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Height functions of growing random surfaces are often

conjectured to be superconcentrated, meaning that their

variances grow sublinearly in time. This article introduces

a new concept—called subroughness—meaning that there

exist two distinct points such that the expected squared

difference between the heights at these points grows sub-

linearly in time. The main result of the paper is that

superconcentration is equivalent to subroughness in a class

of growing random surfaces. The result is applied to

establish superconcentration in a variant of the restricted

solid-on-solid (RSOS) model and in a variant of the ballistic

deposition model, and give new proofs of superconcen-

tration in directed last-passage percolation and directed

polymers.
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1 INTRODUCTION AND RESULTS

A 𝑑-dimensional growing random surface is represented as a height function f ∶ Z≥0 × Z𝑑 → R

evolving in time, where f (t, x) denotes the height of the surface at location x at time t. The simplest

example is the random deposition model, where the height f (t, x) at each x grows as a random walk

with i.i.d. increments, independently of the heights at other locations. In this model, Var(f (t, x)) grows

linearly in t.
This is not the case, however, for any nontrivial model of surface growth where the growth of

the height at a point is influenced by the heights at neighboring points. For most such models, it is

conjectured that Var(f (t, x)) grows sublinearly in t, often in a very specific manner depending on the

model [12,16–18]. These conjectures have been rigorously proved in only a handful of cases, mostly

for 𝑑 = 1, where exact calculations are possible. For surveys of the vast literature on one-dimensional

surface growth and some recent advances in higher dimensions, see [11,21,24].
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Beyond exactly solvable models, not much is known. Even just showing that Var(f (t, x)) = o(t) as

t → ∞ seems to be a challenging problem in nontrivial models. This is sometimes called superconcen-
tration of the height function [7]. The only nontrivial surface growth models where superconcentration

has been rigorously established are directed last-passage percolation and directed polymers [1,6,7,13],

building on technology developed in [5] for the related model of first-passage percolation.

The main result of this article shows that in a certain class of surface growth models, Var(f (t, x))
grows sublinearly in t if and only if there exist two distinct points x and y (usually neighbors) such

that E[(f (t, x) − f (t, y))2] grows sublinearly in t. The latter phenomenon is named subroughness in this

paper.

The utility of the equivalence theorem is demonstrated by applying it to prove superconcentration

in variants of two popular models of random surface growth: (a) the restricted solid-on-solid (RSOS)

model, and (b) the ballistic deposition model. Additionally, the theory is applied to give new proofs of

superconcentration in directed last-passage percolation and directed polymers.

The main advantage of subroughness over superconcentration is that it may be easier to establish

subroughness because neighboring heights are often close to each other “by design.” We will see a

clear instance of this in the RSOS model later. Moreover, the equivalence of subroughness and super-

concentration is conceptually interesting, because it says that superconcentration in random surfaces

is caused by the tendency of neighboring heights to remain close to each other.

The rest of this section contains the details of the theory. Examples are presented in Section 2. The

remaining sections contain the proofs.

1.1 A class of surface growth models

Let 𝑑 be a positive integer. Let e1, … , e𝑑 be the standard basis vectors of R𝑑
. Let A denote the set

{0,±e1,±e2, … ,±e𝑑}, consisting of the origin and its 2𝑑 nearest neighbors in Z𝑑
. Let B ∶= A ⧵ {0}.

The sets A and B will be fixed throughout this paper. Let 𝜙 ∶ RA × R → R be a function. Let

z = {zt,x ∶ t ∈ Z>0, x ∈ Z𝑑} be a collection of i.i.d. random variables. We will say that the evolution

of a 𝑑-dimensional growing random surface f ∶ Z≥0 × Z𝑑 → R is driven by the function 𝜙 and the

“noise field” z if for each t ∈ Z≥0 and x ∈ Z𝑑
,

f (t + 1, x) = 𝜙((f (t, x + a))a∈A, zt+1,x). (1.1)

We will henceforth assume that zt,x are i.i.d. standard Gaussian random variables. This will not be

too restrictive, since the only assumption we will make about 𝜙, in relation to the noise field, is that

𝜙 is Lipschitz continuous in the second argument (see below). This allows the noise variables to be

anything that can be expressed as a Lipschitz function of a Gaussian random variable (e.g., uniform).

Equation (1.1) generalizes the mechanism considered in [8,9], which is almost the same except that

it does not involve randomness. We assume that 𝜙 has the following properties:

• Equivariance under constant shifts. For u ∈ RA
and c ∈ R, let u+ c denote the vector obtained

by adding c to each coordinate of u. We assume that 𝜙(u + c, z) = 𝜙(u, z) + c for each u ∈ RA

and z ∈ R.

• Monotonicity. We assume that 𝜙 is monotone increasing in the first variable. That is, if u
dominates v in each coordinate, then 𝜙(u, z) ≥ 𝜙(v, z) for any z.

• Lipschitz continuity in the noise variable. We assume that 𝜙 is Lipschitz in the second argument

with a Lipschitz constant L. That is, for all u ∈ RA
and z, z′ ∈ R, |𝜙(u, z) −𝜙(u, z′)| ≤ L|z− z′|.
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Examples that are not covered by the growth mechanism (1.1) include any model where every

vertex has a Poisson clock attached to it, and an update happens whenever the clock rings. This is an

important class of models, which are quite similar to (1.1) but different enough so that the methods

of this paper do not immediately generalize. It would be interesting and important to see if analogous

methods can be developed for such models.

Incidentally, the assumptions of monotonicity and equivariance for a discrete evolution equation

are widely used in the literature on approximation schemes for nonlinear partial differential equations,

starting with [4]. They are also two of the key assumptions in [8,9].

1.2 A general fluctuation bound

Henceforth, let f be a growing random surface with driving function 𝜙 and i.i.d. standard Gaussian

noise field z, where 𝜙 has the monotonicity and equivariance properties, and is Lipschitz in the noise

variable with Lipschitz constant L. Our first main result is the following theorem, which says that under

the above conditions, f (t, x) has fluctuations of order at most L
√

t. For this result, f (0, ⋅) can be any

function on Z𝑑
. We will later assume that f (0, ⋅) ≡ 0.

Theorem 1.1. For all t ≥ 1 and x ∈ Z𝑑
, Var(f (t, x)) ≤ L2t. Moreover, for all 𝜃 ∈ R,

E(e𝜃(f (t,x)−E(f (t,x)))) ≤ eL2t𝜃2∕2
,

and for all r ≥ 0,

P(|f (t, x) − E(f (t, x))| ≥ r) ≤ 2e−r2∕2L2t
.

This theorem is proved in Section 4. The proof is based on the concentration of the Gaussian mea-

sure and a random walk representation of the derivatives of f (t, x) with respect to the noise variables,

derived in Section 3.

1.3 Equivalence of subroughness and superconcentration

In this subsection, let us assume that f (0, ⋅) ≡ 0, in addition to the assumptions that the driving function

𝜙 is equivariant, monotone and Lipschitz in the noise variable with Lipschitz constant L, and that the

noise variables zt,x are i.i.d. standard Gaussian. We will say that the surface f is superconcentrated if

lim
t→∞

Var(f (t, x))
t

= 0.

Note that the term on the left does not depend on x due to the assumption that f (0, ⋅) ≡ 0. We will say

that the surface is subrough if there exist two distinct points x, y ∈ Z𝑑
such that

lim
t→∞

E[(f (t, x) − f (t, y))2]
t

= 0.

Lastly, we will say that the surface is completely subrough if the above equality holds for any two

distinct points x and y. The main result of this subsection (and of this paper) is the following.

Theorem 1.2. For the surface f , superconcentration, subroughness, and complete subroughness are
equivalent.

 10982418, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21108 by Stanford U

niversity, W
iley O

nline Library on [16/06/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s­and­conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



CHATTERJEE 307

This result will be a consequence of a quantitative bound, which we now state. For each t ≥ 1,

define

𝛼t ∶=
Var(f (t, x))

L2t
.

Note that since f (0, ⋅) ≡ 0, the right side does not depend on x. Next, for any b ∈ Z𝑑
and t ≥ 1, define

𝛽b,t ∶=
E[(f (t, x) − f (t, x + b))2]

4L2t
.

Again, note that the right side does not depend on x, but may depend on b. The surface is supercon-

centrated if and only if 𝛼t → 0 as t → ∞. On the other hand, the surface is subrough if and only if

for some b ≠ 0, 𝛽b,t → 0 as t → ∞, and completely subrough if and only if this holds for any b ≠ 0.

The following theorem relates 𝛼t and 𝛽b,t through a pair of inequalities, which immediately imply that

these three conditions are equivalent, and hence establish Theorem 1.2. The proof uses the “ L1
– L2

bound” of Talagrand [23] (which is an extension of the idea of using hypercontractivity for improving

variance bounds due to Kahn et al. [15]), and an averaging trick invented by Benjamini et al. [5]. The

main new ingredient in the argument is the random walk representation from Section 3.

Theorem 1.3. There is a universal constant C such that for any b ≠ 0 and t ≥ 1,

𝛽b,t ≤ 𝛼t ≤
C

| log 𝛽b,t|
.

This theorem is proved in Section 5. It would be interesting to understand if the upper bound is

sharp under the given conditions, or if it can be improved.

2 EXAMPLES

This section contains the applications of the theory to the four examples mentioned in the introduction,

namely, a variant of the RSOS model, a variant of ballistic deposition, directed last-passage percolation,

and directed polymers.

2.1 A variant of the RSOS model

The RSOS model is a popular toy model of surface growth introduced by Kim and Kosterlitz [17] (not

to be confused with an “eight vertex model” that goes by the same name [2]). There are many variants

of this model, all built on one basic principle: The growing surface has to satisfy, at all times, that the

differences between the heights at neighboring points are uniformly bounded by some given constant

(usually 1).

We will work with the following variant in this subsection. Consider Z𝑑
as a bipartite graph, split-

ting the set of vertices into “even” and “odd” vertices, depending on the parity of the sum of coordinate

values. Alternately update the heights at even and odd vertices, choosing independently and uniformly

among all values that maintain the constraint that the differences between the heights at neighboring

points are uniformly bounded by 1. To be more explicit, the algorithm is as follows. Let f (t, x) denote

the height of the surface at time t and location x. Then:

• Start with f (0, x) = 0 for all x.
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• If t is even, then for each even vertex x, choose f (t + 1, x) uniformly from the interval

[

max
b∈B

f (t, x + b) − 1,min
b∈B

f (t, x + b) + 1

]

,

which is the set of all possible values that maintain the required constraint. (Recall that B =
{±e1, … ,±e𝑑} is the set of nearest neighbors of the origin.) For each odd vertex, let f (t+1, x) =
f (t, x).

• If t is odd, switch the update rules for odd and even vertices in the above step.

With the above growth mechanism, it is easy to see inductively that the required constraint is

maintained at all times.

The growth of Var(f (t, x)) is one of the main unsolved questions about RSOS-type models. For

𝑑 = 1, it is believed that the variance grows like t2∕3
, just like in any other model in the KPZ universality

class [17]. For 𝑑 = 2, it was conjectured in [17] that the variance grows like t1∕2
, but this has been

contradicted in some large-scale numerical studies in recent years [16,18]. The following result shows

that in the variant described above, Var(f (t, x)) grows at most like t∕ log t.

Theorem 2.1. Let f be the height function in the variant of the RSOS model defined above, in any
dimension. There is a constant C(𝑑), depending only on the dimension 𝑑, such that for any t ≥ 2 and
x ∈ Z𝑑

, Var(f (t, x)) ≤ C(𝑑)t∕ log t.

This result is proved in Section 6. The logarithmic correction comes from applying Theorem 1.3.

Although the growth mechanism of the model does not exactly fit into the framework of this paper,

this can be easily taken care of, as we will do in Section 6.

2.2 A variant of ballistic deposition

Ballistic deposition is a popular model of surface growth introduced by Vold [25] and subsequently

studied by many authors. One version of the model is as follows. There is, as usual, a height function

f (t, x), but now the time variable is continuous. There is an independent Poisson clock at each x. When

the clock at x rings, a brick of height 1 drops on the surface at location x “from infinity’, as in a game

of Tetris. As the brick descends, it can either attach itself to the surface at x, thereby increasing the

height at x by 1, or it can get “stuck” to the side of one the neighboring columns if that happens before

it reaches the surface. Thus, if the clock at x rings at time t, then the height f (t, x) instantly increases to

max

{

f (t, x) + 1,max
b∈B

f (t, x + b)
}

. (2.1)

The physical literature on ballistic deposition is huge. For classical surveys, see [3,12]. Physicists say

that this model is in the KPZ universality class, implying that the variance of f (t, x) grows like t2∕3

when 𝑑 = 1 [17], and possibly like t𝛼 for some 𝛼 slightly less than 1∕2 when 𝑑 = 2 [18]. On the

mathematical side, the only results we know are the following:

• A strong law of large numbers for the height function was proved by Seppäläinen [22].

• A central limit theorem for the total height in a large region at a finite time t was proved by

Penrose and Yukich [20].

• Penrose [19] proved that the variance of f (t, x) grows at least like log t when 𝑑 = 1.
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In this section we will consider the following variant of ballistic deposition. Instead of bricks falling

at random times, our model will update the heights at all sites simultaneously. To insert randomness, we

will make the brick heights random. For definiteness, let us take the brick heights to be i.i.d. Uniform

[0, 1] random variables. In other words, the height function f ∶ Z≥0 × Z𝑑 → R behaves as follows, in

analogy with (2.1).

• We start with f (0, x) = 0 for all x.

• For each t ≥ 0 and x ∈ Z𝑑
, we let

f (t + 1, x) = max

{

f (t, x) + vt+1,x,max
b∈B

f (t, x + b)
}

,

where vt,x are i.i.d. Uniform [0, 1] random variables.

We will show that in this model Var(f (t, x)) ≤ C(𝑑)t∕ log t, where C(𝑑) is a constant that depends

only on 𝑑. To put this in the framework of Equation (1.1), we define vt,x = Φ(zt,x) where zt,x are

i.i.d. standard Gaussian random variables and Φ is the standard Gaussian c.d.f., and then take

𝜙(u, z) = max

{

u0 + Φ(z),max
b∈B

ub

}

. (2.2)

Note that this 𝜙 is monotone, equivariant, and Lipschitz in the noise variable with Lipschitz constant

bounded by 1∕
√

2𝜋.

We will, in fact, prove superconcentration of the surface for a broader class of driving functions

that includes the above 𝜙 as a special case. This class of driving functions will be called “max type.”

We will say that a driving function 𝜙 ∶ RA × R → R is of max type if it is monotone, equivariant,

Lipschitz in the noise variable, and there are nonnegative constants K1 and K2 such that for all u ∈ RA

and z ∈ R,

|𝜙(u, z) −max
a∈A

ua| ≤ K1 + K2|z|. (2.3)

Clearly, the𝜙 displayed in (2.2) is of max type. The following theorem shows that the surface generated

by any model of max type (including, in particular, the variant of ballistic deposition introduced above)

is superconcentrated.

Theorem 2.2. Let f be a growing random surface with f (0, ⋅) ≡ 0 and growing according to (1.1),

where 𝜙 is of max type, and the noise field is i.i.d. standard Gaussian. Then there is a constant C
depending only on 𝜙 and 𝑑, such that:

(1) For any t ≥ 2 and neighboring points x, y ∈ Z𝑑
, E|f (t, x) − f (t, y)| ≤ Ct1∕4

√
log t.

(2) For any t ≥ 2 and neighboring points x, y ∈ Z𝑑
, E[(f (t, x) − f (t, y))2] ≤ Ct3∕4

log t.
(3) For any t ≥ 2 and x ∈ Z𝑑

, Var(f (t, x)) ≤ Ct∕ log t.

This result is proved in Section 7. The proof of the first claim is by a new argument that may be

of independent interest. The second claim follows by combining the first claim and Theorem 1.1. The

third claim is proved using the second claim and Theorem 1.3.

2.3 Point-to-plane last-passage percolation

The model of 𝑑-dimensional point-to-plane directed last-passage percolation (LPP) [14] fits into our

framework, for any 𝑑 ≥ 2. Recall that this model is defined as follows. We start with a collection
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of i.i.d. vertex weights {wx}x∈Z𝑑 , often called the “environment.” Let |x|1 denote the 𝓁1
norm of a

vector x ∈ Z𝑑
. Let O+

denote the positive orthant in Z𝑑
, that is, the set of vectors with nonnegative

coordinates. Given an integer t ≥ 1, let t be the set of all lattice paths from the origin to the plane

{(x1, … , x𝑑) ∈ O+ ∶ |x|1 = t}, which move in the “positive direction” at each step. In other words, an

element Q ∈ t is a sequence (q0, … , qt) ∈ (Z𝑑)t such that q0 = 0, and for each i ≥ 1, qi = qi−1 + ej
for some j. The “point-to-plane last-passage time” is defined as

Lt ∶= max
Q∈t

t−1∑

i=0

wqi . (2.4)

This model fits into the framework of Equation (1.1) by taking

𝜙(u, z) = max
b∈B+

ub + F(z),

where B+ = {e1, … , e𝑑} is the set of neighbors of the origin in the positive orthant, and F is a Lipschitz

function that transforms the standard Gaussian measure on R to the law of the environment in LPP,

This allows only a certain class of laws for the environment—namely, those that can be expressed as

Lipschitz functions of Gaussian—but as noted earlier, this class is quite broad. To see the equivalence

with point-to-plane LPP, note that with the above 𝜙, a simple induction shows that

f (t, x) = max
Q∈t

t−1∑

i=0

F(zt−i,x+qi ),

From this, it is not hard to see that for any x and t, f (t, x) has the same law as Lt. Indeed, if we define

wy ∶= F(zt−|y|
1
,x+y),

then {wy}y∈O+ are i.i.d. random variables, and f (t, x) = Lt if Lt is defined as in (2.4) using these w’s.

Note that 𝜙 is equivariant under constant shifts, monotone in the first argument, and Lipschitz

continuous in the second argument. Thus, it satisfies all the required conditions. Superconcentration

in point-to-plane LPP, with the variance bound Var(Lt) ≤ Ct∕ log t (where C depends only on the

dimension and the law of the noise variables) was proved in [6,7] for 𝑑 = 2. Graham [13] proved

superconcentration in point-to-point directed last-passage percolation in all dimensions, with the same

variance bound. I have not seen a proof of superconcentration in point-to-plane directed last passage

percolation in 𝑑 ≥ 3, but it is possible that it follows from Graham’s methods. The following theorem

proves this result, together with a novel subroughness bound that may be of independent interest.

Theorem 2.3. Consider the surface f generated by the LPP model defined above. Let C denote any
constant that depends only on the dimension 𝑑 and the law of the environment. Then, we have the
following bounds:

(1) For any t ≥ 2, x ∈ Z𝑑 , and 1 ≤ i < j ≤ 𝑑, E|f (t, x + ei) − f (t, x + ej)| ≤ C
√

log t.
(2) For any t ≥ 2, x ∈ Z𝑑 , and 1 ≤ i < j ≤ 𝑑, E[(f (t, x + ei) − f (t, x + ej))2] ≤ C

√
t log t.

(3) For any t ≥ 2 and x ∈ Z𝑑
, Var(f (t, x)) ≤ Ct∕ log t.

Theorem 2.3 is proved in Section 8. The proof of the first claim uses a new argument that is simpler

than the proofs of similar claims in [6,7,13] and gives a better bound. The second claim follows from

the first by combining with Theorem 1.1, and the third claim follows from the second by Theorem 1.3.

 10982418, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21108 by Stanford U

niversity, W
iley O

nline Library on [16/06/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s­and­conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



CHATTERJEE 311

2.4 Directed polymers

The framework of this paper includes the model of (𝑑 + 1)-dimensional directed polymers in an

i.i.d. random environment [10], for any 𝑑 ≥ 1, as long as the law of the environment can be expressed

as the pushforward of the standard Gaussian measure under a Lipschitz map. Recall that this model

is defined as follows. Let (wt,x)t∈Z≥0
,x∈Z𝑑 be a collection of i.i.d. random variables, called the “en-

vironment,” as in LPP. Let t be the set of all paths of length t started at the origin—that is, all

P = (p0, … , pt) ∈ (Z𝑑)t such that p0 = 0 and |pi − pi−1| = 1 for all i ≥ 1. The directed polymer

model assigns a random probability measure on t, with a path P = (p0, … , pt) assigned a probability

proportional to

exp

(

𝛽

t−1∑

i=0

wi,pi

)

,

where 𝛽 is a parameter known as the “inverse temperature” of the model. A key object of interest in

this model is the partition function Zt, defined as

Zt ∶=
∑

P∈t

exp

(

𝛽

t−1∑

i=0

wi,pi

)

.

To capture the logarithm of the partition function of the directed polymer model in our framework, we

take

𝜙(u, z) = 1

𝛽
log

(
∑

b∈B
e𝛽ub

)

+ F(z),

where F is the Lipschitz map the transforms the standard Gaussian measure into the law of the envi-

ronment (assuming, as before, that such a map exists). If f is the random surface generated with this

driving function and the environment z, and zero initial condition, then a simple induction shows that

f (t, x) = 1

𝛽
log

[
∑

P∈t

exp

(

𝛽

t−1∑

i=0

F(zt−i,x+pi )

)]

.

It is not hard to see that f (t, x) has the same law as 𝛽
−1

log Zt. It is also easy to verify that𝜙 is equivariant

under constant shifts, monotone in the first argument, and Lipschitz continuous in the second argument.

Superconcentration of the log partition function of the directed polymer model, with the bound

Var(log Zt) ≤ Ct∕ log t, was proved by Alexander and Zygouras [1]. There is a version of this model

for 𝛽 = ∞, known as the “directed polymer at zero temperature.” For the zero temperature model,

superconcentration was proved in [6,7] for 𝑑 = 1, and in [13] for all 𝑑.

The following theorem reproves the superconcentration of the log partition function of the directed

polymer model at finite 𝛽 using the techniques of this paper, along with a novel subroughness bound

that may be of independent interest. The zero temperature case, being very similar to LPP, is omitted.

Theorem 2.4. Consider the surface f generated by the directed polymer model defined above. Let
C denote any constant that depends only on the dimension 𝑑, the inverse temperature 𝛽, and the law
of the environment. Then, we have the following bounds:

(1) For any t ≥ 2 and x, y ∈ Z𝑑 with |x − y|1 = 2, E|f (t, x) − f (t, y)| ≤ C.
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312 CHATTERJEE

(2) For any t ≥ 2 and x, y ∈ Z𝑑 with |x − y|1 = 2, E[(f (t, x) − f (t, y))2] ≤ C
√

t log t.
(3) For any t ≥ 2 and x ∈ Z𝑑

, Var(f (t, x)) ≤ Ct∕ log t.

This theorem is proved in Section 9. The proof of the first claim uses a new argument. The second

claim follows from the first claim and Theorem 1.1, whereas the third claim follows from the second

and Theorem 1.3.

3 RANDOM WALK REPRESENTATION OF DERIVATIVES

For 1 ≤ s ≤ t and x, y ∈ Z𝑑
, we will now compute the partial derivative of f (t, x) with respect to zs,y,

assuming that the driving function is differentiable. It turns out that the derivative is expressible in

terms of the transition probabilities of a certain kind of random walk. This random walk representation

is crucial for all subsequent analyses. We need the equivariance and monotonicity properties for the

proof, but not the Lipschitz property.

Throughout this section, let 𝜙 be a monotone, equivariant, and differentiable driving function.

Writing an element of RA ×R as (u, z), where u = (ua)a∈A ∈ RA
and z ∈ R, let 𝜕a𝜙 denote the partial

derivative of 𝜙(u, z) with respect to ua, and let 𝜕z𝜙 denote the partial derivative of 𝜙 with respect to z.

The following lemma records two important properties of these derivatives, which are consequences

of the equivariance and monotonicity properties of 𝜙.

Lemma 3.1. For any (u, z) ∈ RA ×R, 𝜕a𝜙(u, z) ≥ 0 for each a ∈ A, and

∑

a∈A
𝜕a𝜙(u, z) = 1.

Proof. Fix (u, z). Define a function g ∶ R → R as g(t) ∶= 𝜙(u + t, z) (recall that u + t is the vector

obtained by adding t to each coordinate of u). By the equivariance of 𝜙, we have that g(t) = 𝜙(u, z)+ t.
Thus, g′(t) = 1 for all t. On the other hand, by the definition of g,

g′(t) =
∑

a∈A
𝜕a𝜙(u + t, z).

Thus,

∑

a∈A
𝜕a𝜙(u, z) = g′(0) = 1.

The nonnegativity of 𝜕a𝜙(u, z) follows from the monotonicity of 𝜙. ▪

Let f be a growing random surface defined according to (1.1). For any t ∈ Z≥0 and x ∈ Z𝑑
, define

a random walk on Z𝑑
as follows. The walk starts at x at time t, and goes backwards in time, until

reaching time 0. If the walk is at location y ∈ Z𝑑
at time s ≥ 1, then at time s−1 it moves to y+a with

probability 𝜕a𝜙((f (s − 1, y + a))a∈A, zs,y), for a ∈ A. By Lemma 3.1, these numbers are nonnegative

and sum to 1 when summed over a ∈ A. Therefore, this describes a legitimate random walk on Z𝑑
,

moving backwards in time.
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CHATTERJEE 313

Proposition 3.2. Take any 1 ≤ s ≤ t and x, y ∈ Z𝑑 . Let {Sr}0≤r≤t be the backwards random walk
defined above, started at x at time t. Then

𝜕

𝜕zs,y
f (t, x) = P(Ss = y)𝜕z𝜙((f (s − 1, y + a))a∈A, zs,y).

Proof. The proof is by induction on t. First, suppose that t = 1. Then s must also be equal to 1.

Moreover, f (t, x) has no dependence on zt,y if y ≠ x, and so the partial derivative is zero if y ≠ x. If

y = x, then by the definition (1.1) of f (t, x), it follows that

𝜕

𝜕zs,y
f (t, x) = 𝜕z𝜙((f (t − 1, x + a))a∈A, zt,x)

= P(Ss = x)𝜕z𝜙((f (s − 1, y + a))a∈A, zs,y),

since s = t, x = y, and P(Ss = x) = 1. Thus, the claim holds when t = 1.

Now suppose that the claim has been proved up to time t − 1. If s = t, the proof is the same as in

the previous paragraph. So assume that s < t. By (1.1) and the chain rule for differentiation,

𝜕

𝜕zs,y
f (t, x) =

∑

a∈A
𝜕a𝜙((f (t − 1, x + a))a∈A, zt,x)

𝜕

𝜕zs,y
f (t − 1, x + a)

=
∑

a∈A
P(St−1 = x + a) 𝜕

𝜕zs,y
f (t − 1, x + a).

For each a ∈ A, let Sa
be the backwards random walk started at x+a at time t−1. Then by the induction

hypothesis for time t − 1,

𝜕

𝜕zs,y
f (t − 1, x + a) = P(Sa

s = y)𝜕z𝜙((f (s − 1, y + a))a∈A, zs,y).

Combining the previous two displays, we get

𝜕

𝜕zs,y
f (t, x)

= 𝜕z𝜙((f (s − 1, y + a))a∈A, zs,y)
∑

a∈A
P(St−1 = x + a)P(Sa

s = y).

But from the definition of the random walks, it is not hard to see that the law of Sa
is the same as the

law of S given St−1 = x + a. Thus,

∑

a∈A
P(St−1 = x + a)P(Sa

s = y)

=
∑

a∈A
P(St−1 = x + a)P(Ss = y|St−1 = x + a) = P(Ss = y).

Combining this with the previous display completes the proof. ▪

4 PROOF OF THEOREM 1.1

Let us first prove the theorem under the assumption that 𝜙 is differentiable.
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314 CHATTERJEE

Lemma 4.1. The conclusions of Theorem 1.1 hold if, in addition to the stated hypotheses, we also
have that 𝜙 is differentiable.

Proof. Fix t and x. Conditioning on the randomness due to the noise variables, let S = {Ss}0≤s≤t
be the random walk started at x at time t and moving backwards in time, defined in Section 3. Let

S′ = {S′s}0≤s≤t be an independent copy of S (conditional on the noise variables). It is not hard to

see that f (t, x) is a function of only finitely many of the noise variables. Moreover, by the uniform

Lipschitz property, |𝜕z𝜙| is uniformly bounded by L. Let P′ denote conditional probability given the

noise variables, and let E′
denote the conditional expectation. Then by Proposition 3.2 and the above

observations, we have

t∑

s=1

∑

y∈Z𝑑

(
𝜕

𝜕zs,y
f (t, x)

)2

≤ L2

t∑

s=1

∑

y∈Z𝑑

(P′(Ss = y))2

= L2

t∑

s=1

∑

y∈Z𝑑

P
′(Ss = y, S′s = y)

= L2

t∑

s=1

P
′(Ss = S′s)

= L2
E
′|{1 ≤ s ≤ t ∶ Ss = S′s}| ≤ L2t.

Thus, as a function of the noise variables, f (t, x) is differentiable and Lipschitz with respect to

the Euclidean metric, with Lipschitz constant bounded by L
√

t. The claims now follow easily by

the Gaussian Poincaré inequality and the Gaussian concentration inequality (see [7], chapter 2 and

appendix A). ▪

To drop the differentiability requirement, several lemmas are needed. Throughout, we work under

the hypotheses of Theorem 1.1.

Lemma 4.2. The function 𝜙 is Lipschitz with Lipschitz constant L + 1 with respect to the 𝓁∞ norm
on RA ×R.

Proof. Take any z ∈ R and u, v ∈ RA
. For each a ∈ A, let sa ∶= min{ua, va}. Let s ∶= (sa)a∈A.

Let c ∶= maxa∈A |ua − va|. Then ua and va are both in the interval [sa, sa + c] for each a ∈ A. Thus,

by the monotonicity of 𝜙, 𝜙(u, z) and 𝜙(v, z) are both lower bounded by 𝜙(s, z) and upper bounded by

𝜙(s + c, z). But by equivariance, 𝜙(s + c, z) = 𝜙(s, z) + c. This shows that

|𝜙(u, z) − 𝜙(v, z)| ≤ c = ||u − v||𝓁∞ .

Thus, for any u, v ∈ RA
and z, z′ ∈ R, we have

|𝜙(u, z) − 𝜙(v, z′)| ≤ |𝜙(u, z) − 𝜙(v, z)| + |𝜙(v, z) − 𝜙(v, z′)|
≤ ||u − v||𝓁∞ + L|z − z′|
≤ (L + 1)||(u, z) − (v, z′)||𝓁∞ ,

which proves the claim. ▪
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Let h ∶ RA × R → [0,∞) be a C∞
function with compact support, which integrates to 1. For

each 𝜀 > 0, define the function h𝜀(x) ∶= 𝜀
−𝑑h(𝜀−1x). Note that h𝜀 is also nonnegative, smooth, and

integrates to 1. Let 𝜙𝜀 be the convolution of 𝜙 with h𝜀, that is, for any x,

𝜙𝜀(x) =
∫

h𝜀(x − y)𝜙(y)𝑑y =
∫
𝜙(x − y)h𝜀(y)𝑑y. (4.1)

Lemma 4.3. For any 𝜀 > 0, 𝜙𝜀 is a differentiable function. Moreover, it has the monotonicity and
equivariance properties, and is Lipschitz in the noise variable with Lipschitz constant L.

Proof. By Lemma 4.2, 𝜙 is Lipschitz. In particular, it is continuous and hence bounded on compact

sets. Since h𝜀 has compact support, it is now easy to use the first integral in (4.1) and the dominated

convergence theorem to deduce that 𝜙𝜀 is differentiable everywhere. From the second integral in (4.1)

and the fact that h𝜀 is nonnegative and integrates to 1, it follows that 𝜙𝜀 is monotone, equivariant, and

Lipschitz in the noise variable with Lipschitz constant L. ▪

Let f𝜀 be the growing random surface generated by the driving function 𝜙𝜀, the noise variables zt,x,

and initial value f𝜀(0, x) = f (0, x) for all x. Combining the above lemma with Lemma 4.1, we get the

following corollary about f𝜀.

Corollary 4.4. The conclusions of Theorem 1.1 hold for f𝜀, for any 𝜀 > 0.

Proof. This is a consequence of Lemma 4.1 and Lemma 4.3, since 𝜙𝜀 satisfies all the condi-

tions of Theorem 1.1, and is moreover differentiable, satisfying the additional criterion demanded by

Lemma 4.1. ▪

We also get the following analog of Lemma 4.2.

Corollary 4.5. For any 𝜀 > 0, the function 𝜙𝜀 is Lipschitz continuous with Lipschitz constant L + 1

with respect to the 𝓁∞ norm on RA ×R.

Proof. The proof is exactly the same as the proof of Lemma 4.2, after replacing 𝜙 by 𝜙𝜀. This goes

through, because by Lemma 4.3, 𝜙𝜀 shares all the relevant properties with 𝜙. ▪

Our next goal is to show that f𝜀 converges pointwise to f as 𝜀 → 0. The first step is the following

lemma.

Lemma 4.6. As 𝜀 → 0, 𝜙𝜀 → 𝜙 uniformly on RA ×R.

Proof. Take any x ∈ RA ×R. Recall that h𝜀 integrates to 1. Thus, by Lemma 4.2,

|𝜙𝜀(x) − 𝜙(x)| =
|
|
|
|∫

h𝜀(x − y)(𝜙(y) − 𝜙(x))𝑑y
|
|
|
|

≤
∫

h𝜀(x − y)|𝜙(y) − 𝜙(x)|𝑑y

≤ (L + 1)
∫

h𝜀(x − y)||x − y||𝓁∞𝑑y

= (L + 1)
∫

h𝜀(u)||u||𝓁∞𝑑u.
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316 CHATTERJEE

Now, by the change of variable v = 𝜀−1u, we have

∫
h𝜀(u)||u||𝓁∞𝑑u = 𝜀

∫
h(v)||v||𝓁∞𝑑u.

Plugging this into the previous display proves the uniform convergence of 𝜙𝜀 to 𝜙 as 𝜀→ 0. ▪

Lemma 4.7. As 𝜀 → 0, f𝜀(t, x) → f (t, x) for any t and x.

Proof. We will prove this by induction on t. This is given to be true for t = 0. Suppose that this

holds for t − 1. Take any x. Then by the induction hypothesis for t − 1, we have that

lim
𝜀→0

f𝜀(t − 1, x + a) = f (t − 1, x + a),

for each a ∈ A. By Lemma 4.6, 𝜙𝜀 → 𝜙 uniformly. By Lemma 4.2, 𝜙 is continuous. Combining these

three facts, we get

lim
𝜀→0

f𝜀(t, x) = lim
𝜀→0

𝜙𝜀((f𝜀(t − 1, x + a))a∈A, zt,x)

= 𝜙((f (t − 1, x + a))a∈A, zt,x) = f (t, x).

This completes the proof of the induction step. ▪

For t ∈ Z≥1 and x ∈ Z𝑑
, recall the random walk {Ss}0≤s≤t starting at x at time t, defined in

Section 3. Let Vt,x be the set of all points in Z≥1 × Z𝑑
that can possibly be accessed by the walk —

that is, the set of all possible values of (s, Ss) as s ranges between 1 and t. Note that for any t ≥ 2

and x ∈ Z𝑑
,

Vt,x = {(t, x)} ∪
⋃

a∈A
Vt−1,x+a, (4.2)

and V1,x = {(1, x)}. Take any 𝜀 > 0. Define a new growing surface g𝜀, with the same initial values

as f𝜀 (that is, f𝜀(0, x) = g𝜀(0, x) for all x), the same driving function 𝜙𝜀, but the noise field identically

equal to zero. Note that g𝜀 is a nonrandom function.

Lemma 4.8. For any 𝜀 > 0, and any t and x, we have

|f𝜀(t, x) − g𝜀(t, x)| ≤ (L + 1)t max
(s,y)∈Vt,x

|zs,y|.

Proof. The proof is by induction on t. For t = 1, note that by the equality of f𝜀 and g𝜀 at time 0, and

Lemma 4.3, we have

|f𝜀(1, x) − g𝜀(1, x)|
= |𝜙𝜀((f𝜀(0, x + a))a∈A, z1,x) − 𝜙𝜀((g𝜀(0, x + a))a∈A, 0)|
≤ (L + 1)|z1,x|.

Since V1,x = {(1, x)}, this proves the claim for t = 1. Now suppose that it holds for t − 1. Then by

Corollary 4.5,
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|f𝜀(t, x) − g𝜀(t, x)|
= |𝜙𝜀((f𝜀(t − 1, x + a))a∈A, zt,x) − 𝜙𝜀((g𝜀(t − 1, x + a))a∈A, 0)|
≤ (L + 1)max{||(f𝜀(t − 1, x + a))a∈A − (g𝜀(t − 1, x + a))a∈A||𝓁∞ , |zt,x|}.

But by the induction hypothesis for t − 1,

||(f𝜀(t − 1, x + a))a∈A − (g𝜀(t − 1, x + a))a∈A||𝓁∞

= max
a∈A

|f𝜀(t − 1, x + a) − g𝜀(t − 1, x + a)|

≤ (L + 1)t−1
max
a∈A

max
(s,y)∈Vt−1,x+a

|zs,y|.

The desired result follows by combining the last two displays with (4.2). ▪

Finally, define another growing surface g, with the same initial values as f , with driving function

𝜙, and the noise field identically equal to zero.

Lemma 4.9. For any t and x, g𝜀(t, x) → g(t, x) as 𝜀 → 0.

Proof. The proof is by induction on t. For t = 0, the result is automatic, since

g𝜀(0, x) = f𝜀(0, x) = f (0, x) = g(0, x).

Suppose that the claim holds for t − 1. Then by Lemma 4.6,

lim
𝜀→0

g𝜀(t, x) = lim
𝜀→0

𝜙𝜀((g𝜀(t − 1, x + a))a∈A, 0)

= 𝜙((g(t − 1, x + a))a∈A, 0) = g(t, x),

which completes the proof of the lemma. ▪

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Take any t and x. By Lemma 4.7, f𝜀(t, x) → f (t, x) as 𝜀 → 0. By Lemma 4.8,

we see that for any 𝜀 ∈ (0, 1) and any t and x,

|f𝜀(t, x)| ≤ |f𝜀(t, x) − g𝜀(t, x)| + |g𝜀(t, x) − g(t, x)| + |g(t, x)|
≤ (L + 1)t max

(s,y)∈Vt,x
|zs,y| + sup

0<𝛿<1

|g𝛿(t, x) − g(t, x)| + |g(t, x)|.

By Lemma 4.9, the middle term on the right is a finite (deterministic) quantity. Also, by the facts that

the noise variable are standard Gaussian and that the set Vt,x is finite, we see that for any 𝜃 ≥ 0, the

quantity

E

[

exp

(

𝜃(L + 1)t max
(s,y)∈Vt,x

|zs,y|

)]

≤ E

⎡
⎢
⎢
⎣

∑

(s,y)∈Vt,x

exp(𝜃(L + 1)t|zs,y|)
⎤
⎥
⎥
⎦

,

is finite. Thus, the random variables {|f𝜀(t, x)|}0<𝜀<1 are uniformly bounded by a random variable

Mt,x such that E(e𝜃Mt,x ) is finite for any 𝜃 ≥ 0. Therefore by the dominated convergence theorem, all

moments and exponential moments of f𝜀(t, x) converge to the corresponding moments and exponential
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moments of f (t, x) as 𝜀 → 0. Applying Corollary 4.4, we can now get the required bounds on Var(f (t, x))
and E(e𝜃(f (t,x)−E(f (t,x)))). The required tail bound follows easily from the bound on the moment generating

function. ▪

5 PROOOF OF THEOREM 1.3

Throughout this proof, C will denote any positive constant that may only depend on the dimension 𝑑.

The value of C may change from line to line, or even within a line. Fix some t ≥ 1 and x, b ∈ Z𝑑
, with

b ≠ 0. Let 𝜎
2
t ∶= Var(ft,x) and 𝜎

2

b,t ∶= E[(f (t, x) − f (t, x + b))2]. Due to the flat initial condition, these

quantities have no dependence on x. First, note that by the inequality (u + v)2 ≤ 2u2 + 2v2
and the fact

that E(f (t, x)) does not depend on x, we have

𝛽b,t =
𝜎

2

b,t

4L2t

≤
1

4L2t
(2Var(f (t, x)) + 2Var(f (t, x + b)))

= 𝜎
2
t

L2t
= 𝛼t.

This proves one of the claimed inequalities. Next, let k ≥ 2 be an integer, to be chosen later. Let

X ∶= 1

k

k−1∑

i=0

f (t, x + ib).

For 0 ≤ i ≤ k− 1, let {Si
s}0≤s≤t be the random walk started at x+ ib at time t, defined in Section 3. Let

P′ denote conditional probability given the noise variables. Then by Proposition 3.2, for any 1 ≤ s ≤ t
and y ∈ Z𝑑

,

𝜕X
𝜕zs,y

= 𝜕z𝜙((f (s − 1, y + a))a∈A, zs,y)
1

k

k−1∑

i=0

P
′(Si

s = y). (5.1)

Consequently,

|
|
|
|
|

|
|
|
|
|

𝜕X
𝜕zs,y

|
|
|
|
|

|
|
|
|
|L1

≤
L
k

k−1∑

i=0

P(Si
s = y), (5.2)

where ||Z||L1 denotes the L1
norm of a random variable Z. Due to the flat initial condition, the law of

f is invariant under spatial translations, which implies that P(Si
s = y) = P(S0

s = y − ib). Thus,

|
|
|
|
|

|
|
|
|
|

𝜕X
𝜕zs,y

|
|
|
|
|

|
|
|
|
|L1

≤
L
k

k−1∑

i=0

P(S0
s = y − ib).

Let Bs,y denote the quantity on the right. Now, again by (5.1),

(
𝜕X
𝜕zs,y

)2

≤ L2

(

1

k

k−1∑

i=0

P
′(Si

s = y)

)2

≤
L2

k

k−1∑

i=0

P
′(Si

s = y).
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This shows that

|
|
|
|
|

|
|
|
|
|

𝜕X
𝜕zs,y

|
|
|
|
|

|
|
|
|
|

2

L2

≤ A2
s,y,

where As,y ∶=
√

LBs,y. But by (5.2),

|
|
|
|
|

|
|
|
|
|

𝜕X
𝜕zs,y

|
|
|
|
|

|
|
|
|
|L1

≤ Bs,y = As,y

√
Bs,y

L
,

which can be rewritten as

As.y

||𝜕X∕𝜕zs,y||L1

≥

√
L

Bs,y
.

Lastly, note that the events S0
s = y− ib are disjoint as i varies, which shows that Bs,y is bounded above

by L∕k. Thus, by Talagrand’s L1
- L2

inequality (specifically, the version displayed in [7], theorem 5.1),

we get

Var(X) ≤ C
t∑

s=1

∑

y∈Z𝑑

A2
s,y

1 + log(As,y∕||𝜕X∕𝜕zs,y||L1)

≤
C

log k

t∑

s=1

∑

y∈Z𝑑

A2
s,y =

CL2

k log k

t∑

s=1

∑

y∈Z𝑑

k−1∑

i=0

P(S0
s = y − ib)

= CL2

log k

t∑

s=1

∑

v∈Z𝑑

P(S0
s = v) = CL2t

log k
.

Now note that

||X − f (t, x)||L2 ≤
1

k

k−1∑

i=1

||f (t, x + ib) − f (t, x)||L2

≤
1

k

k−1∑

i=1

i−1∑

j=0

||f (t, x + (j + 1)b) − f (t, x + jb)||L2

= 1

k

k−1∑

i=1

i−1∑

j=0

𝜎b,t ≤
k𝜎b,t

2
.

Since E(X) = E(f (t, x)), the last two displays show that

𝜎
2
t = Var(f (t, x))
≤ 2E[(f (t, x) − X)2] + 2Var(X)

≤
k2
𝜎

2

b,t

2
+ 2CL2t

log k
. (5.3)
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By Theorem 1.1 and the inequality 𝛽b,t ≤ 𝛼t, we get that 𝛽b,t ≤ 𝛼t ≤ 1. So, if 𝛽b,t ≥ 1∕10, then the

bound 𝛼t ≤ C∕| log 𝛽b,t| is trivial. Let us assume that 𝛽b,t < 1∕10. Then choosing k to be the integer

part of (𝛽b,t| log 𝛽b,t|)−1∕2
and using (5.3), we get

𝜎
2
t ≤

CL2t
| log 𝛽b,t|

,

which is the same as 𝛼t ≤ C∕| log 𝛽b,t|.

6 PROOF OF THEOREM 2.1

The growth mechanism for f does not directly fit into the framework of this paper, since the heights at

even and odd sites are updated alternately. However, this can be easily taken care of, as follows. Let g
be another growing random surface, with the same growth mechanism as f , except that the height at

every site is updated at each step. That is, we start with g(0, ⋅) ≡ 0, and for each t and x, we choose

g(t + 1, x) uniformly from the interval

[

max
b∈B

g(t, x + b) − 1,min
b∈B

g(t, x + b) + 1

]

.

(It is not hard to prove by induction that this interval is always nonempty. To see this, suppose that

this is true up to time t− 1. Then, by the construction of g(t, x+ b) according to the above rule, we see

that |g(t, x + b) − g(t − 1, x)| ≤ 1. Since this holds for each b, the above interval must be nonempty.)

Next, define h(0, x) ∶= 0 for all x, and for t ≥ 1, let

h(t, x) ∶=

{
g(t − 1, x) if t and x have the same parity,

g(t, x) otherwise.

We claim that h has the same law as f , and in fact, the same growth mechanism. (It is important to

note that this is true only because f (t+ 1, x) is determined by (f (t, x+ b))b∈B and not (f (t, x+ a))a∈A in

this model.) To see this, take any t ≥ 0 and x ∈ Z𝑑
. Suppose that t and x are both even. Then by the

above definition, h(t + 1, x) = g(t + 1, x). By the definition of g, g(t + 1, x) is chosen uniformly from

the interval
[

max
b∈B

g(t, x + b) − 1,min
b∈B

g(t, x + b) + 1

]

.

But g(t, x + b) = h(t, x + b) for each b ∈ B. Thus, h(t + 1, x) is chosen uniformly from the interval

[

max
b∈B

h(t, x + b) − 1,min
b∈B

h(t, x + b) + 1

]

.

Next, suppose that t is even and x is odd. Then h(t + 1, x) = g(t, x). But in this case, we also have

g(t, x) = h(t, x). Thus, h(t + 1, x) = h(t, x). This shows that the growth of h is governed by the same

rule as that for f at even times. A similar argument shows that this is also true at odd times.

Since h has the same law as f , it suffices to obtain the required variance bound for h(t, x). This,

on the other hand, holds if a similar bound holds for the variance of g(t, x), because h(t, x) is equal to

either g(t, x) or g(t−1, x), deterministically depending on t and x. We will show this using Theorem 1.3.

There are two steps in showing this. First, we have to show that the growth of g is governed by the
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CHATTERJEE 321

equation (1.1) for some suitable function 𝜙 that has the monotonicity and equivariance properties,

and is Lipschitz in the noise variable. The second step is to show that g is subrough, with a suitable

quantitative bound.

We will actually carry out the second step first. Since h has the same growth mechanism as f , it

satisfies the constraint that |h(t, x)− h(t, y)| ≤ 1 for any two neighboring points x and y. Thus, we have

that for any t and any b, b′ ∈ B,

|h(t, x) − h(t, x + b + b′)| ≤ 2.

This shows that if t and x have opposite parities, then for any b, b′ ∈ B,

|g(t, x) − g(t, x + b + b′)| = |h(t, x) − h(t, x + b + b′)| ≤ 2. (6.1)

A similar argument proves that the above bound also holds if t and x have the same parity. The details

are as follows. Define h̃(0, x) ∶= 0 for all x, and for t ≥ 1, let

h̃(t, x) ∶=

{
g(t, x) if t and x have the same parity,

g(t − 1, x) otherwise.

Then by a similar argument as for h, it follows that h̃ grows as follows:

• If t is even, then for each odd vertex x, h̃(t + 1, x) is chosen uniformly from the interval

[

max
b∈B

h̃(t, x + b) − 1,min
b∈B

h̃(t, x + b) + 1

]

,

and for each even vertex x, h̃(t + 1, x) = h̃(t, x).
• If t is odd, the update rules for odd and even vertices are switched in the above step.

This shows that h̃ also satisfies the constraint that |h̃(t, x) − h̃(t, y)| ≤ 1 for any two neigh-

boring points x and y. From this, it follows that when t and x have the same parity, then for any

b, b′ ∈ B,

|g(t, x) − g(t, x + b + b′)| = |h̃(t, x) − h̃(t, x + b + b′)| ≤ 2. (6.2)

This completes the proof of the subroughness of g, and in fact, gives the quantitative bound

E[(g(t, x) − g(t, x + 2e1))2] ≤ 4. (6.3)

Let us now show that the growth of g is indeed governed by (1.1) with a driving function 𝜙 that is

monotone, equivariant, and Lipschitz in the noise variable. Let zt,x be i.i.d. standard Gaussian ran-

dom variables. Let Φ be the standard Gaussian c.d.f., so that Φ(zt,x) are i.i.d. Uniform [0, 1] random

variables. Then by the definition of g, we can express g(t + 1, x) as

g(t + 1, x) = Φ(zt+1,x)
(

max
b∈B

g(t, x + b) − 1

)

+ (1 − Φ(zt+1,x))
(

min
b∈B

g(t, x + b) + 1

)
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322 CHATTERJEE

= Φ(zt+1,x)
(

max
b∈B

g(t, x + b) −min
b∈B

g(t, x + b)
)

+min
b∈B

g(t, x + b) + 1 − 2Φ(zt+1,x).

Take any t and x, and any b, b′ ∈ B. Then −b ∈ B, and so, by (6.1) and (6.2),

|g(t, x + b) − g(t, x + b′)| = |g(t, x + b) − g(t, x + b + b′ − b)| ≤ 2.

This shows that

0 ≤ max
b∈B

g(t, x + b) −min
b∈B

g(t, x + b) ≤ 2.

So, if we define a function 𝜉 ∶ R → R as

𝜉(a) =
⎧
⎪
⎨
⎪
⎩

a if 0 ≤ a ≤ 2,

2 if a > 2,

0 if a < 0,

and define 𝜙 ∶ RA ×R → R as

𝜙(u, z) = Φ(z)𝜉
(

max
b∈B

ub −min
b∈B

ub

)

+min
b∈B

ub + 1 − 2Φ(z),

then the growth of g is governed by (1.1) with driving function 𝜙.

Take any u ∈ RA
and z ∈ R. Suppose that one coordinate of u is increased by some positive

amount. Then either minb∈B ub remains the same, in which case 𝜙(u, z) cannot decrease; or minb∈B ub
increases by some amount 𝜀. In the latter case, maxb∈B ub−minb∈B ub cannot decrease by more than 𝜀.

Since the slope of 𝜉 is everywhere bounded by 1, in this case 𝜙(u, z) increases by at least (1 −Φ(z))𝜀.

This shows that 𝜙 is monotone in its first argument. Equivariance under constant shifts is clear from

the definition of 𝜙. Lastly, note that

𝜕𝜙

𝜕z
= Φ′(z)𝜉

(

max
b∈B

ub −min
b∈B

ub

)

− 2Φ′(z).

Since 𝜉(a) ∈ [0, 2] for all a ∈ R and Φ′ is uniformly bounded by 1∕
√

2𝜋, this shows that

|
|
|
|

𝜕𝜙

𝜕z
|
|
|
|
≤

4
√

2𝜋

.

Thus, we may indeed apply Theorem 1.3 to the surface g. By the estimate (6.3), this completes the

proof.

7 PROOF OF THEOREM 2.2

The key step in the proof is to show that moving maxima in stationary random fields cannot fluctuate

wildly. We start with the following simple lemma.
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CHATTERJEE 323

Lemma 7.1. Let 1 ≤ r ≤ k be two integers, and let x0, x1, … , xk+r be real numbers. For 0 ≤ i ≤ r,
let mi ∶= max{xi, xi+1, … , xi+k}. Then there is some 0 ≤ i∗ ≤ r such that m0 ≥ m1 ≥ … ≥ mi∗ and
mi∗ ≤ mi∗+1 ≤ … ≤ mr.

Proof. Suppose that mi < mi+1 for some 0 ≤ i < r. Since we have mi = max{xi, … , xi+k} and

mi+1 = max{xi+1, … , xi+k+1}, this is possible only if mi+1 = xi+k+1. Take any i + 1 ≤ j ≤ r. Since

r ≤ k, we have

j ≤ r ≤ k ≤ i + k + 1.

On the other hand, since i + 1 ≤ j, we have

i + k + 1 ≤ j + k.

Thus, i + k + 1 lies between j and j + k, and hence

mj = max{xj, … , xj+k} ≥ xi+k+1 = mi+1.

So, we have shown that if the sequence m0,m1, … ,mr has a strict increase from mi to mi+1, it can

never go down below mi+1 subsequently. It is easy to see that this proves the claim. ▪

Corollary 7.2. Let xi and mi be as in Lemma 7.1. Then

r−1∑

i=0

|mi − mi+1| ≤ 2 max
0≤i,j≤k+r

|xi − xj|.

Proof. By Lemma 7.1, there is some 0 ≤ i∗ ≤ r such that m0 ≥ m1 ≥ … ≥ mi∗ and mi∗ ≤ mi∗+1 ≤

… ≤ mr. Therefore,

r−1∑

i=0

|mi − mi+1| =
i∗−1∑

i=0

(mi − mi+1) +
r−1∑

i=i∗
(mi+1 − mi)

= m0 − mi∗ + mr − mi∗ .

But clearly, m0 −mi∗ and mr −mi∗ are both bounded above by the maximum value of |xi − xj| over all

0 ≤ i, j ≤ k + r. This completes the proof. ▪

Let (g(x))x∈Z𝑑 be any random field whose law is invariant under translations. For each s > 0, let

𝜇(s) ∶= E

(

max
|x|

1
≤s,|y|

1
≤s
|g(x) − g(y)|

)

,

and assume that this quantity is finite. Here |x|1 denotes the 𝓁1
norm of x. Let D be a finite subset of

Z𝑑
and x0 be a point in Z𝑑

. For each i ≥ 0, let Di ∶= D + ix0 be the translate of D by ix0. Let

Xi ∶= max
x∈Di

g(x).
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324 CHATTERJEE

Given some large k, the following lemma shows that X0 is unlikely to be larger than the maximum of

X1, … ,Xk+1. This is not surprising since the random field is stationary; the point of the lemma is that

it gives a quantitative bound under minimal assumptions.

Lemma 7.3. Let all notation be as above. Let s be the sum of the 𝓁1 diameter of D and 2k|x0|1. Then

E[(X0 −max{X1, … ,Xk+1})+] ≤
2𝜇(s)

k
,

where a+ denotes the positive part of a real number a.

Proof. For each i ≥ 0, let Mi ∶= max{Xi,Xi+1, … ,Xi+k}. By Corollary 7.2,

k−1∑

i=0

|Mi −Mi+1| ≤ 2 max
0≤i,j≤2k

|Xi − Xj|.

By translation invariance, E|Mi −Mi+1| is the same for each i. Thus, the above inequality gives

E|M0 −M1| ≤
2

k
E

(

max
0≤i,j≤2k

|Xi − Xj|

)

.

Without loss of generality, suppose that 0 ∈ D. Then each point in the union of D0, … ,D2k has 𝓁1

norm bounded by s. Hence, the expectation on the right side of the above inequality is bounded by

𝜇(s). Lastly, note that

|M0 −M1| ≥ (M0 −M1)+ ≥ (X0 −M1)+.

Thus, E[(X0 −M1)+] ≤ 2𝜇(s)∕k, which is what we wanted to prove. ▪

For each r ≥ 0, let Gr ∶= max|x|
1
≤r g(x). The following lemma gives an upper bound on the growth

rate of Gr. The proof uses Lemma 7.3.

Lemma 7.4. For any r ≥ 4𝑑, we have

E|Gr+1 − Gr| ≤
8𝑑

2
𝜇(6r)
r

.

Proof. In the following, we will denote the coordinates of any vector x ∈ Z𝑑
be x1, … , x𝑑 . Take

any r ≥ 4𝑑. For i = 1, … , 𝑑, define

A+i ∶= {x ∶ |x|1 = r + 1, |xi| ≥ |xj| for all 1 ≤ j ≤ 𝑑, and xi ≥ 0},
A−i ∶= {x ∶ |x|1 = r + 1, |xi| ≥ |xj| for all 1 ≤ j ≤ 𝑑, and xi ≤ 0}.

Note that any x with |x|1 = r + 1 must belong to A+i or A−i for at least one i.
Now, let D ∶= A+

1
. Note that for any x ∈ D,

x1 ≥
1

𝑑

𝑑∑

i=1

|xi| =
r + 1

𝑑
.
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CHATTERJEE 325

For each i, let Di ∶= D − ie1, and let Xi ∶= maxx∈Di g(x). Let k ∶= [r∕𝑑] − 1. The above inequality

shows that for any x ∈ D and y = x − ie1 for some 1 ≤ i ≤ k + 1, we have x1 > y1 ≥ 0 and yi = xi for

i ≠ 1. Thus, |y|1 ≤ r. This shows that the sets D1, … ,Dk+1 are all subsets of the 𝓁1
ball of radius r

around the origin. Lastly, note that the 𝓁1
diameter of D is bounded above by 2(r + 1). Therefore by

Lemma 7.3, we get

E[(X0 − Gr)+] ≤ E[(X0 −max{X1, … ,Xk+1})+] ≤
2𝜇(2r + 2 + 2k)

k
.

The same upper bound holds if we take D = A+i or D = A−i for any i. Thus, defining

Yi ∶= max
x∈A+i

g(x), Zi ∶= max
x∈A−i

g(x),

we have

E|Gr+1 − Gr| = E[(max{Y1, … ,Y𝑑,Z1, … ,Z𝑑} − Gr)+]

≤

𝑑∑

i=1

(E[(Yi − Gr)+] + E[(Zi − Gr)+])

≤
4𝑑

k
𝜇(2r + 2 + 2k).

The proof is completed by observing that k = [r∕𝑑] − 1 ≥ r∕𝑑 − 2 ≥ r∕2𝑑 (since r ≥ 4𝑑), and

𝜇(2r + 2 + 2k) ≤ 𝜇(6r), since 𝜇 is an increasing function and 2k + 2 ≤ 2r + 2 ≤ 4r. ▪

We now specialize to random surfaces generated according to (1.1) with flat initial condition. Note

that if f is such a growing surface, the field f (t, ⋅) is a translation invariant random field at each time t.
Henceforth, C will denote any constant that depends only on 𝜙 and 𝑑.

Lemma 7.5. Now let f be a growing random surface generated by a driving function that is
monotone, equivariant, and Lipschitz in the noise variable, with initial condition f (0, ⋅) ≡ 0, and
i.i.d. standard Gaussian noise field. Then for any t ≥ 1 and r ≥ 4𝑑,

E

|
|
|
|
|

max
|x|

1
≤r

f (t, x) − max
|x−e

1
|
1
≤r

f (t, x)
|
|
|
|
|

≤

√
Ct log(Cr𝑑)

r
,

where C is a constant that depends only on 𝜙 and 𝑑.

Proof. Take any 𝜃 ∈ R. By translation invariance and Theorem 1.1, we have that for any x and y,

E(e𝜃(f (t,x)−f (t,y))) ≤
√

E(e2𝜃(f (t,x)−E(f (t,x))))E(e2𝜃(f (t,y)−E(f (t,y)))) ≤ eCt𝜃2

.

Consequently, for any 𝜃 > 0,

E(e𝜃|f (t,x)−f (t,y)|) ≤ E(e𝜃(f (t,x)−f (t,y))) + E(e−𝜃(f (t,x)−f (t,y))) ≤ 2eCt𝜃2

.

Thus, for any r ≥ 1 and 𝜃 > 0,
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E

(

max
|x|

1
≤r,|y|

1
≤r
|f (t, x) − f (t, y)|

)

= 1

𝜃
E

[

log exp

(

𝜃 max
|x|

1
≤r,|y|

1
≤r
|f (t, x) − f (t, y)|

)]

≤
1

𝜃
E

[

log

∑

|x|
1
≤r,|y|

1
≤r

e𝜃|f (t,x)−f (t,y)|

]

≤
1

𝜃
log

∑

|x|
1
≤r,|y|

1
≤r

E(e𝜃|f (t,x)−f (t,y)|) ≤ log(Cr𝑑)
𝜃

+ Ct𝜃.

Optimizing over 𝜃, we get

E

(

max
|x|

1
≤r,|y|

1
≤r
|f (t, x) − f (t, y)|

)

≤

√
Ct log(Cr𝑑).

Thus, by Lemma 7.4 (with g(⋅) = f (t, ⋅)), we get that for any r ≥ 4𝑑,

E
|
|
|
|
max
|x|

1
≤r

f (t, x) − max
|x|

1
≤r+1

f (t, x)
|
|
|
|
≤

√
Ct log(Cr𝑑)

r
. (7.1)

For any x such that |x − e1|1 ≤ r, we have |x|1 ≤ r + 1. Thus, the above inequality gives

E

[(

max
|x−e

1
|
1
≤r

f (t, x) − max
|x|

1
≤r

f (t, x)
)+]

≤ E

[(

max
|x|

1
≤r+1

f (t, x) − max
|x|

1
≤r

f (t, x)
)+]

≤

√
Ct log(Cr𝑑)

r
. (7.2)

Now, applying translation invariance to (7.1), we have

E
|
|
|
|

max
|x−e

1
|
1
≤r

f (t, x) − max
|x−e

1
|
1
≤r+1

f (t, x)
|
|
|
|
≤

√
Ct log(Cr𝑑)

r
. (7.3)

For any x such that |x|1 ≤ r, we have |x − e1|1 ≤ r + 1. Thus, by (7.3),

E

[(

max
|x|

1
≤r

f (t, x) − max
|x−e

1
|
1
≤r

f (t, x)
)+]

≤ E

[(

max
|x−e

1
|
1
≤r+1

f (t, x) − max
|x−e

1
|
1
≤r

f (t, x)
)+]

≤

√
Ct log(Cr𝑑)

r
. (7.4)

Combining (7.2) and (7.4), we get the desired inequality. ▪

Henceforth, let f be a growing random surface generated by a driving function of max type

(satisfying (2.3)), with initial condition f (0, ⋅) ≡ 0, and i.i.d. standard Gaussian noise field.
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CHATTERJEE 327

Lemma 7.6. For any 1 ≤ r ≤ t and any x ∈ Z𝑑
,

|f (t, x) − max
|y|

1
≤r

f (t − r, x + y)| ≤
r−1∑

k=0

max
|y|

1
≤k
(K1 + K2|zt−k,x+y|).

Proof. Fix some t ≥ 1 and x ∈ Z𝑑
. The proof will be by induction on r. Note that by (1.1) and (2.3),

|f (t, x) −max
a∈A

f (t − 1, x + a)| ≤ K1 + K2|zt,x|. (7.5)

This proves the claim for r = 1. Now suppose that the claim is true up to r − 1. Then, for any a ∈ A,

|
|
|
|
f (t − 1, x + a) − max

|y|
1
≤r−1

f (t − r, x + a + y)
|
|
|
|

≤

r−2∑

k=0

max
|y|

1
≤k
(K1 + K2|zt−k−1,x+a+y|). (7.6)

Now, as a ranges over A and y ranges over the 𝓁1
ball with radius r − 1 centered at 0, the sum a + y

ranges over the 𝓁1
ball with radius r centered at 0. Thus,

|
|
|
|
max
a∈A

f (t − 1, x + a) − max
|y|

1
≤r

f (t − r, x + y)
|
|
|
|

=
|
|
|
|
max
a∈A

f (t − 1, x + a) −max
a∈A

max
|y|

1
≤r−1

f (t − r, x + a + y)
|
|
|
|

≤ max
a∈A

|f (t − 1, x + a) − max
|y|

1
≤r−1

f (t − r, x + a + y)|.

Combining this with (7.6), we get

|
|
|
|
max
a∈A

f (t − 1, x + a) − max
|y|

1
≤r

f (t − r, x + y)
|
|
|
|

≤ max
a∈A

r−2∑

k=0

max
|y|

1
≤k
(K1 + K2|zt−k−1,x+a+y|)

≤

r−2∑

k=0

max
a∈A

max
|y|

1
≤k
(K1 + K2|zt−k−1,x+a+y|)

=
r−2∑

k=0

max
|y|

1
≤k+1

(K1 + K2|zt−k−1,x+y|).

Finally, combining this with (7.5) completes the induction step. ▪

Combining Lemma 7.5 and Lemma 7.6 yields the following bound on the expected absolute

difference between the heights at neighboring sites.

Lemma 7.7. For any t ≥ 2 and x ∈ Z𝑑
,

E|f (t, x) − f (t, x + e1)| ≤ Ct1∕4
√

log t.
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Proof. Take any 2 ≤ r ≤ t. Define

M1 ∶= max
|y|

1
≤r

f (t − r, x + y), M2 ∶= max
|y|

1
≤r

f (t − r, x + e1 + y).

Then by Lemma 7.6 and a standard estimate for Gaussian random variables,

E|f (t, x) −M1| ≤

r−1∑

k=0

E

(

max
|y|

1
≤k
(K1 + K2|zt−k,x+y|)

)

≤ C
r−1∑

k=0

(1 +
√

log(k + 1))

≤ Cr
√

log r.

By translation invariance, the same bound holds for E|f (t, x + e1) − M2|. On the other hand, by

Lemma 7.5 and translation invariance,

E|M1 −M2| ≤

√
C(t − r) log(Cr𝑑)

r
.

Combining, and choosing r = [t1∕4], we get the desired result. ▪

We are now ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2. The first claim is already proved by Lemma 7.7. For the second claim, let us

assume without loss of generality that y = x + e1. Let

D ∶= |f (t, x) − f (t, y)|.

By translation invariance, E(f (t, x)) = E(f (t, y)). Therefore, by Theorem 1.1,

P(|D| ≥ r) ≤ 4e−Cr2∕t
,

for all r ≥ 0. On the other hand, by the first claim of the theorem,

P(|D| ≥ r) ≤ E|D|
r
≤

Ct1∕4
√

log t
r

.

Thus, for any K,

E[(f (t, x) − f (t, y))2] =
∫

∞

0

2rP(|f (t, x) − f (t, y)| ≥ r)𝑑r

≤
∫

∞

0

C1r min

{
t1∕4

√
log t

r
, e−C

2
r2∕t

}

𝑑r

≤
∫

K

0

C1t1∕4
√

log t𝑑r +
∫

∞

K
C1re−C2r2∕t

𝑑r

= C1Kt1∕4
√

log t + C3te−C
2
K2∕t

.

Choosing K = C4

√
t log t for some sufficiently large C4 completes the proof of the second claim. The

third claim follows from the second by Theorem 1.3. ▪
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8 PROOF OF THEOREM 2.3

Throughout this proof, C,C1,C2, … will denote constants that depend only on the dimension and the

law of the noise variables. Let t be as in Section 2.3. Let us assume that the law of the environment

has mean zero, since it is not hard to see that this does not cause any loss of generality. We need a

simple lemma about real numbers.

Lemma 8.1. Let x1, … , xn be real numbers. Then

max
1≤i≤n

xi −
1

n

n∑

i=1

xi ≥
2

n3

∑

1≤i<j≤n
|xi − xj|.

Proof. Without loss of generality, suppose that x1 is the maximum of the numbers, and x2 is the

minimum. Then

max
1≤i≤n

xi −
1

n

n∑

i=1

xi =
1

n

n∑

i=1

(x1 − xi) ≥
x1 − x2

n
.

But x1 − x2 ≥ |xi − xj| for all i and j, and hence, x1 − x2 ≥ the average of |xi − xj| over all distinct i and

j. This proves the claim. ▪

Since E(F(z)) = 0 for a standard Gaussian random variable z, there must exist u, v ∈ R such that

F(u) ≤ 0 and F(v) ≥ 0. By the continuity of F, it follows that there exists u∗ ∈ R where F(u∗) = 0.

Define a new surface f̃ by replacing z1,x by u∗ for all x, but keeping all else the same. Then note that

for any t ≥ 2 and any x,

|f (t, x) − f̃ (t, x)| =
|
|
|
|
|
|

max
Q∈t

t−1∑

i=0

F(zt−i,x+qi ) −max
Q∈t

t−2∑

i=0

F(zt−i,x+qi )
|
|
|
|
|
|

≤ max
Q∈t

|
|
|
|
|
|

t−1∑

i=0

F(zt−i,x+qi ) −
t−2∑

i=0

F(zt−i,x+qi )
|
|
|
|
|
|

= max
Q∈t

|F(z1,x+qt−1
)| ≤ max

y∶|y|≤t
|F(z1,x+y)|.

Since the noise field is i.i.d. Gaussian and F is Lipschitz, it follows that

E

(

max
y∶|y|≤t

|z1,x+y|

)

≤ C
√

log t.

Thus, the same upper bound holds for E|f (t, x) − f̃ (t, x)|. Now note that f̃ (t, x) has the same law as

f (t − 1, x). This shows that

E(f (t, x)) − E(f (t − 1, x)) = E(f (t, x)) − E(̃f (t, x))

= E(f (t, x) − f̃ (t, x))

≤ E|f (t, x) − f̃ (t, x)| ≤ C
√

log t.
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By translation invariance, E(f (t− 1, x)) = E(f (t− 1, y)) for any y. Since the noise variables have mean

zero, this shows that

E(f (t, x)) − E(f (t − 1, x))

= E

(

f (t, x) − 1

𝑑

∑

b∈B+
f (t − 1, x + b)

)

= E

(

max
b∈B+

f (t − 1, x + b) − 1

𝑑

∑

b∈B+
f (t − 1, x + b)

)

.

By Lemma 8.1,

max
b∈B+

f (t − 1, x + b) − 1

𝑑

∑

b∈B+
f (t − 1, x + b)

≥
2

𝑑3

∑

b,b′∈B+,b≠b′
|f (t − 1, x + b) − f (t − 1, x + b′)|.

Combining this with the two preceding displays proves the first claim of the theorem. For the second,

we combine the first claim with Theorem 1.1 to get that for any K,

E[(f (t, x) − f (t, y))2] =
∫

∞

0

2rP(|f (t, x) − f (t, y)| ≥ r)𝑑r

≤
∫

∞

0

C1r min

{√
log t
r

, e−C
2
r2∕t

}

𝑑r

≤
∫

K

0

C1

√
log t𝑑r +

∫

∞

K
C1re−C2r2∕t

𝑑r

= C1K
√

log t + C3te−C
2
K2∕t

.

Choosing K to be a large enough multiple of

√
t log t completes the proof of the second claim of the

theorem. The last claim now follows by Theorem 1.3.

9 PROOF OF THEOREM 2.4

Throughout this proof, C,C1,C2, … will denote constants that depend only on the dimension, the

inverse temperature, and the law of the noise variables. Let t be as in Section 2.4. As in the proof of

Theorem 2.3, let us assume without loss of generality that the law of the environment has mean zero.

We need two simple lemmas.

Lemma 9.1. For any x ∈ R, cosh x ≥ emin{|x|,x2}∕4
.

Proof. First, suppose that |x| ≤ 1. Then note that

ex2∕4 = 1 +
∞∑

k=1

(x2∕4)k
k!

≤ 1 +
∞∑

k=1

(x2∕4)k

≤ 1 + (x2∕4)
∞∑

k=1

4
−(k−1) = 1 + x2

3
≤ cosh x.
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Next, consider |x| > 1. Since e ≥ 1 + 1 + 1∕2 + 1∕6 = 8∕3, we have e3 ≥ (8∕3)3 = 512∕27 > 16,

which gives e3∕4
> 2. Thus, e3|x|∕4

> 2, and hence cosh x ≥ e|x|∕2 ≥ e|x|∕4
. ▪

Lemma 9.2. Let x1, … , xn be real numbers. Then

log

(

1

n

n∑

i=1

exi

)

− 1

n

n∑

i=1

xi

≥
1

4n3
min

{
∑

1≤i<j≤n
|xi − xj|,

∑

1≤i<j≤n
(xi − xj)2

}

.

Proof. Without loss of generality, suppose that x1 is the largest and x2 is the smallest among the

xi’s. By Lemma 9.1,

1

2
(ex

1 + ex
2 ) = e(x1

+x
2
)∕2

cosh((x1 − x2)∕2)

≥ e(x1
+x

2
)∕2+min{|x

1
−x

2
|,(x

1
−x

2
)2}∕16

.

Thus, by Jensen’s inequality,

1

n

n∑

i=1

exi = 2

n

(ex
1 + ex

2

2

)

+ 1

n

n∑

i=3

exi

≥
2

n
e(x1

+x
2
)∕2+min{|x

1
−x

2
|,(x

1
−x

2
)2}∕16 + 1

n

n∑

i=3

exi

≥ exp

(

2

n
((x1 + x2)∕2 +min{|x1 − x2|, (x1 − x2)2}∕16) + 1

n

n∑

i=3

xi

)

= exp

(

1

n

n∑

i=1

xi +
1

8n
min{|x1 − x2|, (x1 − x2)2}

)

.

Taking logs on both sides and observing that |x1 − x2| ≥ |xi − xj| for all i and j completes the

proof. ▪

As in the proof of Theorem 2.3, there exists u∗ ∈ R such that F(u∗) = 0. Define a new surface f̃
by replacing z1,x by u∗ for all x, but keeping all else the same. Then note that for any t ≥ 2 and any x,

f (t, x) − f̃ (t, x) = 1

𝛽
log

∑
P∈t

exp

(

𝛽
∑t−1

i=0
F(zt−i,x+pi )

)

∑
P∈t

exp

(

𝛽
∑t−2

i=0
F(zt−i,x+pi )

)

= 1

𝛽
log

∑

y∈Z𝑑

𝜌t−1,x(y)
(

1

2𝑑

∑

b∈B
e𝛽F(z

1,y+b)
)

,

where

𝜌t−1,x(y) ∶=

∑
P∈t ,pt−2

=y exp

(

𝛽
∑t−2

i=0
F(zt−i,x+pi )

)

∑
P∈t

exp

(

𝛽
∑t−2

i=0
F(zt−i,x+pi )

) .
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Let E′
denote taking expectation only in {z1,y}y∈Z𝑑 . Jensen’s inequality gives

E
′(f (t, x) − f̃ (t, x)) = 1

𝛽
E
′

[

log

∑

y∈Z𝑑

𝜌t−1,x(y)

(

1

2𝑑

∑

b∈B
e𝛽F(z

1,y+b)

)]

≤
1

𝛽
log

∑

y∈Z𝑑

E
′

[

𝜌t−1,x(y)

(

1

2𝑑

∑

b∈B
e𝛽F(z

1,y+b)

)]

= 1

𝛽
log

∑

y∈Z𝑑

𝜌t−1,x(y)E′

(

1

2𝑑

∑

b∈B
e𝛽F(z

1,y+b)

)

.

Since 𝜌t−1,x is a probability mass function on Z𝑑
, this shows that

E(f (t, x) − f̃ (t, x)) = E[E′(f (t, x) − f̃ (t, x))] ≤ C.

Note that f̃ (t, x) has the same law as f (t − 1, x) + 𝛽−1
log(2𝑑). Thus,

E(f (t, x)) − E(f (t − 1, x) + 𝛽−1
log(2𝑑)) = E(f (t, x)) − E(̃f (t, x)) ≤ C.

By translation invariance, E(f (t− 1, x)) = E(f (t− 1, y)) for any y. Since the noise variables have mean

zero, this shows that

E(f (t, x)) − E(f (t − 1, x) + 𝛽−1
log(2𝑑))

= E(f (t, x) − 𝛽−1
log(2𝑑) − 1

2𝑑

∑

b∈B
f (t − 1, x + b))

= E

[

1

𝛽
log

(

1

2𝑑

∑

b∈B
e𝛽f (t−1,x+b)

)

− 1

2𝑑

∑

b∈B
f (t − 1, x + b)

]

.

By Lemma 9.2,

1

𝛽
log

(

1

2𝑑

∑

b∈B
e𝛽f (t−1,x+b)

)

− 1

2𝑑

∑

b∈B
f (t − 1, x + b)

≥
1

32𝑑3
min

{
∑

b,b′∈B
|f (t − 1, x + b) − f (t − 1, x + b′)|,

∑

b,b′∈B
(f (t − 1, x + b) − f (t − 1, x + b′))2

}

.

Combining this with the two preceding displays, and noting that |y − z|1 = 2 if and only if y and z are

neighbors of some common vertex, we get that for any y, z ∈ Z𝑑
with |y − z|1 = 2, and any t ≥ 2,

E|f (t, y) − f (t, z)| ≤ 1 + E min{|f (t, y) − f (t, z)|, (f (t, y) − f (t, z))2} ≤ C.

This proves the first claim of the theorem. The remaining claims can now be proved using similar

tactics as in the proof of Theorem 2.3.
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