-hand transfers require the robot to
move in a way that avoids collision with the human operator
while making contact with the held out object. This requires
accurate estimation of the transfer point [1] as well as grasp
classification [2]. Indirect placement transfers (i.e. placing
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Fig. 1. Robot system pipeline. (a) shows the high level modules of the
system which are color coded. (b) shows the individual components making
up each of the high level modules. Predictive and definitive actions are
defined in Sec. III-F.

an object down so that the opposite agent can pick it up
easily) circumvent this problem entirely albeit with reduced
efficiency due to the extra step of having to place the
object down. Still, indirect placement transfers are heavily
prevalent all throughout daily life such as when dealing with
dangerous tools (passing knives) or transferring objects to
occupied individuals (placing empty glasses at a bar for a
bartender). Therefore, with accurate prediction of the object
placement intent along with preemptive planning, robots can
take advantage of the benefits of indirect handovers while
minimizing inherent inefficiencies.

In this paper, we investigate the problem of preemptive
motion planning for efficient human-to-robot indirect object
placement transfers using real-time predictions of human ob-
ject placement intent as feedback. We introduce a prediction-
planning pipeline that allows the robot to preemptively
move towards objects placed by a human. The primary
contributions for our work are as follows: (1) we introduce
a prediction-planning pipeline for preemptive human robot
placement handovers that can serve as a basis for future
system implementations; (2) we show practical quantitative
results in a human-robot-collaboration case study utilizing
preemptive motion planning when compared to more tra-
ditional wait-and-act approaches; (3) we analyze human
social perception of preemptive robots; and (4) we show
that accurate real-time performance can be achieved without
expensive prohibitive equipment such as motion capture or
gaze tracking eyewear.
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Fig. 2. An illustration of the intent model architecture. As shown, the model is a recurrent convolutional network. Recurrent units act as the encoder, where
the pose & gaze feature vector is fed into the gated recurrent units (GRU) at every time step. Here, the hidden states fed back into the GRUs represent
the encoded state of past time steps. Convolutional layers act as the decoder which perform a series of transpose convolutions from a 1-D encoded state
vector. The dimensions of the convolutional layers are shown for a heatmap output of size 5× 10, which is the size used in the case study.

The remainder of the paper is as follows. In Sec. II, we
review prior work on human intent prediction and preemptive
control. In Sec. III, we discuss the overall methodology
involving the intent model and how predictions are factored
into the robot’s motions. Next, in Sec. IV, we go over the
experiment design while in Sec. V, we analyze the results
from the case study. Finally, conclusive remarks as well as
potential future research directions are discussed in Sec. VI.

II. RELATED WORK

Human intent prediction has been a popular research topic
tackled by a variety of communities in machine learning,
computer vision, and robotics [3], [4]. Intent prediction
has especially become a point of interest for the robotics
community as humans become increasingly integrated into
robot workspaces. Such inference is necessary for a variety
of human-robot-collaborative tasks such as load sharing co-
manipulation [5], [6], socially-aware navigation [7], [8], and
object placement handovers [9], [10], [11], which commonly
adopt non-verbal cues such as gesture, gaze, and facial
expression to predict human intention or attention [12], [13],
[14], [15], [16], [17], [18].

In terms of the social and cognitive aspects of the human-
robot handover task, previous research has focused on un-
derstanding human preference of handovers [19], [20], the
effect of gaze [21], [22], [23], [24], human comfort [25], as
well as the roles of trust [26], [9] and support [11]. Attempts
to develop frameworks that codify the coordination structure
of handovers have also been made [27].

At a lower level, previous methods for human intent
prediction have utilized Gaussian mixture models (GMM) to
learn a library of human motions for early prediction of hu-
man reaching motions [28]. Later work showed quantitative
results showcasing the benefits of utilizing GMM produced
early predictions in tasks with humans and robots in the same
workspace [29].

More recently, deep learning methods have also been
used for intent prediction. Recurrent neural networks (RNN)
have been shown to be able to classify high level human
actions using gaze and body cues [23]. More similar to our
specific problem, RNNs have also been shown capable of
predicting object placement intents when used with Mixture
Density Networks [10]. Other methods have attempted to use

inverse reinforcement learning approaches in order to obtain
a cost function explaining human behavior from human
demonstrations [30], [7], [31], or to learn how to interpret
human intent directly from interaction and communication
without demonstrations [32].

Following this, the robotics community has utilized such
human intent prediction methods in order to develop pre-
emptive control methods. Such prior work has worked on
developing robot systems that are capable of preemptively
planning with human intent factored in [29], [33], [34].
Similar to these works, we introduce a novel preemptive
control method using data-driven intent prediction that is
specifically catered towards human-to-robot object placement
handovers. Furthermore, we also investigate the impact of
preemptive planning on human comfort and preference.

III. METHODOLOGY
A. Intent Prediction

For the predictive model, we train a recurrent convolu-
tional network as shown in Fig. 2. This model takes in
features constructed from human gesture and gaze in order
to produce a n×m heatmap representing the human agent’s
object placement likelihoods on an opposing flat surface. We
incorporate both pose and gaze as inputs as a combination
of both has been shown to produce better predictive results
than one alone [23].

B. Features
For the first set of features, we simply obtain the 3D po-

sitions of the palm, elbow, and shoulder which are obtained
through Openpose [35], [36]. The second set of features
involve the head pose and norm. To avoid the complexities of
pupil tracking, we use facial feature detection [37] to obtain
the head pose h as well as the concurrent reference frame
where the head norm is the x-axis.

For the next feature, we compute the intersection point
ψ of the human’s gaze vector with the table plane. To
obtain this, we first tilt the head norm vector 30 degrees
along the y-axis to point towards the table and treat this
subsequent vector g as the gaze vector. Then, to obtain the
gaze intersection point along the table plane, we compute

ψ = h−
(
nt · (h− p)

nt · g

)
g, (1)
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Fig. 3. An example prediction sequence. The red vector located on the participant’s head is the detected face norm. The red dot indicates the gaze
and table plane intersection point ψ discussed in Sec. III-B. The green skeleton shows the detected shoulder, elbow, and palm positions. For each frame
(a-h) along the trajectory, the corresponding heatmap can be seen underneath. Note that at the start of the trajectory, the model is unsure of the human’s
placement intent. As more and more of trajectory is realized, a prediction with increasing confidence can be seen being made.

where nt is the norm of the table plane and p is an arbitrary
point on the table plane. As we normalize the table plane
to be through the origin, we can remove the z-component
of ψ so that ψ consists of only the x and y coordinates.
These features as well as their velocities computed from the
previous set of features round out the inputs to our model.

C. Labels
To train the model, we use a n×m grid of probabilities

as our labels. A sigmoid layer is used as our output layer to
avoid near zero probability values as the grid size increases.
Furthermore, to avoid overconfident predictions resultant of
one-hot encoding, we use a 2D Gaussian to employ label
smoothing for a label

l(x, y) =
1

2πsxsy
exp

(
− (x−mx)2

2s2x
− (y −my)2

2s2y

)
, (2)

where x ∈ [0, n− 1] and y ∈ [0,m− 1] are the label indices
with respect to the grid, mx and my are the true positions,
and sx and sy are the standard deviations for the Gaussian.

Additionally, we also scale the labels by weights

ct = 1− exp

(
−5t

T

)
, (3)

where t is the current time step, and T is the total length
of the trajectory. This is done so that the model is initially
unsure and increases its confidence as more of the trajectory
is observed. To properly apply the confidence weight, we
normalize the labels so that the maximum value is 1 to obtain
our final label

lt(x, y) =
l(x, y)

max(L)
ct, (4)

where L is the set of all labels.

D. Loss

Similar to the labels, we assign the weights from Eq. 3 to
our training loss as well so that earlier incorrect predictions
are penalized less than later ones. As we are working with
a probability regression problem, we employ mean squared
error (MSE) as our loss function. The loss for one training
trajectory can then be computed as

loss =
T−1∑
t=0

(
m−1∑
y=0

n−1∑
x=0

MSE(lt(x, y), pt(x, y))

)
ct, (5)

where pt(x, y) is the prediction of the x-th and j-th grid
location.

E. Weighted Predictions

Finally, when obtaining predictions during real-time op-
eration, we keep the last h predictions in order to obtained
weighted grid probabilities. Similar to [33], we use a set of
weights

wi = (1− ε)i ∀ i ∈ [h], (6)

where ε is a decay factor. Applying these weights allow
for more recent predictions to have exponentially more
influence. The weighted prediction for a certain grid location
and current time step can then be computed as

p̄(x, y) =
1

h

h−1∑
i=0

pi(x, y)wi. (7)

F. Preemptive Motion Planning

To carry out motion planning, we employ stochastic tra-
jectory optimization for motion planning (STOMP) [38] as
this algorithm has been shown to be capable of producing
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Fig. 4. Example sequence with preemptive motion planning. The robot is in the ready position in frame (a). As more and more of the trajectory is
observed, the robot correctly predicts the human’s placement intent and is able to move to a position to pick up the object as shown in frame (f).

smooth trajectories in real-time [28]. At every time step, we
calculate the full weighted heatmap p̄ which can then be used
to obtain the grid location containing the highest probability
p̂ = max(p̄). If p̂ surpasses an execution limit γ and the final
object location is still unknown, we have the robot carry out
a predictive action towards the grid. Otherwise, if the final
object location becomes known, we carry out a definitive
action to pick up the object.

Two separate threads are used to asynchronously carry out
predictive and definitive actions based on the current known
state. If a predictive action is already in progress when the
final object position becomes known, we preempt and replan
a definitive action. If an ongoing predictive action is close
enough (we used a tolerance of 1 x-grid and 2 y-grids) to the
known goal position, we carry out the full motion in order
to minimize any stop-and-go stuttering. The predictive and
definitive algorithms are shown in Algs. 1 and 2, respectively.

IV. EXPERIMENTAL DESIGN

To analyze the benefits of using our prediction-planning
pipeline, we perform a comparative case study for the
human-to-robot object placement transfer task. For this task,
the human places down wooden cubes measuring 1 inch on
all sides on a table for the robot to pickup and sort. In an
effort to minimize idle time and maximize efficiency, the
robot will attempt to preemptively move to where the human
places the object before the final object position becomes
known.

A. Baseline

For our baseline, we create a naive planning pipeline that
works purely reactively. In other words, the robot does not
take into consideration any human-related factors and simply
plans to grab the cube once the cube is detected. We will call
this approach reactive and our proposed method as preemp-
tive. Both methods were set to use identical joint speeds for
fair comparison and consisted of three sequential motions:
x-y traversal, move to pre-grasp position, and move to grasp
position. More sophisticated baselines such as following the

Algorithm 1 Predictive Node
memory← queue of size h×n×m initialized to all zeros
while running and no object is detected do

s← obtain skeleton from Openpose
g← obtain gaze from facial feature detection
f ← concatenate s and g
p← forward pass with f
memory.push(p)
p̄← obtain weighted predictions from Sec. III-E
p̂← max(p̄)
if p̂ > γ then

(x, y)← argmax(p̄) . our current guess
if no predictive action in progress then

carry out predictive action towards (x, y)
else if previous goal is not within tolerance then

preempt and carry out new predictive action

Algorithm 2 Definitive Node
while running do

object position ← detection algorithm
if object is detected then

if no predictive action in progress then
carry out definitive action

else if previous goal not within tolerance then
preempt and carry out definitive action

arm trajectory were forgone due to an excessive amount of
stop-and-go stuttering caused by constant motion replanning
(something our preemptive approach avoids).

B. Experiment Setup

We design an experiment where human participants se-
quentially place wooden cubes on specified locations on a
5× 10 grid where each grid is identifiable by a numeric id.
Eleven grid slots were chosen at random and used as the
placement sequence for the experiment. These slots can be
seen listed in Fig. 5. Each grid consists of an area measuring
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Fig. 5. The first row and second row are the response and start-to-grab time boxplots, respectively. Each column corresponds to one of the eleven grid
locations used in the experiment. Each subplot consists of two boxplots labeled R for reactive and P for preemptive. The yellow line corresponds to the
median while the blue dot is the mean. As shown, there is a clear decrease in both response and start-to-grab times when employing preemptive control.

8×8cm resulting in a total rectangular workspace of 0.4×1m.
Prior to the experiment, we recorded and labeled a set of 76
trajectories of variable length to use as the training data.

Each participant sits in front of a table with the grid and
a Rethink Robotic’s Sawyer 6DOF manipulator as shown in
Fig. 4. For perception, two Intel Realsense D435 cameras
were used. One was mounted on the robot’s base frame po-
sitioned to view and obtain human features while the second
was mounted above pointing down towards the grid in order
to detect the pose of the placed cubes. Fifteen participants
were used in total. Each participant was informed that they
would be working with the robot for six trials and that it
would run two separate algorithms which would alternate
between trials. All participants were told to abide by the
following rules:

1) Treat the object as if it was a full glass of water (to
minimize rapid movements).

2) Keep the object occluded in their grasp until letting go
(to keep final object position unknown until the end).

3) Do not start the trajectory with the held object occluded
underneath the table or with the arm resting on the
table.

4) Do not place the next object down until the robot has
returned to its ready pose.

5) Try to place the object down with a similar speed for
all six trials (in order to get the most unbiased results
when comparing speed metrics).

C. Metrics

Two sets of metrics were recorded to evaluate the ef-
fectiveness of our preemptive control pipeline. The first
were quantitative metrics measured by the program which
include response time, start-to-grab time, and prediction
error. Response time was measured by the time it took for
the robot to start a motion plan starting from its ready pose.
Start-to-grab time was measured by the time it took for the
robot to actually grab the object starting from its ready pose.
Prediction error was measured as both the number of grids
the model was off by as well as the euclidean distance in
meters.

The second set of metrics were responses to the following
questionnaire provided by the participants at the end of the
experiment:

1) In terms of utilizing as much time as available, how
efficient was each approach?

2) How fast was the response time for each approach?
3) How intelligent / intuitive did each approach seem?
4) How safe did you feel working with each approach?

Recorded responses consisted of a Likert score ranging from
1 to 5 for each approach for each question. Note that ques-
tions one (efficiency) and two (response time) were asked
regardless of having access to quantitative measurements
describing these two metrics. This was done in order to
investigate how a human worker’s perception of a robot
coworker compared with measured results.
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Fig. 6. The first four boxplots showcase the prediction errors in terms of number of x-grids, number of y-grids, number of combined (euclidean) grids,
and euclidean error in meters. The error in meters boxplot has all samples plotted with noise to show the distribution. The last four boxplots showcase the
Likert score results for the questionnaire from Sec. IV-C. Like Fig. 5, these subplots each have two boxplots, R for reactive and P for preemptive.

V. EVALUATION

A. Quantitative Results

The response and start-to-grab times for all grids and
participants were boxplotted as shown in Fig. 5. The average
response time improvement was 1.78 seconds with all eleven
grid positions having a p-value < 0.0001 when comparing
between their reactive and preemptive response times.

Still, the benefit of the reduced response times is largely
dependent on the accuracy of our predictions. Here, the
start-to-grab times can give a clearer view as to how
much of the response time difference is actually used to
move to an advantageous position. The average start-to-
grab time improvement was 1.478 seconds which results
in approximately 83% of the response time being utilized
beneficially. Like response time, all eleven grid positions
had a p-value < 0.0001 when comparing between reactive
and preemptive start-to-grab times. Therefore, we conclude
that preemptive planning largely benefits the human-to-robot
indirect placement transfer task.

Finally, the prediction errors can be seen in the left
four boxplots of Fig. 6. Note that the prediction errors
plotted are the predictions used in the most recent predictive
action before a definitive action was issued. Furthermore, as
mentioned in Sec. III-F, a tolerance of about 2.236 euclidean
grids was used to minimize stop-and-go stuttering. Our
average prediction error was 2.025 euclidean grids which
is below this tolerance.

B. Questionnaire Results

We define the questionnaire metrics as efficiency, response
speed, intelligence, and safety for each of the questions
from Sec. IV-C. The questionnaire results for each of these
metrics can be seen plotted in the right four boxplots of Fig.
6. All questionnaire results had a p-value < 0.0001 when
comparing between the reactive and preemptive responses.
As shown, most participants found the preemptive approach
to be more efficient and intelligent with faster response
speeds when compared to the reactive approach. This can
most likely be attributed to the noticeable reduction in task

completion time as well as the concurrent motion of the robot
with the participant.

Unsurprisingly, the only metric that the preemptive ap-
proach scored worse on was safety where the reactive
approach received unanimous perfect scores. Interestingly, a
few participants (even after giving positive evaluations about
task efficiency and stating that they did not feel like they
were ever in danger) said they preferred the reactive robot
as it was more comfortable to work with. This highlights
the foreignness and unfamiliarity of working closely with
robots that some may possess. From these results, a clear
trade-off between task efficiency and human comfort seems
to exist. Therefore, choosing between the two will likely
heavily depend on the task at hand as well as the personal
preference of the human worker.

VI. CONCLUSIONS
In this paper, we introduced a novel preemptive con-

trol approach for human-to-robot indirect object placement
transfers. This approach was shown to significantly reduce
task completion time for indirect object placement transfers
through a comprehensive case study between human partic-
ipants and a robot manipulator. Furthermore, we concluded
that preemptive robot behavior increases perceived efficiency
and intelligence in exchange for general human comfort.

Future work involves improving the performance of our
model and planner, conducting more ablation studies, as well
as expanding the problem space. Although our model was
able to correctly predict the general placement location a
majority of the time, predictions still had a large variance
as shown in Fig. 6. This can most likely be remedied by
gathering more training data as well as possibly exploring
non-recurrent-based architectures such as transformers. Ad-
ditional ablation studies would also provide better insight of
the intent model. In particular, although we used previous
work [23] to help design our feature vector, a comparison
between using just gestures versus both gestures & gaze
would prove helpful. Finally, we would like to expand our
preemptive control work to harder indirect placement transfer
problems such as those involving a human walking from afar.
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