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Matrix Completion With Data-Dependent

Missingness Probabilities

Sohom Bhattacharya and Sourav Chatterjee

Abstract— The problem of completing a large matrix with
lots of missing entries has received widespread attention in the
last couple of decades. Two popular approaches to the matrix
completion problem are based on singular value thresholding
and nuclear norm minimization. Most of the past works on this
subject assume that there is a single number p such that each
entry of the matrix is available independently with probability
p and missing otherwise. This assumption may not be realistic
for many applications. In this work, we replace it with the
assumption that the probability that an entry is available is an
unknown function f of the entry itself. For example, if the entry
is the rating given to a movie by a viewer, then it seems plausible
that high value entries have greater probability of being available
than low value entries. We propose two new estimators, based
on singular value thresholding and nuclear norm minimization,
to recover the matrix under this assumption. The estimators
involve no tuning parameters, and are shown to be consistent
under a low rank assumption. We also provide a consistent
estimator of the unknown function f .

Index Terms— Matrix completion, graph limits, missing not at
random.

I. INTRODUCTION

L
ET M be an m × n matrix, which is only partially

observed, possibly with added noise. Given an estimate

M̂ of M , we define its mean squared error as

MSE(M̂) := E

[

1

mn

m
∑

i=1

n
∑

j=1

(m̂ij − mij)
2

]

, (1)

where mij and m̂ij denote the (i, j)-th entries of M and M̂
respectively. Given a sequence of such estimation problems,

where Mk and M̂k denote the parameter and estimator matri-

ces of the k-th problem, we call the sequence of estimators

M̂k consistent if

lim
k→∞

MSE(M̂k) = 0.

Estimating a large matrix from a few randomly selected

(and possibly noisy) entries is a common objective in many

statistical problems. The basic assumption in all of the work

in this area is that the matrix has either low rank or is
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approximately of low rank in some suitable sense. Some of

the prominent applications of matrix completion include com-

pressed sensing [8]–[12], [19], collaborative filtering [6], [42],

multi-class learning [2], [40], dimension reduction [31], [46]

and subspace estimation [7]. Theoretical guarantees of matrix

completion under various assumptions have been worked out

in [1], [3], [4], [13], [17], [18], [24], [26]–[29], [34], [37],

[38], [43]. This is only a small sampling of the huge literature

on this topic. For a recent survey, see [39].

In many of the above works, it is assumed that the entries

are missing uniformly at random. This may not be a realistic

assumption in many applications. For example, in the classic

problem of movie ratings, if a particular movie gets poor

reviews, fewer numbers of viewers are expected to review it

and hence the probability of missing entries corresponding to

that particular movie would be higher. Work on matrix comple-

tion under the ‘missing not at random’ (MNAR) assumption is

relatively sparse. Some examples include deterministic missing

patterns or missing patterns that depend on the matrix, using

spectral gap conditions [5], rigidity theory [44], algebraic

geometry [25] and other methods [30], [41], [45]. For ran-

dom but non-uniform missing patterns, a variety of statistical

guarantees for procedures based on nuclear-norm penalization

and other ideas are available [9], [16]–[18], [20], [26], [29],

[33], [38], [43], [49]. However, these guarantees almost always

require a careful choice of the penalty parameter (or some

other parameter, such as rank) based on knowledge about the

unknown matrix that is unlikely to be available. This is in

contrast to the case of uniform missing pattern, where we

now have many algorithms that assume no knowledge of the

unknown matrix.

In the present work, we assume that the probability of

an entry being revealed is a function f of the value of

that entry, and the revealed entries are allowed to be noisy.

This frequently encountered example of missingness where

a variable governs its own missingness is known as self-

masking MNAR [36]. Under these assumptions, we provide

an estimator of the parameter matrix based on a spectral

method and prove its consistency under a low rank assumption.

We also provide a second estimator based on nuclear norm

minimization. This estimator performs significantly better than

the spectral estimator in the absence of noise, but may not

work well for noisy entries. Moreover, it is computationally

expensive for large matrices. Lastly, we give estimates of

the function f using both methods, along with theoretical

guarantees about it. Some numerical examples are worked

out. The main advantage of our estimators is that they do
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not involve penalty parameters (or any other user-specified

parameters) which have to be carefully chosen to ensure that

the theoretical guarantees work out. The cost is that we have

asymptotic consistency results rather than finite sample error

bounds.

A recent paper that works under the setting of self-masking

MNAR, but in the setting of tensor completion, is [47]. In [47],

the probabilities of missingness are called ‘propensity scores’.

The main difference between [47] (and similar papers) and our

work is that in [47], it is assumed that the tensor of propensity

scores is low-rank, while we make no such assumption.

Indeed, one of the main observations in our paper, which

we prove using spectral techniques reminiscent of the proof

of Szemerédi’s lemma in combinatorics, is that the matrix of

propensity scores is guaranteed to have an approximately low

rank structure under a Lipschitz assumption on f .

A natural extension of our work is to study beyond self-

masking MNAR, namely, to consider examples where the

process that causes the missingness of an entry depends on

multiple entries of the parameter matrix and not only its value

itself. Such directions are left for future research.

II. RESULTS

A. The Problem

Let M be an m × n matrix with all entries in the interval

[−1, 1]. Let f : [−1, 1] → [0, 1] be a function. Let X be a

noisy version of M , modeled as a matrix with independent

entries in [−1, 1], such that E(xij) = mij for each i and j.

The (i, j)-th entry of X is revealed with probability f(mij),
and remains hidden with probability 1 − f(mij), and these

events occur independently. Our goal is to estimate M using

the observed entries of X .

B. Modified USVT Estimator

Our first proposal is an estimator of M based on singular

value thresholding. This is a modification of the Universal

Singular Value Thresholding (USVT) estimator of [14]. The

estimator is defined as follows:

1) Let Y be the matrix whose (i, j)-th entry is xij if the

(i, j)-th entry of X is revealed, and 0 otherwise.

2) Let
∑

σiuiv
T
i be the singular value decomposition of Y .

3) Choose a positive number η ∈ (0, 1) and let

A =
∑

i:σi≥(2+η) max{√m,
√

n}
σiuiv

T
i .

(In [14], it is recommended that η be chosen to be

0.02. For results concerning the optimal choice of the

threshold, see [18].)

4) Truncate the entries of A to force them to belong to the

interval [−1, 1]. Call the resulting matrix Q̂.

5) Let P be the matrix whose (i, j)-th entry is 1 if xij is

revealed, and 0 otherwise.

6) Repeat the above steps for the matrix P instead of Y ,

to get R̂.

7) Define a matrix W as wij := q̂ij/r̂ij if r̂ij 6= 0, and

0 otherwise.

8) Truncate the entries of W to force them to be in [−1, 1].
The resulting matrix is our estimator M̂ .

The idea behind this estimator has some similarity with the

one proposed recently by Ma and Chen [33], which is also

based on a two-step procedure, first estimating the matrix

of missingness probabilities and then using these estimated

probabilities to estimate the unknown matrix. The algorithm of

Ma and Chen involves a number of user-specified parameters,

whereas ours does not, which may be a desirable feature.

Note that if the entries of M and X are known to belong

to an interval [a, b] instead of [−1, 1], then subtracting (a +
b)/2 from each entry of X and dividing by (b−a)/2 forces the

entries to lie in [−1, 1]. Then applying the above procedure,

and finally multiplying the end-result by (b−a)/2 and adding

(a + b)/2, we can get the desired estimate of M . The case of

unknown a, b is beyond the scope of the paper. Lastly, if n >
m, one can simply work with the transpose of X to get an

estimate for the transpose of M .

C. Modified Candès–Recht Estimator

Our second proposal is an estimator of M based on nuclear

norm minimization. This estimator works only in the absence

of noise, so we assume that X = M . Let M̂ be the matrix

that minimizes nuclear norm among all matrices that are equal

to M at the revealed entries, and have all entries in [−1, 1].
(Recall that the nuclear norm of a matrix M , usually denoted

by kMk∗, is the sum of its singular values.) Hence, given a

set of observed entries Ω, our estimator is obtained by solving

the optimization problem:

M̂ := argminZ∈S kZk∗,
where

S := {Z : (Z − M)ij�(i,j)∈Ω = 0, kZk∞ ≤ 1}.
This is a small modification of the popular Candès–Recht

estimator [9], [10], [12], suggested recently in [15]. The

original estimator does not have the additional constraint that

the entries of M̂ have to be in [−1, 1]. This extra constraint is

not problematic since this is a convex constraint. For example,

it can be easily implemented in R by adding an `∞ constraint

using CVXR package [21]. Moreover, from an intuitive point

of view, it makes sense to add this constraint since we already

know that the entries of the unknown matrix M are in [−1, 1].
This estimator is similar to the one proposed by Klopp [26],

except that our method does not involve a penalty parameter.

D. Consistency Results

We now state consistency results for the two estimators

defined above. Suppose that we have a sequence of matrices

{Mk}k≥1, where Mk has order mk × nk, and mk, nk → ∞
as k → ∞. Let {Xk}k≥1 be a sequence of random matrices

with independent entries in [−1, 1] such that E(Xk) = Mk for

each k. In other words, Xk is a noisy version of Mk. Let M
be the union of the sets of entries of all of these matrices. Let

f : M → [0, 1] be a function such that the noisy version of

an entry with true value m is revealed with probability f(m),
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independently of all else. Note that it is irrelevant how f is

defined outside M, which is why we took the domain of f to

be this countable set.

Recall that a sequence of estimators {M̂k}k≥1 is consistent

if MSE(M̂k) → 0 as k → ∞, where MSE stands for the mean

squared error defined in equation (1). We will now prove the

consistencies of the two estimators defined above. The crucial

assumption will be that the sequence {Mk}k≥1 has uniformly

bounded rank. This is a version of the frequently occurring

low rank assumption from the literature. In addition to that,

we will need some other technical assumptions. Our first result

is the following theorem, which gives a sufficient condition for

the consistency of the modified USVT estimator.

Theorem 2.1: In the above setup, suppose that the sequence

{Mk}k≥1 has uniformly bounded rank. Let µk be the empir-

ical distribution of the entries of Mk. Suppose that for any

subsequential weak limit µ of the sequence {µk}k≥1, there is

an extension of f to a Lipschitz function from [−1, 1] into

[0, 1], also denoted by f , which has no zeros in the support

of µ. Then the modified USVT estimator based on {Xk}k≥1

is consistent.

Remark 2.2: The statement of the above Theorem is

about asymptotic behavior of MSE. However, in our proofs,

we obtain some finite sample error bounds which we have

omitted, with the goal of increasing the readability of the

result, and also for reducing the stringency of assumptions

on f . In fact, the proof shows that if kMk∗ ≤ q
√

mn for

some q > 0, and f ≥ δ everywhere for some δ > 0, and f is

a Lipschitz function with Lipschitz constant L > 0, then for

any ε > 0, the MSE can be upper bounded by

12

δ2

(

c1 min

{

2

√

r

m
+ εL +

√

2ε(L + 1), 2

}

+ 2c2e
−c3n

)

,

where r is a constant depending on q and ε, and c1, c2,

and c3 are universal constants. Such a bound reveals how

the magnitude of error is dependent on the nuclear norm of

parameter matrix and the Lipschitz constant of f .

Remark 2.3: Note that in many examples, such as in most

recommender systems, the matrix entries can only take values

in a fixed finite set. In such examples, there is no loss of

generality in the assumption that f has an extension that

is Lipschitz and nonzero everywhere on [−1, 1]. Also, if f
is continuous and nonzero everywhere in [−1, 1], then the

condition involving the empirical distribution of the entries

is redundant.

The next theorem gives the consistency of the modified

Candès–Recht estimator, under the additional assumption that

there is no noise.

Theorem 2.4: In the above setup, suppose that the sequence

{Mk}k≥1 has uniformly bounded rank, and also suppose that

Xk = Mk for each k. Let µk be the empirical distribution of

the entries of Mk. Suppose that for any subsequential weak

limit µ of the sequence {µk}k≥1, there is an extension of f to

a measurable function from [−1, 1] into [0, 1], also denoted by

f , such that f is nonzero and continuous almost everywhere

with respect to µ. Then the modified Candès–Recht estimator

is consistent for this problem.

Remark 2.5: We will see in numerical examples that the

modified Candès–Recht estimator has superior performance.

The advantage of the modified USVT estimator is twofold.

First, it can be used when the matrix is very large, where

using nuclear norm minimization may become infeasible

due to computational cost. Second, in the presence of

noise — which is often the case in practice — the modified

Candès–Recht estimator may perform badly, as we will see in

the simulated and real data examples.

Remark 2.6: Often, in many MNAR examples, identifiabil-

ity of parameters is an issue (see, e.g., [35]), which corre-

sponds to the notions that there might be two sets of parameter

values which yield same observations and hence, the true

parameter value cannot be identified. In Theorems 2.1 and 2.4,

however, the fact that we are able to approximately recover

the true matrix automatically implies that identifiability is not

an issue, provided that the low rank assumption holds. (That

is, if there are two candidates M1 and M2 for the true matrix,

and they both have low rank, then our estimate M̂ will be

close to both M1 and M2 with high probability, which means

that M1 must be close to M2.)

E. Proof Sketch

To prove Theorem 2.1, we first assume that µk converges

weakly to a limit µ as k → ∞. Let Rk be the matrix obtained

by applying f entrywise to Mk and Qk be entrywise product

of Mk and Rk. Let Yk be the matrix obtained by replacing the

unrevealed entries of Xk by zero. Let Pk be the matrix whose

(i, j)-th entry is 1 if the (i, j)-th entry of Xk is revealed, and

0 otherwise.

The main step is to show that Rk and Qk are also

approximately low rank matrices, in the sense that kRkk∗ =
o(mk

√
nk) and kQkk∗ = o(mk

√
nk). This is proved using a

spectral method, similar to the spectral proof of Szemerédi’s

regularity lemma. The key idea is that a low rank matrix is

approximately a block matrix after a suitable permutation of

rows and columns, and therefore, applying a Lipschitz function

entrywise keeps it close to a block matrix, which, in turn,

is approximately low rank. Once this is established, it then

follows by the standard results for USVT that if Q̂k and R̂k are

the estimates of Qk and Rk obtained by applying the USVT

algorithm to Yk and Pk, then Q̂k ≈ Qk and R̂k ≈ Rk with

high probability (in some appropriate sense).

To prove Theorem 2.4, we first show that one can possibly

permute rows and columns in each Mk to get an L2 limit W .

Next we prove there is a measurable function V : [0, 1]2 →
[0, 1] that is nonzero almost everywhere and Pk converges to

V in cut distance almost surely subsequentially. This implies

consistency of M̂k by [15, Theorem 2 and Theorem 3].

F. Estimating f

We will now produce an estimator for the unknown function

f that can be used with any consistent estimator. Our pro-

cedure is motivated by the nonparametric density estimation

methods available in statistics literature. It is interesting to

note, if the underlying function f were indeed a constant

function, we have observed from simulated examples that our
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estimator f̂ b is also close to a constant function. Hence, f̂ b can

be used to check if the data are MNAR or not. The estimator

involves the choice of a tuning parameter b, which is a positive

integer, chosen by the user. Given a matrix M with partially

revealed entries as in Subsection II-A, and an estimator M̂ of

M , the estimator f̂ b of f is defined as follows.

1) For i = 1, . . . , 2b + 3, let ci := −1 + (i − 2)b−1. Note

that this is a sequence of equally spaced points, starting

at c1 = −1 − b−1 and going up to c2b+3 = 1 + b−1.

2) For each i, choose ai uniformly at random from the

interval [ci − (4b)−1, ci + (4b)−1].

3) In the interval [ai, ai+1], define f̂ b to be the proportion

of revealed entries among those entries of M such that

the corresponding entry of M̂ is in [ai, ai+1].

Note that the above procedure defines f̂ b on an interval that

is slightly larger than [−1, 1], but that should not bother us,

because the domain can then be restricted to [−1, 1]. The

following theorem gives a measure of the performance of f̂ b

as an estimate of f .

Theorem 2.7: Suppose that f is Lipschitz, with Lipschitz

constant L. Let µ be the empirical distribution of the entries

of M and θ := MSE(M̂). Then
∫

(f̂ b(x) − f(x))2dµ(x) ≤ Cθ1/3b5/3 +
Cb

mn
+

CL2

b2
,

where C is a universal constant.

The above result shows that if b is big, but much smaller than

both mn and θ−1/5, then f̂ b is close to f at almost all entries

of M . In practice, a good rule of thumb would be to choose b
such that b is large, but at the same time, the intervals [al, al+1)
contain substantial numbers of entries of M̂ . One can try to

choose b optimally using some kind of cross-validation (such

as leave-one-out cross-validation), but it may be hard to prove

theoretical guarantees for such methods.

Although our method of estimating f has similarities with

density estimation methods, the problem is quite different

since the entries of the estimated matrix are not independent

random variables — in fact, they may have a complicated,

or even intractable, dependence structure. One might wonder

if traditional nonparametric methods of estimating f can

still be applied here under some smoothness constraint. Such

questions are left for future investigation.

G. Examples

In this subsection we will see how the two estimators per-

form in some simulated examples and two real data examples.

For real data examples, one should always check whether the

matrix is low-rank approximable before applying our methods.

Our simulations show taking b of order
√

n for estimating

an n × n matrix yields good f̂ , although we do not have a

theorem to prove that. Finally, one should also check if data is

noisy or not, and should apply spectral estimator when noise is

present.

Example 2.8: Consider a low rank n×n matrix M with the

entries of M having marginal distribution Uniform[−1, 1].
Here, we take n = 100 and rank(M) = 7. To generate such

a matrix, we define M1 =
∑6

i=1 diuiv
T
i , where:

TABLE I

COMPARISON TABLE FOR EXAMPLE 2.8

Fig. 1. Estimates of f in Example 2.8. The dashed curve corresponds
to modified USVT estimator, the double-dashed curve corresponds to the
modified Candès-Recht estimator, and the solid curve is the true f .

• For i = 1, . . . , 5, di = 2−i, and the components of ui

and vi are i.i.d. Bernoulli(1/
√

2) random variables.

• d6 = 1, u6 is a vector of all 1s, and v6 has i.i.d

Uniform[0, 2−5] entries.

It is not difficult to see that the entries of M1 are

i.i.d. Uniform[0, 1] random variables. Multiplying each entry

by 2 and subtracting 1, we get M . Then M has rank 7 with

probability 1, and the entries of M are uniformly distributed in

[−1, 1]. We take f(x) = 0.5x2+.3 to generate missing entries,

and do not add noise. To obtain the modified Candès–Recht

estimator, we used code from the R package filling [48]

and imposed the `∞ constraint using the CVXR package [21].

The modified USVT algorithm, being quite straightforward,

was coded without the aid of existing packages.

The modified Candès–Recht estimator was able to exactly

recover the true M almost all the time, resulting a very

small MSE of order 10−9. The modified USVT estimator

performed much worse, with an unimpressive MSE of 0.123.

The run-time of the modified USVT estimator was much

lower than that of the modified Candès–Recht estimator:

0.31 seconds versus 4.08 minutes. We will see in the next

example that the performance of the modified USVT estimator

becomes better when n is larger, accompanied by a huge

gain in run-time over the other estimator. We report both our

estimators and their MSEs and run-times in Table I.

Next, for both estimators of M , we estimated f using the

method proposed in Section II-F, taking b = 25. The estimated
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TABLE II

COMPARISON TABLE OF MSE FOR EXAMPLE 2.9

Fig. 2. Estimates of f in Example 2.9.

TABLE III

COMPARISON TABLE FOR EXAMPLE 2.10

f̂ ’s are shown in Figure 1. As expected, the f̂ based on the

modified Candès–Recht estimator has better performance.

Example 2.9: Here, we want to see how our estimator

performs as we vary the rank of underlying parameter matrix.

To this end, we take parameter matrix same as previous

example, with n = 500 and choose rank r = 4, 6, 8, 10.

We only report result of the modified USVT estimator, the

results corresponding to modified Candés- Recht estimator

varies similarly. The MSE of the estimator as we vary rank

are 0.007, 0.012, 0.012, 0.033 respectively. The estimated f̂ is

shown in Figure 2. We also observe our estimator performs

better than the vanilla USVT algorithm developed for MCAR.

A comparison of MSE of the two estimators has been given

below in Table II.

Example 2.10: This is the same as Example 2.8, but with

n = 500 to show how modified USVT has significant

computation time advantage over the modified Candès-Recht

estimator. The MSE of the modified USVT estimator is now

0.011, and that of the modified Candès-Recht estimator is

of order 10−9. So, with this larger sample size, the modi-

fied USVT estimator has reasonably good performance. The

time to compute the modified USVT estimator 0.85 sec-

onds, whereas for the modified Candès–Recht estimator, it is

2.51 hours. This shows that even though the latter has much

better performance in terms of MSE, it may be more practical

to use the former if the matrix is large. We provide the

estimators of f in Figure 3, taking b = 25. We report the

MSEs and run-times for both estimators in Table III.

Fig. 3. Estimates of f in Example 2.10. The dashed curve corresponds
to modified USVT estimator, the double-dashed curve corresponds to the
modified Candès–Recht estimator, and the solid curve is the true f .

Fig. 4. Estimating f̂ under different values of b.

A visual examination shows that both estimators perform

well.

Example 2.11: Under the same setup as before, we now

show how the change of the parameter b, number of bins,

affect the estimate of underlying function f . We choose b =
20, 30, 40, 50 and plot the resulting f̂ in Figure 4. There does

not seem to have much difference in f̂ across different values

of b.

Example 2.12: We will now show that the modified

Candès–Recht estimator performs poorly under presence of

noise. Here, we take n = 100 and rank(M) = 2,

with the marginal distribution of the entries of M being

Uniform[0, 1], generated by the same procedure that we

used to generate M1 in Example 2.8. The noisy version

of M , namely X , is generated as follows. For each (i, j),
generate xij = 1 with probability mij and xij = 0 with

probability 1 − mij . Note that E(xij) = mij . The entry
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Fig. 5. Estimation of f in Example 2.12. The dashed curve corresponds
to modified USVT estimator, the double-dashed curve corresponds to the
modified Candès-Recht estimator, and the solid curve is the true f .

xij is revealed with probability mij , and remains hidden

with probability 1 − mij (that is, we took f(x) = x). For

n = 100, the MSE of modified USVT estimator turned out

to be 0.017, much better than the MSE of the modified

Candès–Recht estimator, which was 0.112. The estimates of

f based on the two methods, with b = 10, are depicted in

Figure 5. The estimate based on the modified USVT method is

reasonably good, even with n as small as 100 in this example.

The estimate based on the modified Candès–Recht estimator,

however, is completely off: It estimates f to be large near

0 and 1 and zero everywhere in between. This is because

the observed entries consist solely of zeros and ones, and M̂
coincides with X at the observed values. So the estimation

procedure for f̂ deduces, incorrectly, that there is no chance

of observing an entry if its non-noisy value is strictly between

0 and 1.

Example 2.13: We now consider a real data example.

In real data, it is not possible to compare the performance

of f̂ with the ‘true f ’, because we do not know what the

true f is (or if our model is actually valid). Still, if f̂ turns

out to be substantially different than a constant function,

it validates the viewpoint that entries are not missing uniformly

at random. We consider the well-known Jester data [22], which

consists of 100 jokes rated by 73,421 users. The ratings are

continuous values between −10 and 10, entered by the users

by clicking on an on-screen ‘funniness’ bar. Not every user

rates every joke, so there are many missing entries. Due to

the prohibitively large run-time of the modified Candès–Recht

estimator, we first took a submatrix consisting of all 100 jokes

but a random sample of 300 users. Approximately 45% of

the values were missing in this submatrix. The estimates of f
based on the two methods (with b = 10) are shown in Figure 6.

Interestingly, the two estimates are very different. We posit

that this is due to the presence of noise in the observed

Fig. 6. Estimation of f in Example 2.13. The dashed curve corresponds to
the modified USVT estimator and the double-dashed curve corresponds to the
modified Candès-Recht estimator.

matrix, which messes up the modified Candès–Recht estima-

tor. Indeed, the continuous nature of the ratings makes it very

unlikely that the observed matrix is without noise. This is

further validated by Figure 7, where we plot the percentage

of the modified Candès-Recht estimator matrix M̂ that is

captured by its rank-k approximation, k = 1, 2, . . . , 100.

(The percentage is simply the sum of squares of the top k
singular values divided by the sum of squares of all singular

values.) This figure shows that to even get within 80% of M̂ ,

we need to consider a rank-25 approximation. Thus, M̂ is not

of low rank, even approximately. This invalidates the low rank

assumption of the Candès–Recht procedure, and allows us to

conjecture that the f̂ given by the modified USVT estimator

is a better reflection of the true f , assuming that the model is

correct.

Example 2.14: We continue with the Jester data example.

Assuming that the f̂ given by the modified USVT estimator

reflects the true state of affairs, we ran the modified USVT

method on the whole dataset. The estimated f , with b = 70,

is shown in Figure 8. The inverted U-shape is mysterious. It is

not clear to us what may have led to this, if it is indeed close

to the true f , because we do not know what caused entries to

be missing in this dataset.

Example 2.15: For our final example, we consider the

Film Trust dataset of movie ratings [23]. This dataset con-

sists of ratings given by 1508 users to 2071 movies, with

many missing entries. The user ratings range in the set

{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}. This dataset is much sparser than

the Jester data; only 35497 ratings are available, which is about

1.13 percent of the total number of possible ratings. Due to the

large size of the dataset, we implemented only the modified

USVT algorithm. We assume that each user has a ‘true’ rating

for each movie, and the observed rating, if any, is a noisy

version of the true rating. The observation probability is then
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Fig. 7. Let M̂ be the modified Candès–Recht estimate of M in Example 2.13.

This graph shows that percentage of M̂ that is captured by its rank-k
approximation, k = 1, 2, . . . , 100.

Fig. 8. Estimation of f in Example 2.14 using the modified USVT estimator.

a function f of the true rating. The estimate of f , with b = 30,

is plotted in Figure 9. As expected, a high rating increases the

chance of the rating being available; however, there is a dip

towards the end of the curve which we do not know how

to explain. One possible explanation is that very highly rated

movies are often classics that not many people watch and rate

because they have already watched those movies before.

III. PROOF OF THEOREM 2.4

For an m × n matrix A, define

kAk2 :=

(

1

mn

∑

i,j

a2
ij

)1/2

.

Fig. 9. Estimation of f in Example 2.15 using the modified USVT estimator.

Note that kAk2
2 is the sum of squares of the singular values of

A, divided by mn. Given the matrix A, we will also denote

by A the function A : [0, 1]2 → [−1, 1] which equals aij in

the rectangle ( i−1
m , i

m ) × ( j−1
n , j

n ) for each 1 ≤ i ≤ m and

1 ≤ j ≤ n. On the boundaries of the rectangles, we define

the function A is to be zero. Note that with this convention,

kAk2 equals the L2 norm of the function A, which will also

be denoted by kAk2.

For each k, let Sk denote the group of all permutations of

{1, . . . , k}. Given an m× n matrix A and a measurable map

W : [0, 1]2 → [−1, 1], we define

d2(A, B) := min
π∈Sm, τ∈Sn

kAπ,τ − Wk2, (2)

where Aπ,τ is the matrix whose (i, j)-th entry is aπ(i)τ(j).

The first key step in the proof of Theorem 2.4 is the following

lemma.

Lemma 3.1: Suppose that for each k, we have a matrix Mk

of order mk ×nk with entries in [−1, 1], where mk, nk → ∞
as k → ∞. Suppose that this sequence has uniformly bounded

rank. Then there exists a subsequence Mkl
and a measurable

map W : [0, 1]2 → [−1, 1] such that d2(Mkl
, W ) → 0

as l → ∞.

We will now prove Lemma 3.1. The proof closely follows

the proof of [15, Theorem 1]. Let m and n be two positive

integers. Let P be a partition of {1, . . . , m} and let Q be

a partition of {1, . . . , n}. The pair (P ,Q) defines a block

structure for m × n matrices in the natural way: Two pairs

of indices (i, j) and (i0, j0) belong to the same block if and

only if i and i0 belong to the same member of P and j and

j0 belong to the same member of Q.

If A is an m× n matrix, let AP,Q be the ‘block averaged’

version of A, obtained by replacing the entries in each block

(in the block structure defined by (P ,Q)) by the average value

in that block. It is easy to see that

kAP,Qk2 ≤ kAk2. (3)

We need the following lemma.
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Lemma 3.2: For any m × n matrix A with entries in

[−1, 1], and rank(A) ≤ r, there is a sequence of partitions

{Pj}j≥1 of {1, . . . , m} and a sequence of partitions {Qj}j≥1

of {1, . . . , n} such that for each j,

1) Pj+1 is a refinement of Pj and Qj+1 is a refinement of

Qj ,

2) |Pj | and |Qj | are bounded by (2j+2j)j2

, and

3) kA − APj ,Qjk2 ≤ 2
√

r/j + 6j32−j .

Proof: Let A =
∑r

i=1 σiuiv
T
i be the singular value

decomposition of A, where σ1 ≥ · · · ≥ σr, and some of

the σi’s are zero if the rank is strictly less than r. Take any

j ≥ 1. Let l be the largest number such that σl >
√

mn/j.

If there is no such l, let l = 0. Let

A1 :=

l
∑

i=1

σiuiv
T
i .

We define Pj , Qj , and Ã1 as in the proof of [15, Lemma

4], as follows. For 1 ≤ i ≤ l and 1 ≤ a ≤ m, let uia

denote the ath component of ui. Let ũ
(j)
ia be the largest integer

multiple of 2−jm−1/2 that is ≤ uia. Let ũ
(j)
i be the vector

whose ath component is ũ
(j)
ia . Similarly, for 1 ≤ b ≤ n, let

ṽ
(j)
ib be the largest integer multiple of 2−jn−1/2 that is ≤ vib.

Finally, define Ã =
∑l

j=1 σiũiṽ
>
i . This matrix Ã is used as a

block-approximation of A1. As shown in [15], this sequence

of partitions satisfy property (1) and (2) in the statement of

the lemma. Now, using the properties of the k·k2 norms noted

earlier, and the facts that l ≤ r and σl+1 ≤ √
mn/j, we have

kA − A1k2 =

(

1

mn

r
∑

i=l+1

σ2
i

)1/2

≤
(

rσ2
l+1

mn

)1/2

≤
√

r

j
.

Again, as in the proof of [15, Lemma 4], we obtain

kA1 − Ã1k2 ≤ 3j32−j.

Combining, we get

kA − Ã1k2 ≤ √
r/j + 3j32−j.

Now note that Ã1 is constant within the blocks defined by the

pair (Pj ,Qj). Thus, by (3),

kA − APj ,Qjk2 ≤ kA − Ã1k2 + kÃ1 − APj ,Qjk2

≤ kA − Ã1k2 + kÃPj ,Qj

1 − APj ,Qjk2

≤ 2kA − Ã1k2.

This completes the proof. �

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1: Let r be a uniform upper bound on

the rank of Mk. Lemma 3.2 tells us that for each k and j,

we can find a partition Pk,j of {1, . . . , mk} and a partition

Qk,j of {1, . . . , nk} such that

1) Pk,j+1 is a refinement of Pk,j and Qk,j+1 is a refine-

ment of Qk,j ,

2) |Pk,j | and |Qk,j | are bounded by (2j+2j)j2

, and

3) kMk − M
Pk,j ,Qk,j

k k2 ≤ 2
√

r/j + 6j32−j .

To reduce notation, let us denote M
Pk,j ,Qk,j

k by Mk,j .

Following the proof of [15, Theorem 1] and passing to a

subsequence if necessary, we get that for every j, there exists

a measurable function Wj : [0, 1]2 → [−1, 1] such that

Mπk,τk

k,j → Wj in L2 as k → ∞, where πk and τk are

permutations that depend only on k (and not on j). Without

loss of generality, let us assume πk and τk are identity

permutations for each k.

By construction, the block structure for Wj+1 is a refine-

ment of the block structure for Wj . Also by construction,

the value of Wj in one of its blocks is the average value of

Wj+1 within that block. From this, by a standard martingale

argument (for example, as in the proof of [32, Theorem 9.23])

it follows that Wj converges pointwise almost everywhere to

a function W as j → ∞. In particular, Wj → W in L2.

We claim that Mk → W in L2 as k → ∞. To show this,

take any ε > 0. Find j so large that kW − Wjk2 ≤ ε and

2
√

r/j + 6j32−j ≤ ε. Then for any k,

kW − Mkk2

≤ kW − Wjk2 + kWj − Mk,jk2 + kMk,j − Mkk2

≤ ε + kWj − Mk,jk2 + 2
√

r/j + 6j32−j

≤ 2ε + kWj − Mk,jk2.

Since Mk,j → Wj in L2 as k → ∞ and ε is arbitrary, this

completes the proof. �

Henceforth, let us work in the setting of Theorem 2.4. For

each k, let Pk be the random binary matrix whose (i, j)-
the entry is 1 if the (i, j)-th entry of Mk is revealed, and

0 otherwise. Then note that as functions on [0, 1]2, E(Pk) =
f ◦ Mk, where E(Pk) denotes the matrix of expected values

of the entries of Pk.

Recall the cut norm on the set of m×n matrices, as defined

in [15]:

kAk� :=
1

mn
max{|xT Ay| : x ∈ R

m, y ∈ R
n,

kxk∞ ≤ 1, kyk∞ ≤ 1},
where kxk∞ denotes the `∞ norm of a vector x. If A is an

m × n matrix and W : [0, 1]2 → R is a measurable function,

we define d�(A, W ) to be kA−Bk�, where B is the m×n
matrix whose (i, j)-th entry is the average value of W in the

rectangle ( i−1
m , i

m ) × ( j−1
n , j

n ).
The following lemma shows that Pk and E(Pk) are close

in cut norm.

Lemma 3.3: As k → ∞, kPk − E(Pk)k� → 0 in

probability.

Proof: It is easy to see from the definition of cut norm

that for an m × n matrix A,

kAk� ≤ kAkop√
mn

,

where kAkop is the `2 operator norm of A. Now take any

t > 0. Using [14, Theorem 3.4], P(kPk−E(Pk)k ≥ 3
√

nk) ≤
C1e

−C2nk for some positive universal constants C1 and C2.

Hence, for k large enough,

P(kPk − E(Pk)k� ≥ t) ≤ P(kPk − E(Pk)kop ≥ t
√

mknk)

≤ P(kPk − E(Pk)kop ≥ 3
√

nk)

≤ C1e
−C2nk .
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This shows that kPk − E(Pk)k� → 0 in probability as

k → ∞. �

Next, we relate the limiting empirical distribution of the

entries of Mk with the L2 limit of Mk as a function on [0, 1]2.

In the following, λ denotes Lebesgue measure on [0, 1]2.

Lemma 3.4: Suppose that Mk → W in L2 as a sequence

of functions on [0, 1]2. Then µk converges weakly to µ =
λ ◦ W−1.

Proof: Take any bounded continuous function g :
[−1, 1] → R. It is not difficult to see that

∫

gdµk =

∫∫

g(Mk(x, y))dxdy.

Since Mk → W in L2 and g is bounded and continuous,

we get

lim
k→∞

∫∫

g(Mk(x, y))dxdy =

∫∫

g(W (x, y))dxdy.

But the right side is the integral of g with respect to the

measure λ ◦ W−1. This completes the proof. �

The purpose of the next lemma is to investigate the conver-

gence of f ◦ Mk under the hypotheses of Theorem 2.4.

Lemma 3.5: Suppose that Mk → W in L2 as a sequence

of functions on [0, 1]2. Let µ := λ ◦ W−1. Suppose that g :
[−1, 1] → [0, 1] is a measurable function which is continuous

almost everywhere with respect to µ. Then g ◦ Mk → g ◦ W
in L2.

Proof: Since Mk → W in L2, any subsequence has a

further subsequence along which Mk(x, y) → W (x, y) for

λ-a.e. (x, y). By assumption, g is continuous at W (x, y) for

λ-a.e. (x, y). Combining these two observations, we get that

for any subsequence, there is a further subsequence along with

g◦Mk(x, y) → g◦W (x, y) for λ-a.e. (x, y). Since g, Mk and

W are all taking values in [0, 1], this implies that g ◦ Mk →
g◦W in L2 along this subsequence. This completes the proof.

�

As a consequence of the above lemmas, we obtain the

following result.

Lemma 3.6: Suppose that Mk → W in L2 as a sequence

of functions on [0, 1]2. Then, under the hypotheses of Theo-

rem 2.4, there is a measurable function V : [0, 1]2 → [0, 1]
that is nonzero almost everywhere and d�(Pk, V ) → 0 in

probability as k → ∞.

Proof: By Lemma 3.3, it suffices to show that

d�(E(Pk), V ) → 0 for some V as in the statement of the

lemma. By Lemma 3.4, µk converges weakly to µ = λ◦W−1.

By the hypotheses of Theorem 2.4, there is a measurable

extension of f to [−1, 1], also denoted by f , which is nonzero

and continuous µ-a.e. As noted earlier, E(Pk) = f ◦ Mk.

Therefore, by Lemma 3.5, E(Pk) → f ◦ W in L2. It is not

hard to see that this implies that d�(E(Pk), f ◦W ) → 0. But

f ◦ W is nonzero λ-a.e. Thus, we can take V = f ◦ W . �

We are now ready to prove Theorem 2.4.

Proof: Suppose that M̂k is not a consistent sequence

of estimators. Then, passing to a subsequence if necessary,

we may assume that

inf
k≥1

EkM̂k − Mkk2
2 > 0. (4)

Note that this condition continues to hold true if we pass

to further subsequences and permute rows and columns in

each Mk, which we will do shortly. Passing to a further

subsequence, and permuting rows and columns in each Mk

if necessary, we use Lemma 3.1 to get an L2 limit W of

Mk as k → ∞. Then, by Lemma 3.6, there is a measurable

function V : [0, 1]2 → [0, 1] that is nonzero almost everywhere

and d�(Pk, V ) → 0 in probability as k → ∞. Again passing

to a subsequence, we get that d�(Pk, V ) → 0 almost surely.

But this implies, by [15, Theorem 2 and Theorem 3], that

kM̂k −Mkk2 → 0 almost surely. Since the entries of Mk and

M̂k are in [−1, 1] for all k, this contradicts (4). �

IV. PROOF OF THEOREM 2.1

Without loss of generality, suppose that mk ≤ nk for each

k. (Otherwise, we can just transpose the matrices.) Let r be

a uniform upper bound on the rank of Mk. Let Rk be the

matrix obtained by applying f entrywise to Mk. Let Qk be

the entrywise (i.e., Hadamard) product of Mk and Rk. Let Yk

be the matrix obtained by replacing the unrevealed entries of

Xk by zero. Let Pk be the matrix whose (i, j)-th entry is 1 if

the (i, j)-th entry of Xk is revealed, and 0 otherwise. Note

that E(Yk) = Qk and E(Pk) = Rk. Note also that the entries

of Yk and Pk are all in [−1, 1].
First, let us assume that µk converges weakly to a limit µ

as k → ∞. Then by the hypotheses of Theorem 2.1, f has

an extension to a Lipschitz function on [−1, 1], also called f ,

which has no zeros in the support of µ. Let us fix such an

extension, and let L denote its Lipschitz constant.

Lemma 4.1: As k → ∞, kRkk∗ = o(mk
√

nk).
Proof: Fix ε > 0. It is an easy consequence of the

Cauchy–Schwarz inequality that for any k,

kMkk∗ ≤ kMkk2

√

rank(Mk)mknk ≤ √
rmknk.

By [15, Lemma 2], this implies that there is a block matrix

Bk with at most b blocks, where b depends only on ε and r,

and entries in [−1, 1], such that kMk −Bkk2 ≤ ε. Let Dk be

obtained by applying f to Bk entrywise. Then by the Lipschitz

property of f , we get

kRk − Dkk2 ≤ εL.

Note that just like Bk, Dk has at most b blocks. In particular,

rank(Dk) ≤ b. Therefore again by the Cauchy–Schwarz

inequality,

kRkk∗ ≤ kRk − Dkk∗ + kDkk∗
≤ kRk − Dkk2

√

rank(Rk − Dk)mknk

+ kDkk2

√

rank(Dk)mknk

≤ εLmk
√

nk +
√

bmknk.

Thus,

lim sup
k→∞

kRkk∗
mk

√
nk

≤ εL.

Since this holds for arbitrary ε > 0, this completes the proof.

�

Lemma 4.2: As k → ∞, kQkk∗ = o(mk
√

nk).
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Proof: Let Bk, b, and Dk be as in Lemma 4.2. Let Ek be

the Hadamard product of Bk and Dk, and Fk be the Hadamard

product of Bk and Rk. Then Ek also has b blocks. Moreover,

since the entries of all these matrices are in [−1, 1], it is not

hard to see that

kQk − Ekk2 ≤ kQk − Fkk2 + kFk − Ekk2

≤ kMk − Bkk2 + kRk − Dkk2

≤ (L + 1)ε.

The rest of the proof is the same as the proof of Lemma 4.1,

with Rk replaced by Qk and Dk replaced by Ek . �

As a consequence of the above lemmas, we obtain the

following result.

Lemma 4.3: Let Q̂k and R̂k be the estimates of Qk and Rk

obtained by applying the USVT algorithm to Yk and Pk . Then

EkQ̂k − Qkk2
2 → 0 and EkR̂k − Rkk2

2 → 0 as k → ∞.

Proof: This is a direct consequence of Lemmas 4.1 and 4.2

and the consistency of the USVT estimator [14, Theorem 1.1].

�

Let us now prove Theorem 2.1 under the simplifying

assumption under which we are currently working. Let M̂k

denote the modified USVT estimator. Let mkij denote the

(i, j)-th element of Mk, m̂kij denote the (i, j)-th element of

M̂k, etc.

Since f is nonzero and continuous on the support of µ,

and the support is a compact set, there exists δ > 0 such that

f > δ everywhere on the support of µ. In particular, µ({x :
f(x) ≤ δ}) = 0. Since µk → µ weakly, and {x : f(x) ≤ δ}
is a closed set due to the continuity of f , we get

lim sup
k→∞

µk({x : f(x) ≤ δ}) ≤ µ({x : f(x) ≤ δ}) = 0.

In other words, if we let Ik := {(i, j) : rkij ≤ δ}, then

|Ik| = o(mknk) as k → ∞.

Let Jk := {(i, j) : r̂kij ≤ δ/2}. Then

|Jk| ≤ |Ik| + |{(i, j) : |r̂kij − rkij | > δ/2}|

≤ |Ik| +
4

δ2

∑

i,j

(r̂kij − rkij)
2

= |Ik| +
4mknk

δ2
kR̂ − Rk2

2.

By Lemma 4.3 and the fact that |Ik| = o(mknk), this

shows that |Jk| = oP (mknk) as k → ∞ (meaning that

|Jk|/(mknk) → 0 in probability as k → ∞).

Now take (i, j) /∈ Ik ∪ Jk. Then

∣

∣

∣

∣

q̂kij

r̂kij
− mkij

∣

∣

∣

∣

=

∣

∣

∣

∣

q̂kij

r̂kij
− qkij

rkij

∣

∣

∣

∣

≤ |q̂kij − qkij |
r̂kij

+
|qkij ||r̂kij − rkij |

r̂kijrkij

≤ 2

δ
|q̂kij − qkij | +

2

δ2
|r̂kij − rkij |.

Since m̂kij is obtained by truncating q̂kij/r̂kij , the above

upper bound also holds for |m̂kij−mkij | when (i, j) /∈ Ik∪Jk.

But |m̂kij − mkij | ≤ 2 for any (i, j). Thus,
∑

i,j

(m̂kij − mkij)
2

≤ 4|Ik ∪ Jk| +
∑

(i,j)

(

2

δ
|q̂kij − qkij | +

2

δ2
|r̂kij − rkij |

)2

≤ 4|Ik ∪ Jk| +
8

δ2

∑

i,j

(q̂kij − qkij)
2

+
8

δ4

∑

i,j

(r̂kij − rkij)
2.

By Lemma 4.3 and our previous deduction that |Ik ∪ Jk| =
oP (mknk), the above inequality shows that kM̂k − Mkk2 →
0 in probability as k → ∞. Since this is a uniformly bounded

sequence of random variables, this proves the consistency of

M̂k. This proves Theorem 2.1 under the simplifying assump-

tion that µk converges weakly to some µ as k → ∞. We are

now ready to prove Theorem 2.1 in full generality.

Proof of Theorem 2.1 Let M̂k be the modified USVT

estimator of Mk. Suppose that {M̂k}k≥1 is not a consistent

sequence of estimators. Passing to a subsequence if necessary,

we may assume that

inf
k≥1

EkM̂k − Mkk2
2 > 0. (5)

Note that this will continue to hold true if we pass to further

subsequences. Passing to a further subsequence, we may

assume that µk converges weakly to some µ. But then we

already know that (5) is violated. This completes the proof of

the theorem. �

V. PROOF OF THEOREM 2.7

In this proof, C will denote any universal constant, whose

value may change from line to line. Let [x, y) be a subinterval

of [−2, 2]. Let pij = 1 if the (i, j)-th entry of M is revealed

and 0 otherwise. Let

Sx,y := {(i, j) : mij ∈ [x, y)},
Tx,y := {(i, j) : m̂ij ∈ [x, y)},

and let

f̂x,y :=
1

|Tx,y|
∑

(i,j)∈Tx,y

pij , gx,y :=
1

|Sx,y|
∑

(i,j)∈Sx,y

pij

where the right sides are declared to be zero if the corre-

sponding sums are empty. Note that f̂x,y and gx,y are always

in [0, 1]. Take some δ < (y − x)/2, to be chosen later. Let

µx,y :=
1

mn
|{(i, j) : mij ∈ [a − δ, a + δ] ∪ [b − δ, b + δ]}|.

(6)

Take any (i, j) ∈ Tx,y\Sx,y. There are two cases. First suppose

that mij /∈ [x − δ, y + δ]. Since (i, j) ∈ Tx,y, we have m̂ij ∈
[x, y), and hence in this case, |m̂ij − mij | > δ. By Markov’s

inequality, the number of such (i, j) is bounded above by

1

δ2

m
∑

i=1

n
∑

j=1

(mij − m̂ij)
2. (7)
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The second case is that mij ∈ [x − δ, x) ∪ [y, y + δ]. By the

definition of µx,y, the number of such (i, j) is at most mnµx,y.

Combining, we get that

|Tx,y \ Sx,y| ≤
1

δ2

m
∑

i=1

n
∑

j=1

(mij − m̂ij)
2 + mnµx,y.

Now take any (i, j) ∈ Sx,y \ Tx,y. Then, again, there are

two cases. First, suppose that mij ∈ [x + δ, y − δ]. Since

m̂ij /∈ [x, y), in this case we have that |m̂ij −mij | > δ. Thus,

by Markov’s inequality, the number of such (i, j) is bounded

above by (7). The other case is mij ∈ [x, x + δ) ∪ (y − δ, y).
As before, the number of such (i, j) is bounded above by

mnµx,y. Combining these two observations, we get that

E|Tx,y∆Sx,y| ≤
2mnθ

δ2
+ 2mnµx,y. (8)

We will now work under the assumption that Sx,y 6= ∅. The

final estimate will be valid even if Sx,y = ∅. First, note that

Var(gx,y) =
1

|Sx,y|2
∑

(i,j)∈Sx,y

Var(Yij) ≤
1

4|Sx,y|
.

Let fx,y := E(gx,y). Then the above bound can be written as

|Sx,y|E[(gx,y − fx,y)
2] ≤ 1

4
. (9)

Clearly, the above bound holds even if Sx,y = ∅. Next, note

that

|gx,y − f̂x,y| ≤
1

|Sx,y|

∣

∣

∣

∣

∑

(i,j)∈Sx,y

Yij −
∑

(i,j)∈Tx,y

Yij

∣

∣

∣

∣

+

∣

∣

∣

∣

1

|Sx,y|
− 1

|Tx,y|

∣

∣

∣

∣

∑

(i,j)∈Tx,y

Yij

≤ 1

|Sx,y|
∑

(i,j)∈Tx,y∆Sx,y

Yij +
||Tx,y| − |Sx,y||

|Sx,y|

≤ 2|Tx,y∆Sx,y|
|Sx,y|

.

This shows, by (8) and the fact that f̂x,y and gx,y are both in

[0, 1], that

|Sx,y|E[(f̂x,y − gx,y)
2] ≤ |Sx,y|E|f̂x,y − gx,y|

≤ 2E|Tx,y∆Sx,y|

≤ 4mnθ

δ2
+ 4mnµx,y. (10)

Again, this bound holds even if Sx,y = ∅. Combining (9) and

(10), we get

|Sx,y|E[(f̂x,y − fx,y)
2] ≤ 8mnθ

δ2
+ 8mnµx,y +

1

4
. (11)

Using the notation (6), we see that for any 1 ≤ l ≤ b + 2,

E(µal,al+1
)

=
1

mn

m
∑

i=1

n
∑

j=1

[P(|mij − al| ≤ δ) + P(|mij − al+1| ≤ δ)]

≤ 8bδ.

Applying (11) to the interval [al, al+1), taking expectation

over the randomness of the al’s and applying the above

inequality, and then summing over l, we get

1

mn

b+2
∑

l=1

|Sal,al+1
|E[(f̂al,al+1

− fal,al+1
)2]

≤ Cθb

δ2
+ Cb2δ +

Cb

mn
.

Choosing δ = (θ/b)1/3 gives

1

mn

b+2
∑

l=1

|Sal,al+1
|E[(f̂al,al+1

− fal,al+1
)2]

≤ Cθ1/3b5/3 +
Cb

mn
.

For x ∈ [al, al+1), let

f̃(x) :=
1

|Sal,al+1
|

∑

(i,j)∈Sal,al+1

f(mij)

Then note that for any (i, j) ∈ Sal,al+1
,

|f̃(mij) − f(mij)| ≤
CL

b
.

Since

1

mn

b+2
∑

l=1

E[|Sal,al+1
|(f̂al,al+1

− fal,al+1
)2]

=
1

mn

∑

i,j

E[(f̂(mij) − f̃(mij))
2],

this completes the proof of the theorem.
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