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Abstract—We study the approximability of two related prob-
lems on graphs with n nodes and m edges: n-Pairs Shortest
Paths (n-PSP), where the goal is to find a shortest path between
O(n) prespecified pairs, and All Node Shortest Cycles (ANSC),
where the goal is to find the shortest cycle passing through each
node. Approximate n-PSP has been previously studied, mostly in
the context of distance oracles. We ask the question of whether
approximate n-PSP can be solved faster than by using distance
oracles or All Pair Shortest Paths (APSP). ANSC has also been
studied previously, but only in terms of exact algorithms, rather
than approximation.

We provide a thorough study of the approximability of 7-
PSP and ANSC, providing a wide array of algorithms and
conditional lower bounds that trade off between running time
and approximation ratio.

A highlight of our conditional lower bounds results is that for
any integer £ > 1, under the combinatorial 4k-clique hypothesis,
there is no combinatorial algorithm for unweighted undirected
n-PSP with approximation ratio better than 1 + 1/k that runs
in O(m?2~2/(-+Dp1/(k+1)=<) time, This nearly matches an upper
bound implied by the result of Agarwal (2014).

Our algorithms use a surprisingly wide range of techniques,
including techniques from the girth problem, distance oracles,
approximate APSP, spanners, fault-tolerant spanners, and link-
cut trees.

A highlight of our algorithmic results is that one can solve both
n-PSP and ANSC in O(m + n°/?*¢) time' with approximation
factor 2 4+ ¢ (and additive error that is function of ¢), for
any constant £ > 0. For n-PSP, our conditional lower bounds
imply that this approximation ratio is nearly optimal for any
subquadratic-time combinatorial algorithm. We further extend
these algorithms for n-PSP and ANSC to obtain a time/accuracy
trade-off that includes near-linear time algorithms.

Additionally, for ANSC, for all integers &£ > 1, we extend
the very recent almost k-approximation algorithm for the girth
problem that works in O(n1+1/ *) time [Kadria et al. SODA’22],
and obtain an almost k-approximation algorithm for ANSC in
O(mn'/*) time.

Index Terms—graph algorithms, fine-grained complexity, ap-
proximation algorithms

I. INTRODUCTION

The focus of this paper is two basic problems concerning
distances in graphs: the n-Pairs Shortest Paths problem and
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the All-Nodes Shortest Cycles problem.

n-Pairs Shortest Paths (n-PSP). Given a (weighted or
unweighted, directed or undirected) graph with n nodes
and m edges, and a set of pairs of vertices (s;,t;) for
1 < i < O(n), compute the distance from s; to t; for every
1. (For ease of notation, we denote this problem n-PSP even
though the number of pairs is not exactly n, rather it is O(n).)

All-Nodes Shortest Cycles (ANSC). Given a (weighted or
unweighted, directed or undirected) graph with n nodes and
m edges, compute for each vertex v, the length of the shortest
cycle containing v, denoted SC(v).

As we will show, these two problems are very similar in
some ways and fundamentally different in other ways. We
first provide some background for the n-PSP problem.

a) The n-PSP problem.: The n-PSP problem was first
explicitly studied in the 90s. Aingworth, Chekuri, Indyk and
Motwani [2] obtained an additive 2-approximation in time
O(n?). The other early work on this problem has been
subsequently subsumed by later results for distance oracles
(31, [4].

As far as we are aware, the n-PSP problem has not been
explicitly studied since the 90s. However, other distance-
related problems have been studied in the setting where one
only cares about the distances between prespecified vertex
pairs, such as pairwise distance preservers, pairwise spanners,
which were first studied by Coppersmith and Elkin [5] and
extensively studied thereafter, as well as pairwise reachability
preservers [6].

Now, we will provide some motivation for studying the n-
PSP problem. Perhaps the most classical distance problem
is All-Pairs Shortest Paths (APSP). APSP can be solved
in directed graphs with non-negative edge weights in time
O(mn) simply by running Dijkstra’s algorithm from each
vertex. For undirected unweighted graphs, APSP can be solved
using matrix multiplication in time O(n“) [7], where 2 < w <
2.373 is the matrix multiplication exponent [8]. For directed
unweighted graphs, APSP can be solved in time O(n2'529) [9]
(the bound can be slightly improved by plugging in a better
rectangular matrix multiplication [10]). For very large graphs,
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these running times can be prohibitive; even just writing down
the output of size n? can be too slow.

For many applications in both theory and practice, comput-
ing all of the distances in the graph is overkill, and instead we
only care about some of the distances (e.g. multi-source multi-
sink routing [11], many-to-many shortest paths [12], etc.). We
ask a question that has been asked many times before:

Can we compute some distances in a graph faster than
computing all distances?

This question has been approached from various angles:

e The simplest approach to this question is perhaps to
compute all distances from a single source. The Single-
Source Shortest Paths (SSSP) problem can indeed be
solved much faster than APSP (by Dijkstra’s algorithm
in O(m + nlogn) time), but has the obvious drawback
that all of the distances computed have the same source.

e Another approach towards this question, is to compute
only the extremal distances in the graph, that is, the
diameter, radius, and eccentricities (the largest distance
from each vertex in the graph). For these problems, there
are conditional lower bounds that rule out subquadratic
time exact algorithms for sparse graphs [13], but there has
been extensive work on approximating these parameters
quickly (see e.g. [14]). This approach has the drawback
that it only concerns extremal distances, and one might
wish to compute or approximate an arbitrary set of
distances.

« Another approach towards this question is to construct a
distance oracle, a data structure with subquadratic space
that allows one to quickly query (approximate) distances.
Distance oracles are designed for the setting where we
wish to know some arbitrary set of distances, but we do
not know a priori which distances. Distance oracles have
been extensively studied, and various trade-offs between
approximation ratio and running time are known (See
Section I-A for more detailed discussion of distance
oracles).

In contrast to distance oracles, we ask the question: what
if we do know a priori which distances we wish to compute?
The n-PSP problem is precisely this problem, where we have
O(n) prespecified vertex pairs. We ask the question of whether
we can achieve algorithms for n-PSP that are faster than the
algorithms directly implied by known distance oracles.

In this work, we will show that this question has different
answers in different regimes. For example,

o In the regime of (1 + 1/k)-approximations, we show
that the n-PSP algorithm directly implied by Agarwal’s
distance oracle [15] has nearly optimal running time,
under the combinatorial 4k-clique hypothesis.

o For (2 + ¢, B)-approximation?, we show an n-PSP algo-
rithm that runs faster than directly applying the state-of-
the-art distance oracle of Chechik and Zhang [16].

2An («, B) approximation algorithm means that the algorithm has multi-
plicative error o and additive error 3.
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Now, we turn our attention to ANSC.

b) The ANSC problem.: The ANSC problem was first
studied by Yuster [17], who gave a randomized algorithm for
undirected graphs with integer weights from 1 to M, in time
O(V/Mn(“t3)/2) Later, Sankowski and Wegrzycki [18], and
independently Agarwal and Ramachandran [19], showed that
for unweighted directed graphs there is a deterministic O (n®)
time algorithm. Agarwal and Ramachandran [19] also gave a
reduction from the Replacement Paths problem to weighted
directed ANSC. In the Replacement Paths problem, we are
given a graph and a shortest path P between two vertices s
and ¢, and the goal is to find for every edge e € P, a shortest
path from s to ¢ that avoids e. The reduction of [19] increases
the edge weights by a factor of n, and was subsequently
improved to preserve the range of edge weights by Chechik
and Nechushtan [20].

Despite this prior work on the exact version of ANSC, as
far as we know, we are the first to study the approximability
of ANSC.

In this work, we show various algorithmic results for the
ANSC problem. For example,

o We show an almost k-approximation algorithm for ANSC
with running time comparable to the best known k-
approximation girth algorithm.

o We show a (2+¢, 3)-approximation algorithm for ANSC
with subquadratic running time.

A. Results for n-PSP and ANSC implied by prior work

We begin with two observations that relate n-PSP and
ANSC. The proofs of these observations are in the appendix.
The first observation is a reduction from exact n-PSP to
exact ANSC in weighted graphs. The second observation is a
reduction from ANSC to n-PSP in directed graphs that works
for the approximation setting with any finite approximation
factor.

A T(n,m)-time algorithm solving weighted undirected
ANSC exactly implies a T'(n, m)-time algorithm for solving
weighted undirected n-PSP exactly.

A T(n,m)-time algorithm solving (unweighted) directed
n-PSP with any finite approximation factor > 1 implies
a T(n,m)-time algorithm for solving (unweighted) directed
ANSC with approximation factor c.

One simple way to obtain approximation algorithms for
directed or undirected n-PSP and directed ANSC is to use
known algorithms for approximate All-Pairs Shortest Paths
(APSP). The running times of these algorithms, however,
will always be at least 2(n?) due to the size of the output
of APSP. If there is an algorithm for approximate APSP in
T (n,m) time for directed or undirected graphs with n nodes
and m edges, then we can approximate directed or undirected
(respectively) n-PSP in O(n) + T'(n, m) time with the same
accuracy by looking up the O(n) input pairs in the output of
the APSP algorithm. We can approximate directed ANSC in
O(n?) + T(n,m) time by computing min, d(v,u) + d(u,v)
for every v, where d(-,-) is the distance estimate that the
APSP algorithm outputs. The approximation guarantee for
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ANSC will have the same multiplicative error as APSP, and
the additive error will double. Since the output of APSP is of
size ©(n?), the second term in these running times is dominant
and so we can approximate both directed or undirected n-PSP
and directed ANSC in O(T'(n, m)) time. We note that it is not
clear how to get an algorithm for undirected ANSC directly
from APSP, as Observation I-A works only for directed graphs.
Next, we outline the known algorithms for APSP.

We have already outlined the known algorithms for exact
APSP. As for approximation algorithms for APSP, in directed
or undirected graphs with non-negative edge weights, for
any ¢ > 0, Zwick [9] gave a (1 + £) approximation time
algorithm in time O("’E—wlog(W)) where W is the largest
edge weight. In the undirected setting, APSP in graphs with
integer weights in [—W, W] can be solved in O(n* log(W))
[21]. For any ¢ > 0, [22] gives a (1 + ¢) approximation
algorithm in O(%polylog(‘g‘)) time, improving upon Zwick’s
algorithm for large weights. There are many more algorithms
for approximating APSP [2], [23]-[26], however since the
focus of our paper is on subquadratic-time algorithms we do

not describe them in detail.

Another simple way to obtain approximation algorithms for
undirected n-PSP, is to use an approximate distance oracle
(DO). A DO is a data structure that allows one to query
distances. The parameters of interest in a DO are preprocessing
time, query time, space, and (multiplicative and additive)
approximation ratio. Given a DO with preprocessing time
p(m,n), query time g(m,n), one can obtain an algorithm for
n-PSP with the same approximation ratio, in time p(m,n) +
O(n)-q(m,n) simply by querying all of the input pairs. Unlike
algorithms for n-PSP that are based on APSP, algorithms based
on DOs do not have an inherent running time of Q(n?).

We focus on DOs with subquadratic preprocessing time.
For any integer £ > 2, the Thorup-Zwick DO [27] has
preprocessing time O(kmn'/*), size O(n't'/*) with query
time O(k) and approximation factor (2k — 1). We can use
this DO to obtain a (2k — 1)-approximation algorithm for
weighted undirected n-PSP in time O(kmn'/). Patrascu
et al [28] also extends the Thorup-Zwick DO to fractional
values of k. Additionally, [29] gives a DO with prepro-
cessing time O(mn?/3) and constant query time that re-
turns a path of length at most 2d + 1 when queried for
a pair at distance d. This gives us a (2,1)-approximation
algorithm in O(mn?/3) time for n-PSP. On the other side
of the time/accuracy trade-off, Agarwal [15] gives a DO
that yields for any integer £ > 1, a (1 + ;)-approximation
algorithm for n-PSP in time O(m?2~2/(k:+1pl/(k+1)) " ag well
as a (1 + ;75)-approximation algorithm for n-PSP in time
(N)(mQ*B/(k”)nQ/(k*Q)) (see full version [1] for explanation).
Additionally, there are DOs with processing times that have
additive dependence between n and m. For any integer k£ > 1,
Wulff-Nilsen [23] gives a (2k —1) approximate distance oracle
with preprocessing time O(v/km + n'+¢/ ‘/E) for a constant
¢ = 9+ 3V/13, and query time O(k). This gives a (2k — 1)
approximation algorithm for n-PSP in O(\/Em + nlte/ \/E)
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time. Very recently, Chechik and Zhang [16] obtained a
constant query time (2 + ¢, 3)-approximate distance oracle
with subquadratic preprocessing time O(m + nb/3+e ), which
immediately implies a (2+¢, 3)-approximate n-PSP algorithm
in O(m + n®/3+¢) time.

Note that we cannot use Observation [-A to obtain an
algorithm for ANSC since it only works in the exact setting,
and it is not clear how to use distance oracles in general to
solve ANSC in the undirected setting. Moreover, there are no
non-trivial distance oracles for the directed setting [27].

Thus, past work doesn’t give any subquadratic approxima-
tion algorithms for ANSC in directed or undirected graphs.
For undirected n-PSP we get the above results from distance
oracles, but it is not clear if this is the best one can do.

From the lower bounds side, ANSC is closely related to
Girth (the problem of finding the smallest cycle in the graph),
and any conditional lower bounds for Girth immediately
carry over to ANSC. A previously known lower bound for
the Girth in directed graphs states that under the k-Cycle
Hypothesis, any better than 2-approximation for Girth requires
time m2~°® [30].

B. Our Results

We provide a thorough study of the approximability of n-
PSP and ANSC, providing a wide array of algorithms and
conditional lower bounds that trade off between running time
and approximation.

Before stating our results we provide the main hardness
assumptions that we use for our conditional lower bounds.

1) Main Hardness Assumptions: We stress that our con-
ditional lower bounds are based on well-established hardness
assumptions in fine-grained complexity. We obtain hardness
results based on a number of different assumptions, but for
the sake of clarity, we only list the two central ones here. For
a complete list of the assumptions we use and the associated
hardness results see full version [1].

Our first hypothesis concerns combinatorial algorithms for
k-clique detection, and has been used as a hardness hypothesis
in [31]-[36]. By “combinatorial” we mean algorithms that do
not use the heavy machinery of Fast Matrix Multiplication.

Hypothesis 1 (Combinatorial k-Clique Hypothesis). Let k > 3
be a constant integer. In the word-RAM model with O(logn)
bit words, there is no O(n*~¢) time combinatorial algorithm
for k-clique detection, for any constant € > Q.

The Combinatorial 3-Clique Hypothesis is also called Com-
binatorial Dense Triangle Hypothesis, which is equivalent to
the Combinatorial Boolean Matrix Multiplication Hypothesis
(see full version [1]).

Our next hypothesis is used for our main conditional lower
bound result. This hypothesis was introduced in [35] and
concerns (not necessarily combinatorial) algorithms for k-
clique detection in hypergraphs. It has been widely used as
a hardness assumption [37]-[46].

Hypothesis 2 ((k, r)-Hyperclique Hypothesis). Let k > r > 3
be a constant integer. In the word-RAM model with O(logn)
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bit words, there is no O(n*~%) time algorithm for k-clique

detection in r-uniform hypergraphs, for any constant € > 0.

2) Hardness Results: Our hardness results for n-PSP are
shown in Table I, and those for ANSC are shown in Table II.
For the sake of clarity we only describe our most central
hardness results in words here. For a detailed statement of
all of our hardness results see full version [1].

Most of our hardness results are actually stronger than
needed for Pairwise Distance and ANSC. In particular, they
also apply for weaker problems, specifically the extremal
versions of n-PSP and ANSC where the output is either the
minimum or maximum among the O(n) values outputted. In
particular, the girth is the length of the smallest cycle in the
graph, that is, the minimum value in the output of ANSC. We
define the cycle diameter as the largest value in the output of
ANSC, that is, the maximum over all vertices v of the length of
the smallest cycle through v. Analogously for n-PSP, given a
graph and O(n) pairs of vertices (s;, t;), we define the n-pairs
minimum distance as min; d(s;,t;), and the n-pairs diameter
as max; d(s;, t;).

We begin with a simple hardness result for n-Pairs Mini-
mum Distance. Using a simple reduction, we get the following
theorem is against a (2 —£)-approximation by a combinatorial
algorithm.

Theorem L.1. Under the Combinatorial Dense Triangle Hy-
pothesis, any better than 2-approximation combinatorial algo-
rithm for n-Pairs Minimum Distance requires n3/2=0() time.

Theorem I.1 has two main drawbacks: the running time is
not as high as we would like, and it is only for combinatorial
algorithms. We overcome both of these drawbacks. We achieve
stronger running time bounds under a generalized version of
the Combinatorial Dense Triangle Hypothesis: the Combinato-
rial k-Clique Hypothesis. We also remove the “combinatorial”
condition of Theorem I.1 under the (k,r)-Hyperclique Hy-
pothesis. To achieve both of these goals, as well as establish
a wide range of time/accuracy trade-off lower bounds for
both combinatorial and non-combinatorial algorithms, some
of which are nearly tight, we introduce the following general
theorem. This theorem is our most technically substantial
conditional lower bound. After stating the theorem, we will
highlight some of its corollaries.

Theorem L.2. For integers r, k,t satisfying k —1>t+1>
r> 2, let
D =2r(t+1)— (2r — 3)k,

and suppose k < D. Then the following holds:

Given a k-(hyper)-clique instance on an n-vertex r-uniform
(hyper)-graph G, we can reduce it (in linear time) to an
unweighted undirected n-Pairs Minimum Distance instance
with O(knt) vertices and O(kn'*1) edges, such that:

1) If G contains a k-(hyper)-clique, then the n-pairs min-
imum distance equals k.

2) If G does not contain a k-(hyper)-clique, then the n-
pairs minimum distance is at least D.
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Our first two corollaries of Theorem 1.2 concern the graph
(not hypergraph) version of Theorem 1.2, and are under the
Combinatorial k-Clique Hypothesis.

Corollary I.1 establishes a time/accuracy trade-off against
algorithms with faster running times and higher approximation
ratio, while Corollary 1.2 establishes a time/accuracy trade-off
against algorithms with better approximation ratios and slower
running times.

Corollary L.1. For k > 4, assuming the Combinatorial k-
Clique Hypothesis, there is no combinatorial algorithm for
unweighted undirected n-Pairs Minimum Distance with ap-
proximation ratio better than (3—4/k) in m-n"/*=2=¢ time
or m + nF/+=2=¢ time, for any constant £ > 0.

Corollary L.2. For k > 1, assuming the Combinatorial
4k-Clique Hypothesis, there is no combinatorial algorithm
for unweighted undirected n-Pairs Minimum Distance with
approximation ratio better than (1 + 1/k) in n?~¢ time or
m-n' =Y CR=¢ time or m2=2/ B+ . p /(D =¢ fime for any
constant € > 0.

Corollary 1.3. For k > 1, assuming the Combinatorial
(4k + 2)-Clique Hypothesis, there is no combinatorial algo-
rithm for unweighted undirected n-Pairs Minimum Distance
with approximation ratio better than (14+1/(k+0.5)) in n?~¢
time or m - nt= Y@kt =¢ fie oF m2-3/(k+2) . p2/(k+2)—c

time, for any constant € > 0.

Corollary 1.2 is nearly tight with previously known algo-
rithms for n-PSP in the following sense. For any integer
k > 1, there is a (1 + 1/k)-approximation for n-PSP in
time O(m?2~2/(k+1)pl/(k+1)) [15], while Corollary 1.2 says
that there is no better than (1 + 1/k)-approximation in
ON(mQ*Q/(k“)nl/(’“H)*E). That is, one conditionally cannot
simultaneously improve both the running time and the approx-
imation factor of the known algorithms, for any k.

Similarly, Corollary 1.3 is also nearly tight with another
algorithm for n-PSP implied by [15]’s results, which has
approximation ratio 1 + 1/(k + 0.5) and running time
O(m?2=3/(k+2)2/(k+2)) " Corollary 1.3 says that one condi-
tionally cannot simultaneously improve both the running time
and the approximation factor of this algorithm for any k.

Our final corollary concerns the hypergraph version of
Theorem 1.2 and is under the (k,r)-Hyperclique Hypothesis
(for r > 3). Unlike, the above two corollaries, the following
corollary is for not necessarily combinatorial algorithms.

Corollary 14. For k > 4, assuming the (k,3)-Hyperclique
Hypothesis, there is no algorithm for unweighted undirected
n-Pairs Minimum Distance with approximation ratio better
than (3 — 6/k) in n¥/k=2)=¢ or mn!+1/(E=2=¢ fime  for
any constant € > 0.

Assuming the (4, 3)-Hyperclique Hypothesis, Corollary 1.4
rules out algorithms with approximation ratio better than 3/2
in n?~¢ time or mn'/2~¢ time, for any constant ¢ > 0. This is
the choice of parameters with the best possible running time.
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[ Approximation [ Running time LB [ Theorem | Hypothesis [ Comments
5/3 —¢ miti—o) [1] Sparse Triangle
5/3 —¢ nw—o@) [1] Dense Triangle
5/3—¢ nw—o() [1] Simplicial Vertex for n-Pairs Diameter
2—¢ n3/2=0() Thm L1 Comb. BMM
2—¢ m + n2—°) Cor .1 Comb. 4-clique nearly matches Thm 1.3
3—4/k—e¢ m + nkF/(F=2)=o(1) Cor L1 Comb. k-clique
1+1/k—e m?2=2/(E+1)pI/(+D=o(D) | Cor 1.2 Comb. 4k-clique nearly matches [15]
1+1/(k+05)—e | m2=3/E+)p2/(E+2)~o(1) | Cor 1.3 | Comb. (4k + 2)-clique | nearly matches [15]
3/2 —¢ mn1/2=o() Cor 1.4 (4, 3)-hyperclique
3—-6/k—c¢ m + nF/(F=2)—o(1) Cor 1.4 (k, 3)-hyperclique
any finite m2—o) [1] k-cycle directed graphs
TABLE T

Conditional Lower Bounds for (unweighted) n-PSP. All results are for undirected graphs unless otherwise specified. All results work for n-Pairs Minimum
Distance unless otherwise specified. See the body of the text for details about the near-tightness of some of our conditional lower bounds.

[ Approximation | Running time LB [ Theorem | Hypothesis ‘ Comments |
4/3 — ¢ mItT8—o(l) [1] Sparse Triangle for Girth
4/3 — ¢ nw—o(D) [1] Dense Triangle for Girth
7/5—¢ nw—o(D) [1] Simplicial Vertex for Cycle Diameter
3/2—¢ mA/3—0(D) [1] All-Edges Sparse Triangle
3/2—¢ n2 [1] unconditional
TABLE 1T

Conditional Lower Bounds for (unweighted) undirected ANSC.

As we discuss later, this is nearly tight with our algorithm
from Theorem 1.3.

By setting k to be large in Corollary 1.4, we obtain lower
bounds with approximation ratio larger than 2 and close to
3. We note that this is the first known lower bound with
approximation ratio higher than 2 for any distance problem
except for the ST-Diameter problem, but unlike in n-PSP, the
number of vertex pairs one considers in S7T-Diameter is much
larger than the running time lower bounds.

We also note that by setting k¥ = 6 in Corollary 1.4, we
get the same bound as Theorem I.1, but for not necessarily
combinatorial algorithms.

Comparison with independent work [47].: Very recently,
Abboud, Bringmann, Khoury, and Zamir [47] proposed the
“cycle-removal” framework, and used it to obtain new con-
ditional lower bounds for various graph problems related to
approximating distances or girth. In particular, they showed
super-linear lower bounds on the preprocessing time of k-
approximate distance oracles. Their lower bounds also applied
to the offline setting of distance oracle queries, which is almost
the same as the n-PSP problem we considered here, except
that they did not fix the number of query pairs to be n. Their
results imply that, under either 3-SUM hypothesis or APSP
hypothesis, for any constant & > 4, n-PSP does not have
k-approximation algorithms in m!*¢/* time, where ¢ > 0
is some universal constant. Their result has the right form
m tO0/k) byt it appears difficult to obtain the best possible
constant ¢ on the exponent using their framework.

The main difference between their lower bound results and
ours (Corollaries 1.1 to 1.3) is that we focus on approximation
ratio much closer to 1, such as 1+ 1/k — ¢, while they focus
on arbitrarily large constant approximation ratio. Corollary 1.2

and Corollary 1.3 nearly match the known upper bounds
[15], without losing constant factors on the exponent. The
downside of Corollaries 1.1 to 1.3 is that they only work against
combinatorial algorithms.

Some of our other corollaries (such as Corollary 1.4)
obtained m + n't1/(k=2)=°(1) Jower bounds n-PSP with
approximation ratio 3 — ©(1/k). They are subsumed by [47]
when the constant k is large enough.

3) Algorithmic Results: We investigate approximation al-
gorithms for both the n-PSP and ANSC problems in both
directed and undirected settings in m-node m-edge graphs.
Additionally, we are interested in the dependency between m
and n in the running time of our algorithms. We first present
algorithms where the running time shows a multiplicative
dependency between n and m. Then we investigate approxima-
tion algorithms for n-PSP and ANSC whose running time has
additive dependence between n and m, in particular running
times of the form m 4 n2~¢. Algorithms of this form are
desirable in part because they yield near-linear time algorithms
for dense enough graphs. Moreover, algorithms of the form
m + n?~¢ have been studied for a variety of problems, for
instance in distance oracles [16], [23], and recent results on
bipartite matching and related problems [48]. Another moti-
vation for studying such algorithms is that known undirected
Girth algorithms do not have any multiplicative dependency on
m, and so we ask how crucial this multiplicative dependency
is for undirected ANSC and n-PSP. (Known directed Girth
algorithms, however do have multiplicative dependency on m.)

We let an (o, 3)-approximation denote an approximation
algorithm that outputs an estimate & for x such that x < z <
a-x+ S.
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a) The n-PSP problem.: Our algorithmic results for n-
PSP are shown in Table III. Note that there is no constant
factor approximation algorithm for the directed case (see full
version [1]), and hence all of our algorithmic results for n-PSP
are for the undirected case.

First we give a straightforward nearly 2k — 2-approximation
for n-PSP, and we leave it as an open problem whether one
can achieve a k-approximation with similar running time.

Particularly related to our work, Chechik and Zhang [16]
obtained various distance oracles for unweighted undirected
graphs with subquadratic construction time and constant query
time. Their result immediately implies a (2+¢, 3)-approximate
n-PSP algorithm in O(m + n5/3+¢) time. In this work we
obtain a faster algorithm for n-PSP, stated in the following
theorem.

Theorem L3. Given an n-node m-edge undirected un-
weighted graph G and vertex pairs (s;,t;) for 1 <i < O(n),
for any constant ¢ > 0, there is a randomized algorithm that
computes a (2+¢, B)-approximation for n-PSP in O(n/?%¢ +
m) time with high probability, for some constant 3 depending
on e.

Theorem 1.3 is nearly tight with our conditional lower bound
from Corollary 1.1 in the sense that Corollary 1.1 conditionally
rules out a (2 — ¢)-approximation in time n?~(), while
Theorem L3 provides a (2 + ¢, f(¢))-approximation in time
polynomially faster than O(n? +m).

b) The ANSC problem.:
ANSC are shown in Table IV.

For directed graphs, we provide approximation algorithms
for ANSC, showing a strong separation between ANSC and n-
PSP in the directed case. To obtain our algorithms for directed
ANSC, we generalize previously known results from Girth by
Dalirrooyfard and Vassilevska W. [30], with a slight loss in
the accuracy and the running time. These results are stated in
Table IV and the appendix.

We now move to the case of undirected graphs. Recall that
from Table III, we give a nearly 2k — 2-approximation for n-
PSP. For ANSC, however, we are able to achieve the better
approximation ratio of (k + €), as stated in the following
theorem.

Our algorithmic results for

Theorem 1.4. Given an n-node m-edge undirected graph G
with edge weights in {1,..., M}, a constant € > 0 and an
integer k > 3, there is a randomized algorithm that computes
a (k+¢)-approximation for ANSC in O(mn!/*log (M)) time
with high probability.

Very recently, a result similar to Theorem 1.4 was shown for
the Girth problem [49]: an almost k-approximation algorithm
for the undirected girth in O(n'*'/¥) time. Our running time
for ANSC is instead O(mn'/*) and this dependence on m
is not unexpected since for Girth, one generally only runs
Dijkstra’s algorithm until finding a cycle which takes O(n)
time, whereas for ANSC, we execute Dijkstra’s algorithm to
completion.
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Now, we move to algorithms for ANSC of the form m +
n2~¢. We consider these to be our main algorithmic results.

We begin with a “proof of concept” algorithm which shows
that there is indeed an algorithm for ANSC with constant
multiplicative and additive factors in time m + n?~¢ for
constant ¢.

Theorem 1.5. Given an n-node m-edge undirected un-
weighted graph G, there is a randomized algorithm that
computes a (6, 1)-approximation for ANSC in O(m +n2~1/9)
time with high probability.

We will significantly improve upon Theorem 1.5 in running
time and multiplicative factor in our next result. However, our
next algorithm does not strictly improve upon Theorem 1.5
partially due to its additive error of only 1.

Our goal is to reduce the multiplicative approximation ratio
as much as possible, with the goal of getting it down to nearly
2, to match our above algorithm for n-PSP.

Theorem 1.6. Given an n-node m-edge undirected un-
weighted graph G and a constant € > 0, there is a randomized
algorithm that computes a (2+ ¢, 3)-approximation for ANSC
in O(n1'5+€ -+m) time, where ( is a constant depending only
on e.

We also use fast matrix multiplication to obtain improve-
ment results for the S7T-shortest paths problem, which is a
special case of n-PSP. They are included in the full version

[1].

II. TECHNICAL OVERVIEW

We use many different techniques that were originally
designed for a range of different problems and data structures,
such as girth, APSP, distance oracles, spanners, fault-tolerant
spanners, the simplicial vertex problem, and link-cut trees. The
applicability of some of these problems to approximate n-PSP
and ANSC is perhaps unexpected. For example, it is not clear
how something like a fault-tolerant spanner would be useful
in a setting that does not involve faulty vertices or edges.

Although we pull together results from a variety of different
problems, our results are not “just” an application of prior
techniques. In the following overview of our techniques, we
provide an overview of many of our results, choosing to
highlight certain results that require significantly new ideas
from prior work. In particular, we highlight a collection
of lower bounds for n-PSP, as well as our collection of
approximation algorithms for ANSC with running times of
the form O(m + n?~¢).

A. Conditional Lower Bounds

Our conditional lower bounds are from standard hardness
assumptions for basic problems such as triangle detection, k-
cycle, and k-clique. Many of our conditional lower bounds are
quite straightforward reductions from these problems. One of
our conditional lower bounds, however, is more technically
substantial, and we highlight it next.
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[ Approximation [ Running time [ Theorem | Comments |

(2+e, f(e)) m +n3/2t¢ | Thm 13 | € > 0, some function f, nearly matches Cor L1
2k — 2 mnl/F [1] integer k > 2
(2k—1)-(2k—2) | m+nlt2/k [1] integer k > 2
2 m - n(I+w)/8 (1] for ST-Shortest Paths, S|, |T| = O(y/n)
TABLE III

A summary of all of our approximation algorithms for n-PSP in undirected unweighted graphs. (Some results also work for weighted graphs as stated in
each theorems.) All running times above are within polylog(n) factors.

| Approximation [ Running time | Theorem | Comments |
2k+1+4¢ mn®k [1] directed graphs, ay, solves ag (1 + a)F " T=1—ay
2+¢ mnt/? [1] directed graphs, nearly matches Thm 5.1 of [30]
k+e mnl/k Thm 1.4 € > 0 and integer k > 2
nearly 1+ 1/(k — 1) | m?>=2/Fpl/F [1] integer k > 2
(6,1) m+n2"1/6 | Thm 15
(24¢€,8) m + nl5Fe Thm 1.6 e > 0 and S is a function of
(k2, K32k +1) m + ntt2/k [1] integer k > 2
TABLE IV

A summary of all of our approximation algorithms for unweighted ANSC.

(Some results also work for weighted graphs as stated in each theorem.) All

running times above are within polylog(n) factors. All results are for undirected graphs unless otherwise specified.

1) Highlight: Hardness of n-PSP from k-(Hyper)Clique Hy-
potheses: For the undirected unweighted n-PSP problem, by
adapting known techniques one could only prove fine-grained
hardness for approximation ratio less than 2. To overcome
this issue, we give an interesting and novel reduction from the
Combinatorial k-Clique Hypothesis to the n-Pairs Minimum
Distance problem, which not only yields lower bounds for
approximation ratio higher than 2, but also gives tight bounds
that match some of our algorithms in the low-approximation
regime. We believe this powerful reduction will inspire more
fine-grained hardness results for related problems.

As an illustrative example, we describe the case of k = 4.
Suppose we are given a 4-clique instance on a 4-partite graph
G with vertex partition Vi, Vs, V3, Vy where |V;| = n. In
our reduction we create a S5-partite graph G’ with vertex
partition V3o, Vas, Vaa, Vi1, V{5 from left to right, where each
part contains n? vertices, and we will connect edges only
between adjacent parts. The vertices in Vio (and Vio/) are
indexed by vertex pairs (vi,v2) € Vi x V5 from the in-
put graph G, and Va3, Va4, Vy; are similarly (according to
the subscripts) indexed by vertex pairs from G. For every
v1 € Vi,ve € Vo, v3 € V3, we connect an edge between the
two vertices (v1,v2) € Via, (va,v3) € Vag in G, if and only
if (v1,vq,v3) form a 3-clique in G. We similarly add edges
between Vas, Va4, between Vig, Vi, and between Viq, VY.
The resulting graph G’ has N = 5n? vertices and at most
M = 4n? edges.

If G contains a 4-clique (v1,v2,v3,v4), then in G’ there
exists a length-4 path from (v, vs) € Via to (v1,v2) € Vi,
by simply going from left to right along the edges specified by
v1, V2, V3, V4. The interesting part is the converse case: when GG
does not contain a 4-clique, what is the shortest possible length
of any path from (vy,v2) € Vig to (v1,v2) € V{52 Note that
this question amounts to solving an n-Pairs Minimum Distance
instance on G’. The answer cannot be 4, since a length-4 path
would immediately recover a 4-clique (containing (vy, ve) in

G. The next smallest length is 6 (with one backward step, and
one extra forward step), and it turns out that a length-6 path
would also have to recover a 4-clique in G: for example, the
following length-6 path (vi,v2) — (va2,v3) — (v3,v4) —
(vh,v3) — (vs,vy) — (vj,v1) — (v1,v2) implies the
existence of the 4-clique (v1, ve, vs, v} ); the other possibilities
of length-6 paths can be similarly verified. Hence, the smallest
possible answer is 8. Then, any better than 2-approximation
combinatorial algorithm for n-Pairs Minimum Distance with
m - n'/2~¢ running time would be able to distinguish these
two cases of distance 4 or > 8 and hence solve the 4-clique
instance, in M - N'/2=¢ < O(n*~¢/?) time, contradicting the
combinatorial 4-clique hypothesis. This lower bound nearly
matches the upper bound from [15].

The reduction described above can be generalized to larger
k, but naive ways to prove the lower bound on the shortest
distance would require an exhaustive case analysis, which
does not work for general values of k. To overcome this
issue, we provide a clean combinatorial argument that can
pinpoint the vertices participating in a k-clique when there
is a too short path. This combinatorial argument is highly
extendable: It yields lower bounds with approximation ratio
that increases with &, and it even allows us to capture hyper-
cliques rather than cliques. As a result, we can prove non-
combinatorial lower bounds based on the (r, k)-hyperclique
hypothesis (albeit with slightly worse exponents compared to
the combinatorial ones).

As previously noted, several parameter regimes of this
conditional lower bound are nearly tight with algorithms (both
previously known algorithms and new ones).

B. Approximation algorithms

a) CYCLEESTIMATIONDIJKSTRA data structure for
ANSC.: Algorithms for approximating distances and for ap-
proximating Girth, generally have the following structure: Run
Dijkstra’s algorithm from a random sample of vertices, and
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run a truncated version of Dijkstra’s algorithm from a large
set of vertices. For ANSC, we can employ a similar strategy,
however the situation becomes slightly more complicated. This
is because when we perform Dijkstra’s algorithm for ANSC
and we detect a cycle, we would like to update the estimate of
SC(v) for all vertices v on the cycle. To accomplish this, we
employ a data structure that we call CYCLEESTIMATIONDI-
JKSTRA, which uses a modified version of Dijkstra’s algorithm
along with the power of link-cut trees [50] to keep track of
the relevant cycle information for all vertices.

Our warm-up algorithm for ANSC that gives a 2-
approximation in time O(mn'/2) is simply a combination
of the CYCLEESTIMATIONDIJKSTRA data structure with the
above standard sampling and truncated Dijkstra techniques.

b) Time/accuracy trade-off for better running time.: We
first focus on algorithms that achieve better than O(mnl/ Q)
running time and worse than 2-approximation. Such a re-
sult for n-PSP follows from the following observation: a 2-
approximation algorithm in O(mnl/ 2) time can essentially be
plugged into the base case of Thorup-Zwick distance oracles
[27]. This result for n-PSP appears in the appendix, however
for ANSC, we obtain better results and we focus on those
here.

Specifically, for ANSC, we obtain a (k + ¢)-approximation
in O(mnl/ k ) time (Theorem L.4). A very recent result gave
an algorithm for Girth with a similar guarantee. However,
our techniques are completely different from theirs. Instead of
taking inspiration from an undirected Girth algorithm, we take
inspiration from a directed Girth algorithm, even though our
graph is undirected and techniques for Girth have traditionally
been very different in the directed and undirected settings.
In general it is not trivial to extend an algorithm for finding
cycles from the directed case to the undirected case, as finding
undirected cycles introduces challenges that don’t appear in
directed graphs. To illustrate this, in undirected graphs if
we are not careful our algorithm might estimate traversing
a path from a node v to u and back to v as a cycle, whereas
in the directed case this does not happen. As it turns out,
our CYCLEESTIMATIONDIJKSTRA data structure is useful in
addressing this issue.

To obtain our (k + £)-approximation algorithm for undi-
rected ANSC, we use CYCLEESTIMATIONDIJKSTRA together
with a labeling procedure similar to our directed ANSC algo-
rithm, which is in turn from the Girth approximation algorithm
of [30]. These techniques allow us to moderate the size of the
vertex sets visited while performing Dijkstra’s algorithm and
prevent over-processing nodes. Specifically, whenever we do
CYCLEESTIMATIONDIJKSTRA, we only visit nodes with a
particular label, and we change the label of a node v when we
know that we must have a good enough estimate for SC(v).

As previously described, finding cycles in undirected graphs
presents challenges that are not present for directed graphs,
however the opposite is also true; neither setting is clearly
strictly harder than the other. We take advantage of the
undirected setting to simplify some aspects of the algorithm,
which actually yields better bounds for the undirected setting
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than the directed setting. In particular, for directed graphs, the
labeling procedure is used on top of an induction, however
we determine that this induction is unnecessary for undirected
graphs, and removing it yields an algorithm with better running
time and approximation factor.

c) Time/accuracy trade-off for better approximation ra-
tio.: On the other side of the time/accuracy trade-off, we
consider getting a better that 2-approximation with running
time slower than O(mnl/ 2). Such a result was previously
known for n-PSP [15]. To get such a result for ANSC, we
take inspiration from the algorithm of Dahlgaard, Bek Tejs
Knudsen, and Stockel [51] for approximating the girth of a
graph. An algorithm very similar to [51] carries over from
Girth to ANSC. The only qualitative differences are our use
of edge sampling instead of vertex sampling and our use of
the CYCLEESTIMATIONDIJKSTRA data structure.

1) Algorithms in O(m + n*>¢) time: The approximation
algorithms we have mentioned so far have time complexities
m - n¢ for some ¢ > 0, which are not desirable for very
dense graphs. In our next results, our goal is to minimize the
dependency of the running times on m, while keeping them
subquadratic in terms of n, that is, we want time complexity
O(m 4 n?~¢) for constant £ > 0.

One simple idea is to use spanners to reduce the number of
edges to m’ = n2~%(1) (while preserving the distances up to
some factor), and then apply our previous algorithms to the
sparsified graph in m’ - n® < n? time. This idea has been
used e.g. in the distance oracle of Wulff-Nilsen [23]. There
are many spanner constructions that take only O(m) time,
allowing us to obtain O(m + n2~¢) overall time complexity.
This simple idea works for the n-PSP problem, but yields
quite a large approximation factor, which is the product of the
approximation factors of the spanner and the approximation
algorithm. For the ANSC problem, this simple idea does not
immediately work, since spanners do not give any guarantees
on cycle lengths.

n-PSP.: We briefly explain the idea behind the (2+¢, 3)-
approximation algorithm for n-PSP in O(m + n?/?) time
for any constant ¢ > 0 and constant 5 depending on ¢
(Theorem 1.3). We note that this approximation guarantee is
nearly tight with our conditional lower bound in Corollary I.1).

We take an O(n®/?)-edge subgraph containing the incident
edges of all vertices with degree at most n'/2, and compute a
(1+ ¢, B) spanner of size n'*¢ [52] for this subgraph. Then,
we perform the O(m./n)-time 2-approximation algorithm on
this spanner.

Now, it remains to take care of the pairs (s;,t;) whose
shortest paths pass through some high-degree (> n'/2) vertex.
To do this, we take a sample S of \/n nodes, and compute
single-source shortest paths from all s € S in a (2 + ¢, 5)-
spanner of the graph, and use ming,es{d(s;, ) + d(z,t;)} as
a (2+¢,p') estimate of d(s;,t;).

Highlight: ANSC.: As mentioned above, spanners do
not provide direct guarantees on cycle lengths. However, we
observe that they do give some indirect guarantees as follows.
Consider a shortest cycle through v, denoted C,. If we divide
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C, into at least three almost equal subpaths where two of
the subpaths have v as an endpoint, each subpath is a shortest
path. Take one subpath P. In any k-spanner, there is a subpath
P’ of length at most k|P| between its endpoints. Since none
of these subpaths pass through v except for the ones that start
or finish at v, the concatenation of all these approximated
subpaths contains a cycle that includes v of length roughly &
times SC(v).

Even with the above idea, there are still two issues to
overcome for ANSC that are not present for n-PSP: First,
when the cycle is very small (length at most 4) we can’t apply
the above idea. Second, if our spanner has ¢-additive error and
we divide C, into s subpaths, then the additive error in the
estimated cycle length is ¢ - s rather than ¢.

Our solution to avoid the above issues is to use a fault-
tolerant spanner. First, we use a 1-fault-tolerant k-spanner,
which is a subgraph H such that for each u,v and edge e, if
d is the distance between w and v in G\e, then d < dp (u,v) <
kd.

The following observation illustrates the usefulness of fault-
tolerant spanners for this application. If P is a 1-fault tolerant
k-spanner, then for each node v, the subgraph consisting of P
and all the edges adjacent to v contains a cycle around v of
length at most k - SC(v).

The way we utilize the above observation is as follows.
We obtain a sample set S of the nodes, and we perform
CYCLEESTIMATIONDIKSTRA(s) from each s € S in a
subgraph G5 of the underlying graph G. The spanner P is
contained in all of the subgraphs G, and these subgraphs
are selected in a way that for each node v, all the edges
adjacent to v appear in at least one subgraph G. Moreover,
any edge that is not in the spanner P appears in at most
2 of these subgraphs. This means that from the observation
above we get an estimate for SC(v) for each v from one of
the CYCLEESTIMATIONDIJKSTRAS, and our running time is
O(|S] - |E(P)| + m). By using a 1-fault-tolerant 5-spanner,
this idea gives us a (6, 1)-approximation algorithm for ANSC
in time O(m + n2~1/6).

Now, our goal is to obtain a better multiplicative approxima-
tion factor. To develop our (2+¢, 3)-approximation algorithm,
we first use 1-fault tolerant k-spanners for large k£ to get
approximation algorithms with running time close to linear.
We use this algorithm for estimating small (constant sized)
cycles. For bigger cycles, instead of fault tolerant spanners,
we use the composition of the spanners by [53] and [52],
together with the observations mentioned at the beginning of
this section.
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