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Abstract—We study the approximability of two related prob-
lems on graphs with n nodes and m edges: n-Pairs Shortest
Paths (n-PSP), where the goal is to find a shortest path between
O(n) prespecified pairs, and All Node Shortest Cycles (ANSC),
where the goal is to find the shortest cycle passing through each
node. Approximate n-PSP has been previously studied, mostly in
the context of distance oracles. We ask the question of whether
approximate n-PSP can be solved faster than by using distance
oracles or All Pair Shortest Paths (APSP). ANSC has also been
studied previously, but only in terms of exact algorithms, rather
than approximation.

We provide a thorough study of the approximability of n-
PSP and ANSC, providing a wide array of algorithms and
conditional lower bounds that trade off between running time
and approximation ratio.

A highlight of our conditional lower bounds results is that for
any integer k ≥ 1, under the combinatorial 4k-clique hypothesis,
there is no combinatorial algorithm for unweighted undirected
n-PSP with approximation ratio better than 1 + 1/k that runs
in O(m2−2/(k+1)n1/(k+1)−ε) time. This nearly matches an upper
bound implied by the result of Agarwal (2014).

Our algorithms use a surprisingly wide range of techniques,
including techniques from the girth problem, distance oracles,
approximate APSP, spanners, fault-tolerant spanners, and link-
cut trees.

A highlight of our algorithmic results is that one can solve both
n-PSP and ANSC in Õ(m + n3/2+ε) time1 with approximation
factor 2 + ε (and additive error that is function of ε), for
any constant ε > 0. For n-PSP, our conditional lower bounds
imply that this approximation ratio is nearly optimal for any
subquadratic-time combinatorial algorithm. We further extend
these algorithms for n-PSP and ANSC to obtain a time/accuracy
trade-off that includes near-linear time algorithms.

Additionally, for ANSC, for all integers k ≥ 1, we extend
the very recent almost k-approximation algorithm for the girth
problem that works in Õ(n1+1/k) time [Kadria et al. SODA’22],
and obtain an almost k-approximation algorithm for ANSC in
Õ(mn1/k) time.

Index Terms—graph algorithms, fine-grained complexity, ap-
proximation algorithms

I. INTRODUCTION

The focus of this paper is two basic problems concerning

distances in graphs: the n-Pairs Shortest Paths problem and

The full version [1] of this paper is available at
https://arxiv.org/abs/2204.03076.

1Õ hides sub-polynomial factors.

the All-Nodes Shortest Cycles problem.

n-Pairs Shortest Paths (n-PSP). Given a (weighted or

unweighted, directed or undirected) graph with n nodes

and m edges, and a set of pairs of vertices (si, ti) for

1 ≤ i ≤ O(n), compute the distance from si to ti for every

i. (For ease of notation, we denote this problem n-PSP even

though the number of pairs is not exactly n, rather it is O(n).)

All-Nodes Shortest Cycles (ANSC). Given a (weighted or

unweighted, directed or undirected) graph with n nodes and

m edges, compute for each vertex v, the length of the shortest

cycle containing v, denoted SC(v).

As we will show, these two problems are very similar in

some ways and fundamentally different in other ways. We

first provide some background for the n-PSP problem.

a) The n-PSP problem.: The n-PSP problem was first

explicitly studied in the 90s. Aingworth, Chekuri, Indyk and

Motwani [2] obtained an additive 2-approximation in time

Õ(n2). The other early work on this problem has been

subsequently subsumed by later results for distance oracles

[3], [4].

As far as we are aware, the n-PSP problem has not been

explicitly studied since the 90s. However, other distance-

related problems have been studied in the setting where one

only cares about the distances between prespecified vertex

pairs, such as pairwise distance preservers, pairwise spanners,

which were first studied by Coppersmith and Elkin [5] and

extensively studied thereafter, as well as pairwise reachability

preservers [6].

Now, we will provide some motivation for studying the n-

PSP problem. Perhaps the most classical distance problem

is All-Pairs Shortest Paths (APSP). APSP can be solved

in directed graphs with non-negative edge weights in time

Õ(mn) simply by running Dijkstra’s algorithm from each

vertex. For undirected unweighted graphs, APSP can be solved

using matrix multiplication in time Õ(nω) [7], where 2 ≤ ω <
2.373 is the matrix multiplication exponent [8]. For directed

unweighted graphs, APSP can be solved in time Õ(n2.529) [9]

(the bound can be slightly improved by plugging in a better

rectangular matrix multiplication [10]). For very large graphs,
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these running times can be prohibitive; even just writing down

the output of size n2 can be too slow.

For many applications in both theory and practice, comput-

ing all of the distances in the graph is overkill, and instead we

only care about some of the distances (e.g. multi-source multi-

sink routing [11], many-to-many shortest paths [12], etc.). We

ask a question that has been asked many times before:

Can we compute some distances in a graph faster than
computing all distances?

This question has been approached from various angles:

• The simplest approach to this question is perhaps to

compute all distances from a single source. The Single-

Source Shortest Paths (SSSP) problem can indeed be

solved much faster than APSP (by Dijkstra’s algorithm

in O(m + n log n) time), but has the obvious drawback

that all of the distances computed have the same source.

• Another approach towards this question, is to compute

only the extremal distances in the graph, that is, the

diameter, radius, and eccentricities (the largest distance

from each vertex in the graph). For these problems, there

are conditional lower bounds that rule out subquadratic

time exact algorithms for sparse graphs [13], but there has

been extensive work on approximating these parameters

quickly (see e.g. [14]). This approach has the drawback

that it only concerns extremal distances, and one might

wish to compute or approximate an arbitrary set of

distances.

• Another approach towards this question is to construct a

distance oracle, a data structure with subquadratic space

that allows one to quickly query (approximate) distances.

Distance oracles are designed for the setting where we

wish to know some arbitrary set of distances, but we do

not know a priori which distances. Distance oracles have

been extensively studied, and various trade-offs between

approximation ratio and running time are known (See

Section I-A for more detailed discussion of distance

oracles).

In contrast to distance oracles, we ask the question: what

if we do know a priori which distances we wish to compute?

The n-PSP problem is precisely this problem, where we have

O(n) prespecified vertex pairs. We ask the question of whether

we can achieve algorithms for n-PSP that are faster than the

algorithms directly implied by known distance oracles.

In this work, we will show that this question has different

answers in different regimes. For example,

• In the regime of (1 + 1/k)-approximations, we show

that the n-PSP algorithm directly implied by Agarwal’s

distance oracle [15] has nearly optimal running time,

under the combinatorial 4k-clique hypothesis.

• For (2 + ε, β)-approximation2, we show an n-PSP algo-

rithm that runs faster than directly applying the state-of-

the-art distance oracle of Chechik and Zhang [16].

2An (α, β) approximation algorithm means that the algorithm has multi-
plicative error α and additive error β.

Now, we turn our attention to ANSC.

b) The ANSC problem.: The ANSC problem was first

studied by Yuster [17], who gave a randomized algorithm for

undirected graphs with integer weights from 1 to M , in time

Õ(
√
Mn(ω+3)/2). Later, Sankowski and Węgrzycki [18], and

independently Agarwal and Ramachandran [19], showed that

for unweighted directed graphs there is a deterministic Õ(nω)
time algorithm. Agarwal and Ramachandran [19] also gave a

reduction from the Replacement Paths problem to weighted

directed ANSC. In the Replacement Paths problem, we are

given a graph and a shortest path P between two vertices s
and t, and the goal is to find for every edge e ∈ P , a shortest

path from s to t that avoids e. The reduction of [19] increases

the edge weights by a factor of n, and was subsequently

improved to preserve the range of edge weights by Chechik

and Nechushtan [20].

Despite this prior work on the exact version of ANSC, as

far as we know, we are the first to study the approximability

of ANSC.

In this work, we show various algorithmic results for the

ANSC problem. For example,

• We show an almost k-approximation algorithm for ANSC

with running time comparable to the best known k-

approximation girth algorithm.

• We show a (2+ε, β)-approximation algorithm for ANSC

with subquadratic running time.

A. Results for n-PSP and ANSC implied by prior work

We begin with two observations that relate n-PSP and

ANSC. The proofs of these observations are in the appendix.

The first observation is a reduction from exact n-PSP to

exact ANSC in weighted graphs. The second observation is a

reduction from ANSC to n-PSP in directed graphs that works

for the approximation setting with any finite approximation

factor.

A T (n,m)-time algorithm solving weighted undirected

ANSC exactly implies a T (n,m)-time algorithm for solving

weighted undirected n-PSP exactly.

A T (n,m)-time algorithm solving (unweighted) directed

n-PSP with any finite approximation factor α ≥ 1 implies

a T (n,m)-time algorithm for solving (unweighted) directed

ANSC with approximation factor α.

One simple way to obtain approximation algorithms for

directed or undirected n-PSP and directed ANSC is to use

known algorithms for approximate All-Pairs Shortest Paths

(APSP). The running times of these algorithms, however,

will always be at least Ω(n2) due to the size of the output

of APSP. If there is an algorithm for approximate APSP in

T (n,m) time for directed or undirected graphs with n nodes

and m edges, then we can approximate directed or undirected

(respectively) n-PSP in O(n) + T (n,m) time with the same

accuracy by looking up the O(n) input pairs in the output of

the APSP algorithm. We can approximate directed ANSC in

O(n2) + T (n,m) time by computing minu d̂(v, u) + d̂(u, v)
for every v, where d̂(·, ·) is the distance estimate that the

APSP algorithm outputs. The approximation guarantee for
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ANSC will have the same multiplicative error as APSP, and

the additive error will double. Since the output of APSP is of

size Θ(n2), the second term in these running times is dominant

and so we can approximate both directed or undirected n-PSP

and directed ANSC in O(T (n,m)) time. We note that it is not

clear how to get an algorithm for undirected ANSC directly

from APSP, as Observation I-A works only for directed graphs.

Next, we outline the known algorithms for APSP.

We have already outlined the known algorithms for exact

APSP. As for approximation algorithms for APSP, in directed

or undirected graphs with non-negative edge weights, for

any ε > 0, Zwick [9] gave a (1 + ε) approximation time

algorithm in time O(n
ω

ε log(W )) where W is the largest

edge weight. In the undirected setting, APSP in graphs with

integer weights in [−W,W ] can be solved in O(nω log(W ))
[21]. For any ε > 0, [22] gives a (1 + ε) approximation

algorithm in O(n
ω

ε polylog(nε )) time, improving upon Zwick’s

algorithm for large weights. There are many more algorithms

for approximating APSP [2], [23]–[26], however since the

focus of our paper is on subquadratic-time algorithms we do

not describe them in detail.

Another simple way to obtain approximation algorithms for

undirected n-PSP, is to use an approximate distance oracle

(DO). A DO is a data structure that allows one to query

distances. The parameters of interest in a DO are preprocessing

time, query time, space, and (multiplicative and additive)

approximation ratio. Given a DO with preprocessing time

p(m,n), query time q(m,n), one can obtain an algorithm for

n-PSP with the same approximation ratio, in time p(m,n) +
O(n)·q(m,n) simply by querying all of the input pairs. Unlike

algorithms for n-PSP that are based on APSP, algorithms based

on DOs do not have an inherent running time of Ω(n2).

We focus on DOs with subquadratic preprocessing time.

For any integer k ≥ 2, the Thorup-Zwick DO [27] has

preprocessing time O(kmn1/k), size O(n1+1/k) with query

time O(k) and approximation factor (2k − 1). We can use

this DO to obtain a (2k − 1)-approximation algorithm for

weighted undirected n-PSP in time O(kmn1/k). Patrascu

et al [28] also extends the Thorup-Zwick DO to fractional

values of k. Additionally, [29] gives a DO with prepro-

cessing time O(mn2/3) and constant query time that re-

turns a path of length at most 2d + 1 when queried for

a pair at distance d. This gives us a (2, 1)-approximation

algorithm in O(mn2/3) time for n-PSP. On the other side

of the time/accuracy trade-off, Agarwal [15] gives a DO

that yields for any integer k ≥ 1, a (1 + 1
k )-approximation

algorithm for n-PSP in time Õ(m2−2/(k+1)n1/(k+1)), as well

as a (1 + 1
k+0.5 )-approximation algorithm for n-PSP in time

Õ(m2−3/(k+2)n2/(k+2)) (see full version [1] for explanation).

Additionally, there are DOs with processing times that have

additive dependence between n and m. For any integer k ≥ 1,

Wulff-Nilsen [23] gives a (2k−1) approximate distance oracle

with preprocessing time O(
√
km + n1+c/

√
k) for a constant

c = 9 + 3
√
13, and query time O(k). This gives a (2k − 1)

approximation algorithm for n-PSP in O(
√
km + n1+c/

√
k)

time. Very recently, Chechik and Zhang [16] obtained a

constant query time (2 + ε, β)-approximate distance oracle

with subquadratic preprocessing time Õ(m+ n5/3+ε), which

immediately implies a (2+ε, β)-approximate n-PSP algorithm

in Õ(m+ n5/3+ε) time.

Note that we cannot use Observation I-A to obtain an

algorithm for ANSC since it only works in the exact setting,

and it is not clear how to use distance oracles in general to

solve ANSC in the undirected setting. Moreover, there are no

non-trivial distance oracles for the directed setting [27].

Thus, past work doesn’t give any subquadratic approxima-

tion algorithms for ANSC in directed or undirected graphs.

For undirected n-PSP we get the above results from distance

oracles, but it is not clear if this is the best one can do.

From the lower bounds side, ANSC is closely related to

Girth (the problem of finding the smallest cycle in the graph),

and any conditional lower bounds for Girth immediately

carry over to ANSC. A previously known lower bound for

the Girth in directed graphs states that under the k-Cycle

Hypothesis, any better than 2-approximation for Girth requires

time m2−o(1) [30].

B. Our Results

We provide a thorough study of the approximability of n-

PSP and ANSC, providing a wide array of algorithms and

conditional lower bounds that trade off between running time

and approximation.

Before stating our results we provide the main hardness

assumptions that we use for our conditional lower bounds.
1) Main Hardness Assumptions: We stress that our con-

ditional lower bounds are based on well-established hardness

assumptions in fine-grained complexity. We obtain hardness

results based on a number of different assumptions, but for

the sake of clarity, we only list the two central ones here. For

a complete list of the assumptions we use and the associated

hardness results see full version [1].

Our first hypothesis concerns combinatorial algorithms for

k-clique detection, and has been used as a hardness hypothesis

in [31]–[36]. By “combinatorial” we mean algorithms that do

not use the heavy machinery of Fast Matrix Multiplication.

Hypothesis 1 (Combinatorial k-Clique Hypothesis). Let k ≥ 3
be a constant integer. In the word-RAM model with O(log n)
bit words, there is no O(nk−ε) time combinatorial algorithm

for k-clique detection, for any constant ε > 0.

The Combinatorial 3-Clique Hypothesis is also called Com-
binatorial Dense Triangle Hypothesis, which is equivalent to

the Combinatorial Boolean Matrix Multiplication Hypothesis
(see full version [1]).

Our next hypothesis is used for our main conditional lower

bound result. This hypothesis was introduced in [35] and

concerns (not necessarily combinatorial) algorithms for k-

clique detection in hypergraphs. It has been widely used as

a hardness assumption [37]–[46].

Hypothesis 2 ((k, r)-Hyperclique Hypothesis). Let k > r ≥ 3
be a constant integer. In the word-RAM model with O(log n)
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bit words, there is no O(nk−ε) time algorithm for k-clique
detection in r-uniform hypergraphs, for any constant ε > 0.

2) Hardness Results: Our hardness results for n-PSP are

shown in Table I, and those for ANSC are shown in Table II.

For the sake of clarity we only describe our most central

hardness results in words here. For a detailed statement of

all of our hardness results see full version [1].

Most of our hardness results are actually stronger than

needed for Pairwise Distance and ANSC. In particular, they

also apply for weaker problems, specifically the extremal
versions of n-PSP and ANSC where the output is either the

minimum or maximum among the O(n) values outputted. In

particular, the girth is the length of the smallest cycle in the

graph, that is, the minimum value in the output of ANSC. We

define the cycle diameter as the largest value in the output of

ANSC, that is, the maximum over all vertices v of the length of

the smallest cycle through v. Analogously for n-PSP, given a

graph and O(n) pairs of vertices (si, ti), we define the n-pairs
minimum distance as mini d(si, ti), and the n-pairs diameter
as maxi d(si, ti).

We begin with a simple hardness result for n-Pairs Mini-

mum Distance. Using a simple reduction, we get the following

theorem is against a (2−ε)-approximation by a combinatorial

algorithm.

Theorem I.1. Under the Combinatorial Dense Triangle Hy-
pothesis, any better than 2-approximation combinatorial algo-
rithm for n-Pairs Minimum Distance requires n3/2−o(1) time.

Theorem I.1 has two main drawbacks: the running time is

not as high as we would like, and it is only for combinatorial

algorithms. We overcome both of these drawbacks. We achieve

stronger running time bounds under a generalized version of

the Combinatorial Dense Triangle Hypothesis: the Combinato-

rial k-Clique Hypothesis. We also remove the “combinatorial”

condition of Theorem I.1 under the (k, r)-Hyperclique Hy-

pothesis. To achieve both of these goals, as well as establish

a wide range of time/accuracy trade-off lower bounds for

both combinatorial and non-combinatorial algorithms, some

of which are nearly tight, we introduce the following general

theorem. This theorem is our most technically substantial

conditional lower bound. After stating the theorem, we will

highlight some of its corollaries.

Theorem I.2. For integers r, k, t satisfying k − 1 ≥ t + 1 ≥
r ≥ 2, let

D = 2r(t+ 1)− (2r − 3)k,

and suppose k < D. Then the following holds:
Given a k-(hyper)-clique instance on an n-vertex r-uniform

(hyper)-graph G, we can reduce it (in linear time) to an
unweighted undirected n-Pairs Minimum Distance instance
with O(knt) vertices and O(knt+1) edges, such that:

1) If G contains a k-(hyper)-clique, then the n-pairs min-
imum distance equals k.

2) If G does not contain a k-(hyper)-clique, then the n-
pairs minimum distance is at least D.

Our first two corollaries of Theorem I.2 concern the graph

(not hypergraph) version of Theorem I.2, and are under the

Combinatorial k-Clique Hypothesis.

Corollary I.1 establishes a time/accuracy trade-off against

algorithms with faster running times and higher approximation

ratio, while Corollary I.2 establishes a time/accuracy trade-off

against algorithms with better approximation ratios and slower

running times.

Corollary I.1. For k ≥ 4, assuming the Combinatorial k-
Clique Hypothesis, there is no combinatorial algorithm for
unweighted undirected n-Pairs Minimum Distance with ap-
proximation ratio better than (3−4/k) in m ·n1/(k−2)−ε time
or m+ nk/(k−2)−ε time, for any constant ε > 0.

Corollary I.2. For k ≥ 1, assuming the Combinatorial
4k-Clique Hypothesis, there is no combinatorial algorithm
for unweighted undirected n-Pairs Minimum Distance with
approximation ratio better than (1 + 1/k) in n2−ε time or
m ·n1−1/(2k)−ε time or m2−2/(k+1) ·n1/(k+1)−ε time, for any
constant ε > 0.

Corollary I.3. For k ≥ 1, assuming the Combinatorial
(4k + 2)-Clique Hypothesis, there is no combinatorial algo-
rithm for unweighted undirected n-Pairs Minimum Distance
with approximation ratio better than (1+1/(k+0.5)) in n2−ε

time or m · n1−1/(2k+1)−ε time or m2−3/(k+2) · n2/(k+2)−ε

time, for any constant ε > 0.

Corollary I.2 is nearly tight with previously known algo-

rithms for n-PSP in the following sense. For any integer

k ≥ 1, there is a (1 + 1/k)-approximation for n-PSP in

time Õ(m2−2/(k+1)n1/(k+1)) [15], while Corollary I.2 says

that there is no better than (1 + 1/k)-approximation in

Õ(m2−2/(k+1)n1/(k+1)−ε). That is, one conditionally cannot

simultaneously improve both the running time and the approx-

imation factor of the known algorithms, for any k.

Similarly, Corollary I.3 is also nearly tight with another

algorithm for n-PSP implied by [15]’s results, which has

approximation ratio 1 + 1/(k + 0.5) and running time

Õ(m2−3/(k+2)n2/(k+2)). Corollary I.3 says that one condi-

tionally cannot simultaneously improve both the running time

and the approximation factor of this algorithm for any k.

Our final corollary concerns the hypergraph version of

Theorem I.2 and is under the (k, r)-Hyperclique Hypothesis

(for r ≥ 3). Unlike, the above two corollaries, the following

corollary is for not necessarily combinatorial algorithms.

Corollary I.4. For k ≥ 4, assuming the (k, 3)-Hyperclique
Hypothesis, there is no algorithm for unweighted undirected
n-Pairs Minimum Distance with approximation ratio better
than (3 − 6/k) in nk/(k−2)−ε or mn1+1/(k−2)−ε time, for
any constant ε > 0.

Assuming the (4, 3)-Hyperclique Hypothesis, Corollary I.4

rules out algorithms with approximation ratio better than 3/2
in n2−ε time or mn1/2−ε time, for any constant ε > 0. This is

the choice of parameters with the best possible running time.
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Approximation Running time LB Theorem Hypothesis Comments

5/3− ε m1+δ−o(1) [1] Sparse Triangle

5/3− ε nω−o(1) [1] Dense Triangle

5/3− ε nω−o(1) [1] Simplicial Vertex for n-Pairs Diameter

2− ε n3/2−o(1) Thm I.1 Comb. BMM

2− ε m+ n2−o(1) Cor I.1 Comb. 4-clique nearly matches Thm I.3
3− 4/k − ε m+ nk/(k−2)−o(1) Cor I.1 Comb. k-clique

1 + 1/k − ε m2−2/(k+1)n1/(k+1)−o(1) Cor I.2 Comb. 4k-clique nearly matches [15]
1 + 1/(k + 0.5)− ε m2−3/(k+2)n2/(k+2)−o(1) Cor I.3 Comb. (4k + 2)-clique nearly matches [15]

3/2− ε mn1/2−o(1) Cor I.4 (4, 3)-hyperclique

3− 6/k − ε m+ nk/(k−2)−o(1) Cor I.4 (k, 3)-hyperclique

any finite m2−o(1) [1] k-cycle directed graphs
TABLE I

Conditional Lower Bounds for (unweighted) n-PSP. All results are for undirected graphs unless otherwise specified. All results work for n-Pairs Minimum
Distance unless otherwise specified. See the body of the text for details about the near-tightness of some of our conditional lower bounds.

Approximation Running time LB Theorem Hypothesis Comments

4/3− ε m1+δ−o(1) [1] Sparse Triangle for Girth

4/3− ε nω−o(1) [1] Dense Triangle for Girth

7/5− ε nω−o(1) [1] Simplicial Vertex for Cycle Diameter

3/2− ε m4/3−o(1) [1] All-Edges Sparse Triangle

3/2− ε n2 [1] unconditional
TABLE II

Conditional Lower Bounds for (unweighted) undirected ANSC.

As we discuss later, this is nearly tight with our algorithm

from Theorem I.3.

By setting k to be large in Corollary I.4, we obtain lower

bounds with approximation ratio larger than 2 and close to

3. We note that this is the first known lower bound with

approximation ratio higher than 2 for any distance problem
except for the ST -Diameter problem, but unlike in n-PSP, the

number of vertex pairs one considers in ST -Diameter is much

larger than the running time lower bounds.

We also note that by setting k = 6 in Corollary I.4, we

get the same bound as Theorem I.1, but for not necessarily

combinatorial algorithms.

Comparison with independent work [47].: Very recently,

Abboud, Bringmann, Khoury, and Zamir [47] proposed the

“cycle-removal” framework, and used it to obtain new con-

ditional lower bounds for various graph problems related to

approximating distances or girth. In particular, they showed

super-linear lower bounds on the preprocessing time of k-

approximate distance oracles. Their lower bounds also applied

to the offline setting of distance oracle queries, which is almost

the same as the n-PSP problem we considered here, except

that they did not fix the number of query pairs to be n. Their

results imply that, under either 3-SUM hypothesis or APSP

hypothesis, for any constant k ≥ 4, n-PSP does not have

k-approximation algorithms in m1+c/k time, where c > 0
is some universal constant. Their result has the right form

m1+Θ(1/k), but it appears difficult to obtain the best possible

constant c on the exponent using their framework.

The main difference between their lower bound results and

ours (Corollaries I.1 to I.3) is that we focus on approximation

ratio much closer to 1, such as 1 + 1/k− ε, while they focus

on arbitrarily large constant approximation ratio. Corollary I.2

and Corollary I.3 nearly match the known upper bounds

[15], without losing constant factors on the exponent. The

downside of Corollaries I.1 to I.3 is that they only work against

combinatorial algorithms.

Some of our other corollaries (such as Corollary I.4)

obtained m + n1+1/(k−2)−o(1) lower bounds n-PSP with

approximation ratio 3−Θ(1/k). They are subsumed by [47]

when the constant k is large enough.

3) Algorithmic Results: We investigate approximation al-

gorithms for both the n-PSP and ANSC problems in both

directed and undirected settings in n-node m-edge graphs.

Additionally, we are interested in the dependency between m
and n in the running time of our algorithms. We first present

algorithms where the running time shows a multiplicative
dependency between n and m. Then we investigate approxima-

tion algorithms for n-PSP and ANSC whose running time has

additive dependence between n and m, in particular running

times of the form m + n2−ε. Algorithms of this form are

desirable in part because they yield near-linear time algorithms

for dense enough graphs. Moreover, algorithms of the form

m + n2−ε have been studied for a variety of problems, for

instance in distance oracles [16], [23], and recent results on

bipartite matching and related problems [48]. Another moti-

vation for studying such algorithms is that known undirected

Girth algorithms do not have any multiplicative dependency on

m, and so we ask how crucial this multiplicative dependency

is for undirected ANSC and n-PSP. (Known directed Girth

algorithms, however do have multiplicative dependency on m.)

We let an (α, β)-approximation denote an approximation

algorithm that outputs an estimate x̂ for x such that x ≤ x̂ ≤
α · x+ β.
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a) The n-PSP problem.: Our algorithmic results for n-

PSP are shown in Table III. Note that there is no constant

factor approximation algorithm for the directed case (see full

version [1]), and hence all of our algorithmic results for n-PSP

are for the undirected case.

First we give a straightforward nearly 2k−2-approximation

for n-PSP, and we leave it as an open problem whether one

can achieve a k-approximation with similar running time.

Particularly related to our work, Chechik and Zhang [16]

obtained various distance oracles for unweighted undirected

graphs with subquadratic construction time and constant query

time. Their result immediately implies a (2+ε, β)-approximate

n-PSP algorithm in Õ(m + n5/3+ε) time. In this work we

obtain a faster algorithm for n-PSP, stated in the following

theorem.

Theorem I.3. Given an n-node m-edge undirected un-
weighted graph G and vertex pairs (si, ti) for 1 ≤ i ≤ O(n),
for any constant ε > 0, there is a randomized algorithm that
computes a (2+ε, β)-approximation for n-PSP in Õ(n3/2+ε+
m) time with high probability, for some constant β depending
on ε.

Theorem I.3 is nearly tight with our conditional lower bound

from Corollary I.1 in the sense that Corollary I.1 conditionally

rules out a (2 − ε)-approximation in time n2−Ω(1), while

Theorem I.3 provides a (2 + ε, f(ε))-approximation in time

polynomially faster than O(n2 +m).

b) The ANSC problem.: Our algorithmic results for

ANSC are shown in Table IV.

For directed graphs, we provide approximation algorithms

for ANSC, showing a strong separation between ANSC and n-

PSP in the directed case. To obtain our algorithms for directed

ANSC, we generalize previously known results from Girth by

Dalirrooyfard and Vassilevska W. [30], with a slight loss in

the accuracy and the running time. These results are stated in

Table IV and the appendix.

We now move to the case of undirected graphs. Recall that

from Table III, we give a nearly 2k− 2-approximation for n-

PSP. For ANSC, however, we are able to achieve the better

approximation ratio of (k + ε), as stated in the following

theorem.

Theorem I.4. Given an n-node m-edge undirected graph G
with edge weights in {1, . . . ,M}, a constant ε > 0 and an
integer k ≥ 3, there is a randomized algorithm that computes
a (k+ε)-approximation for ANSC in Õ(mn1/k log (M)) time
with high probability.

Very recently, a result similar to Theorem I.4 was shown for

the Girth problem [49]: an almost k-approximation algorithm

for the undirected girth in Õ(n1+1/k) time. Our running time

for ANSC is instead Õ(mn1/k) and this dependence on m
is not unexpected since for Girth, one generally only runs

Dijkstra’s algorithm until finding a cycle which takes Õ(n)
time, whereas for ANSC, we execute Dijkstra’s algorithm to

completion.

Now, we move to algorithms for ANSC of the form m +
n2−ε. We consider these to be our main algorithmic results.

We begin with a “proof of concept” algorithm which shows

that there is indeed an algorithm for ANSC with constant

multiplicative and additive factors in time m + n2−ε for

constant ε.

Theorem I.5. Given an n-node m-edge undirected un-
weighted graph G, there is a randomized algorithm that
computes a (6, 1)-approximation for ANSC in Õ(m+n2−1/6)
time with high probability.

We will significantly improve upon Theorem I.5 in running

time and multiplicative factor in our next result. However, our

next algorithm does not strictly improve upon Theorem I.5

partially due to its additive error of only 1.

Our goal is to reduce the multiplicative approximation ratio

as much as possible, with the goal of getting it down to nearly

2, to match our above algorithm for n-PSP.

Theorem I.6. Given an n-node m-edge undirected un-
weighted graph G and a constant ε > 0, there is a randomized
algorithm that computes a (2+ε, β)-approximation for ANSC
in Õ(n1.5+ε+m) time, where β is a constant depending only
on ε.

We also use fast matrix multiplication to obtain improve-

ment results for the ST -shortest paths problem, which is a

special case of n-PSP. They are included in the full version

[1].

II. TECHNICAL OVERVIEW

We use many different techniques that were originally

designed for a range of different problems and data structures,

such as girth, APSP, distance oracles, spanners, fault-tolerant

spanners, the simplicial vertex problem, and link-cut trees. The

applicability of some of these problems to approximate n-PSP

and ANSC is perhaps unexpected. For example, it is not clear

how something like a fault-tolerant spanner would be useful

in a setting that does not involve faulty vertices or edges.

Although we pull together results from a variety of different

problems, our results are not “just” an application of prior

techniques. In the following overview of our techniques, we

provide an overview of many of our results, choosing to

highlight certain results that require significantly new ideas

from prior work. In particular, we highlight a collection

of lower bounds for n-PSP, as well as our collection of

approximation algorithms for ANSC with running times of

the form Õ(m+ n2−ε).

A. Conditional Lower Bounds

Our conditional lower bounds are from standard hardness

assumptions for basic problems such as triangle detection, k-

cycle, and k-clique. Many of our conditional lower bounds are

quite straightforward reductions from these problems. One of

our conditional lower bounds, however, is more technically

substantial, and we highlight it next.
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Approximation Running time Theorem Comments

(2 + ε, f(ε)) m+ n3/2+ε Thm I.3 ε > 0, some function f , nearly matches Cor I.1
2k − 2 mn1/k [1] integer k ≥ 2

(2k − 1) · (2k − 2) m+ n1+2/k [1] integer k ≥ 2

2 m · n(1+ω)/8 [1] for ST -Shortest Paths, |S|, |T | = O(
√
n)

TABLE III
A summary of all of our approximation algorithms for n-PSP in undirected unweighted graphs. (Some results also work for weighted graphs as stated in

each theorems.) All running times above are within polylog(n) factors.

Approximation Running time Theorem Comments

2k + 1 + ε mnαk [1] directed graphs, αk solves αk(1 + αk)
k−1 = 1− αk

2 + ε mn1/2 [1] directed graphs, nearly matches Thm 5.1 of [30]
k + ε mn1/k Thm I.4 ε > 0 and integer k ≥ 2

nearly 1 + 1/(k − 1) m2−2/kn1/k [1] integer k ≥ 2

(6, 1) m+ n2−1/6 Thm I.5

(2 + ε, β) m+ n1.5+ε Thm I.6 ε > 0 and β is a function of ε

(k2, k32k+1) m+ n1+2/k [1] integer k ≥ 2
TABLE IV

A summary of all of our approximation algorithms for unweighted ANSC. (Some results also work for weighted graphs as stated in each theorem.) All
running times above are within polylog(n) factors. All results are for undirected graphs unless otherwise specified.

1) Highlight: Hardness of n-PSP from k-(Hyper)Clique Hy-
potheses: For the undirected unweighted n-PSP problem, by

adapting known techniques one could only prove fine-grained

hardness for approximation ratio less than 2. To overcome

this issue, we give an interesting and novel reduction from the

Combinatorial k-Clique Hypothesis to the n-Pairs Minimum

Distance problem, which not only yields lower bounds for

approximation ratio higher than 2, but also gives tight bounds

that match some of our algorithms in the low-approximation

regime. We believe this powerful reduction will inspire more

fine-grained hardness results for related problems.

As an illustrative example, we describe the case of k = 4.

Suppose we are given a 4-clique instance on a 4-partite graph

G with vertex partition V1, V2, V3, V4 where |Vi| = n. In

our reduction we create a 5-partite graph G′ with vertex

partition V12, V23, V34, V41, V
′
12 from left to right, where each

part contains n2 vertices, and we will connect edges only

between adjacent parts. The vertices in V12 (and V12′ ) are

indexed by vertex pairs (v1, v2) ∈ V1 × V2 from the in-

put graph G, and V23, V34, V41 are similarly (according to

the subscripts) indexed by vertex pairs from G. For every

v1 ∈ V1, v2 ∈ V2, v3 ∈ V3, we connect an edge between the

two vertices (v1, v2) ∈ V12, (v2, v3) ∈ V23 in G′, if and only

if (v1, v2, v3) form a 3-clique in G. We similarly add edges

between V23, V34, between V34, V41, and between V41, V
′
12.

The resulting graph G′ has N = 5n2 vertices and at most

M = 4n3 edges.

If G contains a 4-clique (v1, v2, v3, v4), then in G′ there

exists a length-4 path from (v1, v2) ∈ V12 to (v1, v2) ∈ V ′
12,

by simply going from left to right along the edges specified by

v1, v2, v3, v4. The interesting part is the converse case: when G
does not contain a 4-clique, what is the shortest possible length

of any path from (v1, v2) ∈ V12 to (v1, v2) ∈ V ′
12? Note that

this question amounts to solving an n-Pairs Minimum Distance

instance on G′. The answer cannot be 4, since a length-4 path

would immediately recover a 4-clique (containing (v1, v2) in

G. The next smallest length is 6 (with one backward step, and

one extra forward step), and it turns out that a length-6 path

would also have to recover a 4-clique in G: for example, the

following length-6 path (v1, v2) → (v2, v3) → (v3, v4) →
(v′2, v3) → (v3, v

′
4) → (v′4, v1) → (v1, v2) implies the

existence of the 4-clique (v1, v2, v3, v
′
4); the other possibilities

of length-6 paths can be similarly verified. Hence, the smallest

possible answer is 8. Then, any better than 2-approximation

combinatorial algorithm for n-Pairs Minimum Distance with

m · n1/2−ε running time would be able to distinguish these

two cases of distance 4 or ≥ 8 and hence solve the 4-clique

instance, in M ·N1/2−ε ≤ O(n4−ε/2) time, contradicting the

combinatorial 4-clique hypothesis. This lower bound nearly

matches the upper bound from [15].

The reduction described above can be generalized to larger

k, but naive ways to prove the lower bound on the shortest

distance would require an exhaustive case analysis, which

does not work for general values of k. To overcome this

issue, we provide a clean combinatorial argument that can

pinpoint the vertices participating in a k-clique when there

is a too short path. This combinatorial argument is highly

extendable: It yields lower bounds with approximation ratio

that increases with k, and it even allows us to capture hyper-
cliques rather than cliques. As a result, we can prove non-
combinatorial lower bounds based on the (r, k)-hyperclique

hypothesis (albeit with slightly worse exponents compared to

the combinatorial ones).

As previously noted, several parameter regimes of this

conditional lower bound are nearly tight with algorithms (both

previously known algorithms and new ones).

B. Approximation algorithms

a) CYCLEESTIMATIONDIJKSTRA data structure for
ANSC.: Algorithms for approximating distances and for ap-

proximating Girth, generally have the following structure: Run

Dijkstra’s algorithm from a random sample of vertices, and
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run a truncated version of Dijkstra’s algorithm from a large

set of vertices. For ANSC, we can employ a similar strategy,

however the situation becomes slightly more complicated. This

is because when we perform Dijkstra’s algorithm for ANSC

and we detect a cycle, we would like to update the estimate of

SC(v) for all vertices v on the cycle. To accomplish this, we

employ a data structure that we call CYCLEESTIMATIONDI-

JKSTRA, which uses a modified version of Dijkstra’s algorithm

along with the power of link-cut trees [50] to keep track of

the relevant cycle information for all vertices.

Our warm-up algorithm for ANSC that gives a 2-

approximation in time Õ(mn1/2) is simply a combination

of the CYCLEESTIMATIONDIJKSTRA data structure with the

above standard sampling and truncated Dijkstra techniques.

b) Time/accuracy trade-off for better running time.: We

first focus on algorithms that achieve better than Õ(mn1/2)
running time and worse than 2-approximation. Such a re-

sult for n-PSP follows from the following observation: a 2-

approximation algorithm in Õ(mn1/2) time can essentially be

plugged into the base case of Thorup-Zwick distance oracles

[27]. This result for n-PSP appears in the appendix, however

for ANSC, we obtain better results and we focus on those

here.

Specifically, for ANSC, we obtain a (k+ ε)-approximation

in Õ(mn1/k) time (Theorem I.4). A very recent result gave

an algorithm for Girth with a similar guarantee. However,

our techniques are completely different from theirs. Instead of

taking inspiration from an undirected Girth algorithm, we take

inspiration from a directed Girth algorithm, even though our

graph is undirected and techniques for Girth have traditionally

been very different in the directed and undirected settings.

In general it is not trivial to extend an algorithm for finding

cycles from the directed case to the undirected case, as finding

undirected cycles introduces challenges that don’t appear in

directed graphs. To illustrate this, in undirected graphs if

we are not careful our algorithm might estimate traversing

a path from a node v to u and back to v as a cycle, whereas

in the directed case this does not happen. As it turns out,

our CYCLEESTIMATIONDIJKSTRA data structure is useful in

addressing this issue.

To obtain our (k + ε)-approximation algorithm for undi-

rected ANSC, we use CYCLEESTIMATIONDIJKSTRA together

with a labeling procedure similar to our directed ANSC algo-

rithm, which is in turn from the Girth approximation algorithm

of [30]. These techniques allow us to moderate the size of the

vertex sets visited while performing Dijkstra’s algorithm and

prevent over-processing nodes. Specifically, whenever we do

CYCLEESTIMATIONDIJKSTRA, we only visit nodes with a

particular label, and we change the label of a node v when we

know that we must have a good enough estimate for SC(v).
As previously described, finding cycles in undirected graphs

presents challenges that are not present for directed graphs,

however the opposite is also true; neither setting is clearly

strictly harder than the other. We take advantage of the

undirected setting to simplify some aspects of the algorithm,

which actually yields better bounds for the undirected setting

than the directed setting. In particular, for directed graphs, the

labeling procedure is used on top of an induction, however

we determine that this induction is unnecessary for undirected

graphs, and removing it yields an algorithm with better running

time and approximation factor.

c) Time/accuracy trade-off for better approximation ra-
tio.: On the other side of the time/accuracy trade-off, we

consider getting a better that 2-approximation with running

time slower than Õ(mn1/2). Such a result was previously

known for n-PSP [15]. To get such a result for ANSC, we

take inspiration from the algorithm of Dahlgaard, Bæk Tejs

Knudsen, and Stöckel [51] for approximating the girth of a

graph. An algorithm very similar to [51] carries over from

Girth to ANSC. The only qualitative differences are our use

of edge sampling instead of vertex sampling and our use of

the CYCLEESTIMATIONDIJKSTRA data structure.

1) Algorithms in Õ(m + n2−ε) time: The approximation

algorithms we have mentioned so far have time complexities

m · nc for some c > 0, which are not desirable for very

dense graphs. In our next results, our goal is to minimize the

dependency of the running times on m, while keeping them

subquadratic in terms of n, that is, we want time complexity

Õ(m+ n2−ε) for constant ε > 0.

One simple idea is to use spanners to reduce the number of

edges to m′ = n2−Ω(1) (while preserving the distances up to

some factor), and then apply our previous algorithms to the

sparsified graph in m′ · nc � n2 time. This idea has been

used e.g. in the distance oracle of Wulff-Nilsen [23]. There

are many spanner constructions that take only Õ(m) time,

allowing us to obtain Õ(m + n2−ε) overall time complexity.

This simple idea works for the n-PSP problem, but yields

quite a large approximation factor, which is the product of the

approximation factors of the spanner and the approximation

algorithm. For the ANSC problem, this simple idea does not

immediately work, since spanners do not give any guarantees

on cycle lengths.

n-PSP.: We briefly explain the idea behind the (2+ε, β)-
approximation algorithm for n-PSP in Õ(m + n3/2) time

for any constant ε > 0 and constant β depending on ε
(Theorem I.3). We note that this approximation guarantee is

nearly tight with our conditional lower bound in Corollary I.1).

We take an O(n3/2)-edge subgraph containing the incident

edges of all vertices with degree at most n1/2, and compute a

(1 + ε, β) spanner of size n1+ε [52] for this subgraph. Then,

we perform the Õ(m
√
n)-time 2-approximation algorithm on

this spanner.

Now, it remains to take care of the pairs (si, ti) whose

shortest paths pass through some high-degree (≥ n1/2) vertex.

To do this, we take a sample S of
√
n nodes, and compute

single-source shortest paths from all s ∈ S in a (2 + ε, β)-
spanner of the graph, and use minx∈S{d(si, x) + d(x, ti)} as

a (2 + ε, β′) estimate of d(si, ti).
Highlight: ANSC.: As mentioned above, spanners do

not provide direct guarantees on cycle lengths. However, we

observe that they do give some indirect guarantees as follows.

Consider a shortest cycle through v, denoted Cv . If we divide
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Cv into at least three almost equal subpaths where two of

the subpaths have v as an endpoint, each subpath is a shortest

path. Take one subpath P . In any k-spanner, there is a subpath

P ′ of length at most k|P | between its endpoints. Since none

of these subpaths pass through v except for the ones that start

or finish at v, the concatenation of all these approximated

subpaths contains a cycle that includes v of length roughly k
times SC(v).

Even with the above idea, there are still two issues to

overcome for ANSC that are not present for n-PSP: First,

when the cycle is very small (length at most 4) we can’t apply

the above idea. Second, if our spanner has t-additive error and

we divide Cv into s subpaths, then the additive error in the

estimated cycle length is t · s rather than t.

Our solution to avoid the above issues is to use a fault-
tolerant spanner. First, we use a 1-fault-tolerant k-spanner,

which is a subgraph H such that for each u, v and edge e, if

d is the distance between u and v in G\e, then d ≤ dH(u, v) ≤
kd.

The following observation illustrates the usefulness of fault-

tolerant spanners for this application. If P is a 1-fault tolerant

k-spanner, then for each node v, the subgraph consisting of P
and all the edges adjacent to v contains a cycle around v of

length at most k · SC(v).

The way we utilize the above observation is as follows.

We obtain a sample set S of the nodes, and we perform

CYCLEESTIMATIONDIJKSTRA(s) from each s ∈ S in a

subgraph Gs of the underlying graph G. The spanner P is

contained in all of the subgraphs Gs, and these subgraphs

are selected in a way that for each node v, all the edges

adjacent to v appear in at least one subgraph Gs. Moreover,

any edge that is not in the spanner P appears in at most

2 of these subgraphs. This means that from the observation

above we get an estimate for SC(v) for each v from one of

the CYCLEESTIMATIONDIJKSTRAs, and our running time is

O(|S| · |E(P )| + m). By using a 1-fault-tolerant 5-spanner,

this idea gives us a (6, 1)-approximation algorithm for ANSC

in time Õ(m+ n2−1/6).

Now, our goal is to obtain a better multiplicative approxima-

tion factor. To develop our (2+ε, β)-approximation algorithm,

we first use 1-fault tolerant k-spanners for large k to get

approximation algorithms with running time close to linear.

We use this algorithm for estimating small (constant sized)

cycles. For bigger cycles, instead of fault tolerant spanners,

we use the composition of the spanners by [53] and [52],

together with the observations mentioned at the beginning of

this section.
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