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Abstract. We introduce the concept of strongly independent ma-
trices over any field, and prove the existence of such matrices for
certain fields and the non-existence for algebraically closed fields.
Then we apply strongly independent matrices over rational num-
bers to obtain measure rigidity result for endomorphisms on n-
torus.

1. Introduction

For an integer m, the ×m map Tm on T = {z ∈ C : |z| = 1} is given
by Tm(z) = zm for all z ∈ T.

H. Furstenberg proved that under the action of a non-lacunary multi-
plicative semigroup of positive integers on T, a nonempty closed invari-
ant subset of T containing a dense orbit is either finite or the whole T [F,
Theorem IV.1]. Here a multiplicative semigroup of positive integers
is called non-lacunary if it is not contained in any singly generated
multiplicative semigroup. In other words a non-lacunary multiplicative
semigroup of positive integers always contains two positive integers p
and q with log p

log q
irrational (we say that p, q are non-lacunary).

Furthermore, Furstenberg conjectured the following.

Conjecture 1.1 (Furstenberg’s Conjecture).
An ergodic invariant Borel probability measure on T under the action

of a non-lacunary multiplicative semigroup of positive integers is either
finitely supported or the Lebesgue measure.
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The first breakthrough of Furstenberg’s conjecture was achieved by
R. Lyons.

Theorem 1.2. [L, Theorem 1]
Suppose p, q ≥ 2 are two relatively prime integers. If a non-atomic

×p,×q-invariant Borel probability measure µ on T is Tp-exact, then it
is the Lebesgue measure. Here µ is Tp-exact means that (T,B, µ, Tp)
has no nontrivial zero entropy factor.

This result was improved by D. J. Rudolph under the assumption
that p and q are coprime and an extra positive entropy condition [R,
Theorem 4.9] and later by A. S. A. Johnson [J, Theorem A] under
the assumption that p, q are non-lacunary and the positive entropy
condition.

Theorem 1.3 (Rudolph-Johnson’s Theorem).
Suppose p and q are non-lacunary positive integers greater than 1. If

µ is an ergodic ×p,×q-invariant Borel probability measure on T such
that Tp or Tq has positive measure entropy with respect to µ, then µ is
the Lebesgue measure.

One may consult [KK, KS1, KS2] for the extensions of above results
to automorphisms on n-torus with n ≥ 2.

Recently, the first named author obtained the following rigidity the-
orem.

Theorem 1.4. [H, Theorem 1.5]
Let p be a nonzero integer. The Lebesgue measure is the unique

non-atomic ×p-invariant Borel probability measure on T satisfying one
of the following:

(1) it is ergodic and there exist a nonzero integer l and a Følner
sequence Σ = {Fm}

∞
m=1 in N such that µ is ×(pj + l)-invariant

for all j in some E ⊆ N with upper density DΣ(E) (see Defini-
tion 2.2) equal to 1;

(2) it is weakly mixing and there exist a nonzero integer l and a
Følner sequence Σ = {Fm}

∞
m=1 in N such that µ is ×(pj + l)-

invariant for all j in some E ⊆ N with DΣ(E) > 0;
(3) it is strongly mixing and there exist a nonzero integer l and an

infinite set E ⊆ N such that µ is ×(pj + l)-invariant for all j in
E.

Moreover, a ×p-invariant Borel probability measure satisfying (2) or
(3) is either a Dirac measure or the Lebesgue measure.

In this paper, we introduce so-called strongly independent matrices
over a field F, and use strongly independent matrices over the rational
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field Q to extend the above measure rigidity results to endomorphisms
on Tn = {(z1, · · · , zn) ∈ Cn : |z1| = · · · = |zn| = 1}.

We say that an n-tuple (B1, B2, · · · , Bn) of n×n matrices over a field
F is strongly independent over F if for any nonzero column vector
v in Fn×1, the vectors B1v,B2v, · · · , Bnv are linearly independent over
F. A nonzero matrix B in Mn(F) is called strongly independent over
F if the n-tuple (In, B, · · · , Bn−1) is strongly independent over F.
The next main theorem illustrates the existence of an abundance of

strongly independent matrices.

Theorem 1.5. A nonzero matrix B in Mn(F) is strongly independent
over F iff the characteristic polynomial of B is irreducible in F[t].

The above shows existence of strongly independent matrices over
certain fields, say, the field of rational numbers Q. However over some
fields, there are no strongly independent matrices.

Theorem 1.6. If F is an algebraically closed field, then there are no
strongly independent n-tuples in Mn(F) for n ≥ 2.

We shall identify Rn/Zn with the n-torus Tn naturally via

Rn/Zn 3 (x1, x2, · · · , xn) + Zn 7→ (e2πix1 , e2πix2 , · · · , e2πixn) ∈ Tn

for (x1, x2, · · · , xn) ∈ Rn. Let A be a matrix in Mn(Z). The ×A map
on Tn is defined by TA : Rn/Zn → Rn/Zn

TA((x1, x2, · · · , xn) + Zn) = (x1, x2, · · · , xn)A+ Zn,

for (x1, x2, · · · , xn) in Rn.

Theorem 1.7. Let A be in Mn(Z). Suppose that µ is a ×A-invariant
Borel probability measure on Tn satisfying one of the following:

(1) it is ergodic and there exist an n-tuple (B1, B2, · · · , Bn) of ma-
trices in Mn(Z) strongly independent over Q and a Følner se-
quence Σ = {Fm}

∞
m=1 in N such that µ is ×(Aj +Bi)-invariant

for all j in some E ⊆ N with upper density DΣ(E) = 1 and all
i = 1, 2, · · · , n;

(2) it is weakly mixing and there exist an n-tuple (B1, B2, · · · , Bn)
of matrices in Mn(Z) strongly independent over Q and a Følner
sequence Σ = {Fm}

∞
m=1 in N such that µ is ×(Aj+Bi)-invariant

for all j in some E ⊆ N with DΣ(E) > 0 and all i = 1, 2, · · · , n;
(3) it is strongly mixing and there exist an n-tuple (B1, B2, · · · , Bn)

of matrices in Mn(Z) strongly independent over Q and an infi-
nite set E ⊆ N such that µ is ×(Aj + Bi)-invariant for all j in
E and all i = 1, 2, · · · , n.
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Then µ is either finitely supported or the Lebesgue measure.
Moreover, a ×A-invariant Borel probability measure satisfying (2)

or (3) is either a Dirac measure or the Lebesgue measure.

Sataev [S] and Einsiedler-Fish [EF] independently proved that a mul-
tiplicative semigroup of positive integers with positive lower logarithmic
density acting on the circle has measure rigidity, whereas Theorem 1.4
implies that there exists a multiplicative semigroup of positive integers
with zero logarithmic density acting on the circle which also has mea-
sure rigidity [H, Theorem 5.2]. Analogously, we conclude that there
exist “very small” semigroups acting on Tn such that the Lebesgue
measure is the unique non-atomic invariant measure.

Corollary 1.8. There exist an abelian multiplicative semigroup S ⊆
Mn(Z) and a matrix B in S such that the Lebesgue measure is the
unique non-atomic Borel probability measure on Tn which is both in-
variant under ×A for all A in S and ergodic under ×B.

The paper is organized as follows. We lay down some definitions
and notations in Section 2. Theorem 1.5 and Theorem 1.6 are proved
in Section 3. In Section 4, we characterize mixing properties of Borel
probability measures on Tn in terms of their Fourier coefficients. Fi-
nally we establish Theorem 1.7 in Section 5.

2. Preliminaries

Denote the set of nonnegative integers by N, and the cardinality of
a set E by |E|.

For a ring R, denote by Mn(R) the ring of n × n square matrices
with entries in R. Denote by GLn(R) the group of invertible elements
in Mn(R). For a field F, denote by F its algebraic closure. For any
A ∈ Mn(F), denote by PA(t) the characteristic polynomial det(tIn−A)
of A in F[t].

For a nonempty set Z, denote by Zn the set of row vectors of length
n with coordinates in Z, and by Zn×1 the set of column vectors of
length n with coordinates in Z.

Within this paper, a measure on a compact metrizable space X al-
ways means a Borel probability measure. Denote by C(X) the space
of complex-valued continuous functions on X.

Definition 2.1. A Følner sequence in N is a sequence Σ = {Fm}
∞
m=1

of nonempty finite subsets of N satisfying

lim
m→∞

|(Fm +m′)∆Fm|

|Fm|
= 0
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for every m′ in N. Here ∆ stands for the symmetric difference.

Definition 2.2. Let Σ = {Fm}
∞
m=1 be a sequence of nonempty finite

subsets of N. For a subset E of N, the upper density DΣ(E) is given
by

DΣ(E) := lim sup
m→∞

|E ∩ Fm|

|Fm|
.

Definition 2.3. For k =









k1
k2
...
kn









∈ Zn×1 and z = (z1, z2, · · · , zn) ∈ Tn,

use zk to denote zk11 zk22 · · · zknn , and the Fourier coefficient µ̂(k) of a
measure µ on Tn is defined by

µ̂(k) =

∫

Tn

zk dµ(z).

For a measure µ on a compact metrizable space X, if µ({x}) > 0
for some x in X, then x is called an atom for µ. A measure with no
atoms is called non-atomic.

For a continuous map T : X → X, a measure µ on X is called T -
invariant if µ(E) = µ(T−1E) for every Borel subset E of X. For A in
Mn(Z), we call a measure µ on Tn ×A-invariant if µ is TA-invariant.

A T -invariant measure µ is called ergodic if every Borel subset E
with T−1E = E satisfies µ(E) = 0 or 1. A measure µ is called weakly

mixing if µ× µ is an ergodic T × T -invariant measure on X ×X, and
it is called strongly mixing if limj→∞ µ(T−jE ∩ F ) = µ(E)µ(F ) for
all Borel subsets E,F of X.

3. Existence and non-existence of Strongly Independent

Matrices over certain fields

In this section, we prove Theorems 1.5 and 1.6, which illustrate that
the existence of strongly independent matrices over a field F depends
on algebraic properties of F.

Definition 3.1. For a field F, we call an n-tuple (B1, B2, · · · , Bn) of
matrices in Mn(F) strongly independent over F if for any nonzero
v in Fn×1, the vectors B1v,B2v, · · · , Bnv are linearly independent over
F. We call a nonzero matrix B in Mn(F) strongly independent over

F if the n-tuple (In, B, · · · , Bn−1) is strongly independent over F.

Lemma 3.2. Let B1, · · · , Bn ∈ Mn(F). The tuple (B1, · · · , Bn) is
strongly independent over F iff for any nonzero (u1, · · · , un) ∈ Fn the
matrix

∑n

j=1 ujBj is invertible.
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Proof. The tuple (B1, · · · , Bn) is strongly independent over F iff for any
nonzero v ∈ Fn×1 the vectors B1v, · · · , Bnv are linearly independent,
iff for any nonzero v ∈ Fn×1 and any nonzero (u1, · · · , un) ∈ Fn the
vector

∑n

j=1 ujBjv is nonzero, iff for any nonzero (u1, · · · , un) ∈ Fn the

matrix
∑n

j=1 ujBj is invertible. �

Proof of Theorem 1.5.

Suppose that PB(t) is not irreducible in F[t]. We have PB(t) =
f(t)g(t) for some f, g ∈ F[t] with 1 ≤ deg(f), deg(g) ≤ n − 1. Then
0 = PB(B) = f(B)g(B) by Hamilton-Cayley Theorem [La, Theorem
XIV.3.1], whence at least one of f(B) and g(B) is not invertible. By
Lemma 3.2 we conclude that B is not strongly independent over F.
Now assume that PB(t) is irreducible in F[t]. Denote byD the Jordan

canonical form of B. That is, D ∈ Mn(F) and there is some invertible
W ∈ Mn(F) satisfying WB = DW and

D =





D1

. . .
Dk





for some positive integer k such that each Di is in Mmi
(F) of the form













λi

1 λi

. . . . . .
1 λi

1 λi













for some λi ∈ F and positive integer mi. Then PB(t) =
∏k

i=1(t−λi)
mi ,

whence PB(λi) = 0 for every 1 ≤ i ≤ k. Since PB(t) is irreducible in
F[t], it follows that for any nonzero f(t) ∈ F[t] of degree at most n− 1,
one has f(λi) 6= 0 for every 1 ≤ i ≤ k.

Let (u1, · · · , un) be a nonzero vector in Fn. Then f(t) =
∑n

j=1 ujt
j−1 ∈

F[t] is nonzero and has degree at most n− 1. Thus f(λi) 6= 0 for every
1 ≤ i ≤ k. It follows that f(D) is invertible, whence u1In + u2B +
· · · + unB

n−1 = f(B) = W−1f(D)W is invertible. By Lemma 3.2 we
conclude that B is strongly independent over F. �
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Remark 3.3. Suppose f(t) = tn + a1t
n−1 + · · · + an−1t + an is an

irreducible polynomial in F[t]. Define B ∈ Mn(F) as
















0 0 0 · · · 0 −an
1 0 0 · · · 0 −an−1

0 1 0 · · · 0 −an−2
...

...
... · · ·

...
...

0 0 0 · · · 0 −a2
0 0 0 · · · 1 −a1

















.

Then PB(t) = f(t) [Ro, Definition on page 173 and Lemma 7.17]. By
Theorem 1.5, the matrix B is strongly independent over F.
For any n ≥ 1, by Eisenstein’s criterion [La, Theorem IV.3.1], there

exist infinitely many monic polynomials of degree n in Z[t], which are
irreducible in Q[t] (for example tn + p for any prime number p in Z).
Theorem 1.5 illustrates that for n ≥ 2 there are infinitely many n-tuples
of the form (In, B, · · · , Bn−1) in Mn(Z) strongly independent over Q.

Next we prove Theorem 1.6 which gives the non-existence of strongly
independent matrices over algebraically closed fields.

Proof of Theorem 1.6.

For any matrices B1, B2, · · · , Bn in Mn(F), taking z =









z1
z2
...
zn









, the

polynomial f(z1, z2, · · · , zn) = det
[

B1z B2z · · · Bnz
]

is in F[z1, z2, · · · , zn].
Now f(z1, z2, · · · , zn) = 0 always has a nonzero solution z̃ in Fn×1 since
F is algebraically closed and n ≥ 2. �

4. Fourier Coefficients of Ergodic, Weakly Mixing and

Strongly Mixing measures on Tn

In this section we prove Theorem 4.1, characterizing the mixing prop-
erties of measures on Tn under ×A map via their Fourier coefficients.

Theorem 4.1. Let A ∈ Mn(Z) and let Σ = {Fm}
∞
m=1 be a Følner

sequence in N. The following are true.

(1) A measure µ on Tn is an ergodic ×A-invariant measure iff

lim
m→∞

1

|Fm|

∑

j∈Fm

µ̂(Ajk + l) = µ̂(k)µ̂(l)(4.1)

for all k, l in Zn×1.
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(2) A measure µ on Tn is a weakly mixing ×A-invariant measure
iff

lim
m→∞

1

|Fm|

∑

j∈Fm

|µ̂(Ajk + l)− µ̂(k)µ̂(l)|2 = 0(4.2)

for all k, l in Zn×1.
(3) A measure µ on Tn is a strongly mixing ×A-invariant measure

iff

lim
j→∞

µ̂(Ajk + l) = µ̂(k)µ̂(l)(4.3)

for all k, l in Zn×1.

To prove Theorem 4.1 we need to make some preparations.

Lemma 4.2. Let A ∈ Mn(Z). A measure µ on Tn is ×A-invariant iff
µ̂(k) = µ̂(Ak) for all k in Zn×1.

Proof. Ameasure µ on Tn is×A-invariant iff
∫

Tn f(TAz) dµ(z) =
∫

Tn f(z) dµ(z)
for all f in C(Tn) [W, Theorem 6.8] iff

∫

Tn f(TAz) dµ(z) =
∫

Tn f(z) dµ(z)
for all f in a dense subset of C(Tn) iff

∫

Tn f(TAz) dµ(z) =
∫

Tn f(z) dµ(z)

for f(z) = zk for all k in Zn×1 since the linear span of zk’s is dense in
C(Tn). Note that

∫

Tn(TAz)
k dµ(z) = µ̂(Ak) for all k in Zn×1. �

Lemma 4.3. Let µ be a measure on Tn. For any k in Zn×1, if µ̂(k) = 1
then the support of µ

supp(µ) ⊆ {z ∈ Tn : zk = 1}.

Proof. Since µ̂(k) = 1, by the definition of µ̂(k), we have
∫

Tn

zkdµ(z) = 1.

Thus
∫

Tn Re(z
k)dµ(z) = 1. Therefore,

∫

Tn

|zk − 1|2dµ(z) =

∫

Tn

(2− 2Re(zk))dµ(z) = 0.

Hence, supp(µ) ⊆ {z ∈ Tn : zk = 1}. �

Lemma 4.4. Let µ be a measure on Tn. Let an n-tuple (B1, B2, · · · , Bn)
of matrices in Mn(Z) be strongly independent over Q. If there is some
nonzero k in Zn×1 such that µ̂(Bik) = 1 for every 1 ≤ i ≤ n, then µ is
finitely supported.

Proof. Let L =
[

B1k · · · Bnk
]

∈ Mn(Z). Since B1k,B2k, · · · , Bnk
are linearly independent over Q, the matrix L is in GLn(Q). Write L as
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(Li,j)1≤i,j≤n and put M =
∑

1≤i,j≤n |Li,j|. By Lemma 4.3, the support

of µ, supp(µ), is a subset of
⋂n

i=1{z ∈ Tn : zBik = 1}. That is,

supp(µ) ⊆
n
⋂

i=1

{x+ Zn : x ∈ [0, 1)n, xBik ∈ Z}

= {x+ Zn : x ∈ [0, 1)n, xL ∈ Zn}

⊆ {wL−1 + Zn : w ∈ [−M,M ]n ∩ Zn}.

Note that {wL−1 : w ∈ [−M,M ]n ∩ Zn} is finite, so is supp(µ). �

We need the following Lemma [H, Lemma 4.2] which is a special case
of the mean ergodic theorem for amenable semigroups [B, Theorem 1].

Lemma 4.5. For a compact metrizable space X and a continuous map
T : X → X, if ν is an ergodic T -invariant measure on X, then for every
Følner sequence {Fm}

∞
m=1 in N, one has

lim
m→∞

1

|Fm|

∑

j∈Fm

f ◦ T j =

∫

X

fdν

for every f ∈ L2(X, ν) (note that the identity holds with respect to
L2-norm). Consequently

(4.4) lim
m→∞

1

|Fm|

∑

j∈Fm

∫

X

f(T jx)g(x)dν(x) =

∫

X

fdν

∫

X

gdν

for all f, g in L2(X, ν).

Proof of Theorem 4.1.

For any Borel subset E of Tn, write 1E for the characteristic function
of E.

(1) Suppose µ is an ergodic ×A-invariant measure on Tn. Applying
Lemma 4.5 for X = Tn, T = TA and ν = µ, we have

lim
m→∞

1

|Fm|

∑

j∈Fm

∫

Tn

f(T j
Az)g(z)dµ(z) =

∫

Tn

fdµ

∫

Tn

gdµ(4.5)

for all continuous functions f, g on Tn. Letting f(z) = zk and g(z) = zl

for z in Tn and k, l in Zn×1, we obtain (4.1), which is the necessity.
Now assume that (4.1) holds for all k, l in Zn×1.
Let k ∈ Zn×1. Letting l = 0 in (4.1), we get limm→∞

1
|Fm|

∑

j∈Fm
µ̂(Ajk) =

µ̂(k). Replacing k by Ak, we also have

µ̂(Ak) = lim
m→∞

1

|Fm|

∑

j∈Fm

µ̂(Aj+1k) = lim
m→∞

1

|Fm|

∑

j∈Fm+1

µ̂(Ajk).
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Then

|µ̂(Ak)− µ̂(k)| = lim
m→∞

1

|Fm|

∣

∣

∣

∣

∑

j∈Fm+1

µ̂(Ajk)−
∑

j∈Fm

µ̂(Ajk)

∣

∣

∣

∣

≤ lim
m→∞

|(Fm + 1)∆Fm|

|Fm|
= 0,

whence µ̂(Ak) = µ̂(k). By Lemma 4.2, we get that µ is ×A-invariant.
From (4.1) we see that (4.5) is true for all f(z) = zk and g(z) = zl

with k, l in Zn×1. By linearity, (4.5) is also true for all f, g in the linear
span V of zk for all k ∈ Zn×1. Since V is dense in L2(Tn, µ), (4.5) is
true for all f, g ∈ L2(Tn, µ). For any Borel subset E of Tn satisfying
T−1
A E = E, taking f = g = 1E in (4.5), we get µ(E) = µ(E)2. Hence

µ is ergodic.
(2) Suppose µ is a weakly mixing ×A-invariant measure on Tn, which

means µ × µ is an ergodic TA × TA-invariant measure on T2n. Let
k, l ∈ Zn×1. Taking f(z′, z′′) = (z′)k(z′′)−k and g(z′, z′′) = (z′)l(z′′)−l

in (4.4) of Lemma 4.5 with X = Tn ×Tn, T = TA × TA and ν = µ× µ,
we get

lim
m→∞

1

|Fm|

∑

j∈Fm

|µ̂(Ajk + l)|2 = |µ̂(k)|2|µ̂(l)|2.(4.6)

Taking f(z′, z′′) = (z′)k and g(z′, z′′) = (z′)l in (4.4) of Lemma 4.5 with
X = Tn × Tn, T = TA × TA and ν = µ× µ, we also get

lim
m→∞

1

|Fm|

∑

j∈Fm

µ̂(Ajk + l) = µ̂(k)µ̂(l).(4.7)

Since

|µ̂(Ajk + l)− µ̂(k)µ̂(l)|2

= |µ̂(Ajk + l)|2 + |µ̂(k)|2|µ̂(l)|2 − µ̂(Ajk + l)µ̂(k)µ̂(l)− µ̂(Ajk + l)µ̂(k)µ̂(l),

we have

lim
m→∞

1

|Fm|

∑

j∈Fm

|µ̂(Ajk + l)− µ̂(k)µ̂(l)|2

= lim
m→∞

1

|Fm|

∑

j∈Fm

[|µ̂(Ajk + l)|2 + |µ̂(k)|2|µ̂(l)|2

− µ̂(Ajk + l)µ̂(k)µ̂(l)− µ̂(Ajk + l)µ̂(k)µ̂(l)]

(4.6),(4.7)
= |µ̂(k)|2|µ̂(l)|2 + |µ̂(k)|2|µ̂(l)|2 − |µ̂(k)|2|µ̂(l)|2 − |µ̂(k)|2|µ̂(l)|2 = 0.

This proves the necessity.
Conversely, suppose that (4.2) holds for all k, l ∈ Zn×1.
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Note that TA × TA = Tdiag(A,A) on Tn × Tn = T2n. In order to prove
that µ×µ is an ergodic TA×TA-invariant measure on Tn×Tn, by part
(1) it suffices to show that

lim
m→∞

1

|Fm|

∑

j∈Fm

µ̂× µ(

[

A
A

]j [

k′

k′′

]

+

[

l′

l′′

]

) = µ̂× µ(

[

k′

k′′

]

)µ̂× µ(

[

l′

l′′

]

)

for all k′, k′′, l′, l′′ ∈ Zn×1. Note that

µ̂× µ(

[

u
v

]

) = µ̂(u)µ̂(v)

for all u, v ∈ Zn×1. Thus it suffices to show

lim
m→∞

1

|Fm|

∑

j∈Fm

µ̂(Ajk′ + l′)µ̂(Ajk′′ + l′′) = µ̂(k′)µ̂(k′′)µ̂(l′)µ̂(l′′)

for all k′, k′′, l′, l′′ ∈ Zn×1.
Note that

|µ̂(Ajk′ + l′)µ̂(Ajk′′ + l′′)− µ̂(k′)µ̂(k′′)µ̂(l′)µ̂(l′′)|

≤ |µ̂(Ajk′ + l′)[µ̂(Ajk′′ + l′′)− µ̂(k′′)µ̂(l′′)]|+ |[µ̂(Ajk′ + l′)− µ̂(k′)µ̂(l′)]µ̂(k′′)µ̂(l′′)|

≤ |µ̂(Ajk′′ + l′′)− µ̂(k′′)(l′′)|+ |µ̂(Ajk′ + l′)− µ̂(k′)µ̂(l′)|

for all k′, k′′, l′, l′′ ∈ Zn×1, whence

lim
m→∞

1

|Fm|

∑

j∈Fm

|µ̂(Ajk′ + l′)µ̂(Ajk′′ + l′′)− µ̂(k′)µ̂(k′′)µ̂(l′)µ̂(l′′)|2

≤ lim
m→∞

1

|Fm|

∑

j∈Fm

[|µ̂(Ajk′′ + l′′)− µ̂(k′′)µ̂(l′′)|+ |µ̂(Ajk′ + l′)− µ̂(k′)µ̂(l′)|]2

≤ 2 lim
m→∞

1

|Fm|

∑

j∈Fm

[|µ̂(Ajk′′ + l′′)− µ̂(k′′)µ̂(l′′)|2 + |µ̂(Ajk′ + l′)− µ̂(k′)µ̂(l′)|2]

(4.2)
= 0,

where in the second inequality we use (a+ b)2 ≤ 2(a2 + b2) for all real
numbers a, b. This proves the sufficiency.
(3) Suppose µ is strongly mixing, which means that limj→∞ µ(T−j

A E∩
F ) = µ(E)µ(F ) for all Borel subsets E,F of Tn. Then

lim
j→∞

∫

Tn

1E(T
j
Az)1F (z)dµ(z) =

∫

Tn

1Edµ

∫

Tn

1Fdµ
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for all Borel subsets E,F of Tn. Since the linear combinations of char-
acteristic functions are dense in L2(Tn, µ), we have

lim
j→∞

∫

Tn

f(T j
Az)g(z)dµ(z) =

∫

Tn

fdµ

∫

Tn

g dµ

for all f, g ∈ C(Tn). In particular, taking f(z) = zk and g(z) = zl, we
obtain (4.3) for all k, l in Zn×1. This proves the necessity.

On the other hand, suppose a measure µ on Tn satisfies (4.3) for all
k, l ∈ Zn×1. Let l = 0 and replace k by Ak. Then

µ̂(Ak) = lim
j→∞

µ̂(Aj+1k) = lim
j→∞

µ̂(Ajk) = µ̂(k)

for all k ∈ Zn×1. Hence µ is ×A-invariant in view of Lemma 4.2. From
(4.3) we have

lim
j→∞

∫

Tn

f(T j
Az)g(z)dµ(z) =

∫

Tn

fdµ

∫

Tn

gdµ

when f(z) = zk and g(z) = zl for k, l in Zn×1. Since the linear combi-
nations of zk for k ∈ Zn×1 are dense in L2(Tn, µ), the above is also true
for all f, g ∈ L2(Tn, µ). In particular it holds for f = 1E and g = 1F
for any Borel subsets E,F of Tn, that is,

lim
j→∞

µ(T−j
A E ∩ F ) = µ(E)µ(F ).

�

5. Measure Rigidity on Tn

In this section we prove Theorem 1.7 and Corollary 1.8. For this we
need the following Lemma [H, Lemma 5.1].

Lemma 5.1. Let T : X → X be a continuous map on a compact
metrizable space X. Then a weakly mixing T -invariant measure µ on
X with an atom is always a Dirac measure, i.e. supp(µ) is a singleton.

Note that a measure µ on Tn is the Lebesgue measure iff µ̂(k) = 0
for all nonzero k ∈ Zn×1.

Proof of Theorem 1.7.

(1) Suppose µ is an ergodic ×A-invariant measure on Tn and there
exist an n-tuple (B1, B2, · · · , Bn) of matrices inMn(Z) which is strongly
independent over Q and a Følner sequence Σ = {Fm}

∞
m=1 in N such

that µ is ×(Aj + Bi)-invariant for every 1 ≤ i ≤ n and j in some
E ⊆ N with DΣ(E) = 1. Passing to a subsequence of Σ if necessary,

we may assume that limm→∞
|Fm∩E|
|Fm|

= 1. By Lemma 4.2, we have

µ̂(Ajk +Bik) = µ̂(k) for all j ∈ E, 1 ≤ i ≤ n and k ∈ Zn×1.
12



Assume that µ is not the Lebesgue measure. Then there exists a
nonzero k ∈ Zn×1 such that µ̂(k) 6= 0.

Since µ is an ergodic ×A-invariant measure, by Theorem 4.1 (1), we
have limm→∞

1
|Fm|

∑

j∈Fm
µ̂(Ajk+Bik) = µ̂(k)µ̂(Bik) for every 1 ≤ i ≤

n. Note that

1

|Fm|

∑

j∈Fm

µ̂(Ajk +Bik)

=
1

|Fm|

∑

j∈Fm∩E

µ̂(Ajk +Bik) +
1

|Fm|

∑

j∈Fm\E

µ̂(Ajk +Bik)

=
|Fm ∩ E|

|Fm|
µ̂(k) +

1

|Fm|

∑

j∈Fm\E

µ̂(Ajk +Bik) → µ̂(k)

as m → ∞. Hence µ̂(k) = µ̂(k)µ̂(Bik) which implies µ̂(Bik) = 1 for
every 1 ≤ i ≤ n. From Lemma 4.4 we get that µ is finitely supported.

(2) Suppose µ is a weakly mixing ×A-invariant measure on Tn and
there exist an n-tuple (B1, B2, · · · , Bn) of matrices in Mn(Z) which is
strongly independent over Q and a Følner sequence Σ = {Fm}

∞
m=1 such

that µ is ×(Aj+Bi)-invariant for every 1 ≤ i ≤ n and j in some E ⊆ N

with DΣ(E) > 0. By Lemma 4.2, we have µ̂(Ajk +Bik) = µ̂(k) for all
j ∈ E, 1 ≤ i ≤ n and k ∈ Zn×1.
Assume that µ is not the Lebesgue measure. Then there exists a

nonzero k ∈ Zn×1 such that µ̂(k) 6= 0.
Let 1 ≤ i ≤ n. Since µ is a weakly mixing ×A-invariant mea-

sure, by Theorem 4.1 (2), we have limm→∞
1

|Fm|

∑

j∈Fm
|µ̂(Ajk+Bik)−

µ̂(k)µ̂(Bik)|
2 = 0. Therefore,

0 = lim sup
m→∞

1

|Fm|

∑

j∈Fm

|µ̂(Ajk +Bik)− µ̂(k)µ̂(Bik)|
2

≥ lim sup
m→∞

1

|Fm|

∑

j∈Fm∩E

|µ̂(Ajk +Bik)− µ̂(k)µ̂(Bik)|
2

= lim sup
m→∞

1

|Fm|

∑

j∈Fm∩E

|µ̂(k)− µ̂(k)µ̂(Bik)|
2

= |µ̂(k)− µ̂(k)µ̂(Bik)|
2DΣ(E).

Hence µ̂(k) − µ̂(k)µ̂(Bik) = 0, which implies that µ̂(Bik) = 1. From
Lemma 4.4 we get that µ is finitely supported.

(3) Suppose µ is a strongly mixing ×A-invariant measure on Tn and
there exist an n-tuple (B1, B2, · · · , Bn) of matrices in Mn(Z) which is
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strongly independent over Q and an infinite set E ⊆ N such that µ is
×(Aj +Bi)-invariant for every 1 ≤ i ≤ n and j in E.
Assume that µ is not the Lebesgue measure. Then there exists a

nonzero k ∈ Zn×1 such that µ̂(k) 6= 0.
Let 1 ≤ i ≤ n. Since µ is a strongly mixing ×A-invariant measure,

by Theorem 4.1 (3), we have

lim
j→∞

µ̂(Ajk +Bik) = µ̂(k)µ̂(Bik).

Owing to µ being ×(Aj + Bi)-invariant for all j ∈ E, by Lemma 4.2
one has µ̂(Ajk + Bik) = µ̂(k) for all j ∈ E. Consequently, µ̂(k) =
µ̂(k)µ̂(Bik), which implies µ̂(Bik) = 1. From Lemma 4.4 we get that
µ is finitely supported.

Suppose µ is a measure on Tn satisfying (2) or (3) of Theorem 1.7.
If µ is not a Lebesgue measure, then µ is finitely supported. According
to Lemma 5.1, we conclude that µ is a Dirac measure on Tn. �

Proof of Corollary 1.8.

Take a nonzero B in Mn(Z) with PB(t) irreducible in Q[t] (see Re-
mark 3.3). Then B is strongly independent over Q by Theorem 1.5.
The multiplicative semigroup S generated by {B,Bj +Bi}0≤i≤n−1,j≥1,
where we put B0 = In, is what we need. �
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