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Matrix Completion With Data-Dependent

Missingness

Sohom Bhattacharya

Abstract—The problem of completing a large matrix with
lots of missing entries has received widespread attention in the
last couple of decades. Two popular approaches to the matrix
completion problem are based on singular value thresholding
and nuclear norm minimization. Most of the past works on this
subject assume that there is a single number p such that each
entry of the matrix is available independently with probability
p and missing otherwise. This assumption may not be realistic
for many applications. In this work, we replace it with the
assumption that the probability that an entry is available is an
unknown function f of the entry itself. For example, if the entry
is the rating given to a movie by a viewer, then it seems plausible
that high value entries have greater probability of being available
than low value entries. We propose two new estimators, based
on singular value thresholding and nuclear norm minimization,
to recover the matrix under this assumption. The estimators
involve no tuning parameters, and are shown to be consistent
under a low rank assumption. We also provide a consistent
estimator of the unknown function f.

Index Terms— Matrix completion, graph limits, missing not at
random.

I. INTRODUCTION

ET M be an m X n matrix, which is only partially
4 observed, possibly with added noise. Given an estimate
M of M, we define its mean squared error as
]

where m;; and 7i;; denote the (i, j)-th entries of M and M
respectively. Given a sequence of such estimation problems,
where M}, and M, r denote the parameter and estimator matri-
ces of the k-th problem, we call the sequence of estimators
Mk consistent if

MSE(M) ;:E[%ZZ%M — M) (1)

i=1 j=1

lim MSE(M}) = 0.

k—o00

Estimating a large matrix from a few randomly selected
(and possibly noisy) entries is a common objective in many
statistical problems. The basic assumption in all of the work
in this area is that the matrix has either low rank or is
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approximately of low rank in some suitable sense. Some of
the prominent applications of matrix completion include com-
pressed sensing [8]-[12], [19], collaborative filtering [6], [42],
multi-class learning [2], [40], dimension reduction [31], [46]
and subspace estimation [7]. Theoretical guarantees of matrix
completion under various assumptions have been worked out
in [1], [3], [4], [13], [17], [18], [24], [26]-[29], [34], [37],
[38], [43]. This is only a small sampling of the huge literature
on this topic. For a recent survey, see [39].

In many of the above works, it is assumed that the entries
are missing uniformly at random. This may not be a realistic
assumption in many applications. For example, in the classic
problem of movie ratings, if a particular movie gets poor
reviews, fewer numbers of viewers are expected to review it
and hence the probability of missing entries corresponding to
that particular movie would be higher. Work on matrix comple-
tion under the ‘missing not at random’ (MNAR) assumption is
relatively sparse. Some examples include deterministic missing
patterns or missing patterns that depend on the matrix, using
spectral gap conditions [5], rigidity theory [44], algebraic
geometry [25] and other methods [30], [41], [45]. For ran-
dom but non-uniform missing patterns, a variety of statistical
guarantees for procedures based on nuclear-norm penalization
and other ideas are available [9], [16]-[18], [20], [26], [29],
[33], [38], [43], [49]. However, these guarantees almost always
require a careful choice of the penalty parameter (or some
other parameter, such as rank) based on knowledge about the
unknown matrix that is unlikely to be available. This is in
contrast to the case of uniform missing pattern, where we
now have many algorithms that assume no knowledge of the
unknown matrix.

In the present work, we assume that the probability of
an entry being revealed is a function f of the value of
that entry, and the revealed entries are allowed to be noisy.
This frequently encountered example of missingness where
a variable governs its own missingness is known as self-
masking MNAR [36]. Under these assumptions, we provide
an estimator of the parameter matrix based on a spectral
method and prove its consistency under a low rank assumption.
We also provide a second estimator based on nuclear norm
minimization. This estimator performs significantly better than
the spectral estimator in the absence of noise, but may not
work well for noisy entries. Moreover, it is computationally
expensive for large matrices. Lastly, we give estimates of
the function f using both methods, along with theoretical
guarantees about it. Some numerical examples are worked
out. The main advantage of our estimators is that they do
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not involve penalty parameters (or any other user-specified
parameters) which have to be carefully chosen to ensure that
the theoretical guarantees work out. The cost is that we have
asymptotic consistency results rather than finite sample error
bounds.

A recent paper that works under the setting of self-masking
MNAR, but in the setting of tensor completion, is [47]. In [47],
the probabilities of missingness are called ‘propensity scores’.
The main difference between [47] (and similar papers) and our
work is that in [47], it is assumed that the tensor of propensity
scores is low-rank, while we make no such assumption.
Indeed, one of the main observations in our paper, which
we prove using spectral techniques reminiscent of the proof
of Szemerédi’s lemma in combinatorics, is that the matrix of
propensity scores is guaranteed to have an approximately low
rank structure under a Lipschitz assumption on f.

A natural extension of our work is to study beyond self-
masking MNAR, namely, to consider examples where the
process that causes the missingness of an entry depends on
multiple entries of the parameter matrix and not only its value
itself. Such directions are left for future research.

II. RESULTS
A. The Problem

Let M be an m X n matrix with all entries in the interval
[-1,1]. Let f : [-1,1] — [0,1] be a function. Let X be a
noisy version of M, modeled as a matrix with independent
entries in [—1,1], such that E(z;;) = m,; for each i and j.
The (i, j)-th entry of X is revealed with probability f(m;;),
and remains hidden with probability 1 — f(m;;), and these
events occur independently. Our goal is to estimate M using
the observed entries of X.

B. Modified USVT Estimator

Our first proposal is an estimator of M based on singular
value thresholding. This is a modification of the Universal
Singular Value Thresholding (USVT) estimator of [14]. The
estimator is defined as follows:

1) Let Y be the matrix whose (%, j)-th entry is x;; if the
(4,7)-th entry of X is revealed, and 0 otherwise.

2) Let) aiuiviT be the singular value decomposition of Y.

3) Choose a positive number 7 € (0,1) and let

>

i:03 > (24n) max{y/m,\/n}

(In [14], it is recommended that 7 be chosen to be
0.02. For results concerning the optimal choice of the
threshold, see [18].)

4) Truncate the entries of A to force them to belong to the
interval [—1,1]. Call the resulting matrix Q.

5) Let P be the matrix whose (7, j)-th entry is 1 if x;; is
revealed, and 0 otherwise.

6) Repeat the above steps for the matrix P instead of Y,
to get R.

7) Define a matrix W as w;; := §;;/7i; if 7; # 0, and
0 otherwise.

A:

O'iui’l);-T.
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8) Truncate the entries of W to force them to be in [—1, 1].
The resulting matrix is our estimator M.

The idea behind this estimator has some similarity with the
one proposed recently by Ma and Chen [33], which is also
based on a two-step procedure, first estimating the matrix
of missingness probabilities and then using these estimated
probabilities to estimate the unknown matrix. The algorithm of
Ma and Chen involves a number of user-specified parameters,
whereas ours does not, which may be a desirable feature.

Note that if the entries of M and X are known to belong
to an interval [a,b] instead of [—1,1], then subtracting (a +
b)/2 from each entry of X and dividing by (b—a)/2 forces the
entries to lie in [—1,1]. Then applying the above procedure,
and finally multiplying the end-result by (b—a)/2 and adding
(a+b)/2, we can get the desired estimate of M. The case of
unknown a, b is beyond the scope of the paper. Lastly, if n >
m, one can simply work with the transpose of X to get an
estimate for the transpose of M.

C. Modified Candes—Recht Estimator

Our second proposal is an estimator of M based on nuclear
norm minimization. This estimator works only in the absence
of noise, so we assume that X = M. Let M be the matrix
that minimizes nuclear norm among all matrices that are equal
to M at the revealed entries, and have all entries in [—1,1].
(Recall that the nuclear norm of a matrix M, usually denoted
by || M]|«, is the sum of its singular values.) Hence, given a
set of observed entries €2, our estimator is obtained by solving
the optimization problem:

M := argmingcg || 2],
where
S:={Z:(Z- M)ij]l(i’j)eg =0, [|[Z||cc <1}

This is a small modification of the popular Candes—Recht
estimator [9], [10], [12], suggested recently in [15]. The
original estimator does not have the additional constraint that
the entries of M have to be in [—1, 1]. This extra constraint is
not problematic since this is a convex constraint. For example,
it can be easily implemented in R by adding an ¢°° constraint
using CVXR package [21]. Moreover, from an intuitive point
of view, it makes sense to add this constraint since we already
know that the entries of the unknown matrix M are in [—1, 1].
This estimator is similar to the one proposed by Klopp [26],
except that our method does not involve a penalty parameter.

D. Consistency Results

We now state consistency results for the two estimators
defined above. Suppose that we have a sequence of matrices
{M},}r>1, where M}, has order my x ny, and my,n; — oo
as k — oo. Let {X}}r>1 be a sequence of random matrices
with independent entries in [—1, 1] such that E(X}) = Mj, for
each k. In other words, X}, is a noisy version of Mj. Let M
be the union of the sets of entries of all of these matrices. Let
f: M —[0,1] be a function such that the noisy version of
an entry with true value m is revealed with probability f(m),

Authorized licensed use limited to: Stanford University. Downloaded on September 17,2022 at 19:46:51 UTC from IEEE Xplore. Restrictions apply.



6764

independently of all else. Note that it is irrelevant how f is
defined outside M, which is why we took the domain of f to
be this countable set.

Recall that a sequence of estimators {M ktk>1 1 consistent
if MSE(Mj,) — 0 as k — oo, where MSE stands for the mean
squared error defined in equation (1). We will now prove the
consistencies of the two estimators defined above. The crucial
assumption will be that the sequence { M}, }>1 has uniformly
bounded rank. This is a version of the frequently occurring
low rank assumption from the literature. In addition to that,
we will need some other technical assumptions. Our first result
is the following theorem, which gives a sufficient condition for
the consistency of the modified USVT estimator.

Theorem 2.1: In the above setup, suppose that the sequence
{M},}>1 has uniformly bounded rank. Let 1, be the empir-
ical distribution of the entries of Mj. Suppose that for any
subsequential weak limit y of the sequence { i }r>1, there is
an extension of f to a Lipschitz function from [—1,1] into
[0, 1], also denoted by f, which has no zeros in the support
of p. Then the modified USVT estimator based on { X} }r>1
is consistent.

Remark 2.2: The statement of the above Theorem is
about asymptotic behavior of MSE. However, in our proofs,
we obtain some finite sample error bounds which we have
omitted, with the goal of increasing the readability of the
result, and also for reducing the stringency of assumptions
on f. In fact, the proof shows that if |M]. < g/mn for
some g > 0, and f > § everywhere for some § > 0, and f is
a Lipschitz function with Lipschitz constant L > 0, then for
any € > 0, the MSE can be upper bounded by

12
52 (Cl min{Q\ / L oteL+ 2e(L + 1), 2} + 262603n) ,
m

where r is a constant depending on ¢ and ¢, and ¢, co,
and c3 are universal constants. Such a bound reveals how
the magnitude of error is dependent on the nuclear norm of
parameter matrix and the Lipschitz constant of f.

Remark 2.3: Note that in many examples, such as in most
recommender systems, the matrix entries can only take values
in a fixed finite set. In such examples, there is no loss of
generality in the assumption that f has an extension that
is Lipschitz and nonzero everywhere on [—1,1]. Also, if f
is continuous and nonzero everywhere in [—1,1], then the
condition involving the empirical distribution of the entries
is redundant.

The next theorem gives the consistency of the modified
Candes—Recht estimator, under the additional assumption that
there is no noise.

Theorem 2.4: In the above setup, suppose that the sequence
{Mjp}r>1 has uniformly bounded rank, and also suppose that
Xy = Mj, for each k. Let py be the empirical distribution of
the entries of Mj. Suppose that for any subsequential weak
limit 4 of the sequence {fu }x>1, there is an extension of f to
a measurable function from [—1, 1] into [0, 1], also denoted by
f, such that f is nonzero and continuous almost everywhere
with respect to p. Then the modified Candés—Recht estimator
is consistent for this problem.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

Remark 2.5: We will see in numerical examples that the
modified Candeés—Recht estimator has superior performance.
The advantage of the modified USVT estimator is twofold.
First, it can be used when the matrix is very large, where
using nuclear norm minimization may become infeasible
due to computational cost. Second, in the presence of
noise — which is often the case in practice — the modified
Candes—Recht estimator may perform badly, as we will see in
the simulated and real data examples.

Remark 2.6: Often, in many MNAR examples, identifiabil-
ity of parameters is an issue (see, e.g., [35]), which corre-
sponds to the notions that there might be two sets of parameter
values which yield same observations and hence, the true
parameter value cannot be identified. In Theorems 2.1 and 2.4,
however, the fact that we are able to approximately recover
the true matrix automatically implies that identifiability is not
an issue, provided that the low rank assumption holds. (That
is, if there are two candidates M, and M5 for the true matrix,
and they both have low rank, then our estimate M will be
close to both M; and M5 with high probability, which means
that M7 must be close to Ms.)

E. Proof Sketch

To prove Theorem 2.1, we first assume that p, converges
weakly to a limit p as kK — oo. Let R, be the matrix obtained
by applying f entrywise to M} and Q); be entrywise product
of M} and Ry,. Let Y}, be the matrix obtained by replacing the
unrevealed entries of X}, by zero. Let P be the matrix whose
(i,7)-th entry is 1 if the (4, j)-th entry of X}, is revealed, and
0 otherwise.

The main step is to show that Ry and Q) are also
approximately low rank matrices, in the sense that ||Ry||. =
o(my+/ny) and ||Qk|l« = o(my/nk). This is proved using a
spectral method, similar to the spectral proof of Szemerédi’s
regularity lemma. The key idea is that a low rank matrix is
approximately a block matrix after a suitable permutation of
rows and columns, and therefore, applying a Lipschitz function
entrywise keeps it close to a block matrix, which, in turn,
is approximately low rank. Once this is established, it then
follows by the standard results for USVT that if Qk and Rk are
the estimates of QJ;, and Ry, obtained by applying the USVT
algorithm to Yj and P, then Qk ~ @ and Rk ~ Ry with
high probability (in some appropriate sense).

To prove Theorem 2.4, we first show that one can possibly
permute rows and columns in each M, to get an L? limit T,
Next we prove there is a measurable function V : [0,1]> —
[0, 1] that is nonzero almost everywhere and P}, converges to
V in cut distance almost surely subsequentially. This implies
consistency of M, by [15, Theorem 2 and Theorem 3].

FE. Estimating f

We will now produce an estimator for the unknown function
f that can be used with any consistent estimator. Our pro-
cedure is motivated by the nonparametric density estimation
methods available in statistics literature. It is interesting to
note, if the underlying function f were indeed a constant
function, we have observed from simulated examples that our
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estimator f b is also close to a constant function. Hence, f b can
be used to check if the data are MNAR or not. The estimator
involves the choice of a tuning parameter b, which is a positive
integer, chosen by the user. Given a matrix M with partially
revealed entries as in Subsection II-A, and an estimator M of
M, the estimator fb of f is defined as follows.

1) Fori=1,...,2b+3, let ¢; := —1 + (i — 2)b~'. Note
that this is a sequence of equally spaced points, starting
at ¢y = —1 — b~ ! and going up to copy3 =1+ b1

2) For each i, choose a; uniformly at random from the
interval [c; — (4b) 71, ¢; + (4b)1).

3) In the interval [a;, a; 1], define f to be the proportion
of revealed entries among those entries of M such that
the corresponding entry of M is in [ai, ait1]-

Note that the above procedure defines fb on an interval that
is slightly larger than [—1, 1], but that should not bother us,
because the domain can then be restricted to [—1,1]. The
following theorem gives a measure of the performance of fb
as an estimate of f.

Theorem 2.7: Suppose that f is Lipschitz, with Lipschitz

constant L. Let ;1 be the empirical distribution of the entries

of M and 6 := MSE(M). Then
o

mn

CL?

+b2,

(@) = pa)aua) < oo
where C' is a universal constant.
The above result shows that if b is big, but much smaller than
both mn and 6~2/5, then f? is close to f at almost all entries
of M. In practice, a good rule of thumb would be to choose b
such that b is large, but at the same time, the intervals [a;, a;41)
contain substantial numbers of entries of /. One can try to
choose b optimally using some kind of cross-validation (such
as leave-one-out cross-validation), but it may be hard to prove
theoretical guarantees for such methods.

Although our method of estimating f has similarities with
density estimation methods, the problem is quite different
since the entries of the estimated matrix are not independent
random variables — in fact, they may have a complicated,
or even intractable, dependence structure. One might wonder
if traditional nonparametric methods of estimating f can
still be applied here under some smoothness constraint. Such
questions are left for future investigation.

G. Examples

In this subsection we will see how the two estimators per-
form in some simulated examples and two real data examples.
For real data examples, one should always check whether the
matrix is low-rank approximable before applying our methods.
Our simulations show taking b of order /n for estimating
an n X n matrix yields good f although we do not have a
theorem to prove that. Finally, one should also check if data is
noisy or not, and should apply spectral estimator when noise is
present.

Example 2.8: Consider a low rank n x n matrix M with the
entries of M having marginal distribution Uniform[—1,1].
Here, we take n = 100 and rank(M) = 7. To generate such
a matrix, we define M, = Zle diuiviT , where:

6765

TABLE I
COMPARISON TABLE FOR EXAMPLE 2.8
Modified Modified
USVT Candés—Recht
MSE 0.123 ~107°
Run-time 0.31 sec 4.08 min

Observation Probabilities
o

Fig. 1.  Estimates of f in Example 2.8. The dashed curve corresponds
to modified USVT estimator, the double-dashed curve corresponds to the
modified Candés-Recht estimator, and the solid curve is the true f.

e Fori=1,...,5, d; = 27% and the components of u;
and v; are i.i.d. Bernoulli(1//2) random variables.

e dg = 1, ug is a vector of all 1s, and vg has i.i.d
Uni form[0,279] entries.

It is not difficult to see that the entries of M; are
i.i.d. Uniform|0, 1] random variables. Multiplying each entry
by 2 and subtracting 1, we get M. Then M has rank 7 with
probability 1, and the entries of M are uniformly distributed in
[—1,1]. We take f(z) = 0.52%+.3 to generate missing entries,
and do not add noise. To obtain the modified Candes—Recht
estimator, we used code from the R package filling [48]
and imposed the £°° constraint using the CVXR package [21].
The modified USVT algorithm, being quite straightforward,
was coded without the aid of existing packages.

The modified Candes—Recht estimator was able to exactly
recover the true M almost all the time, resulting a very
small MSE of order 10~°. The modified USVT estimator
performed much worse, with an unimpressive MSE of 0.123.
The run-time of the modified USVT estimator was much
lower than that of the modified Candes—Recht estimator:
0.31 seconds versus 4.08 minutes. We will see in the next
example that the performance of the modified USVT estimator
becomes better when n is larger, accompanied by a huge
gain in run-time over the other estimator. We report both our
estimators and their MSEs and run-times in Table I.

Next, for both estimators of M, we estimated f using the
method proposed in Section II-F, taking b = 25. The estimated
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TABLE 11
COMPARISON TABLE OF MSE FOR EXAMPLE 2.9

Rank Modified USVT Regular USVT
4 0.007 0.060
6 0.012 0.063
8 0.012 0.063
10 0.033 0.062
o8-
o7
% 06 Rank 4
2 Rank &
H — Rank &
g 05 — Rank 10
E — True probabilities
]
04-
03-
1.0 0, G'D 0.5 1.0
Fig. 2. Estimates of f in Example 2.9.

TABLE III
COMPARISON TABLE FOR EXAMPLE 2.10

Modified USVT

0.011
0.85 sec

Modified Candés—Recht

~ 1079
2.51 hrs

MSE
Run-time

f ’s are shown in Figure 1. As expected, the f based on the
modified Candes—Recht estimator has better performance.

Example 2.9: Here, we want to see how our estimator
performs as we vary the rank of underlying parameter matrix.
To this end, we take parameter matrix same as previous
example, with n = 500 and choose rank r = 4,6,8,10.
We only report result of the modified USVT estimator, the
results corresponding to modified Candés- Recht estimator
varies similarly. The MSE of the estimator as we vary rank
are 0.007,0.012,0.012, 0.033 respectively. The estimated f is
shown in Figure 2. We also observe our estimator performs
better than the vanilla USVT algorithm developed for MCAR.
A comparison of MSE of the two estimators has been given
below in Table II.

Example 2.10: This is the same as Example 2.8, but with
n = 500 to show how modified USVT has significant
computation time advantage over the modified Candes-Recht
estimator. The MSE of the modified USVT estimator is now
0.011, and that of the modified Candes-Recht estimator is
of order 1077, So, with this larger sample size, the modi-
fied USVT estimator has reasonably good performance. The
time to compute the modified USVT estimator 0.85 sec-
onds, whereas for the modified Candes—Recht estimator, it is
2.51 hours. This shows that even though the latter has much
better performance in terms of MSE, it may be more practical
to use the former if the matrix is large. We provide the
estimators of f in Figure 3, taking b = 25. We report the
MSEs and run-times for both estimators in Table III.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

Fig. 3.  Estimates of f in Example 2.10. The dashed curve corresponds
to modified USVT estimator, the double-dashed curve corresponds to the
modified Candeés—Recht estimator, and the solid curve is the true f.

— b=20
— b=30
b=40
b=50

—— True probabilities

Observation probabilities
=]

Fig. 4. Estimating f under different values of b.

A visual examination shows that both estimators perform
well.

Example 2.11: Under the same setup as before, we now
show how the change of the parameter b, number of bins,
affect the estimate of underlying function f. We choose b =
20, 30,40, 50 and plot the resulting f in Figure 4. There does
not seem to have much difference in f across different values
of b.

Example 2.12: We will now show that the modified
Candeés—Recht estimator performs poorly under presence of
noise. Here, we take n = 100 and rank(M) = 2,
with the marginal distribution of the entries of M being
Uniform|0, 1], generated by the same procedure that we
used to generate N/} in Example 2.8. The noisy version
of M, namely X, is generated as follows. For each (i,7),
generate x;; = 1 with probability m;; and x;; = 0 with
probability 1 — m;;. Note that E(x;;) = m,;. The entry
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v7s- . :

50~

Observation Probabilities
s

Fig. 5. Estimation of f in Example 2.12. The dashed curve corresponds
to modified USVT estimator, the double-dashed curve corresponds to the
modified Candes-Recht estimator, and the solid curve is the true f.

x;; 1s revealed with probability m;;, and remains hidden
with probability 1 — m;; (that is, we took f(z) = x). For
n = 100, the MSE of modified USVT estimator turned out
to be 0.017, much better than the MSE of the modified
Candés—Recht estimator, which was 0.112. The estimates of
f based on the two methods, with b = 10, are depicted in
Figure 5. The estimate based on the modified USVT method is
reasonably good, even with n as small as 100 in this example.
The estimate based on the modified Candes—Recht estimator,
however, is completely off: It estimates f to be large near
0 and 1 and zero everywhere in between. This is because
the observed entries consist solely of zeros and ones, and M
coincides with X at the observed values. So the estimation
procedure for f deduces, incorrectly, that there is no chance
of observing an entry if its non-noisy value is strictly between
0 and 1.

Example 2.13: We now consider a real data example.
In real data, it is not possible to compare the performance
of f with the ‘true f’, because we do not know what the
true f is (or if our model is actually valid). Still, if f turns
out to be substantially different than a constant function,
it validates the viewpoint that entries are not missing uniformly
at random. We consider the well-known Jester data [22], which
consists of 100 jokes rated by 73,421 users. The ratings are
continuous values between —10 and 10, entered by the users
by clicking on an on-screen ‘funniness’ bar. Not every user
rates every joke, so there are many missing entries. Due to
the prohibitively large run-time of the modified Candes—Recht
estimator, we first took a submatrix consisting of all 100 jokes
but a random sample of 300 users. Approximately 45% of
the values were missing in this submatrix. The estimates of f
based on the two methods (with b = 10) are shown in Figure 6.

Interestingly, the two estimates are very different. We posit
that this is due to the presence of noise in the observed
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,,,,,,,,

Fig. 6. Estimation of f in Example 2.13. The dashed curve corresponds to
the modified USVT estimator and the double-dashed curve corresponds to the
modified Candes-Recht estimator.

matrix, which messes up the modified Candes—Recht estima-
tor. Indeed, the continuous nature of the ratings makes it very
unlikely that the observed matrix is without noise. This is
further validated by Figure 7, where we plot the percentage
of the modified Candés-Recht estimator matrix M that is
captured by its rank-£ approximation, £k = 1,2,...,100.
(The percentage is simply the sum of squares of the top k
singular values divided by the sum of squares of all singular
values.) This figure shows that to even get within 80% of M,
we need to consider a rank-25 approximation. Thus, M is not
of low rank, even approximately. This invalidates the low rank
assumption of the Candes—Recht procedure, and allows us to
conjecture that the f given by the modified USVT estimator
is a better reflection of the true f, assuming that the model is
correct.

Example 2.14: We continue with the Jester data example.
Assuming that the f given by the modified USVT estimator
reflects the true state of affairs, we ran the modified USVT
method on the whole dataset. The estimated f, with b = 70,
is shown in Figure 8. The inverted U-shape is mysterious. It is
not clear to us what may have led to this, if it is indeed close
to the true f, because we do not know what caused entries to
be missing in this dataset.

Example 2.15: For our final example, we consider the
Film Trust dataset of movie ratings [23]. This dataset con-
sists of ratings given by 1508 users to 2071 movies, with
many missing entries. The user ratings range in the set
{0.5,1,1.5,2,2.5,3,3.5,4}. This dataset is much sparser than
the Jester data; only 35497 ratings are available, which is about
1.13 percent of the total number of possible ratings. Due to the
large size of the dataset, we implemented only the modified
USVT algorithm. We assume that each user has a ‘true’ rating
for each movie, and the observed rating, if any, is a noisy
version of the true rating. The observation probability is then
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Fig. 7. Let M be the modified Candes-Recht estimate of M in Example 2.13.
This graph shows that percentage of M that is captured by its rank-k
approximation, k = 1,2,...,100.
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Fig. 8. Estimation of f in Example 2.14 using the modified USVT estimator.

a function f of the true rating. The estimate of f, with b = 30,
is plotted in Figure 9. As expected, a high rating increases the
chance of the rating being available; however, there is a dip
towards the end of the curve which we do not know how
to explain. One possible explanation is that very highly rated
movies are often classics that not many people watch and rate
because they have already watched those movies before.

III. PROOF OF THEOREM 2.4

For an m x n matrix A, define

1 1/2
o 2
| Allz :== (_mn E aij) .

i

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

0.020-

0.015-

0.010-

[
c
S
®
fuk
5
@
]
[e]

0.005-

0.000-

Fig. 9. Estimation of f in Example 2.15 using the modified USVT estimator.

Note that || A]|2 is the sum of squares of the singular values of
A, divided by mn. Given the matrix A, we will also denote
by A the function 4 : [0,1]> — [—1,1] which equals a;; in
the rectangle (=1, L) x (21 1) for each 1 < ¢ < m and
1 < 7 < n. On the boundaries of the rectangles, we define
the function A is to be zero. Note that with this convention,
|All2 equals the L? norm of the function A, which will also
be denoted by || Al|s.

For each k, let Sy denote the group of all permutations of

{1,...,k}. Given an m x n matrix A and a measurable map
W :[0,1]2 — [~1, 1], we define

A,B) = i AT — 2

d>(4, B) WESI;?,IEGSW, I Wiz, @

where A™7 is the matrix whose (i,j)-th entry is a(;)-(;).
The first key step in the proof of Theorem 2.4 is the following
lemma.

Lemma 3.1: Suppose that for each k, we have a matrix M,
of order my, x ny, with entries in [—1, 1], where my, ny — oo
as k — oo. Suppose that this sequence has uniformly bounded
rank. Then there exists a subsequence M, and a measurable
map W : [0,1]2 — [—1,1] such that do(My,, W) — 0
as [ — oo.

We will now prove Lemma 3.1. The proof closely follows
the proof of [15, Theorem 1]. Let m and n be two positive
integers. Let P be a partition of {1,...,m} and let Q be
a partition of {1,...,n}. The pair (P, Q) defines a block
structure for m X n matrices in the natural way: Two pairs
of indices (i,7j) and (¢’, ;") belong to the same block if and
only if ¢ and i’ belong to the same member of P and j and
j’ belong to the same member of Q.

If A is an m x n matrix, let A7>< be the ‘block averaged’
version of A, obtained by replacing the entries in each block
(in the block structure defined by (P, Q)) by the average value
in that block. It is easy to see that

|AP2||y < [|A]f2. 3)

We need the following lemma.
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Lemma 3.2: For any m X n matrix A with entries in
[-1,1], and rank(A) < r, there is a sequence of partitions
{Pj}j>1 of {1,...,m} and a sequence of partitions {Q; }j>1
of {1,...,n} such that for each j,

1) Pjy1 is arefinement of P; and Q;41 is a refinement of

R

2) |P;| and |Q;| are bounded by (27725)3°, and

3) [|[A— APy < 2,/r/j + 6j%277.

Proof: Let A = >, o;uivl be the singular value
decomposition of A, where o1 > --- > o,, and some of
the o;’s are zero if the rank is strictly less than r. Take any
j > 1. Let [ be the largest number such that o; > /mn/j.
If there is no such [, let [ = 0. Let

l
Ay = E UiuwiT.
i=1

We define P;, Q;, and fll as in the proof of [15, Lemma
4], as follows. For 1 < ¢ < land 1 < a < m, let uy,
denote the a™ component of u;. Let ﬂgi) be the largest integer
multiple of 277m~1/2 that is < u,,. Let ﬂz(-j) be the vector
whose a' component is 12%) Similarly, for 1 < b < n, let
17% ) be the largest integer multiple of 291~ 1/2 that is < vy
Finally, define A = Z;zl o;1;0; . This matrix Ais used as a
block-approximation of A;. As shown in [15], this sequence
of partitions satisfy property (1) and (2) in the statement of
the lemma. Now, using the properties of the || - || norms noted
earlier, and the facts that [ < r and 0,41 < v/mn/j, we have

T 1/2 o 1/2 Jr
A— Al =— 2 < (=L <Y,
A D <Y

i=l+1 mn J
Again, as in the proof of [15, Lemma 4], we obtain
A — Ayll2 < 3532779,
Combining, we get
1A= Al < v/ +35%277.

Now note that fh is constant within the blocks defined by the
pair (Pj, Q;). Thus, by (3),

|4 = APy < A= Arfls + || Ay — AP,
<A = Arllo + AT = AP,
<204~ Al

This completes the proof. (]

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1: Let r be a uniform upper bound on
the rank of Mj. Lemma 3.2 tells us that for each £ and j,
we can find a partition Py ; of {1,...,m;} and a partition
Qk,j of {1,...,n;} such that

1) P41 is a refinement of Py ; and Qy j41 is a refine-

ment of QO ;,

2) |Pr;| and |Qy ;| are bounded by (27725)3°, and

3) || My — MF599 |y < 24/7 /5 + 653279
To reduce notation, let us denote M;)"”’Q"” by My ;.
Following the proof of [15, Theorem 1] and passing to a
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subsequence if necessary, we get that for every j, there exists
a measurable function W; : [0,1]> — [—1,1] such that
M;;’;’T" — W; in L? as k — oo, where m;, and 7 are
permutations that depend only on k (and not on 7). Without
loss of generality, let us assume 7, and 75 are identity
permutations for each k.

By construction, the block structure for W;,; is a refine-
ment of the block structure for W;. Also by construction,
the value of W; in one of its blocks is the average value of
W41 within that block. From this, by a standard martingale
argument (for example, as in the proof of [32, Theorem 9.23])
it follows that W; converges pointwise almost everywhere to
a function W as j — oo. In particular, W; — W in L2
We claim that M, — W in L? as k — oo. To show this,
take any ¢ > 0. Find j so large that ||V — W;||2 < ¢ and
2,/7/j + 653277 < . Then for any k,

W — M2

< |IW = Wjlla + W) = My jll2 + | Mh.; — Mi|l2
<&+ ||Wj — My jll2 +2v/r/j + 65°27

< 26+ | W) — My jlla.

Since My ; — Wj in L? as k — oo and € is arbitrary, this
completes the proof. 0

Henceforth, let us work in the setting of Theorem 2.4. For
each k, let P, be the random binary matrix whose (,j)-
the entry is 1 if the (4,7)-th entry of M) is revealed, and
0 otherwise. Then note that as functions on [0, 1]%, E(P;) =
f o My, where E(Py) denotes the matrix of expected values
of the entries of Pj.

Recall the cut norm on the set of m x n matrices, as defined
in [15]:

1
Ao = — max{|xTAy| creR™, yeR”,
mn
zllo <1, |lyllee < 1},

where ||z]|o denotes the £>° norm of a vector x. If A is an
m x n matrix and W : [0,1]> — R is a measurable function,
we define do(A, W) to be || A — Bl|g, where B is the m x n
matrix whose (i, j)-th entry is the average value of IV in the
rectangle (=4, £ x (%, %)

The following lemma shows that P and E(F}) are close
in cut norm.

Lemma 3.3: As k — oo, ||Pr — E(Py)|lg — 0 in
probability.

Proof: 1t is easy to see from the definition of cut norm

that for an m x n matrix A,

[ Allop
)

Alp <
o < e

where [|A|op is the £% operator norm of A. Now take any
t > 0. Using [14, Theorem 3.4], P(|| P, —E(Py)|| > 3\/nx) <
Cre= %2 for some positive universal constants C7 and Cs.
Hence, for k large enough,

P(||Px — E(Py)llo > t) < P(|| Pe — E(Pr)llop > ty/miny)
< P([|[Px — E(Px)lop = 3v/1k)
< CpeComs,
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This shows that ||P; — E(Py)||o — 0O in probability as
k — oo. O

Next, we relate the limiting empirical distribution of the
entries of M), with the L? limit of M), as a function on [0, 1]2.
In the following, A denotes Lebesgue measure on [0, 1]2.

Lemma 3.4: Suppose that M — W in L? as a sequence
of functions on [0, 1]?. Then yyj converges weakly to yu =
AoW~L,

Proof: ~ Take any bounded continuous function g

[—1,1] — R. It is not difficult to see that

/gduk = //g(Mk(%y))dwdy

Since M, — W in L? and g is bounded and continuous,
we get

dim [ [ gt g)dody = [[ oW @,))dody.

But the right side is the integral of g with respect to the

measure A\ o W1, This completes the proof. (]
The purpose of the next lemma is to investigate the conver-

gence of f o M}, under the hypotheses of Theorem 2.4.

Lemma 3.5: Suppose that M — W in L? as a sequence
of functions on [0,1]%. Let p := XA o W~!. Suppose that g :
[-1,1] — [0, 1] is a measurable function which is continuous
almost everywhere with respect to p. Then go My, — go W
in L2.

Proof: Since M), — W in L2, any subsequence has a
further subsequence along which My (z,y) — W(z,y) for
A-a.e. (z,y). By assumption, g is continuous at W (z,y) for
A-a.e. (z,y). Combining these two observations, we get that
for any subsequence, there is a further subsequence along with
goMy(x,y) — goW(z,y) for M\-a.e. (x,y). Since g, M}, and
W are all taking values in [0, 1], this implies that g o M}, —
goW in L? along this subsequence. This completes the proof.

O

As a consequence of the above lemmas, we obtain the
following result.

Lemma 3.6: Suppose that M — W in L? as a sequence
of functions on [0, 1]2. Then, under the hypotheses of Theo-
rem 2.4, there is a measurable function V' : [0,1]? — [0,1]
that is nonzero almost everywhere and dg(FP;,V) — 0 in
probability as k — oo.

Proof: By Lemma 3.3, it suffices to show that
do(E(Py),V) — 0 for some V as in the statement of the
lemma. By Lemma 3.4, y;, converges weakly to 1 = oW ™1,
By the hypotheses of Theorem 2.4, there is a measurable
extension of f to [—1,1], also denoted by f, which is nonzero
and continuous p-a.e. As noted earlier, E(P;) = f o M.
Therefore, by Lemma 3.5, E(P;) — f o W in L2 It is not
hard to see that this implies that do(E(Py), f o W) — 0. But
f oW is nonzero A-a.e. Thus, we can take V = foW. O

We are now ready to prove Theorem 2.4.

Proof:  Suppose that M, is not a consistent sequence
of estimators. Then, passing to a subsequence if necessary,
we may assume that

inf E|| My — M2 > 0. 4
inf | My, — My|3 > 0 “)
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Note that this condition continues to hold true if we pass
to further subsequences and permute rows and columns in
each Mj, which we will do shortly. Passing to a further
subsequence, and permuting rows and columns in each Mj,
if necessary, we use Lemma 3.1 to get an L? limit W of
My, as k — oo. Then, by Lemma 3.6, there is a measurable
function V' : [0, 1]> — [0, 1] that is nonzero almost everywhere
and do(Py, V) — 0 in probability as k — oco. Again passing
to a subsequence, we get that do(Py, V') — 0 almost surely.
But this implies, by [15, Theorem 2 and Theorem 3], that
| My, — My||2 — 0 almost surely. Since the entries of Mj, and
M, are in [—1,1] for all k, this contradicts (4). O

IV. PROOF OF THEOREM 2.1

Without loss of generality, suppose that mj < nj for each
k. (Otherwise, we can just transpose the matrices.) Let r be
a uniform upper bound on the rank of M. Let Rj be the
matrix obtained by applying f entrywise to Mj. Let Q be
the entrywise (i.e., Hadamard) product of M}, and Rj. Let Y},
be the matrix obtained by replacing the unrevealed entries of
X} by zero. Let Py, be the matrix whose (i, j)-th entry is 1 if
the (i,7)-th entry of X}, is revealed, and 0 otherwise. Note
that E(Y)) = Qr and E(Py) = Rj. Note also that the entries
of Y}, and P are all in [—1,1].

First, let us assume that p; converges weakly to a limit p
as k — oo. Then by the hypotheses of Theorem 2.1, f has
an extension to a Lipschitz function on [—1, 1], also called f,
which has no zeros in the support of u. Let us fix such an
extension, and let L denote its Lipschitz constant.

Lemma 4.1: As k — oo, ||Ri|« = o(my/nk).

Proof: Fix € > 0. It is an easy consequence of the
Cauchy-Schwarz inequality that for any k,

[ M|« < [[ M|z v/rank(My)mgny < /rmpny.

By [15, Lemma 2], this implies that there is a block matrix
By, with at most b blocks, where b depends only on ¢ and 7,
and entries in [—1, 1], such that || M}, — Byl||2 < e. Let Dy, be
obtained by applying f to By entrywise. Then by the Lipschitz
property of f, we get

HRk — DkHQ <elL.

Note that just like By, Dy has at most b blocks. In particular,
rank(Dy) < b. Therefore again by the Cauchy-Schwarz
inequality,
[Rell« < IRk — Dl + [| Drl|«
S ||Rk — Dk||2\/rank(Rk — Dk)mknk
+ |1 Dk ll2

< eLmyp/ng +/bmpng.

rank(Dk)mknk

Thus,
<el.

limn sup %l
k—oo Mi/Tk

Since this holds for arbitrary € > 0, this completes the proof.
O
Lemma 4.2: As k — oo, ||Qk|l« = o(mg/nk).
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Proof: Let By, b, and Dy, be as in Lemma 4.2. Let Ey, be
the Hadamard product of By and Dy, and F}; be the Hadamard
product of By, and Ry. Then Ej, also has b blocks. Moreover,
since the entries of all these matrices are in [—1, 1], it is not
hard to see that

1Qr — Ekll2 < [|Q — Fill2 + | Fi — Ekll2
< ||My, — Bi|l2 + [| Rk — Dkll2
< (L+1)e.

The rest of the proof is the same as the proof of Lemma 4.1,
with Ry replaced by Qx and Dy, replaced by Fj. (]

As a consequence of the above lemmas, we obtain the
following result.

Lemma 4.3: Let Qk and Rk be the estimates of Q. and Ry
obtained by applying the USVT algorithm to Y and Pg. Then
E||Qr — Qxll? — 0 and E||Ry, — Ry||2 — 0 as k — oo.

Proof: This is a direct consequence of Lemmas 4.1 and 4.2
and the consistency of the USVT estimator [14, Theorem 1.1].
O

Let us now prove Theorem 2.1 under the simplifying
assumption under which we are currently working. Let M,
denote the modified USVT estimator. Let my;; denote the
(1,7)-th element of My, my,; denote the (7, j)-th element of
Mk, etc.

Since f is nonzero and continuous on the support of g,
and the support is a compact set, there exists § > 0 such that
f > & everywhere on the support of p. In particular, pu({x :

f(z) < 6}) = 0. Since pur — p weakly, and {z : f(z) < 0}
is a closed set due to the continuity of f, we get
1iinsupuk-({w (f(@) <0}) < p({w: f(z) < 6}) =0.

In other words, if we let I, := {(4,7)
|| = o(myny) as k — oo.
Let Jy :={(¢,7) : Prij < /2}. Then

D Tkij < (5}, then

| Jk] < k| + (5, 5) ¢ [Prij — raij| > 6/2}]
4 .
< k| + 5 Z(Tkij — Thij)?
-7j

4mknk

= Ik + IR~ RII3.
By Lemma 4.3 and the fact that |Ij]| o(myny), this
shows that |Jx| = op(mgni) as k — oo (meaning that
|Ji|/(mgny) — O in probability as k — o0).

Now take (i,7) ¢ I U Ji. Then

Qrij Qrij  Qrij
= M| = |
Tkij Tkij Tkij
< ldwss — qkzg| |qrij||This — Thij]
Phij PhijThij
2

2
5| kijg — qk2]| + = 52 |rk7lj rkzg|

Since 7hy;; is obtained by truncating Gij/7ki;j, the above
upper bound also holds for |1gi; —myi;| when (4, j) ¢ I,UJg.

6771

But |mkij
D (g — miis)?

,J

2
2
< 4|Ik U Jk| + E < |Qk2] qk2]| + = (52 |rk7lj rkzg |>
(4,5)

8 N
<A U Jg| + 5 Z(Qkij - Qkij)2

,J

— myj| <2 for any (4, j). Thus,

8
+ < — Thij)°

51 2 \Tkij

ij
By Lemma 4.3 and our previous deduction that [, U Ji| =
op(myny), the above inequality shows that || M), — My||s —
0 in probability as k — oo. Since this is a uniformly bounded
sequence of random variables, this proves the consistency of
M;,. This proves Theorem 2.1 under the simplifying assump-
tion that p, converges weakly to some p as kK — oo. We are
now ready to prove Theorem 2.1 in full generality.

Proof of Theorem 2.1 Let M) be the modified USVT
estimator of Mj. Suppose that {Mk}k21 is not a consistent
sequence of estimators. Passing to a subsequence if necessary,
we may assume that

. o 2
Igfl]EHMk Mi[z > 0. ®)

Note that this will continue to hold true if we pass to further
subsequences. Passing to a further subsequence, we may
assume that py converges weakly to some p. But then we
already know that (5) is violated. This completes the proof of
the theorem. 0

V. PROOF OF THEOREM 2.7

In this proof, C' will denote any universal constant, whose
value may change from line to line. Let [x,y) be a subinterval
of [-2,2]. Let p;; = 1 if the (4, j)-th entry of M is revealed
and 0 otherwise. Let

and let

fx,y =

1 1
T— Z Dijy Gz,y ‘= S—

Lol ; St [S.]

> Py
(4,4)€Sz,y
where the right sides are declared to be zero if the corre-
sponding sums are empty. Note that f, , and g, , are always
n [0, 1]. Take some § < (y — x)/2, to be chosen later. Let
1 .
—{(0,) s mij € [a

—8,a+08|Ub—8,b+0d]}

(6)

Take any (¢, j) € T\ Sa,y. There are two cases. First suppose
that m;; ¢ [x — 0,y + ]. Since (4, j) € Ty, we have 1h;; €
[, y), and hence in this case, — m,j| > 6. By Markov’s
inequality, the number of such (i, j) is bounded above by

1"
5_222 mi; — m’L] . @)

Ha,y =
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The second case is that m;; € [z — 0, 2) U [y,y + ¢]. By the
definition of /i, ,, the number of such (4, j) is at most mnfiy .
Combining, we get that

1 m n .
Tay \ Szyl < 52 Z Z(mij - mij)2 + MmNy

i=1 j=1

Now take any (i,j) € Sz, \ T%,y. Then, again, there are
two cases. First, suppose that m;; € [z + d,y — d]. Since
m;; ¢ [x,y), in this case we have that |rh;; —m;;| > 6. Thus,
by Markov’s inequality, the number of such (¢, ) is bounded
above by (7). The other case is m;; € [z,2+0) U (y — 0,y).
As before, the number of such (i,j) is bounded above by
mnpi, . Combining these two observations, we get that

2mné
BTy, ASsy| < 2o 4 9mnig.,. ®)

We will now work under the assumption that S, # ). The
final estimate will be valid even if S, ,, = (). First, note that

1 1
- ) <
S E Var(Y;;) < 1

: .
| Ty| (4,§)ESz,y x7y|

Var(gx,y) =

Let fz 4 := E(gs,y). Then the above bound can be written as

1

|Sﬂc7y|E[(gx,y fx,y) ] =7 9)

Clearly, the above bound holds even if S, , = (. Next, note
that

D Yy~

(4,J)€Sz,y
1
1Sayl [Tayl

> Yy

(ivj)eTw,y

> Yy

(,) €Ty

1
- |S | Z Y%J +
YN (1,§)€Tuy ASa,y
2|T$7’!!ASJFZI|

T Syl

|9my fxy|7 |

,yl

Tz y| = 12,0l
|Sa.]

This shows, by (8) and the fact that fxy and g, , are both in
[0, 1], that

|Sx,y|E[(fx,y - gx,y)Q] < |Sﬂc,y|E|fx,y - 9x7y|
< 2E|Ty, yASy ]

4mn0

(10)

Again, this bound holds even if S, , = (). Combining (9) and
(10), we get

8mnb

. 1
|Sey[El(fory — fou)?] < +5 (D
Using the notation (6), we see that for any 1 <[ < b+ 2,

E(pta, ,az+1)

SR
i=1 j=1
< 8b9.

(Imij — ar] < 6) + P(Jmij — arya1| < 9)]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

Applying (11) to the interval [a;,a;4+1), taking expectation
over the randomness of the a;’s and applying the above
inequality, and then summing over [, we get

12 X
_n Z |Sal,al+1 |E[(fal7al+1 - fal7al+1)2]
=1
< co + Cb%5 + b
62 mn
Choosing § = (6/b)'/? gives
] b2 R
_n Z |S(lz7(lz+1 |E[(fal7al+1 - fal7al+1)2]
1=1
< corappis 4 E8
B mn
For = € [a;, a;41), let
. 1
f(z) = > fmiy)

|S

ap,ap41 | (i:1)€Sa;.a; 41

Then note that for any (4, j) € Sq,,

aj41°

C'L

flmig)l < —

|f(mij) - b

Since

b+2

E[|Sal,;al,+1 |(fal7al+1 - fal7al+1)2]

= — E[(f(mz]) f(mw)) ],

mn
1)

this completes the proof of the theorem.
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