STRONGLY INDEPENDENT MATRICES AND
RIGIDITY OF xA-INVARIANT MEASURES ON
n-TORUS

HUICHI HUANG, HANFENG LI, ENHUI SHI, AND HUI XU

ABSTRACT. We introduce the concept of strongly independent ma-
trices over any field, and prove the existence of such matrices for
certain fields and the non-existence for algebraically closed fields.
Then we apply strongly independent matrices over rational num-
bers to obtain measure rigidity result for endomorphisms on n-
torus.

1. INTRODUCTION

For an integer m, the xm map T,, on T = {z € C : |z| = 1} is given
by T,.(z) = z™ for all z € T.

H. Furstenberg proved that under the action of a non-lacunary multi-
plicative semigroup of positive integers on T, a nonempty closed invari-
ant subset of T containing a dense orbit is either finite or the whole T [F,
Theorem IV.1]. Here a multiplicative semigroup of positive integers
is called non-lacunary if it is not contained in any singly generated
multiplicative semigroup. In other words a non-lacunary multiplicative
semigroup of positive integers always contains two positive integers p
and ¢ with 122 irrational (we say that p, ¢ are non-lacunary).

log g
Furthermore, Furstenberg conjectured the following.

Conjecture 1.1 (Furstenberg’s Conjecture).

An ergodic invariant Borel probability measure on T under the action
of a non-lacunary multiplicative semigroup of positive integers is either
finitely supported or the Lebesgue measure.
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The first breakthrough of Furstenberg’s conjecture was achieved by
R. Lyons.

Theorem 1.2. [L, Theorem 1]

Suppose p,q > 2 are two relatively prime integers. If a non-atomic
X p, xg-invariant Borel probability measure ;1 on T is T)-exact, then it
is the Lebesgue measure. Here 1 is T)-exact means that (T, B, u,T,)
has no nontrivial zero entropy factor.

This result was improved by D. J. Rudolph under the assumption
that p and ¢ are coprime and an extra positive entropy condition [R,
Theorem 4.9] and later by A. S. A. Johnson [J, Theorem A] under
the assumption that p,q are non-lacunary and the positive entropy
condition.

Theorem 1.3 (Rudolph-Johnson’s Theorem).

Suppose p and ¢ are non-lacunary positive integers greater than 1. If
i is an ergodic Xp, Xg-invariant Borel probability measure on T such
that T}, or T, has positive measure entropy with respect to p, then p is
the Lebesgue measure.

One may consult [KK, KS1, KS2] for the extensions of above results
to automorphisms on n-torus with n > 2.

Recently, the first named author obtained the following rigidity the-
orem.

Theorem 1.4. [H, Theorem 1.5]

Let p be a nonzero integer. The Lebesgue measure is the unique
non-atomic Xp-invariant Borel probability measure on T satisfying one
of the following:

(1) it is ergodic and there exist a nonzero integer [ and a Fglner
sequence ¥ = {F;,}°°_, in N such that u is x(p? + [)-invariant
for all j in some £ C N with upper density Ds(FE) (see Defini-
tion 2.2) equal to 1;

(2) it is weakly mixing and there exist a nonzero integer [ and a
Fglner sequence ¥ = {F;,}°°_, in N such that p is x(p’ + 1)-
invariant for all j in some £ C N with Dx(E) > 0;

(3) it is strongly mixing and there exist a nonzero integer | and an
infinite set £ C N such that g is x(p’ + [)-invariant for all j in
E.

Moreover, a Xp-invariant Borel probability measure satisfying (2) or
(3) is either a Dirac measure or the Lebesgue measure.

In this paper, we introduce so-called strongly independent matrices

over a field F, and use strongly independent matrices over the rational
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field Q to extend the above measure rigidity results to endomorphisms

on T" ={(z1, -+ ,2,) €C": |zy| =+ = |2,] = 1}.

We say that an n-tuple (B, Bs, - -+ , B,,) of nxn matrices over a field
F is strongly independent over F if for any nonzero column vector
v in F™*!, the vectors Byv, Bov, - - - , B,v are linearly independent over

F. A nonzero matrix B in M, (F) is called strongly independent over
[ if the n-tuple (I, B,---, B"!) is strongly independent over F.

The next main theorem illustrates the existence of an abundance of
strongly independent matrices.

Theorem 1.5. A nonzero matrix B in M, (F) is strongly independent
over [F iff the characteristic polynomial of B is irreducible in F[t].

The above shows existence of strongly independent matrices over
certain fields, say, the field of rational numbers Q. However over some
fields, there are no strongly independent matrices.

Theorem 1.6. If F is an algebraically closed field, then there are no
strongly independent n-tuples in M, (F) for n > 2.

We shall identify R"/Z"™ with the n-torus T™ naturally via
Rn/zn 3 (1,1’1,27 . ’xn) + Zn — (627rz'x1’ e27ria:2’ . 7627rixn) c Tn

for (z1,29, -+ ,x,) € R". Let A be a matrix in M,,(Z). The x A map
on T" is defined by T4 : R*/Z™ — R"/Z"™

TA((xlavaa T 7In) + Zn) = (1'1,1'2, e axn)A+ Zn7
for <x1a$27 e al‘n) in R".

Theorem 1.7. Let A be in M, (Z). Suppose that u is a x A-invariant
Borel probability measure on T" satisfying one of the following:

(1) it is ergodic and there exist an n-tuple (By, Bg, - , B,,) of ma-
trices in M,,(Z) strongly independent over Q and a Fglner se-
quence 3 = {F,,}>°_; in N such that p is x (A7 + B;)-invariant
for all j in some E C N with upper density Dx(E) = 1 and all
i=1,2,--.n:

(2) it is weakly mixing and there exist an n-tuple (By, Ba, -, By)
of matrices in M, (Z) strongly independent over Q and a Fglner
sequence . = {F;,}°°_; in N such that u is x (A7 4+ B;)-invariant
for all j in some £ C N with Dy(E) >0andalli=1,2,--- n;

(3) it is strongly mixing and there exist an n-tuple (By, Ba, - , By)
of matrices in M, (Z) strongly independent over Q and an infi-
nite set £ C N such that p is x (A7 + B;)-invariant for all j in
EFandallt=1,2,--- ,n.
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Then g is either finitely supported or the Lebesgue measure.
Moreover, a x A-invariant Borel probability measure satisfying (2)
or (3) is either a Dirac measure or the Lebesgue measure.

Sataev [S] and Einsiedler-Fish [EF] independently proved that a mul-
tiplicative semigroup of positive integers with positive lower logarithmic
density acting on the circle has measure rigidity, whereas Theorem 1.4
implies that there exists a multiplicative semigroup of positive integers
with zero logarithmic density acting on the circle which also has mea-
sure rigidity [H, Theorem 5.2]. Analogously, we conclude that there
exist “very small” semigroups acting on T" such that the Lebesgue
measure is the unique non-atomic invariant measure.

Corollary 1.8. There exist an abelian multiplicative semigroup S C
M,(Z) and a matrix B in S such that the Lebesgue measure is the
unique non-atomic Borel probability measure on T™ which is both in-
variant under x A for all A in S and ergodic under x B.

The paper is organized as follows. We lay down some definitions
and notations in Section 2. Theorem 1.5 and Theorem 1.6 are proved
in Section 3. In Section 4, we characterize mixing properties of Borel
probability measures on T" in terms of their Fourier coefficients. Fi-
nally we establish Theorem 1.7 in Section 5.

2. PRELIMINARIES

Denote the set of nonnegative integers by N, and the cardinality of
a set F by |E].

For a ring R, denote by M,(R) the ring of n x n square matrices
with entries in R. Denote by GL,(R) the group of invertible elements
in M,(R). For a field F, denote by F its algebraic closure. For any
A € M, (F), denote by Pa(t) the characteristic polynomial det(t/, — A)
of Ain FJt].

For a nonempty set Z, denote by Z" the set of row vectors of length
n with coordinates in Z, and by Z™*! the set of column vectors of
length n with coordinates in Z.

Within this paper, a measure on a compact metrizable space X al-
ways means a Borel probability measure. Denote by C'(X) the space
of complex-valued continuous functions on X.

Definition 2.1. A Fglner sequence in N is a sequence 3 = {F,,}>_,
of nonempty finite subsets of N satisfying
F,, NAF,,
(B AR

m—»co |Fm|
4
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for every m’ in N. Here A stands for the symmetric difference.

Definition 2.2. Let ¥ = {F,,};7_; be a sequence of nonempty finite
subsets of N. For a subset E of N, the upper density Dx(FE) is given
by

_ ENE,,
Dyx(E) := limsup g
ky
ko
Definition 2.3. For k = | | € Z"" and z = (21, 22, , 2,) € T",
kn,

use 2* to denote 281242 ... 2k

measure g on T" is defined by

k) = / Fduz)

For a measure p on a compact metrizable space X, if pu({z}) > 0
for some z in X, then z is called an atom for u. A measure with no
atoms is called non-atomic.

For a continuous map 7 : X — X, a measure p on X is called T-
invariant if u(E) = u(T~'E) for every Borel subset £ of X. For A in
M, (Z), we call a measure p on T" x A-invariant if p is Ts-invariant.

A T-invariant measure p is called ergodic if every Borel subset F
with T7'FE = E satisfies u(F) = 0 or 1. A measure y is called weakly
mixing if ;1 x p is an ergodic T x T-invariant measure on X x X, and
it is called strongly mixing if lim; . (T 7ENF) = p(E)u(F) for
all Borel subsets E, F' of X.

and the Fourier coefficient ji(k) of a

3. EXISTENCE AND NON-EXISTENCE OF STRONGLY INDEPENDENT
MATRICES OVER CERTAIN FIELDS

In this section, we prove Theorems 1.5 and 1.6, which illustrate that
the existence of strongly independent matrices over a field F depends
on algebraic properties of .

Definition 3.1. For a field F, we call an n-tuple (By, By, --- , B,,) of
matrices in M, (F) strongly independent over F if for any nonzero
v in F™*! the vectors Biv, Byv, - - - , B,v are linearly independent over
F. We call a nonzero matrix B in M, (F) strongly independent over
[ if the n-tuple (I,,, B, -+, B"1) is strongly independent over F.
Lemma 3.2. Let By,---,B, € M,(F). The tuple (By,---,B,) is
strongly independent over F iff for any nonzero (uq,--- ,u,) € F" the
matrix ) 7, u;B; is invertible.
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Proof. The tuple (By, - - , B,) is strongly independent over F iff for any

nonzero v € F™*! the vectors Bjv,--- , B,v are linearly independent,
iff for any nonzero v € F™! and any nonzero (ui,--- ,u,) € F" the
vector > 7, u; Bjv is nonzero, iff for any nonzero (uy, -+, u,) € F" the
matrix )7, u;B; is invertible. O

Proof of Theorem 1.5.

Suppose that Ppg(t) is not irreducible in F[t]. We have Pg(t) =
f(t)g(t) for some f,g € F[t] with 1 < deg(f),deg(g) < n — 1. Then
0 = Pg(B) = f(B)g(B) by Hamilton-Cayley Theorem [La, Theorem
XIV.3.1], whence at least one of f(B) and g(B) is not invertible. By
Lemma 3.2 we conclude that B is not strongly independent over F.

Now assume that Pg(t) is irreducible in F[t]. Denote by D the Jordan

canonical form of B. That is, D € M, (FF) and there is some invertible

W e M, (F) satisfying W B = DW and
D,

Dy,

for some positive integer k such that each D; is in M,,,(F) of the form

for some \; € F and positive integer m;. Then Pp(t) = [, (t — A\)™,
whence Pg(\;) = 0 for every 1 < i < k. Since Pg(t) is irreducible in
[F[t], it follows that for any nonzero f(t) € F[t] of degree at most n — 1,
one has f(\;) # 0 for every 1 < < k.

Let (uy,-- -, u,) be anonzero vector in F". Then f(t) = 377 | u;t!~!
[F[t] is nonzero and has degree at most n — 1. Thus f()\;) # 0 for every
1 < i < k. It follows that f(D) is invertible, whence uil,, + usB +
<4 u, B = f(B) = W f(D)W is invertible. By Lemma 3.2 we
conclude that B is strongly independent over F. 0

m



Remark 3.3. Suppose f(t) = t" + at" ' + -+ + a,_1t + a, is an
irreducible polynomial in F[t]. Define B € M, (F) as

000 -~ 0 —ay]
100 -+ 0 —ang
010 -+ 0 —aps
000 -+ 0 —a
000 - 1 —a

Then Pg(t) = f(t) [Ro, Definition on page 173 and Lemma 7.17]. By
Theorem 1.5, the matrix B is strongly independent over F.

For any n > 1, by Eisenstein’s criterion [La, Theorem IV.3.1], there
exist infinitely many monic polynomials of degree n in Z[t], which are
irreducible in Q[¢] (for example t™ + p for any prime number p in Z).
Theorem 1.5 illustrates that for n > 2 there are infinitely many n-tuples
of the form (I,, B,--- ,B"™!) in M,(Z) strongly independent over Q.

Next we prove Theorem 1.6 which gives the non-existence of strongly
independent matrices over algebraically closed fields.

Proof of Theorem 1.6.
21

22
For any matrices By, By, -+, B, in M,(F), taking z = | . |, the

“n

polynomial f(z1, 29, -+ , 2z,) = det [Blz Byz - an] isin F[zy, 29, - -

Now f(21,29,"+* ,2,) = 0 always has a nonzero solution z in F"*! since
[F is algebraically closed and n > 2. 0

4. FOURIER COEFFICIENTS OF ERGODIC, WEAKLY MIXING AND
STRONGLY MIXING MEASURES ON T"

In this section we prove Theorem 4.1, characterizing the mixing prop-
erties of measures on T under x A map via their Fourier coefficients.

Theorem 4.1. Let A € M,(Z) and let ¥ = {F,,}>°_, be a Fglner
sequence in N. The following are true.
(1) A measure p on T" is an ergodic X A-invariant measure iff

S AATE+1) = p)i()

JE€EFm

(4.1) lim

m—00 |Fm’

for all k,1 in Z™*1.

\ Zn)-



(2) A measure p on T" is a weakly mixing x A-invariant measure
iff

(4.2) lim IF | > Ak + 1) = (k) p(D)? =0

m—0o0
JEFm,

for all k,[ in Z™*1.
(3) A measure p on T" is a strongly mixing x A-invariant measure
ift
(4.3) lim 4(ATk +1) = a(k) (D)
for all k,{ in Z™*!.
To prove Theorem 4.1 we need to make some preparations.

Lemma 4.2. Let A € M,(Z). A measure p on T" is x A-invariant iff
(k) = i(Ak) for all k in Z"*1,

Proof. A measure yion T" is x A-invariant iff [I., f( TAz ) du(z an
for all fin C(T") [W, Theorem 6.8]iff [, f(Taz) d,u an

for all f in a dense subset of C'(T") iff [,,, f(Taz) du(z an

for f(z) = 2* for all k in Z™** since the linear span of M5 is dense in
C(T"). Note that [p,,(Taz)"du(z) = fi(Ak) for all k in Z™*!. O

Lemma 4.3. Let yu be a measure on T". For any k in Z™*! if a(k) =1
then the support of

supp(p) C {z € T": 2F =1}.
Proof. Since fi(k) = 1, by the definition of ji(k), we have

/n Fdu(z) = 1.

Thus [, Re(z")du(z) = 1. Therefore,

[ = 1Paut) - / (2~ Re()du(z) = 0.

Hence, supp(u) C {z € T": 2 =1}. O

Lemma 4.4. Let p be a measure on T". Let an n-tuple (By, By, - -+ , By)
of matrices in M, (Z) be strongly independent over Q. If there is some
nonzero k in Z"*! such that ji(B;k) = 1 for every 1 < i < n, then yu is
finitely supported.

Proof. Let L = [Blk‘ Bnk‘} € M,(Z). Since Bik,Bsk,--- , B,k
are linearly independent over Q, the matrix L is in GL,(Q). Write L as
8



(Lij)1<ij<n and put M = Zlgi,jgn |L; ;|. By Lemma 4.3, the support
of i, supp(p), is a subset of (7_,;{z € T": 2P* = 1}. That is,

supp(u) C ﬂ{x +Z": xe|0,1)",xBk € Z}

={z+7Z": z€[0,1)", 2L €Z"}
C{wL™+7Z": we[-M,M"NZ"}.
Note that {wL™': w € [-M, M]" N Z"} is finite, so is supp(p). O

We need the following Lemma [H, Lemma 4.2] which is a special case
of the mean ergodic theorem for amenable semigroups [B, Theorem 1].

Lemma 4.5. For a compact metrizable space X and a continuous map
T:X — X, ifvisan ergodic T-invariant measure on X, then for every
Folner sequence {F,,,}5°_; in N, one has

Jim ey 3 por = [ gan

janL

for every f € L*(X,v) (note that the identity holds with respect to
L?-norm). Consequently

(4.4) nlgnwﬁjezﬂn /X F(T72)g(z)dv(z) = /X fdv /X gdv

for all f, g in L*(X,v).

Proof of Theorem 4.1.

For any Borel subset E of T", write 1g for the characteristic function
of E.

(1) Suppose p is an ergodic X A-invariant measure on T". Applying
Lemma 4.5 for X = T",T = T4 and v = u, we have

(4.5) lim —— F(T%2)g( / fd,u/ gdp

m—r00 ’F GEFm Tn
for all continuous functions f, g on T". Letting f(z) = 2* and g(z) = 2!
for z in T™ and k, 1 in Z™*!, we obtain (4.1), which is the necessity.
Now assume that (4.1) holds for all k,[ in Z"*1.

Let k € Z™!. Letting ! = 0in (4.1), we get lim,,, 0o \F_1m| > jer, MAk) =

i(k). Replacing k by Ak, we also have

1 . 1 .
A(Ak) = lim —— > (A'k) = lim > wAk).
moo [ Fpl S m—vo0 | F| 5=

9



Then
|1(AE) — (k)| = lim

m—oo ’le

> Ak =) ﬂ(Aj/f)‘

J€Fm+1 JE€EFm
F, 1)AF,
m—00 |Fm|

whence [i(Ak) = i(k). By Lemma 4.2, we get that u is x A-invariant.

From (4.1) we see that (4.5) is true for all f(z) = zF and g(z) = 2!
with k, [ in Z"*!. By linearity, (4.5) is also true for all f, g in the linear
span V of 2z for all k € Z™*!. Since V is dense in L?(T", i), (4.5) is
true for all f,g € L?(T", u). For any Borel subset E of T" satisfying
T,'E = E, taking f = g = 1g in (4.5), we get u(E) = u(E)% Hence
1 is ergodic.

(2) Suppose u is a weakly mixing x A-invariant measure on T", which
means g X p is an ergodic Ty x T4-invariant measure on T?*". Let
k,l € Z™1. Taking f(2',2") = ()k(z")7% and g(',2") = (2')!(2")~"
in (4.4) of Lemma 4.5 with X =T" x T", T =Ty x T4 and v = p X p,
we get

: 1 i X .

46)  Jim o 3 Ak +DP = [P0 P
" jeF,

Taking f(2',2") = (2/)* and g(, 2") = (2/)! in (4.4) of Lemma 4.5 with

X=T"xT"T =Ty xTyand v = pu X u, we also get

S AR+ 1) = alk)i(i).

J€Fm

(4.7) lim

m—vo | Fl
Since
(A + 1) = p(k) ()
= Ak +DP + k)Pl — p(Ak + Dak)i(l) — f(ATk + Df(k)i(l),
we have

lim ﬁ S (AT + 1) — k)AL

m—o0 :
JEFm

= dim e SOk + DR + [P

=00 | Fo JEFm
— ATk + DRV — ACATE T Dk

(4.6),(4.7) | . . . . . . . .
= aR) PP + 1aE) Pl = [aE)PaP = [aE)P AP = o.
This proves the necessity.

Conversely, suppose that (4.2) holds for all k,[ € Z™*1.
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Note that Ty x Ty = Tqiaga,a) on T" x T" = T2". In order to prove
that p x p is an ergodic T’y X T's-invariant measure on T" x T", by part
(1) it suffices to show that

szl V- el

for all &', k", 1',1" € Z"*'. Note that

—

u S
il 2]) = it
for all u,v € Z™!. Thus it suffices to show
1 ~ i 1./ AW R n ~ N ~ "N ~ 1\ ~ (1
lim = > (AR + )a(AR +1") = (k) k") ad) pd")

M—r00 |F | by
m

for all &', k", I, 1" € Z™*!,
Note that
AR+ AR +17) = (KA )l
(AT + 1) [(ATE" +1") = a(E")ad")] | + [[aATE + 1) — k) a)] (k") adl")]
| ATE" +1") = a(K") (") + |a(AE + 1) — (k) ()]

for all &', k" 1’1" € Z"*!, whence

<
<

lim Tt ST AATK 4 DA+ 1) — (R )a()

m— 00

JE€EFm
< Jlim e F | D UAATE +1") = (K" a(")] + |a(ATK + 1) = (k) a(l')|)?
JEFm
1 ~ ) 1.0 " ~ "\ ~ (1l ~ i 1./ / ~ N~ !/
< 2 lim oo N D AR +1") = pE) A" P + (AR + 1) — pk") (1))
EFm
CE

where in the second inequality we use (a + b)* < 2(a? + b?) for all real
numbers a, b. This proves the sufficiency. '

(3) Suppose p is strongly mixing, which means that lim; ., u(7,” EN
F) = uw(E)u(F) for all Borel subsets E, F' of T™. Then

J—00 Jn



for all Borel subsets E, F' of T™. Since the linear combinations of char-
acteristic functions are dense in L*(T", i), we have

lim [ f(T%2)g( / fdu/ngdu

Jj—00 Tn

for all f,g € C(T"). In particular, taking f(z) = 2* and g(z) = 2!, we
obtain (4.3) for all k,[ in Z"*!. This proves the necessity.

On the other hand, suppose a measure p on T" satisfies (4.3) for all
k.l € Z"™!. Let [ =0 and replace k by Ak. Then

A AR) = lim A(A7R) = lim A(A7k) = (k)
j—00 Jj—00

for all k € Z™*!. Hence yu is x A-invariant in view of Lemma 4.2. From
(4.3) we have

lim [ f(T%2)g( / fdu / gdp
Jj—ro0 Tn n n

when f(z) = zF and g(z) = 2! for k,l in Z™*!. Since the linear combi-
nations of 2* for k € Z™*! are dense in L*(T", i), the above is also true
for all f,g € L*(T", u). In particular it holds for f = 1p and g = 1p
for any Borel subsets E, F' of T", that is,

lim p(T3E N F) = p(E)(F).

5. MEASURE RIGIDITY ON T"

In this section we prove Theorem 1.7 and Corollary 1.8. For this we
need the following Lemma [H, Lemma 5.1].

Lemma 5.1. Let 7' : X — X be a continuous map on a compact
metrizable space X. Then a weakly mixing T-invariant measure p on
X with an atom is always a Dirac measure, i.e. supp(u) is a singleton.

Note that a measure p on T" is the Lebesgue measure iff ji(k) = 0
for all nonzero k € Z"*!.

Proof of Theorem 1.7.

(1) Suppose p is an ergodic x A-invariant measure on T" and there
exist an n-tuple (By, By, - - - , By,) of matrices in M,,(Z) which is strongly
independent over Q and a Fglner sequence ¥ = {F,,}5°_, in N such
that p is x(A’ + B;)-invariant for every 1 < ¢ < n and j in some
E C N with Dy(E) = 1. Passing to a subsequence of ¥ if necessary,

we may assume that lim,, .o W‘F—Qf' = 1. By Lemma 4.2, we have

((A’k + Bik) = (k) forall j € E, 1 <i <nand k € Z™
12



Assume that p is not the Lebesgue measure. Then there exists a
nonzero k € Z™*! such that ji(k) # 0.

Since p is an ergodic X A-invariant measure, by Theorem 4.1 (1), we
have lim,,, o0 ﬁ > jer, Ak +Bik) = ji(k)(Bik) for every 1 < i <
n. Note that

1 .
— (A k + Bk
N 2 Ak + Bik)
jeFm
1

| Fon

|FnNE| . 1 o .
=" k) + —— A’k + Bk k

ARGUR > Ak + Bik) = ju(k)

[ Fn] JEFM\E

. ) 1 . )
Ak + Bik) + 7 > WAk + Bik)

JEFmNE [ £ JEF\E

as m — oo. Hence (k) = f(k)p(B;k) which implies i(B;k) = 1 for
every 1 <17 <n. From Lemma 4.4 we get that p is finitely supported.

(2) Suppose p is a weakly mixing x A-invariant measure on T" and
there exist an n-tuple (By, B, - , B,,) of matrices in M,,(Z) which is
strongly independent over Q and a Fglner sequence 3 = {F},,}>°_, such
that u is x (Aj + B;)-invariant for every 1 <i < n and j in some £ C N
with Dy (FE) > 0. By Lemma 4.2, we have i(A7k + B;k) = ji(k) for all
jeE, 1<i<nandkeZ™"

Assume that p is not the Lebesgue measure. Then there exists a
nonzero k € Z™*! such that fi(k) # 0.

Let 1 < ¢ < n. Since p is a weakly mixing X A-invariant mea-
sure, by Theorem 4.1 (2), we have lim,, o \F_in| > jer, [1(ATk+ Bik) —
f(k)ii(B;k)|> = 0. Therefore,

1 .
0 = limsup—— Y |[u(A’k+ Bik) — ju(k)j(Bik)|?
]GFm,
1 )
> limsup —— > |a(Ak + Bik) — fu(k)ji(Bik) |
]anLmE

= timsup —— 37 Jlk) — (k) B

m—o0 ‘Fm| JEFmNE

= |(k) — (k) Bik)[* Dx(E).

Hence (k) — j(k)p(B;k) = 0, which implies that i(B;k) = 1. From
Lemma 4.4 we get that u is finitely supported.
(3) Suppose p is a strongly mixing x A-invariant measure on T" and

there exist an n-tuple (By, By, - -+, B,,) of matrices in M,,(Z) which is
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strongly independent over Q and an infinite set £ C N such that u is
X (A7 + B;)-invariant for every 1 <i < n and j in E.
Assume that p is not the Lebesgue measure. Then there exists a
nonzero k € Z™*! such that fi(k) # 0.
Let 1 < ¢ < n. Since pu is a strongly mixing X A-invariant measure,
by Theorem 4.1 (3), we have
gnmA%+Bmy:wmm&m.
J (o0}
Owing to p being X (A’ 4+ B;)-invariant for all j € F, by Lemma 4.2
one has fi(A’k + B;k) = (k) for all j € E. Consequently, ji(k) =
f(k)i(B;k), which implies ji(B;k) = 1. From Lemma 4.4 we get that
1 is finitely supported.
Suppose p is a measure on T" satisfying (2) or (3) of Theorem 1.7.
If 14 is not a Lebesgue measure, then p is finitely supported. According
to Lemma 5.1, we conclude that p is a Dirac measure on T". 0

Proof of Corollary 1.8.

Take a nonzero B in M,,(Z) with Pg(t) irreducible in Q[t] (see Re-
mark 3.3). Then B is strongly independent over Q by Theorem 1.5.
The multiplicative semigroup S generated by {B, B + B'}o<i<n—1.>1,
where we put B? = I,,, is what we need. O
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