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1 | INTRODUCTION AND RESULTS

A d-dimensional growing random surface is represented as a height function f : Zyo X Z¢ — R
evolving in time, where f(z, x) denotes the height of the surface at location x at time 7. The simplest
example is the random deposition model, where the height f(, x) at each x grows as a random walk
with i.i.d. increments, independently of the heights at other locations. In this model, Var(f(¢, x)) grows
linearly in ¢.

This is not the case, however, for any nontrivial model of surface growth where the growth of
the height at a point is influenced by the heights at neighboring points. For most such models, it is
conjectured that Var(f(z, x)) grows sublinearly in #, often in a very specific manner depending on the
model [12,16-18]. These conjectures have been rigorously proved in only a handful of cases, mostly
for d = 1, where exact calculations are possible. For surveys of the vast literature on one-dimensional
surface growth and some recent advances in higher dimensions, see [11,21,24].
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Beyond exactly solvable models, not much is known. Even just showing that Var(f(¢, x)) = o(¢) as
t — oo seems to be a challenging problem in nontrivial models. This is sometimes called superconcen-
tration of the height function [7]. The only nontrivial surface growth models where superconcentration
has been rigorously established are directed last-passage percolation and directed polymers [1,6,7,13],
building on technology developed in [5] for the related model of first-passage percolation.

The main result of this article shows that in a certain class of surface growth models, Var(f(z, x))
grows sublinearly in ¢ if and only if there exist two distinct points x and y (usually neighbors) such
that E[(f(¢, x) — f(t,y))*] grows sublinearly in 7. The latter phenomenon is named subroughness in this
paper.

The utility of the equivalence theorem is demonstrated by applying it to prove superconcentration
in variants of two popular models of random surface growth: (a) the restricted solid-on-solid (RSOS)
model, and (b) the ballistic deposition model. Additionally, the theory is applied to give new proofs of
superconcentration in directed last-passage percolation and directed polymers.

The main advantage of subroughness over superconcentration is that it may be easier to establish
subroughness because neighboring heights are often close to each other “by design.” We will see a
clear instance of this in the RSOS model later. Moreover, the equivalence of subroughness and super-
concentration is conceptually interesting, because it says that superconcentration in random surfaces
is caused by the tendency of neighboring heights to remain close to each other.

The rest of this section contains the details of the theory. Examples are presented in Section 2. The
remaining sections contain the proofs.

1.1 | A class of surface growth models

Let d be a positive integer. Let ey, ... ,e4 be the standard basis vectors of R4, Let A denote the set
{0, +e;, xes, ... , ey}, consisting of the origin and its 2d nearest neighbors in 74 1etB :=A \ {0}.
The sets A and B will be fixed throughout this paper. Let ¢ : R4 x R — R be a function. Let
z2={z, 1€ Zspx€E 7} be a collection of i.i.d. random variables. We will say that the evolution
of a d-dimensional growing random surface f : Zso X Z¢ — R is driven by the function ¢ and the
“noise field” z if for each t € Z( and x € Z9,

J@+1,%) = ((f(t, X + @))aea, Zr+1.0)- (1.1)

We will henceforth assume that z;, are i.i.d. standard Gaussian random variables. This will not be
too restrictive, since the only assumption we will make about ¢, in relation to the noise field, is that
¢ is Lipschitz continuous in the second argument (see below). This allows the noise variables to be
anything that can be expressed as a Lipschitz function of a Gaussian random variable (e.g., uniform).

Equation (1.1) generalizes the mechanism considered in [8,9], which is almost the same except that
it does not involve randomness. We assume that ¢ has the following properties:

e FEquivariance under constant shifts. For u € RA and ¢ € R, let u + ¢ denote the vector obtained
by adding ¢ to each coordinate of u. We assume that ¢(u + ¢,z) = ¢(u, z) + ¢ for each u € R*
and z € R.

e Monotonicity. We assume that ¢ is monotone increasing in the first variable. That is, if u
dominates v in each coordinate, then ¢(u, z) > ¢(v, z) for any z.

e Lipschitz continuity in the noise variable. We assume that ¢ is Lipschitz in the second argument
with a Lipschitz constant L. That is, forall u € R4 and z,7/ € R, |¢(u, 2) — p(u, )| < L|z—7'|.
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Examples that are not covered by the growth mechanism (1.1) include any model where every
vertex has a Poisson clock attached to it, and an update happens whenever the clock rings. This is an
important class of models, which are quite similar to (1.1) but different enough so that the methods
of this paper do not immediately generalize. It would be interesting and important to see if analogous
methods can be developed for such models.

Incidentally, the assumptions of monotonicity and equivariance for a discrete evolution equation
are widely used in the literature on approximation schemes for nonlinear partial differential equations,
starting with [4]. They are also two of the key assumptions in [8,9].

1.2 | A general fluctuation bound

Henceforth, let f be a growing random surface with driving function ¢ and i.i.d. standard Gaussian
noise field z, where ¢ has the monotonicity and equivariance properties, and is Lipschitz in the noise
variable with Lipschitz constant L. Our first main result is the following theorem, which says that under
the above conditions, f(z, x) has fluctuations of order at most L\/;. For this result, (0, -) can be any
function on Z4. We will later assume that £(0, -) = 0.

Theorem 1.1. Forallt > 1 and x € Z¢, Var(f(t,x)) < L*t. Moreover, for all 6 € R,

E(eQ(f(t,x)—]E(f(t,x)))) < eLZIGZ/Z’

and for all r > 0,
P(lf(t,x) = E(f(t, )| > r) < 2e7" /2
This theorem is proved in Section 4. The proof is based on the concentration of the Gaussian mea-

sure and a random walk representation of the derivatives of f(, x) with respect to the noise variables,
derived in Section 3.

1.3 | Equivalence of subroughness and superconcentration

In this subsection, let us assume that £(0, -) = 0, in addition to the assumptions that the driving function
¢ is equivariant, monotone and Lipschitz in the noise variable with Lipschitz constant L, and that the
noise variables z;, are i.i.d. standard Gaussian. We will say that the surface f is superconcentrated if

lim YAV E0) _

=0

Note that the term on the left does not depend on x due to the assumption that f(0, -) = 0. We will say
that the surface is subrough if there exist two distinct points x,y € Z? such that

i B0 =621 _ o

t— oo t

Lastly, we will say that the surface is completely subrough if the above equality holds for any two
distinct points x and y. The main result of this subsection (and of this paper) is the following.

Theorem 1.2.  For the surface f, superconcentration, subroughness, and complete subroughness are
equivalent.
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This result will be a consequence of a quantitative bound, which we now state. For each ¢ > 1,
define

o = Var(f(z, x)) .
L2t

Note that since f(0, -) = 0, the right side does not depend on x. Next, for any b € Z4 and t > 1, define

_ E[(f(t,x) = f(t, x + b))*]

P - 4121

Again, note that the right side does not depend on x, but may depend on b. The surface is supercon-
centrated if and only if o, — 0 as# — oo. On the other hand, the surface is subrough if and only if
for some b # 0, f; = 0 as ¢t — oo, and completely subrough if and only if this holds for any b # 0.
The following theorem relates a, and f,, through a pair of inequalities, which immediately imply that
these three conditions are equivalent, and hence establish Theorem 1.2. The proof uses the “ L!— L?
bound” of Talagrand [23] (which is an extension of the idea of using hypercontractivity for improving
variance bounds due to Kahn et al. [15]), and an averaging trick invented by Benjamini et al. [5]. The
main new ingredient in the argument is the random walk representation from Section 3.

Theorem 1.3. There is a universal constant C such that for any b # 0 and t > 1,

Y —
"7 | log Byl

This theorem is proved in Section 5. It would be interesting to understand if the upper bound is
sharp under the given conditions, or if it can be improved.

2 | EXAMPLES

This section contains the applications of the theory to the four examples mentioned in the introduction,
namely, a variant of the RSOS model, a variant of ballistic deposition, directed last-passage percolation,
and directed polymers.

2.1 | A variant of the RSOS model

The RSOS model is a popular toy model of surface growth introduced by Kim and Kosterlitz [17] (not
to be confused with an “eight vertex model” that goes by the same name [2]). There are many variants
of this model, all built on one basic principle: The growing surface has to satisfy, at all times, that the
differences between the heights at neighboring points are uniformly bounded by some given constant
(usually 1).

We will work with the following variant in this subsection. Consider Z¢ as a bipartite graph, split-
ting the set of vertices into “even” and “odd” vertices, depending on the parity of the sum of coordinate
values. Alternately update the heights at even and odd vertices, choosing independently and uniformly
among all values that maintain the constraint that the differences between the heights at neighboring
points are uniformly bounded by 1. To be more explicit, the algorithm is as follows. Let f(¢, x) denote
the height of the surface at time ¢ and location x. Then:

e Start with £(0, x) = O for all x.
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e If ¢ is even, then for each even vertex x, choose f(¢ + 1, x) uniformly from the interval
s - 19 i s 1] )
[rzlgl;( ftx+b) = 1 min f(2,x+ b) +

which is the set of all possible values that maintain the required constraint. (Recall that B =
{xel, ... ,+ey} is the set of nearest neighbors of the origin.) For each odd vertex, let f(#+1, x) =

[ x).

e If zis odd, switch the update rules for odd and even vertices in the above step.

With the above growth mechanism, it is easy to see inductively that the required constraint is
maintained at all times.

The growth of Var(f(z,x)) is one of the main unsolved questions about RSOS-type models. For
d = 1,itis believed that the variance grows like #2/3, just like in any other model in the KPZ universality
class [17]. For d = 2, it was conjectured in [17] that the variance grows like 1/2 but this has been
contradicted in some large-scale numerical studies in recent years [16,18]. The following result shows
that in the variant described above, Var(f(z, x)) grows at most like ¢/ log 7.

Theorem 2.1. Let f be the height function in the variant of the RSOS model defined above, in any
dimension. There is a constant C(d), depending only on the dimension d, such that for any t > 2 and
x € 74, Var(f(t, x)) < C(d)t/ logt.

This result is proved in Section 6. The logarithmic correction comes from applying Theorem 1.3.
Although the growth mechanism of the model does not exactly fit into the framework of this paper,
this can be easily taken care of, as we will do in Section 6.

2.2 | A variant of ballistic deposition

Ballistic deposition is a popular model of surface growth introduced by Vold [25] and subsequently
studied by many authors. One version of the model is as follows. There is, as usual, a height function
f(t,x), but now the time variable is continuous. There is an independent Poisson clock at each x. When
the clock at x rings, a brick of height 1 drops on the surface at location x “from infinity’, as in a game
of Tetris. As the brick descends, it can either attach itself to the surface at x, thereby increasing the
height at x by 1, or it can get “stuck” to the side of one the neighboring columns if that happens before
it reaches the surface. Thus, if the clock at x rings at time ¢, then the height f(¢, x) instantly increases to

max {f(t,x)+1,%1§§<f(t,x+b)}. 2.1)

The physical literature on ballistic deposition is huge. For classical surveys, see [3,12]. Physicists say
that this model is in the KPZ universality class, implying that the variance of f(z,x) grows like 72/3
when d = 1 [17], and possibly like #* for some « slightly less than 1/2 when d = 2 [18]. On the
mathematical side, the only results we know are the following:

e A strong law of large numbers for the height function was proved by Seppildinen [22].

e A central limit theorem for the total height in a large region at a finite time ¢ was proved by
Penrose and Yukich [20].

e Penrose [19] proved that the variance of f(z, x) grows at least like log# when d = 1.
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In this section we will consider the following variant of ballistic deposition. Instead of bricks falling
at random times, our model will update the heights at all sites simultaneously. To insert randomness, we
will make the brick heights random. For definiteness, let us take the brick heights to be i.i.d. Uniform
[0, 1] random variables. In other words, the height function f : Zyg X 74 — R behaves as follows, in
analogy with (2.1).

e We start with (0, x) = O for all x.
e Foreacht> 0andx € Z9, we let

F+ 1,0 = max { £, + v max £t x+b) |

where v, are i.i.d. Uniform [0, 1] random variables.

We will show that in this model Var(f(¢, x)) < C(d)t/ logt, where C(d) is a constant that depends
only on d. To put this in the framework of Equation (1.1), we define v;, = ®(z;,) where z,, are
1.1.d. standard Gaussian random variables and ® is the standard Gaussian c.d.f., and then take

¢(u,7) = max {uo + 0(2), max u;,} . 2.2)

Note that this ¢ is monotone, equivariant, and Lipschitz in the noise variable with Lipschitz constant
bounded by 1/ \/ﬂ

We will, in fact, prove superconcentration of the surface for a broader class of driving functions
that includes the above ¢ as a special case. This class of driving functions will be called “max type.”
We will say that a driving function ¢ : R4 x R — R is of max type if it is monotone, equivariant,
Lipschitz in the noise variable, and there are nonnegative constants K| and K5 such that for all u € R4
and z € R,

|pu,2) —max ua| < Ky + Ka2]. (2.3)

Clearly, the ¢ displayed in (2.2) is of max type. The following theorem shows that the surface generated
by any model of max type (including, in particular, the variant of ballistic deposition introduced above)
is superconcentrated.

Theorem 2.2. Let f be a growing random surface with f(0, -) = 0 and growing according to (1.1),
where ¢ is of max type, and the noise field is i.i.d. standard Gaussian. Then there is a constant C
depending only on ¢ and d, such that:

(1) For anyt > 2 and neighboring points x,y € Z%, E|f(t,x) — f(t,y)| < Ct'/*y/log.
(2) Foranyt > 2 and neighboring points x,y € 7%, E[(f(t,x) — f(t,y))*] < C+*/*log .
(3) Foranyt>2andx € Z4, Var(f(t,x)) < Ct/logt.

This result is proved in Section 7. The proof of the first claim is by a new argument that may be
of independent interest. The second claim follows by combining the first claim and Theorem 1.1. The
third claim is proved using the second claim and Theorem 1.3.

2.3 | Point-to-plane last-passage percolation

The model of d-dimensional point-to-plane directed last-passage percolation (LPP) [14] fits into our
framework, for any d > 2. Recall that this model is defined as follows. We start with a collection
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of i.i.d. vertex weights {w,},ez¢, often called the “environment.” Let |x|; denote the #' norm of a
vector x € Z4. Let Ot denote the positive orthant in 74, that is, the set of vectors with nonnegative
coordinates. Given an integer t > 1, let Q, be the set of all lattice paths from the origin to the plane
{(x1, ... ,xg4) € O : |x|; = t}, which move in the “positive direction” at each step. In other words, an
element Q € Q, is a sequence (go, ... ,q:) € (Z?) such that gy = 0, and for each i > 1, ¢; = gi_ + e
for some j. The “point-to-plane last-passage time” is defined as

L, :=max ) w,. (2.4)

This model fits into the framework of Equation (1.1) by taking

P(u,z) = max up + F(z),
where Bt = {ey, ... , ey} is the set of neighbors of the origin in the positive orthant, and F is a Lipschitz
function that transforms the standard Gaussian measure on R to the law of the environment in LPP,
This allows only a certain class of laws for the environment—namely, those that can be expressed as
Lipschitz functions of Gaussian—but as noted earlier, this class is quite broad. To see the equivalence
with point-to-plane LPP, note that with the above ¢, a simple induction shows that

t—1

ft,x) = rQnEaéi;F(z,_im,.),

From this, it is not hard to see that for any x and ¢, f(¢, x) has the same law as L,. Indeed, if we define

Wy 1= F(Zpy) ay)s

then {w,},co+ are i.i.d. random variables, and f(z, x) = L, if L, is defined as in (2.4) using these w’s.
Note that ¢ is equivariant under constant shifts, monotone in the first argument, and Lipschitz
continuous in the second argument. Thus, it satisfies all the required conditions. Superconcentration
in point-to-plane LPP, with the variance bound Var(L;) < Ct/logt (where C depends only on the
dimension and the law of the noise variables) was proved in [6,7] for d = 2. Graham [13] proved
superconcentration in point-to-point directed last-passage percolation in all dimensions, with the same
variance bound. I have not seen a proof of superconcentration in point-to-plane directed last passage
percolation in d > 3, but it is possible that it follows from Graham’s methods. The following theorem
proves this result, together with a novel subroughness bound that may be of independent interest.

Theorem 2.3. Consider the surface f generated by the LPP model defined above. Let C denote any
constant that depends only on the dimension d and the law of the environment. Then, we have the
following bounds:

(1) Foranyt>2,x€Z% and 1 <i<j<d,E|f(t,x+e) —f(t,x+ ¢)| < Cy/logt.
(2) Foranyt>2,x€Z% and1 <i<j<d,E[(fit,x+e)—f(t,x+ ej))z] < C\/;logt.
(3) Foranyt>?2andx € 74, Var(f(t,x)) < Ct/logt.

Theorem 2.3 is proved in Section 8. The proof of the first claim uses a new argument that is simpler
than the proofs of similar claims in [6,7,13] and gives a better bound. The second claim follows from
the first by combining with Theorem 1.1, and the third claim follows from the second by Theorem 1.3.
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2.4 | Directed polymers

The framework of this paper includes the model of (d + 1)-dimensional directed polymers in an
1.i.d. random environment [10], for any d > 1, as long as the law of the environment can be expressed
as the pushforward of the standard Gaussian measure under a Lipschitz map. Recall that this model
is defined as follows. Let (W;x)iez,,xez¢ be a collection of i.i.d. random variables, called the “en-
vironment,” as in LPP. Let P, be the set of all paths of length ¢ started at the origin—that is, all
P = (py, ... ,p:) € (Z%) such that pg = 0 and |p; — p;—1| = 1 for all i > 1. The directed polymer

model assigns a random probability measure on P;, with a path P = (py, ... , p;) assigned a probability

proportional to
-1
eXp <ﬂzwi,pi> s
i=0

where f is a parameter known as the “inverse temperature” of the model. A key object of interest in
this model is the partition function Z;, defined as

-1
Z; = Z exp <ﬁ2w,~,,,‘_>.
i=0

PEP,

To capture the logarithm of the partition function of the directed polymer model in our framework, we
take

d(u,z) = % log <Zeﬂ“h) + F(2),

beB

where F is the Lipschitz map the transforms the standard Gaussian measure into the law of the envi-
ronment (assuming, as before, that such a map exists). If f is the random surface generated with this
driving function and the environment z, and zero initial condition, then a simple induction shows that

t—1
f(ts .X) = % 10g lz exp <ﬂ2F(Zt—i,x+pi)>] .

PEP, i=0

Itis not hard to see that £(z, x) has the same law as f~! log Z,. It is also easy to verify that ¢ is equivariant
under constant shifts, monotone in the first argument, and Lipschitz continuous in the second argument.

Superconcentration of the log partition function of the directed polymer model, with the bound
Var(logZ;) < Ct/logt, was proved by Alexander and Zygouras [1]. There is a version of this model
for f = oo, known as the “directed polymer at zero temperature.” For the zero temperature model,
superconcentration was proved in [6,7] for d = 1, and in [13] for all d.

The following theorem reproves the superconcentration of the log partition function of the directed
polymer model at finite § using the techniques of this paper, along with a novel subroughness bound
that may be of independent interest. The zero temperature case, being very similar to LPP, is omitted.

Theorem 2.4. Consider the surface f generated by the directed polymer model defined above. Let
C denote any constant that depends only on the dimension d, the inverse temperature f§, and the law
of the environment. Then, we have the following bounds:

(1) Foranyt>?2andx,y € Z4 with |x —y|; = 2, E|f(t,x) —f(t,y)| < C.
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(2) Foranyt>?2andx,y € Z4¢ with |x — y|; = 2, E[(f(t,x) — f(t,¥))*] < Cy/tlogt.
(3) Foranyt>2andx € Z4, Var(f(t,x)) < Ct/logt.

This theorem is proved in Section 9. The proof of the first claim uses a new argument. The second
claim follows from the first claim and Theorem 1.1, whereas the third claim follows from the second
and Theorem 1.3.

3 | RANDOM WALK REPRESENTATION OF DERIVATIVES

For1 < s <tandx,y € Z4, we will now compute the partial derivative of f(z, x) with respect to z,,
assuming that the driving function is differentiable. It turns out that the derivative is expressible in
terms of the transition probabilities of a certain kind of random walk. This random walk representation
is crucial for all subsequent analyses. We need the equivariance and monotonicity properties for the
proof, but not the Lipschitz property.

Throughout this section, let ¢ be a monotone, equivariant, and differentiable driving function.
Writing an element of R X R as (i, z), where u = (it,)ees € R and z € R, let d,¢ denote the partial
derivative of ¢(u, z) with respect to u,, and let d,¢ denote the partial derivative of ¢ with respect to z.
The following lemma records two important properties of these derivatives, which are consequences
of the equivariance and monotonicity properties of ¢.

Lemma 3.1. Forany (u,7) € RA X R, d,¢(u, 7) > 0 for each a € A, and

Zaaq')(u,z) =1.
a€A

Proof.  Fix (u, 7). Define a function g : R — R as g(¢) := ¢(u + t,7) (recall that u + ¢ is the vector
obtained by adding ¢ to each coordinate of «). By the equivariance of ¢, we have that g(¢) = ¢(u, 2) +1.
Thus, g’(¢) = 1 for all 7. On the other hand, by the definition of g,

g0 =) duplu+1,2).

a€A

Thus,
D 0. 2) = g'(0) = 1.
acA
The nonnegativity of d,¢(u, z) follows from the monotonicity of ¢. [

Let f be a growing random surface defined according to (1.1). For any ¢t € Zso and x € Z¢, define
a random walk on Z¢ as follows. The walk starts at x at time ¢, and goes backwards in time, until
reaching time 0. If the walk is at location y € Z? at time s > 1, then at time s — 1 it moves to y +a with
probability 0,¢((f(s — 1,y + @))aea; Zs,y), for a € A. By Lemma 3.1, these numbers are nonnegative
and sum to 1 when summed over a € A. Therefore, this describes a legitimate random walk on 74,
moving backwards in time.
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Proposition 3.2. Take any 1 < s < tand x,y € Z“. Let {S,}o<r<: be the backwards random walk
defined above, started at x at time t. Then

aj F(t,3) = P(Sy = 0.5 — 1.y + @))aet. Zo,)-
S,y

Proof.  The proof is by induction on ¢. First, suppose that ¢+ = 1. Then s must also be equal to 1.
Moreover, f(t,x) has no dependence on z,,, if y # x, and so the partial derivative is zero if y # x. If
y = x, then by the definition (1.1) of f(z, x), it follows that

2101, = 0. = 13+ e 20)
Zs.y

= P(SY =x)0;d((f(s — 1,y + @))aea> Zs,y),

since s =, x = y, and P(S; = x) = 1. Thus, the claim holds when ¢ = 1.
Now suppose that the claim has been proved up to time ¢ — 1. If s = ¢, the proof is the same as in
the previous paragraph. So assume that s < ¢. By (1.1) and the chain rule for differentiation,

0 0
@ﬂn xX) = ;Aam((f(t — 1,X + @))acas zz,x>@f(r —1,x+a)

0
0z,

=ZIP’(S,_1 =x+a) f(t—1,x+a).

acA R
Foreach a € A, let S be the backwards random walk started at x+a at time #— 1. Then by the induction
hypothesis for time t — 1,

d
0Zs,y

ft=Lx+a) =P =y)0:¢((f(s = 1.y + @)aea 2s,y)-

Combining the previous two displays, we get

0
0%,y

= 0.((F(s = L,y + @))aea» 25y) P P(Si1 = x + @)P(SE = ).
acA

f(t,x)

But from the definition of the random walks, it is not hard to see that the law of S¢ is the same as the
law of S given S,_; = x + a. Thus,

Y P(Si1 =x+a)P(SE =)
acA

= D P(Sii = 2+ QP(S; = )18 = x+a) = (S, = ).

acA

Combining this with the previous display completes the proof. [

4 | PROOF OF THEOREM 1.1

Let us first prove the theorem under the assumption that ¢ is differentiable.
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Lemma 4.1.  The conclusions of Theorem 1.1 hold if, in addition to the stated hypotheses, we also
have that ¢ is differentiable.

Proof.  Fix t and x. Conditioning on the randomness due to the noise variables, let S = {S;}o<<
be the random walk started at x at time ¢ and moving backwards in time, defined in Section 3. Let
S’ = {Si}o<s<s be an independent copy of S (conditional on the noise variables). It is not hard to
see that f(¢,x) is a function of only finitely many of the noise variables. Moreover, by the uniform
Lipschitz property, |0.¢| is uniformly bounded by L. Let P’ denote conditional probability given the
noise variables, and let E’ denote the conditional expectation. Then by Proposition 3.2 and the above
observations, we have

Z D < S—fa. x)) <Y Y @S, =)
s=1yezd

s=1yezd

=L222P’<Ss=y, St =)

s=1yezd
t
=12 P(S, = SV)
s=1
=L’E'|{1<s<rt:8 =58} <L

Thus, as a function of the noise variables, f(z,x) is differentiable and Lipschitz with respect to
the Euclidean metric, with Lipschitz constant bounded by L\/;. The claims now follow easily by
the Gaussian Poincaré inequality and the Gaussian concentration inequality (see [7], chapter 2 and
appendix A). [

To drop the differentiability requirement, several lemmas are needed. Throughout, we work under
the hypotheses of Theorem 1.1.

Lemma 4.2.  The function ¢ is Lipschitz with Lipschitz constant L + 1 with respect to the £ norm
on R4 x R.

Proof. Takeanyz € R and u,v € R*. Foreacha € A, let s, := min{u,,v,}. Lets := (5o)aea.
Let ¢ := max,ea |ty — v4|. Then u, and v, are both in the interval [s,, s, + ¢] for each a € A. Thus,

by the monotonicity of ¢, ¢(u, z) and ¢(v, z) are both lower bounded by ¢(s, z) and upper bounded by
¢(s + ¢, z). But by equivariance, ¢(s + ¢, z) = ¢(s, z) + c. This shows that

|p(u,2) = p(v, )| < ¢ = |lu—vlle~.

Thus, for any #,v € R and z,7/ € R, we have

lp(u, 2) — (v, )| < P, 2) — (v, 2| + |p(v, 2) — p(v,2)|
<lu=vllg= + Lz = 2|
<@L+ D, 2) = 0, Dllge,

which proves the claim. [
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Leth : R* x R = [0, 00) be a C* function with compact support, which integrates to 1. For
each € > 0, define the function h,(x) := £ ¢h(e~'x). Note that h, is also nonnegative, smooth, and
integrates to 1. Let ¢, be the convolution of ¢ with 4., that is, for any x,

Pe(x) = / he(x = y)p(y)dy = / dx = Yhe(y)dy. 4.1

Lemma 4.3. For any € > 0, ¢, is a differentiable function. Moreover, it has the monotonicity and
equivariance properties, and is Lipschitz in the noise variable with Lipschitz constant L.

Proof. By Lemma4.2, ¢ is Lipschitz. In particular, it is continuous and hence bounded on compact
sets. Since h, has compact support, it is now easy to use the first integral in (4.1) and the dominated
convergence theorem to deduce that ¢, is differentiable everywhere. From the second integral in (4.1)
and the fact that &, is nonnegative and integrates to 1, it follows that ¢, is monotone, equivariant, and
Lipschitz in the noise variable with Lipschitz constant L. u

Let f, be the growing random surface generated by the driving function ¢,, the noise variables z; ,
and initial value f,(0,x) = f(0, x) for all x. Combining the above lemma with Lemma 4.1, we get the
following corollary about f,.

Corollary 4.4. The conclusions of Theorem 1.1 hold for f, for any € > 0.

Proof.  This is a consequence of Lemma 4.1 and Lemma 4.3, since ¢, satisfies all the condi-
tions of Theorem 1.1, and is moreover differentiable, satisfying the additional criterion demanded by
Lemma 4.1. [

We also get the following analog of Lemma 4.2.

Corollary 4.5. For any € > 0, the function ¢, is Lipschitz continuous with Lipschitz constant L + 1
with respect to the €% norm on R* x R.

Proof.  The proof is exactly the same as the proof of Lemma 4.2, after replacing ¢ by ¢.. This goes
through, because by Lemma 4.3, ¢, shares all the relevant properties with ¢. [

Our next goal is to show that f, converges pointwise to f as € — 0. The first step is the following
lemma.

Lemma4.6. Ase — 0, ¢, — ¢ uniformly on R x R.
Proof.  Take any x € R* x R. Recall that &, integrates to 1. Thus, by Lemma 4.2,
|pe(x) — Pp(x)| = ‘ / he(x = y)(@(y) — ¢p(x)dy
< [ = 160) - deolay
<@+ 1) [ b=l sllemdy

=@+n/mwwwm%
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1

Now, by the change of variable v = €' u, we have

[ nwemdu=e [ noypau
Plugging this into the previous display proves the uniform convergence of ¢, to ¢ as € — 0. n
Lemma4.7. Ase — 0,f.(t,x) = f(t,x) for any t and x.

Proof.  We will prove this by induction on ¢. This is given to be true for ¢+ = 0. Suppose that this
holds for  — 1. Take any x. Then by the induction hypothesis for r — 1, we have that

lin(l) fet-1,x+a)=ft—-1,x+a),

for each a € A. By Lemma 4.6, ¢ — ¢ uniformly. By Lemma 4.2, ¢ is continuous. Combining these
three facts, we get

lim fe(t,x) = lim ¢e((fe(t = 1x + @))aen, 1)
= d((f(r = 1, x + a))aen, 21x) = f(1,%).
This completes the proof of the induction step. n

Fort € Zs; and x € Z4, recall the random walk {S;}o<,<; starting at x at time ¢, defined in
Section 3. Let V;, be the set of all points in Zs; x Z¢ that can possibly be accessed by the walk —
that is, the set of all possible values of (s, Sy) as s ranges between 1 and 7. Note that for any r > 2
and x € Z¢,

Vi = {60} U Vit v 4.2)
acA

and Vi, = {(1,x)}. Take any € > 0. Define a new growing surface g., with the same initial values
as f; (thatis, £, (0,x) = g.(0, x) for all x), the same driving function ¢,, but the noise field identically
equal to zero. Note that g, is a nonrandom function.

Lemma 4.8. Forany e > 0, and any t and x, we have
lfe(t,x) — ge(t,x)| < (L + 1)’ max |Zs,y|-
(S)EV,

Proof.  The proof is by induction on ¢. For ¢ = 1, note that by the equality of f; and g, at time 0, and
Lemma 4.3, we have

[fe(1,x) — g-(1,x)|
= |@e((fe (0, x + a))aen, 21,x) — Pe((8e(0, X + @))aea, 0)]
<L+ 1)|Z1,x|~

Since Vi, = {(1,x)}, this proves the claim for # = 1. Now suppose that it holds for # — 1. Then by
Corollary 4.5,
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lff(trx) - gs(tv-x)l
= |¢5((f£(t - 17x + a))aEAa Zl,x) - (.bs((ge(t - l,x + a))aeA» 0)'
S LA+ Dmax{||(fe(t = Lx + @))aea — (8e(t — 1, x + @))aeallr=, |24 }-

But by the induction hypothesis for ¢ — 1,

(et = L, x + @)aea — (8e(t — 1, x + @))uenllr=
= ma}[fg(t —lLx+a)—g(t— 1L, x+a)
ae.

<(L+1D""max max |Zs.yl-
acA (Suy)EVr—],era

The desired result follows by combining the last two displays with (4.2). [

Finally, define another growing surface g, with the same initial values as f, with driving function
¢, and the noise field identically equal to zero.

Lemma4.9. Foranytandx, g.(t,x) - g(t,x) as e = 0.
Proof.  The proof is by induction on ¢. For ¢t = 0, the result is automatic, since
8e(0,x) = £(0,x) = f(0,x) = g(0,x).
Suppose that the claim holds for ¢ — 1. Then by Lemma 4.6,
lim g (1.2) = lim ¢ ((ge(t = 1.x +@))ues. 0)
= ¢((g(r — 1,x + @))aea, 0) = g(1, %),
which completes the proof of the lemma. [

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1.  Take any ¢t and x. By Lemma 4.7, f, (¢, x) — f(¢,x) as € —» 0. By Lemma 4.8,
we see that for any € € (0, 1) and any ¢ and x,

lf&(t’x)l S m(tix) - gE(t9-x)| + Igf(t!x) - g(t!x)l + Ig(t’x)l
<(L+ 1) max |zg,| + sup |gs(t,x) — g(t,x)| + |g(z, x)|.
(5 )EV,, 0<6<1

By Lemma 4.9, the middle term on the right is a finite (deterministic) quantity. Also, by the facts that
the noise variable are standard Gaussian and that the set V;, is finite, we see that for any 6 > 0, the
quantity

<E| Y exp0L+ 1)z |,
(s.y)€ Vx,x

E [exp [ (L + 1) max |z,,
[ p( ( )(s,y)EV,,vl "}|>

is finite. Thus, the random variables {|f.(,x)|}o<e<1 are uniformly bounded by a random variable
M, such that E(¢?™:+) is finite for any # > 0. Therefore by the dominated convergence theorem, all
moments and exponential moments of f; (¢, x) converge to the corresponding moments and exponential
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318 Wl LEY CHATTERJEE

moments of f(¢, x) as € — 0. Applying Corollary 4.4, we can now get the required bounds on Var(f (¢, x))
and E(e?f--E(f ) The required tail bound follows easily from the bound on the moment generating
function. n

5 | PROOOF OF THEOREM 1.3

Throughout this proof, C will denote any positive constant that may only depend on the dimension d.
The value of C may change from line to line, or even within a line. Fix some ¢t > 1 and x,b € 74, with
b #0.Let 67 := Var(fi,) and o;, := E[(f(,x) — f(z,x + b))*]. Due to the flat initial condition, these
quantities have no dependence on x. First, note that by the inequality (u + v)> < 2u? +2v? and the fact
that [E(f (¢, x)) does not depend on x, we have

2

_ Opy
P = 4L2t
< 4 % ——(2Var(f(¢,x)) + 2Var(f (¢, x + b)))
_of _
= E ;.

This proves one of the claimed inequalities. Next, let k > 2 be an integer, to be chosen later. Let
=
= %ng(t,x + ib).

For 0 <i < k—1, let {S}}o<s< be the random walk started at x + ib at time ¢, defined in Section 3. Let
[P’ denote conditional probability given the noise variables. Then by Proposition 3.2, forany 1 < s < ¢
andy € Z¢,

k-1

X = 0B~ 1y + Dhaens 20y) 7 LS =), 5.1)
i=0

0Zsy

Consequently,

S kZIP’(S’ Y, (5.2)

aZvv

where ||Z||.: denotes the L' norm of a random variable Z. Due to the flat initial condition, the law of
f is invariant under spatial translations, which implies that P(S} = y) = P(S? = y — ib). Thus,

17).¢
0z

Z]P’(SO =y — ib).

L‘_k

Let B, denote the quantity on the right. Now, again by (5.1),

ox \2 lk—l 2
<} = YP S =
<azx,y> = (kg(; (5 y)>

k—1
I? ;
SIZW@=ﬂ
i=0
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This shows that

2
0X < A%y,
()Zs,y 12
where Ay, 1= 4/LB;,. Butby (5.2),
By,
oX < By, = A\ =2,
0%,y o L’
which can be rewritten as
Asy > L
”aX/aZs,y”L‘ Bs,y

Lastly, note that the events S? = y — ib are disjoint as i varies, which shows that By, is bounded above
by L/k. Thus, by Talagrand’s L'- L? inequality (specifically, the version displayed in [7], theorem 5.1),
we get

'
A2
Var(X) < C i
ar(X) < Z Z 1 +1og(Asy /110X /0zsyllLr)

s=1yezd
t t
<X YA = ZZZP<S° y = ib)
10gks=1yeZ s lyezd i=0
t
CL CL*t
" togk 2 2 0 g

Now note that

-~ =
Il
- o

i

Since E(X) = E(f(, x)), the last two displays show that

o7 = Var(f(t, x))
< 2E[(f(t,x) — X)*] + 2Var(X)

< kzo'bt 2CL*t
-2 logk

(5.3)
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320 W ILEY CHATTERJEE

By Theorem 1.1 and the inequality f, < a;, we get that f,, < a, < 1. So, if f,; > 1/10, then the
bound a; < C/|log fp,| is trivial. Let us assume that f,, < 1/10. Then choosing k to be the integer
part of (.| log fp,|)~"/? and using (5.3), we get

2
(7,2 < L’
| 1og .|

which is the same as a; < C/|log fp;|-

6 | PROOF OF THEOREM 2.1

The growth mechanism for f does not directly fit into the framework of this paper, since the heights at
even and odd sites are updated alternately. However, this can be easily taken care of, as follows. Let g
be another growing random surface, with the same growth mechanism as f, except that the height at
every site is updated at each step. That is, we start with g(0,-) = 0, and for each ¢ and x, we choose
g(t + 1, x) uniformly from the interval

[rlgleag( gt,x+b)— l,rbn€11131 gt,x+b)+ 1] .

(It is not hard to prove by induction that this interval is always nonempty. To see this, suppose that
this is true up to time ¢ — 1. Then, by the construction of g(z, x + b) according to the above rule, we see
that |g(z,x + b) — g(t — 1,x)| < 1. Since this holds for each b, the above interval must be nonempty.)

Next, define 2(0, x) := 0 for all x, and for 7 > 1, let

h(t.x) <= {g(t -1x if ¢ and x have the same parity,

g(t,x) otherwise.

We claim that % has the same law as f, and in fact, the same growth mechanism. (It is important to
note that this is true only because f(z + 1, x) is determined by (f(¢, x + b))»ep and not (f (¢, x + a)),ea in
this model.) To see this, take any ¢ > 0 and x € Z“. Suppose that ¢ and x are both even. Then by the
above definition, A(t + 1,x) = g(¢ + 1, x). By the definition of g, g(¢ + 1, x) is chosen uniformly from
the interval

[Iileaéi g(t.x +b) = 1 min g(t,x +b) + 1] .
But g(t,x + b) = h(t,x + b) for each b € B. Thus, h(t + 1, x) is chosen uniformly from the interval
[max h(t, x + b) — 1, min h(t, x + b) + 1] .
beB beB

Next, suppose that ¢ is even and x is odd. Then A(r + 1,x) = g(¢,x). But in this case, we also have
g(t,x) = h(t,x). Thus, h(t + 1,x) = h(¢,x). This shows that the growth of % is governed by the same
rule as that for f at even times. A similar argument shows that this is also true at odd times.

Since & has the same law as f, it suffices to obtain the required variance bound for A(¢, x). This,
on the other hand, holds if a similar bound holds for the variance of g(z, x), because h(t, x) is equal to
either g(¢, x) or g(t— 1, x), deterministically depending on ¢ and x. We will show this using Theorem 1.3.
There are two steps in showing this. First, we have to show that the growth of g is governed by the
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equation (1.1) for some suitable function ¢ that has the monotonicity and equivariance properties,
and is Lipschitz in the noise variable. The second step is to show that g is subrough, with a suitable
quantitative bound.

We will actually carry out the second step first. Since & has the same growth mechanism as f, it
satisfies the constraint that |A(z, x) — h(t, y)| < 1 for any two neighboring points x and y. Thus, we have
that for any ¢ and any b, b’ € B,

|h(t,x) = h(t,x + b+ )| < 2.
This shows that if # and x have opposite parities, then for any b, b’ € B,
lg(t,x) —gt,x + b+ b)| = |h(t,x) — h(t,x + b+ V)| < 2. 6.1

A similar argument proves that the above bound also holds if # and x have the same parity. The details
are as follows. Define h(0,x) := 0 for all x, and for ¢ > 1, let

Tt = 8(t,x) if 7 and x have the same parity,
, gt—1,%) otherwise.

Then by a similar argument as for 4, it follows that n grows as follows:

e Ifzis even, then for each odd vertex x, Z(t + 1,x) is chosen uniformly from the interval

[maX T(t.x+b)— 1, min hi(t.x + b) + 1] ,
beB beB

and for each even vertex x, %(t +1,x) = ﬁ(t, X).
e If ¢ is odd, the update rules for odd and even vertices are switched in the above step.

This shows that / also satisfies the constraint that |Z(t, x) — E(t, y)| < 1 for any two neigh-
boring points x and y. From this, it follows that when ¢ and x have the same parity, then for any
b,b' € B,

lg(t,x) — g(t,x + b+ b)| = [h(t,x) — h(t,x + b+ b')| < 2. 6.2)

This completes the proof of the subroughness of g, and in fact, gives the quantitative bound
El(g(t,x) — g(t,x + 2¢1))’] < 4. (6.3)
Let us now show that the growth of g is indeed governed by (1.1) with a driving function ¢ that is
monotone, equivariant, and Lipschitz in the noise variable. Let z;, be i.i.d. standard Gaussian ran-

dom variables. Let ® be the standard Gaussian c.d.f., so that ®(z;,) are i.i.d. Uniform [0, 1] random
variables. Then by the definition of g, we can express g(¢ + 1, x) as

8+ 1,%) = Dz, (max gt x+b)— 1)

+ (1= Ozu1.0) (min gt x+b) +1)

:sd)y) SUONIpUOy) pue SWLIR Y, Y S *[£207/90/91] U0 Areiquy surquQ LI ‘KNSIOATUN) PIOJURIS Aq 801 [Z'8SH/Z001 0 [/10p/wod" Kd[1m AIeIqIauI[uo//:sdiy Wwolj papeo[umo(] ‘Z ‘€70z ‘S 1#78601

1oy/w0o Ko A

ASUADIT SUOWIO)) dANEAI) d[qearjdde ay) £q PAUIIA0S d1e SAONIE YO 59N JO SI[NI 10§ AIRIQIT dUI[UQ AJ[IA UO (SUOY



322 W ILEY CHATTERJEE

= (1) (max g(t,x+b) = min g(t,x+ b))

+min glt,x+b) + 1 = 2D(z414).
beB

Take any 7 and x, and any b, b’ € B. Then —b € B, and so, by (6.1) and (6.2),
lgt,x+b)—gt,x+b)| = |gt,x+b)—glt,x+b+b —b)| <2.

This shows that

< - <2
O_rgleagc glt,x+b) rglegg(t,x+b)_2

So, if we define a function £ : R - R as

a if 0<a<?2,
E(a) =52 if a>?2,
0 if a <0,

and define ¢ : R* xR — R as
B(1,2) = OR)E (rggg uy = min ub) +min w, + 1 =20,

then the growth of g is governed by (1.1) with driving function ¢.

Take any u € R* and z € R. Suppose that one coordinate of u is increased by some positive
amount. Then either min,cp u, remains the same, in which case ¢(u, z) cannot decrease; or mingep iy,
increases by some amount €. In the latter case, max,ep up — mingep 1), cannot decrease by more than e.
Since the slope of & is everywhere bounded by 1, in this case ¢(u, z) increases by at least (1 — ®(z))e.
This shows that ¢ is monotone in its first argument. Equivariance under constant shifts is clear from
the definition of ¢. Lastly, note that

2~ 0108 - i) 20
9 D'(2)¢ max up — Mmin u, 20'(2).
Since &(a) € [0,2] for all @ € R and @' is uniformly bounded by 1/4/2x, this shows that

99
0z

< 4
N

Thus, we may indeed apply Theorem 1.3 to the surface g. By the estimate (6.3), this completes the
proof.

7 | PROOF OF THEOREM 2.2

The key step in the proof is to show that moving maxima in stationary random fields cannot fluctuate
wildly. We start with the following simple lemma.
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Lemma 7.1. Let 1 < r < k be two integers, and let xo,x1, ... , Xy be real numbers. For 0 <i <,
let m; := max{x;, Xjy1, ... ,Xiyk |- Then there is some 0 < i* < r such that my > my > ... > my and
mj« < M=y < ... < m,.

Proof.  Suppose that m; < m;;; for some 0 < i < r. Since we have m; = max{x;, ... ,xj4x} and

Mir1 = max{Xj+1, ... ,Xik+1}, this is possible only if m;y; = Xjyx41. Take any i + 1 < j < r. Since
r < k, we have

J<rk<Li+k+1
On the other hand, since i + 1 < j, we have
i+k+1<j+k
Thus, i + k + 1 lies between j and j + k, and hence
mj = max{x;, ... , Xk} = Xipht+1 = Miy1.

So, we have shown that if the sequence mg, m, ... ,m, has a strict increase from m; to m;;, it can
never go down below m;;; subsequently. It is easy to see that this proves the claim. [

Corollary 7.2. Let x; and m; be as in Lemma 7.1. Then

r—1
m; —mip| <2 max |x; — x;|.
;| i mis| S2 max x|

Proof. By Lemma 7.1, there is some 0 < i* < rsuch that my > m; > ... > my and mp < mypyy <
. < m,. Therefore,

-1 r—1

r—1
Z|mi —miy| = Z(mi —miy1) + Z(mm - m;)
=0 i=0

i=i*

moy — mp + m, — m;=.

But clearly, my — m;+ and m, — m;- are both bounded above by the maximum value of |x; — x;| over all
0 <i,j < k+ r. This completes the proof. [

Let (g(x))yez¢ be any random field whose law is invariant under translations. For each s > 0, let

u@s) =k < max  |g(x) —g(y)l> ,

[l <s.lyl <s

and assume that this quantity is finite. Here |x|; denotes the #' norm of x. Let D be a finite subset of
74 and x, be a point in Z¢. For each i > 0, let D; := D + ix, be the translate of D by ixo. Let

X; = .
i 1= max 8

i
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Given some large k, the following lemma shows that X is unlikely to be larger than the maximum of
X1, ... , Xi+1. This is not surprising since the random field is stationary; the point of the lemma is that
it gives a quantitative bound under minimal assumptions.

Lemma 7.3.  Let all notation be as above. Let s be the sum of the ¢ diameter of D and 2k|xy|1. Then

EI(Xo - max{X1, ... X1 '] < 24,

where at denotes the positive part of a real number a.

Proof. Foreachi >0, let M; := max{X;, Xi+1, ... ,Xiwx}. By Corollary 7.2,
k=1
M. < X
g(;w, Mii] <2 max X = X;|.

By translation invariance, E|M; — M| is the same for each i. Thus, the above inequality gives

E|My — M| < iE( max |X,-—Xj|>.

0<iyj<2k
Without loss of generality, suppose that 0 € D. Then each point in the union of Dy, ... , Dy has ¢!
norm bounded by s. Hence, the expectation on the right side of the above inequality is bounded by
u(s). Lastly, note that
Mo — My| > (Mo — M1)* > (Xo — My)*.

Thus, E[(Xo — M1)*] < 2u(s)/k, which is what we wanted to prove. [

Foreach r > 0, let G, := max|,) <, g(x). The following lemma gives an upper bound on the growth
rate of G,. The proof uses Lemma 7.3.

Lemma 7.4. Forany r > 4d, we have

2
E|G,s1 — G| < S47HOD
;

Proof.  In the following, we will denote the coordinates of any vector x € Z¢ be xy, ... ,x,. Take

anyr >4d.Fori=1, ... ,d, define

A;r ={x:|xli=r+1, |x| > |x] forall 1 <j<d,and x; > 0},
A7 i={x:|xli=r+1, |x| > |x] forall 1 <j<d,and x; <0}.

Note that any x with |x|; = r + 1 must belong to A} or A; for at least one i.
Now, let D := A}. Note that for any x € D,

Q|

d
1 r+1
x> ;|Xi|= 7
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For each i, let D; := D — ie;, and let X; := max,ep, g(x). Letk 1= [r/d] — 1. The above inequality
shows that for any x € D and y = x — ie; for some 1 <i < k+ 1, we have x; > y; > 0 and y; = x; for
i # 1. Thus, |y|; < r. This shows that the sets D, ... , D4 are all subsets of the #' ball of radius r
around the origin. Lastly, note that the #! diameter of D is bounded above by 2(r + 1). Therefore by
Lemma 7.3, we get

2uCr + 2 + 2k)

E[(Xo = G)'] < E[(Xo — max{Xi, ... , X1 D] < .

The same upper bound holds if we take D = A} or D = A; for any i. Thus, defining

Y := fcrég?g(x), Zi 1= géié_(g(xx

i

we have

E|Gr+l _Grl = E[(max{Y], ,Yd,Zl, ,Zd} - Gr)+]
d
< ) EIY; - G+ ElZ - G)'D
i=1

< %y@r + 2 + 2k).

u2r+ 2+ 2k) < u(6r), since u is an increasing function and 2k + 2 < 2r + 2 < 4r. [

The proof is completed by observing that k = [r/d] — 1 > r/d — 2 > r/2d (since r > 4d), and

We now specialize to random surfaces generated according to (1.1) with flat initial condition. Note
that if f is such a growing surface, the field f(z, -) is a translation invariant random field at each time 7.
Henceforth, C will denote any constant that depends only on ¢ and d.

Lemma 7.5. Now let f be a growing random surface generated by a driving function that is
monotone, equivariant, and Lipschitz in the noise variable, with initial condition f(0,:) = 0, and
i.i.d. standard Gaussian noise field. Then for anyt > 1 and r > 4d,

E|max f(f,x) — max f(z,x)| < 7£tlc:g(6‘rd)’

x|, <r lx—e; |, <r
where C is a constant that depends only on ¢ and d.

Proof.  Take any 6 € R. By translation invariance and Theorem 1.1, we have that for any x and y,

F(ePF 01y < \/E(eZH(f(t,x)—lE(f(t,x))))E(e2€(f(t,y)—IE(f(t,y)))) < L1,

Consequently, for any 8 > 0,

E(V 0NNy < B(/FE0FENY 4 (o000 < 2000

Thus, for any r > 1 and 6 > 0,

:sd)y) SUONIpUOy) pue SWLIR Y, Y S *[£207/90/91] U0 Areiquy surquQ LI ‘KNSIOATUN) PIOJURIS Aq 801 [Z'8SH/Z001 0 [/10p/wod" Kd[1m AIeIqIauI[uo//:sdiy Wwolj papeo[umo(] ‘Z ‘€70z ‘S 1#78601

oy/woo Ko A

ASUADIT SUOWIO)) dANEAI) d[qearjdde ay) £q PAUIIA0S d1e SAONIE YO 59N JO SI[NI 10§ AIRIQIT dUI[UQ AJ[IA UO (SUOY



326 W ILEY CHATTERJEE

E< max [f(t,x)—f(t,y)|>

[l <rlyl<r

= éIE [log exp <6’ max |f(tx) —f(z, y)|>]

[l <rlyli<r

1 ;
< Ellog Y eelf<r,x)—f<z,>>|]
l Il <r <

log Y BV < 1°‘°’(Cr)+c;9

[xly <r.|yl <r

S

IA
S

Optimizing over 0, we get

E( max |f(z,x) —f(t,y)l) < 4/Ctlog(Cr?).

x|y <yl <r
Thus, by Lemma 7.4 (with g(:) = f(¢, -)), we get that for any r > 4d,

v/ Ctlog(Cr?) 7.1
— )

E

max f(t Xx) — max f(t | <

[l <r x|y <r

For any x such that |x — e;|; < r, we have |x|; < r+ 1. Thus, the above inequality gives

"
E [( max  f(t,x) — maxf(t x)> ]

|x—e |, <r

+
<E <|r|n<a>i1f(t x) — rrllaXf(t X)> ]
< VCrlog(Cre). (1.2)

r

Now, applying translation invariance to (7.1), we have

\/Ct log(Crd) (7.3)

E

max f(t,x)— max f(z, )'

lx—e, |, <r [x—e; | <r+l

For any x such that |x|; < r, we have |x — e|; < r+ 1. Thus, by (7.3),

E [(max f(t,x)— max f(t, x)> ]

x| <r [x—e ] <r

n
<E [( max  f(t,x) - max f(t,x)) ]

|x—e; |, <r+1 x—e |\ <r
v/ Ctlog(Cr?
< w_ (7.4)
r
Combining (7.2) and (7.4), we get the desired inequality. [

Henceforth, let f be a growing random surface generated by a driving function of max type
(satisfying (2.3)), with initial condition f(0, -) = 0, and i.i.d. standard Gaussian noise field.
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Lemma 7.6. Foranyl <r <tandanyx € Z°,

r—1
[f (£, ) = max f(t = r,x+y)| < Y max (K + Kalzirsy])-
Iyl <r o hsk

Proof. Fix somet > 1 and x € Z“. The proof will be by induction on r. Note that by (1.1) and (2.3),

[t %) = max f(z = 1,.x + @) < Ky + K|z (7.5)
ae.
This proves the claim for r = 1. Now suppose that the claim is true up to r — 1. Then, for any a € A,

tf(t—l x+a)— max f(t—r,x+a+y)

vl<r—
r=2

< Zmax (K1 + Ka 2kt xrasy])- (7.6)

Iyl <k

Now, as a ranges over A and y ranges over the #' ball with radius » — 1 centered at 0, the sum a + y
ranges over the Z! ball with radius r centered at 0. Thus,

maxf(t—l x+a)-— maxf(t—rx+y)

= |max f(t— 1,x+a) —max max f(t—r,x+a+
a€A f( ) a€A |y|, Sr—]f( y)’

<max f@t—1,x+a) - rlnax ft—r,x+a+y).

Iyl <r=1

Combining this with (7.6), we get

maxf(t—l x+a)— maxf(t—rx+y)‘

< maxanlax (K1 + Ko |zZimk—1 xta4y])
ly 1<k

IA

Zmaxmax (K1 + Ko |zZimk—1 xta+y])
a€A |yl <k

= z max (Ki + Ka|Zi—k—1 x4y )-
|y|1<k+1

Finally, combining this with (7.5) completes the induction step. [

Combining Lemma 7.5 and Lemma 7.6 yields the following bound on the expected absolute
difference between the heights at neighboring sites.

Lemma 7.7. Foranyt>2and x € 74,

Elf(t,x) — f(t,x + e1)| < Ct'/*4/log1.
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Proof. Take any 2 < r < t. Define

My :=max f(t—r,x+y), M =max f(t—r,x+e +Y).
Iyl <r W<

Then by Lemma 7.6 and a standard estimate for Gaussian random variables,

r—1

Elf(t,x) = M| < ZE (ll)lllag( (K1 + KZlZ[—k,x+y|)>
k=0 =

r—1

<CY1(1+ vlogk + 1)
k=0

< Cry/logr.

By translation invariance, the same bound holds for E|f(¢,x + ¢;) — M;|. On the other hand, by
Lemma 7.5 and translation invariance,

— d
E|M, — My < \/C(t — ) log(Cr )

r

Combining, and choosing r = [¢!/*], we get the desired result. .
We are now ready to complete the proof of Theorem 2.2.

Proof of Theorem 2.2.  The first claim is already proved by Lemma 7.7. For the second claim, let us
assume without loss of generality that y = x + e;. Let

By translation invariance, E(f(z, x)) = E(f(z, y)). Therefore, by Theorem 1.1,
P(ID| > r) < 4e 71",

for all » > 0. On the other hand, by the first claim of the theorem,

Ct'/*\/logt
P(D| > ) < 2Pl 08!
r

r

Thus, for any K,

E[(f(t, %) = f(1, )] =/ 2rP(|f (1, x) = ft. )] 2 r)dr

0

® t'/4\/logt
S/ Clrmin{g,e_czrz/’}dr
0

r

K )
< / Cii'4 10gtdr+/ CyreCr'ligr
0 K

= C\Kt'*\flogt + Cyte™CK/1,

Choosing K = C44/tlog ¢t for some sufficiently large C, completes the proof of the second claim. The
third claim follows from the second by Theorem 1.3. n
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8 | PROOF OF THEOREM 2.3

Throughout this proof, C, Ci, C,, ... will denote constants that depend only on the dimension and the
law of the noise variables. Let O, be as in Section 2.3. Let us assume that the law of the environment
has mean zero, since it is not hard to see that this does not cause any loss of generality. We need a
simple lemma about real numbers.

Lemma 8.1. Let xq, ... ,x, be real numbers. Then
1< 2
max x; — *in z = Z |xi = x;.
1<i<
sisn ey} W <<n

Proof.  Without loss of generality, suppose that x; is the maximum of the numbers, and x; is the
minimum. Then

n n
1 1 X —X
max x; — fo,' = fZ(xl — X)) > d B
1<i<n ne ne n

i= i=

Butx; —x, > |x; — x;| for all i and j, and hence, x; — x, > the average of |x; — x;| over all distinct i and
Jj- This proves the claim. n

Since E(F(z)) = 0 for a standard Gaussian random variable z, there must exist u, v € R such that
F(u) < 0 and F(v) > 0. By the continuity of F, it follows that there exists u* € R where F(u*) = 0.
Define a new surfacef by replacing z; , by u* for all x, but keeping all else the same. Then note that
for any ¢ > 2 and any x,

—1 =2
X —~t,x = [max ) F(z,—; —max ) F(z,—;
£ (2. x) = e, )] QEQ{; @rmicrs,) QEQ[; @rmicrs,)

t—1

=2
< max ZF(Z,_' +q.) — ZF(Z;_‘ +q.)
e 11 o i=0 o

= max|F(z < max |F(z .
QEQ,l ( 1,x+q,_,)| y:IyIStl ( l,x+y)|

Since the noise field is i.i.d. Gaussian and F is Lipschitz, it follows that

E <max |z],x+y|> < C+/logt.

yilyl<t

Thus, the same upper bound holds for E|f(¢, x) —?(t, x)|. Now note that f(t, x) has the same law as
f(t— 1, x). This shows that

E(f (1, ) — E(f(t — 1,%) = E(f(t,x)) — E(f(z,x))
= E(f(1,x) = f(1, %))
<E|f(t,x) - f(t,x)| < Cy/log.
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By translation invariance, E(f(z — 1, x)) = E(f(z — 1, y)) for any y. Since the noise variables have mean
zero, this shows that

E(f (. x) - E(f(r = L.x))

=E<f(t,x)— % G 1,x+b)>

beB+

=E<Eé%§f(t— Lx+b)— é Zf(t— 1,x+b)).

beB*

By Lemma 8.1,

1
?é%yff(t—1,x+b)—32f(t—l,x+b)

beB*

2% ft—1,x+b)—f(t—1,x+b)|.

b.b' EB* btb'

Combining this with the two preceding displays proves the first claim of the theorem. For the second,
we combine the first claim with Theorem 1.1 to get that for any K,

E[(f(t, %) = f(1,7))] =/ 2rP(|f (1, x) = f@. )| 2 rdr

0

e v/l1ogt
S/ Clrmin{Og,e_C2’2/’}dr
0 r

K )
S/ C1\/log tdr+/ Cire Crdr
0 K

= CK\/logt + Cyte K11,
Choosing K to be a large enough multiple of 4/71og ¢ completes the proof of the second claim of the
theorem. The last claim now follows by Theorem 1.3.
9 | PROOF OF THEOREM 2.4

Throughout this proof, C, Cy, C,, ... will denote constants that depend only on the dimension, the
inverse temperature, and the law of the noise variables. Let P, be as in Section 2.4. As in the proof of
Theorem 2.3, let us assume without loss of generality that the law of the environment has mean zero.
We need two simple lemmas.

Lemma 9.1. Foranyx € R, coshx > emin{lxl.a*)/4

Proof.  First, suppose that |x| < 1. Then note that

5 o 24/{ [~
a/4=1+;(xk/!) S1+I;(x2/4)k

& 2
<1+ (x2/4)24‘(k‘1) =1+ <coshx.
=l 3

:sd)y) SUONIpUOy) pue SWLIR Y, Y S *[£207/90/91] U0 Areiquy surquQ LI ‘KNSIOATUN) PIOJURIS Aq 801 [Z'8SH/Z001 0 [/10p/wod" Kd[1m AIeIqIauI[uo//:sdiy Wwolj papeo[umo(] ‘Z ‘€70z ‘S 1#78601

oy/woo Ko A

ASUADIT SUOWIO)) dANEAI) d[qearjdde ay) £q PAUIIA0S d1e SAONIE YO 59N JO SI[NI 10§ AIRIQIT dUI[UQ AJ[IA UO (SUOY



CHATTERJEE W ILEY 331

Next, consider |x| > 1. Since e > 1 +1+1/2+1/6 = 8/3, we have ¢* > (8/3)> = 512/27 > 16,
which gives e3/4 > 2. Thus, ¢**1/4 > 2, and hence coshx > el /2 > elI/4, "

Lemma 9.2. Letxy, ... ,x, be real numbers. Then
log< Ze > - fo,
{ Z [x: = x;, 2 (xi — x;) }

1<i<j<n 1<i<j<n

Proof.  Without loss of generality, suppose that x; is the largest and x; is the smallest among the
x;’s. By Lemma 9.1,

%(exl + %) = e"1/2 cosh((x; — x2)/2)

> e(x]+x2)/2+min{ |x1—xz|,(x1—x2)2}/16.
Thus, by Jensen’s inequality,

I 2 (e 4en
e = () Zex

> 2 )/ 2emin{ 5 —xl(6 -0 /16 12 o
n n

> exp <r21((x1 +x2)/2 + min{|x; — x2], (x; — x2)*}/16) + iZM‘)
=3

1y .
:exp<n2xi+8nmm{|x1 — X2, (x —xz)2}>.
i=1

Taking logs on both sides and observing that |x; — x2| > |x; — x;] for all 7 and j completes the
proof. n

As in the proof of Theorem 2.3, there exists u* € R such that F(u*) = 0. Define a new surface]7

by replacing z; , by u* for all x, but keeping all else the same. Then note that for any ¢ > 2 and any x,

zPeP, exXp (ﬁzg;(l)F(Zz—i,Hpi))
ZPeP eXp (ﬂ Zi;(Z)F (Zz—i,x+p,.)>

= jloz 3 i u(y><2d2 ”““*’”)

yeZA4 beB

ft0) = ft,x) =

‘m\»—l

where

-2
ZPEP,,sz:y €xp (ﬁZ§:0F(ZI—i,x+p,)>

pt—l,x(y) = =2
Zpep, €xp (ﬂZi:OF (Zt—i,xm))
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Let E’ denote taking expectation only in {z;,},ez4. Jensen’s inequality gives

E'(f(t.x) - f(t.x)) = ﬁE’ llog > o lx(y)<2dz BFGi ) )]

yeZ4 beB

< Liog Y E lpz 1x(y)<2d2 ”F‘Zlﬁb))]

yezZ4 beB

/ BE(z) y1p)
ﬁlogszlx(y)E<2dZ ¢ >

yeZ4 beB

‘%

Since p,_i, is a probability mass function on Z¢, this shows that
E(f(¢,x) = (1, %)) = BIE(f(,x) - (1, )] < C.
Note thatf(t, x) has the same law as f(t — 1,x) + f~' log(2d). Thus,

E(f(t,x)) = E(f(t — 1,x) + f~" log(2d)) = E(f(t, x)) - E(f(1,x)) < C.

By translation invariance, E(f( — 1, x)) = E(f(t — 1, y)) for any y. Since the noise variables have mean
zero, this shows that

E(f(t,x)) — E(f( — 1,x) + " log(2d))
= E(f(t,x) — " log(2d) — —Zf(t 1,x + b))

beB

llog( Dl 1X+b)> Zde(t_l x+Db)

beB beB
By Lemma 9.2,

ﬁ10g<2d2ﬂﬂt”+h)> Zde(t 1,x+Db)

beB beB

1 . ’
> Wmln{ D = Lx+b)—ft—1Lx+b),

b.b'eB

D (= Lx+b) —ft - 1,x+b’))2}.

bb'eB

Combining this with the two preceding displays, and noting that |y — z|; = 2 if and only if y and z are
neighbors of some common vertex, we get that for any y, z € Z¢ with |[y — z|; =2, and any ¢ > 2,

Elf(t,y) = f(t, 2| < 1+ Emin{lf(1,y) = f(t, 2|, (f(t,y) = [(1,2))*} < C.

This proves the first claim of the theorem. The remaining claims can now be proved using similar
tactics as in the proof of Theorem 2.3.
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