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Spectral characteristics of Schrodinger operators
generated by product systems

David Damanik, Jake Fillman, and Philipp Gohlke

Abstract. Motivated by the question of what spectral properties of dynamically defined Schro-
dinger operators may be preserved under periodic perturbations, we study ergodic Schrédinger
operators defined over product dynamical systems in which one factor is periodic and the other
factor is either a subshift over a finite alphabet or an irrational rotation of the circle. The scenario
given by a periodic background potential corresponds to a separable structure in which the
sampling function is the sum of two pieces, each of which depends only on a single factor of
the product system. However, in each case that we study, our methods apply more generally to
sampling functions that allow non-trivial dependencies between the product factors.

In the case in which one factor is a Boshernitzan subshift, we prove that either the resulting
operators are periodic or the resulting spectra must be Cantor sets. The main ingredient is a
suitable stability result for the Boshernitzan condition under taking products. We also discuss
the stability of purely singular continuous spectrum, which, given the zero-measure spectrum
result, amounts to stability results for eigenvalue exclusion. In particular, we examine situations
in which the existing criteria for the exclusion of eigenvalues are stable under periodic pertur-
bations. As a highlight of this, we show that any simple Toeplitz subshift over a binary alphabet
exhibits uniform absence of eigenvalues on the hull for any periodic perturbation whose period
is commensurate with the coding sequence. This is new, even in the case in which the periodic
background vanishes entirely. In the case of a full shift, we give an effective criterion to com-
pute exactly the spectrum of a random Anderson model perturbed by a potential of period two,
and we further show that the naive generalization of this criterion does not hold for period three.
Next, we consider quasi-periodic potentials with potentials generated by trigonometric polyno-
mials with periodic background. We show that the quasiperiodic cocycle induced by passing
to blocks of period length is subcritical when the coupling constant is small and supercritical
when the coupling constant is large. Thus, the spectral type is absolutely continuous for small
coupling and pure point (for a.e. frequency and phase) when the coupling is large.
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1. Introduction

1.1. Setting and motivation

We study Schrodinger operators in £2(Z), that is, operators of the form
Hy =A+7, (1.1.1)

where the potential V:Z — R is bounded. There has been extensive work done for
such operators; the reader may use [18,21-23, 50, 63, 72] and references therein as
guides to the literature. In this paper we are interested in questions that lead one to the
consideration of products of dynamical systems.

Let us explain how these product systems arise naturally. In many applications of
interest, the potential V' is given by the sum of two terms,

H=A+V=A+V, +Vs. (1.1.2)

For instance, one may consider the situation in which V; is random and V is periodic,
which supplies a model of a crystal with random impurities; compare [1,17,44,56-59,
70,75] for a partial list of papers studying this model. Another class of examples in
the closely related continuum setting is given by sums of two periodic potentials with
incommensurate frequencies, which provide the simplest examples of quasi-periodic
potentials; compare [39, 42, 71] for an incomplete list. This is but a partial list of
potential settings; other recent papers consider more general additive perturbations of
random [15,25] and quasiperiodic [77] potentials.

In both examples mentioned in the previous paragraph, the two summands have
additional structure — they are dynamically defined, in the sense that they are obtained
by sampling along the orbit of a dynamical system (discrete-time in the first example
and continuous-time in the second example).

Thus, we will be interested in the case where V;, V5, take the following form,

Vin) =V, oon(m) = f;(SPxD),  j =12, nez, (1.1.3)
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where x() € X, a compact metric space, S;: X; — X is a homeomorphism, and
/i1 X; — R is continuous. Indeed, in the random case (j = 1), one may take X,
to be a suitable sequence space, S the left shift thereupon, and f; evaluation at the
origin, and in the periodic case (j = 2), we may take X, = Z, where p is the period
of Va, $5x@ = x@ 4 1 mod p, and fo(x®) = 15(¥?®), where ¥® denotes any
representative of the residue class x ).

Clearly, then, V' = V7 + V, admits a description in terms of the product system
Q =X; xX5, T =81 xS,. In particular,

Vin) =V,(n) = f(T"w), (1.1.4)
where w = (x(V, x@) and
S xP) = f16D) + f(xP), (1.1.5)

On one hand, the choice of sampling function as in (1.1.5) is completely natural
given the motivating scenario (a potential given by a sum of a dynamically defined
potential and periodic background potential). On the other hand, as soon as one con-
textualizes the problem with product systems, it becomes natural to consider more
general functions f € C(2) that allow for more significant interactions between the
factors. For instance, one may also consider sampling functions of the form

FD x@y = £,xD). £,(x@), (1.1.6)

which corresponds to a periodic multiplicative modulation of a given potential. In
general, it is more difficult to study periodic multiplicative perturbations than peri-
odic additive perturbations. However, this is a natural outcome of our framework. One
instance of such periodic multiplicative modifications comes from the trimmed Ander-
son model, which corresponds to choosing f as in (1.1.6) with f2(k) = 8k mod p,0; See
[37,38,55,68] and references therein.

To keep the length and complexity of the introduction in check, we formulate
results in the two specific settings mentioned above, but emphasize that each of these
results will be deduced as a consequence of a more general statement that allows
one to consider quite general functions on the product space(s) that do not need any
separable structure.

1.2. Main results

We begin the general study of product systems by looking in detail at three particular
instances of the general problem. In each instance, one of the factors will be chosen
to be a finite shift on a cyclic space. We then consider results when the other fac-
tor is a minimal aperiodic subshift satisfying the Boshernitzan criterion, a Bernoulli
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shift, or an irrational rotation of the circle. Let us mention that the three settings we
consider allow us to study periodic decorations of the Fibonacci Hamiltonian, the
Bernoulli Anderson model, and the almost-Mathieu operator, which are the three of
the most heavily-studied families of ergodic one-dimensional Schrédinger operators.
As a byproduct of this approach, we will obtain information about potentials gener-
ated by adding a periodic background to a model that is understood. As noted above,
this scenario corresponds to sampling functions that are separable as in (1.1.5); how-
ever, in each of the three instances, we are able to prove results that cover a larger
class of continuous functions on the product space.

Although we investigate product systems in which one factor is a shift on a cyclic
group, we emphasize that there are other natural choices for factors generating product
systems of interest in mathematical physics that we hope will be addressed in future
work.

In the first case, we consider subshifts satisfying the Boshernitzan condition and
full shifts over finite alphabets. A subshift over a finite alphabet 4 is a compact,
shift-invariant subset X C AZ. Here, s is given the discrete topology, and the shift
S:X — Xis given by [Sx], = Xp+1. If X is minimal, it is said to satisfy the Bosher-
nitzan condition if there exists an S-invariant probability measure v on X with the
property that

limsupn - min{v{x € X:xp...x,—1 =upu € £,(X)} > 0, (1.2.1)
n—>oo
where £, (X) denotes the set of all words of length n that occur in sequences in X.

Motivated by our discussion above, we prove that zero-measure Cantor spectrum
is stable under periodic perturbations for potentials of Boshernitzan type. Given a
subshift (X, S) and a function f1: X — R, the potential V is given by

Vi(n) = f1(8"x), (1.2.2)

and the associated Schrddinger operator is denoted by H,. We say that f; is locally
constant if

J1(x) = g(xnXn+1 - Xntk—1) (1.2.3)
forsomen € Z, k € N, and g: AF - R,

Theorem 1.2.1. Suppose (X, S) is a minimal subshift satisfying the Boshernitzan
condition, f1:X — R is locally constant, and Vi, is periodic. One has the following
dichotomy: either Vy defined in (1.2.2) is periodic for all x € X or, for every x € X,
0 (Hx + V) is a Cantor set of zero Lebesgue measure.

As discussed before, we will see later on that one can deduce Cantor spectrum in
a more general setting than the one proposed in Theorem 1.2.1. We refer the reader to
Section 3 for details, but let us highlight one other outcome of the approach.
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Theorem 1.2.2. Suppose (X, S) is a minimal subshift satisfying the Boshernitzan
condition, f1:X — R is locally constant, and Ayer: Z — R is periodic. One has the
following dichotomy: for each x € X, either Ape:Vy with Vy defined in (1.2.2) is peri-
odic or o (A + ApecVy) is a Cantor set of zero Lebesgue measure.

Notice that there is a slight difference between Theorems 1.2.1 and 1.2.2 with
regard to their dependence on x € X. Namely, in Theorem 1.2.1, the dichotomy is cho-
sen globally, while the dichotomy in Theorem 1.2.2 holds for each individual x € X.
Moreover, one cannot avoid this distinction; there exist aperiodic subshifts X and
periodic sequences Ape such that Ape Vy is periodic for some but not all x € X (see
Remark 3.1.13).

As soon as the spectrum is a Cantor set of zero Lebesgue measure, the spectral
type of H, is necessarily purely singular. Based on known results, it is then natural
to ask whether it is purely singular continuous, that is, whether the spectral mea-
sures lack point masses. In order to show that the spectral type is purely continuous,
one must exclude eigenvalues for the operators H,, which is in general a delicate
endeavor. We discuss results related to the absence of point spectrum in Section 3.2.

Let us highlight one of the results from that section. In the setting of ergodic
operators, one often looks for results excluding point spectrum for a.e. realization with
respect to an ergodic measure. However, one is sometimes able to exclude eigenvalues
uniformly (that is, for every w € €2, not just a.e. w). In general, it is somewhat rare
to have a model in which one can prove uniform absence of eigenvalues. We expand
the list of known examples in Section 3.2 to include periodic perturbations of simple
Toeplitz subshifts for which the period is commensurate with the coding sequence
and the sampling function only depends on a single entry of x € X (see Section 3.2
for definitions of Toeplitz subshifts and coding sequences). To formulate the next
result, we use the following definition: given a locally constant function f;: X — R
as in (1.2.3), we call g the window function and k € N the window size.

Theorem 1.2.3. Ler (X, S) C {a, b} be a simple Toeplitz subshift over a binary
alphabet, let f1:X — R be locally constant with window size 1, and suppose Vpe; is
periodic with period p. If (Z,, +1) is a factor of (X, §), then, for every x € X, the
operator Hy + Vyer has no eigenvalues.

We emphasize that, in the generality formulated here, Theorem 1.2.3 is new even
in the case p = 1. Since every simple Toeplitz subshift over a binary alphabet satis-
fies the Boshernitzan condition, the spectrum of Hy + V., is in fact a Cantor set of
Lebesgue measure zero in the situation of Theorem 1.2.3, provided that the window
function g is non-constant, and thus the spectral type is purely singular continuous in
that scenario.



D. Damanik, J. Fillman, and P. Gohlke 1664

Next, we consider periodic modifications of the random case. To model the ran-
dom part, we choose X = AZ the full shift on the alphabet A = {1,2,...,m} with
me Nand u = /,LOZ, where (4 is a probability measure on «+. Without loss of gener-
ality, we assume po({a}) > 0 for all a € .

We further restrict to the case in which the periodic modification has period two.
For each choice of a, b € #A, there is a natural period-two element of X which we
denote by x,p = (ab)%, and which is given by x», = a, Xap4+1 = b.

Theorem 1.2.4. Suppose (X, S) is a full shift on an alphabet with m symbols, Vyer has
period two, and f1:X — R is locally constant of window size 1. For -almost every
x € X, the spectrum of the corresponding Schrodinger operator is given by

0 (Hy + Vier) = | J 0 (Hzy, + Vier)- (1.2.4)
a,beA

As in the case of Theorems 1.2.1 and 1.2.2, our framework can incorporate other
periodic decorations. The statement of Theorem 1.2.4 remains true if Hy + Ve is
replaced by A + Ay Vx with A, of period two (and a similar replacement for Hy ).
While we were completing this manuscript, we learned that William Wood had inde-
pendently proved Theorem 1.2.4 (and the more general statement from which it is
derived) in the case m = 2 in addition to obtaining finer results such as an explicit
calculation of spectral gaps [78].

There is a natural naive generalization of the statement in Theorem 1.2.4 when
Vper has period larger than two. We give an example in Section 3.3 to show that this
generalization already fails for potentials of period three.

Theorem 1.2.4 is related to an interesting open question: does the almost-sure
spectrum of H, + Ve always have finitely many connected components whenever
Vper is periodic? This is well known when V., has period one (i.e., is constant) and
Theorem 1.2.4 gives an affirmative answer to the question when the period is two.

Finally, we consider periodic perturbations of quasi-periodic potentials. Let T =
R/Z denote the circle, and suppose « € T is irrational. Here, one sometimes wants to
observe phenomena that depend on variations of the frequency or sampling function.
So, for f; € C(T,R) and x € T, the potential Vy, 4 , is given by

Vi ax(®) = fi(na + x). (1.2.5)

The corresponding Schrodinger operator is denoted Hy, o x. It is well known (and
not hard to show with minimality and strong operator convergence) that there is a
compactset ¥ = X, o with ¥ = 0(Hy, o.x) forall x € T. Quasi-periodic operators
have been heavily studied over the years; we direct the reader to the survey [63] for a
guide on the literature.
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In this setting, one has the following result. See Section 4 for definitions of the
p-step cocycle and sub/super-criticality of a cocycle.

Theorem 1.2.5. Let o € T be irrational. If f1: T — R is a non-constant real-valued
trigonometric polynomial and Vi, is periodic, then there exist 0 < A1 < A, < 00 such
that the p-step transfer matrix cocycle associated with H) 7, o x + Vper is subcritical
for every energy in X, 5, o when |A| < Ay and supercritical on Ly 7, o when |A| > A,.

The analysis of cocycle dynamics pays dividends for the spectral analysis. Indeed,
Avila’s almost-reducibility theorem [2,4] implies that the spectral type is purely abso-
lutely continuous in the subcritical region. On the other hand, there is a well-estab-
lished road map to proving localization in the regime of positive Lyapunov exponents.
Relatively straightforward modifications of Bourgain—Goldstein’s argument [12]
allow one to prove Anderson localization (i.e., pure point spectrum with exponentially
decaying eigenfunctions) for large |A| and a.e. frequency and phase.

The idea of reorganizing a periodic decoration of a quasi-periodic potential by
passing to blocks of period length has been applied fruitfully in other recent works,
such as [77], which proved specific results for the quasiperiodic mosaic model, which
corresponds to a specific choice of trigonometric polynomial on the product system.

The almost-Mathieu operator is given by choosing the sampling function fj(x) =
2A cos(2m x), that is,

VANQ(n) = 24 cos2m(na + x)). (1.2.6)

We write H f%g for the corresponding operator. This operator family has been the

subject of numerous investigations in recent decades; we point the reader to [63] for
a thorough account of the history.

Theorem 1.2.6. Suppose Vier: Z — R is periodic and o is irrational. The p-step
cocycle associated with H f%g + Vper is subcritical on the spectrum when |A| is suf-
ficiently small and supercritical on the spectrum when |A| is sufficiently large.

Remark 1.2.7. In fact, by following the proof of Theorem 1.2.5 closely, one sees that
the p-step cocycle associated with the periodic perturbation of the AMO is supercrit-
ical on the spectrum whenever |A| > 1.

The structure of the paper follows. We recall some general facts about product
systems and the transfer matrix cocycle in Section 2. We discuss the case of product
systems in which one factor is a subshift in Section 3 in particular giving the proofs of
Theorems 1.2.1,1.2.2,1.2.3, and 1.2.4. We discuss the quasiperiodic case in Section 4,
proving Theorems 1.2.5 and 1.2.6.
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2. Preliminaries

2.1. Minimal systems

We start from a topological dynamical system (X, §) with X a compact metric space
and S a homeomorphism X — X.

Definition 2.1.1. Given a dynamical system (X, .S) as above, we say that K C X is an
S-minimal component of X if it is closed, non-empty, S-invariant, and minimal with
respect to those properties (i.e., no proper closed subset of K satisfies those proper-
ties). We say that (X, S) is minimal if X is an S-minimal component. Equivalently,
(X, S) is minimal if and only if the only S-invariant and closed subsets of X are X
and @.

One can check that two minimal components of (X, S') must either be identical or
disjoint and hence one can speak of the number of minimal components.

Definition 2.1.2. For m € N, we denote by s(m, X, S) the number of minimal com-
ponents of (X, $). Whenever X and S are clear from context, we suppress the
dependence and simply write s(m).

For a given minimal system (X, S), we will consider the properties of the func-
tion s(m) defined in Definition 2.1.2. The following result goes back to [47, Theo-
rom 2.24]; compare also [79, Theorem 3.1].

Fact 2.1.3. For eachm € N, denoting ¢ = s(m), one has q|m and a disjoint decom-
position X = X U --- U Xy such that each X is S™-minimal and

SX;) =Xjt1moaq forall <j <q. (2.1.1)

Some properties of this function are listed below, compare [79, Remark 3.6 and
Theorem 3.8].

Fact 2.1.4. The function s satisfies the following properties. If my and m, are rel-
atively prime, then s(mymy) = s(my) s(my). Furthermore, for each prime p, there
exists a number £, € No U {oo} such that s(pt) = min{pt, p*»} for all £ € N,.

Note that fixing the assignment p — £, for every prime number p determines the
function s uniquely. Alternatively, the function s is completely characterized by the
subgroup of topological eigenvalues of the Koopman operator. Let us briefly recall:

Definition 2.1.5. Given a topological dynamical system (X, S), we say that z € C
is a topological eigenvalue of (X, S) if it is an eigenvalue of the induced operator
C(X) > C(X) givenby f+> foT.Afunction0z# f € C(X)forwhich foT =zf
is then called a continuous eigenfunction of (X, S).
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It is well known and not hard to show that every topological eigenvalue of (X, §)
is unimodular and the set of all eigenvalues of (X, §') comprises a countable subgroup
of the circle dD; see, e.g., [76, Chapter 5].

We will see shortly that the function s may be characterized by the subgroup of
topological eigenvalues that are also roots of unity (compare Proposition 2.1.7).

Lemma 2.1.6. Let (X, S) be minimal. For every m € N, e2™/™ is a topological
eigenvalue of (X, S) if and only if s(m) = m.

Proof. Suppose s(m) = m, that is, X decomposes into m disjoint S™”-minimal com-
ponents X1, ..., X, satisfying (2.1.1). Then

Sm(x) =DMy (%)
=1

is a continuous eigenfunction of (X, §) with eigenvalue e>/

On the other hand, suppose that >/ is a topological eigenvalue with continu-
ous eigenfunction f;,. Let x € X be given. By the choice of f,,, we have f;,(S7x) =
e?mi/m £ (x) =: kj forall 1 < j < m. Since f,, is continuous and f,, 0 S” = f;,
the spaces X; := f, 1({k;}) are disjoint, closed and S™-invariant." This implies
s(m) > m, which implies s(m) = m, since s(m) divides m. [

Proposition 2.1.7. For every m € N, s(m) is the largest divisor q of m such that
e2™/4 s g topological eigenvalue.

Proof. Let s(m) = q. By general properties of the function s, it follows that g divides
m and that s(q) = ¢. The latter implies that ¢27/9 is an eigenvalue because of
Lemma 2.1.6. Suppose there exists a larger divisor £ > ¢ of m such that e*™/¢ is
an eigenvalue. Then, s(m) > s({) = £ > g = s(m), a contradiction. [

By definition, the system (X, $™) is minimal precisely if s(m) = 1. With the help
of the preceding result, we immediately obtain the following characterization.

Corollary 2.1.8. The system (X, S™) is minimal for all m € N if and only if there
are no topological eigenvalues e*™ of (X, S) witha € Q \ Z.

A system (X, S) for which (X, §™) is minimal for every m € N is said to be
totally minimal.

Note that disjointness follows from f;,; (x) # 0, which in turn is a consequence of mini-
mality of (X, S) and non-triviality of fj,.



D. Damanik, J. Fillman, and P. Gohlke 1668

2.2. Uniquely ergodic systems

We now turn to the case in which (X, S) is uniquely ergodic. The discussion of
S™-ergodic probability measures is very similar to the discussion of S™-minimal
components for minimal systems (X, .S).

Definition 2.2.1. Given a topological dynamical system (X, S) and m € N, we denote
by s'(m, X, §) the number of S™-ergodic Borel probability measures on X; as before,
we write s’ (m) whenever (X, §) is clear from context. Given an S-invariant measure
W, we say that z € C is an eigenvalue of (X, S, u) if it is an eigenvalue of the Koopman
operator on L2(X, 1), which is givenby f + f o T for f € L?(X, jt). A measurable
function 0 # f € L?(X, u) for which f o T = zf (in L?*(X, p)) is then called an
eigenfunction of (X, S, ).

The properties of this function are precisely the same as for s(m); see Aappendix A
for details. We quote here only the result that is most important for the following dis-
cussion, compare Lemma A.2 for the proof.

Proposition 2.2.2. Let (X, S, jt) be uniquely ergodic. For everym € N, e*™/™ s an
eigenvalue of (X, S, w) if and only if s'(m) = m.

Proposition 2.2.2 is likely well known, but we could not find an exact reference.

2.3. Cocycles and hyperbolicity

Given a topological dynamical system (€2, T'), a sampling function f € C(2,R), a
T -ergodic measure p, and Schrodinger operators as in (1.1.4), it is natural to study
the spectral properties of H,, via the eigenvalue equation H, ¥ = zy with z € C.
One can readily see that H,,\ = z for some ¥ € CZ if and only if

[‘””“] - [Z — f(T"0) _IM Vn } foralln € Z. 2.3.1)

wn 1 0 wn—l
Defining
A, (@) = [Z - ]; (Tw) _01}, (23.2)

the associated cocycle (T, A;): 2 x C? — Q x C? is given by (T, A;)(w, v) =
(Tw, Az (w)v). The iterates (T, A;)" = (T", A?) of this map can then be computed
forn € Z:
A (T ) .. A (w), n>1,
Al(w) = | 1, n=0, (2.3.3)
[AZ7(T" )] 7", n<-—l.
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Naturally, one has H, ¥ = z if and only if

[‘””* 1] = A" (w) [%] foralln € Z. (2.3.4)
1//n WO
The associated Lyapunov exponent is given by
1
L(z) = lim — / log || A% ()] diu(w). (2.3.5)
n—oon
Q

We say that (T, A;) is uniformly hyperbolic if for constants ¢, A > 0 one has
A% (w)| = ce*"l foralln € Z. (2.3.6)

If L(z) > 0 but (T, A;) is not uniformly hyperbolic, it is said to be non-uniformly
hyperbolic. In the event that (2, T') is a minimal dynamical system (and f is con-
tinuous), there is a fixed set ¥ C R for which ¥ = o (H,,) for all € 2. This set is
characterized dynamically by Johnson’s theorem [52], which says that ¥ = R \ U,
where U denotes the set of £ € R for which (T, Ag) is uniformly hyperbolic.

3. Periodic and subshift

The first class of product systems that we will consider will be products of subshifts
and cyclic groups, which is motivated by the question of stability of results for oper-
ators defined by subshifts under periodic perturbations. On one hand, for subshifts
satisfying the Boshernitzan condition, one often observes zero-measure Cantor spec-
trum and purely singular continuous spectral type for such operators. On the other
hand, the spectra of random operators can be written as the union of the spectra of
periodic realizations. Thus, the section splits into three main subsections: in the first
subsection, we explore the stability of zero-measure spectrum under periodic per-
turbations; in the second subsection, we discuss the stability of purely continuous
spectrum; and in the third section, we discuss the spectra associated with products in
which the subshift factor is a full shift.

3.1. Zero-measure Cantor spectrum

It is well known that if (X, S) is a subshift satisfying the Boshernitzan condition
and f1: X — R is locally constant, then the Schrodinger operators H, = A + Vy
with potential V,(n) = f1(S"x) exhibit a dichotomy. Either Vy is periodic for all
x € X or 0(H,) is a Cantor set of zero Lebesgue measure for every x € X [28]. One
may naturally ask whether this holds under the addition of a periodic background,
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that is, given a periodic potential Ve, is it true that Hy + Ve either is periodic
or has zero-measure Cantor spectrum? Naturally, this leads to an investigation of
Q2 = X x Zp where p denotes the period of V. As such, one is then interested
in whether the Boshernitzan condition is stable under such products. Of course, some
care is needed, since it is clear that minimality and unique ergodicity need not be
invariant under taking products. In that vein, our first result is a stability result for the
Boshernitzan condition under products with finite (hence periodic) subshifts.

3.1.1. Stability of the Boshernitzan condition. Let us begin with a few definitions
and set up notation.

Definition 3.1.1. Let + be a finite alphabet and A1 = (., A¢. We denote the
left shift on A% by S. We endow 4 with the discrete topology and A% with the
corresponding product topology. This turns #4Z into a compact metrizable space.
A possible choice for a metric is d(x, y) = 27, where k = inf{|n|: x, # y.}. Given
a finite word w € AY € AT, we write |w| = £ for the length of w, and we fix the
notation w? for the sequence

LLLWww.awww ..., 3.1.1)

where the single dot separates the —1-th and the 0-th position. Foru € A" and x € AT
or x € AZ, we write u < x if u is a subword of x. Given j.k € Z with j <k, we
define x[j k) = x;j ... xg. If X'is a closed, S-invariant subset of AL we call (X,S)a
subshift. We denote by £ (X) the set of legal words in X, that is

£(X) = {u € AT:u < x for some x € X}.

The set of legal words of length 7 is given by £, (X) = £(X) N A”. For u € £(X),
we define the corresponding cylinder set as

[u] = {x € X:X[O,lul—l] = u} (3.1.2)

In the following, let (X, §) and (X’, S”) denote subshifts over alphabets + and A,
respectively. The diagonal shift T = S x S’ on the direct product X x X’ is defined
via T'(x,x") = (Sx, S’x’). The system (X x X', T') is a shift on ordered pairs of
sequences and could just as readily be viewed as a shift on sequences of ordered
pairs. More precisely, (X x X', T') is topologically conjugate to a subshift (Y, 7")
over the alphabet 8 = # x A’ in a canonical fashion.

Let us explain this in more detail. Let 71: B — 4 and 7: B — A’ denote
the canonical projections, extended to 8% as morphisms. Define Y = iX)n
751 (X’) € BZ and let T’ be the left shift restricted to Y. The map ¢: Y — X x X/,
given by ¢(y) = (r1(y), m2(y)) is a topological conjugation. We will move freely
between these two representations. Abusing notation slightly, we identify 7" with 7.
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Given o € X x X/, our main object of interest is the Schrédinger operator
H, (*(Z) — 1*(2),

given by
(HoV)n = VYnt1 + Yno1 + f(T"0)Yn, (3.1.3)

where f:X x X’ — R is a continuous function.

Definition 3.1.2. Suppose (X, §) is a minimal subshift and (X', §”) is a periodic
subshift, by which we mean a subshift that consists of all translates of a single periodic
sequence. We say that f is locally constant on X x X' if, up to a finite shift, f is of
the form

f(x,x")=g(xo...x5_1,x") (3.1.4)

for some k € N and a suitable function g: AF x X’ — R.

Remark 3.1.3. Let us point out that our definition of periodic subshift is not standard
in the sense that we insist that periodic subshifts are minimal. The extension of our
results to non-minimal periodic subshifts is trivial and left to the reader.

Changing from X to a k-block partition, we can assume that g depends only on a
single entry. Let us make this precise in the following paragraph.

For x € A%, let x¥I € (A%)Z denote the k-block partition, given by x,[,]f I =
X[m,m+k—1] for all m € Z. We emphasize that Al = £, (x) plays the role of the
letters for this sequence. Analogously, we set XK1 = {x%]: x € X}. The map

O x > xl¥l (3.1.5)

is a topological conjugation from (X, §) to (X[¥1, $), where, abusing notation slightly,
we use S for both shifts. We also define by ¢ the corresponding sliding block code on
finite words v with |v| > k, that s, [¢x (V)]m = Vpm,m+k—1],for 1 <m < |v| —k + 1.
In this notation,

fex) = gl 2y = (M,
for a suitable function f* on X*I x X'.

Definition 3.1.4. For a shift-invariant measure y on a subshift (X, §), we set
p(n) = min{uful:u € £,(X)}. (3.1.6)

for all n € N. The system (X, §) is said to satisfy (x) if there exists a shift-invariant
measure /4 such that
limsupn - u(n) > 0. (3.1.7)

n—>oo
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If in addition (X, S) is minimal, we say that it fulfills the Boshernitzan condition, and
we also refer to (X, S) as a Boshernitzan subshift. The reference to S may be dropped
if it is clear from the context.

By a classical result [10], every Boshernitzan subshift is uniquely (and hence
strictly) ergodic.

It is helpful to note that for a given Boshernitzan subshift and a given relatively
dense sequence (ng)xen Of positive integers, one can choose a subsequence of
(n)ren that validates (3.1.7).

Lemma 3.1.5. Suppose (X, S) is a Boshernitzan subshift and (ny)ren is an increas-
ing sequence of positive integers that is relatively dense in N. Then,

limsup ng - u(ng) > 0. (3.1.8)

k—o00

Proof. Let u be the unique invariant measure on (X, §). Clearly, u(n) is decreasing.
Let £; — oo be chosen so that

lim £ - pu(€;) =c > 0. (3.1.9)
j—o0 -

Since ny is relatively dense, we may choose a C > 0 such that for every j > 1, there
exists kj > 1 for which{; — C < ng; < {;. One then has

C
mi - wln) 2 (4 = ©) - () = (1= 7 )4 - (@)

J
so the result follows immediately from (3.1.9). [ ]
We will show next that, for many purposes, we can assume without loss of gener-

ality that the window function g from (3.1.4) depends only on the first coordinate of
x eX.

Lemma 3.1.6. If (X, S) satisfies the Boshernitzan condition, then so does (X1, §)
for every k € N. Moreover, one has

s(n, X, S) = s(n, X 5) (3.1.10)
foralln,k € N (cf. Definition2.1.2).

Proof. Let u denote the unique ergodic measure on (X, S). Since ¢ is a topolog-
ical conjugation, the minimality of (X% §) is immediate. By the same argument,
for every m € N, the number of S™-minimal components is the same for both sub-
shifts. Further, the measure u* = p o go,:l is shift-invariant on (X¥1, §). Since ¢ is
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a bijection from £,,4x—1(X) to £, (X)) for all n € N, we have

w(n) = ming*[o]: v € £, (X)) = minguful: € Ly (X))
= p(n + k—1),

which implies that (X¥1, §) satisfies (). [

Let (X, ) be an aperiodic Boshernitzan subshift over the alphabet 4 and (X', ")
a periodic subshift over the finite alphabet #4’. Let u be the unique invariant measure
on (X, S) and let i’ be the unique invariant measure on the periodic subshift (X', S”).
Then, v = p x @ is a T-invariant measure on X x X'

The main result of this section reads as follows.

Theorem 3.1.7. Let (X, S) be a Boshernitzan subshift, let (X', S") be a p-periodic
subshift, and define (2, T) = (X x X', § x §').
a. The number of T-minimal components of Q2 is precisely s(p) = s(p, X, §),
the number of S?-minimal components of X (cf. Def. 2.1.2). We denote the
T -minimal components of 2 by Q1, ..., Qy(p)-

b. Let f be locally constant on X x X', and consider the associated family of
Schrodinger operators Hy, = A 4V, with Vi, as in (1.1.4). Foreach1 < j <
s(p), there exists a compact set Xj such that o (Hy) = Xj foreveryw € Q;. In
particular, there are no more than s(p) distinct sets that may arise as spectra
corresponding to operators H,, with> o € Q.

c. Foreveryl < j <s(p), one has the following dichotomy. Either V, is periodic
forall w € Qj or X; is a Cantor set of zero Lebesgue measure.

Remark 3.1.8. One can have examples in which V,, is periodic for w in one minimal
component but not every minimal component. Consequently, this provides examples
for which 3; is a Cantor set and Xy, is a finite-gap set for some j and for some k # j;
see Remark 3.2.6.

As a consequence of our work in the present section, we deduce the following
characterization, which may be of independent interest:

Theorem 3.1.9. Let (X, S) be a Boshernitzan subshift, let (X', S") be a p-periodic
subshift, and let s(p) = s(p, X, S) be the number of S?-minimal components of X
(cf. Def. 2.1.2). The following are equivalent:

a. the system (X x X', T') is (topologically conjugate to) a Boshernitzan subshift
b. (X x X', T) is minimal;

?Later on, we will abbreviate this observation by writing #{0'(Hy,): @ € Q} < s(p).
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c. s(p)=1;
d. (X, S) has no eigenvalues of the form ¢*™k/P gside from the trivial eigen-
value 1.

In the following, let p denote the period of points in X’. Then, (X x X', T) is
topologically conjugate to a discrete suspension of (X, S7) with constant height p,
which explains why we focus on properties of (X, $”) forn € N. Let us expand a bit
on this connection.

Lemma 3.1.10. Ler (X, S) be a Boshernitzan subshift and X' be a periodic subshift of
period p. The action of T on X x X' decomposes into minimal components. The num-
ber of T-minimal components in X x X' coincides with the number of S?-minimal
components in X.

Proof. Letm = s(p,X, S) be the number of S ?-minimal components in X. We define
an equivalence relation on X by x ~ y if and only if x and y are in the same S”-min-
imal component. Equivalently, x ~ y whenever y is in the S#-orbit closure of x. For
(x,x), (y,y) € X x X/, let us denote (x, x") ~ (y,y’) if (¥, y’) is in the T-orbit
closure of (x, x'). Fixing x* € X/, every point in X x X is of the form T/ (x, x*) for
some 0 < j < p—1and x € X. We obtain

T/ (x,x*) ~ Tk(y,x*) — (x,x")~> (y,x5)
— X~y
— Tk(y,x*) ~ T (x, x%),

showing that ~» is an equivalence relation on X x X'. Further, the calculation above
reveals that the equivalence classes satisfy [T/ (x, x*)] = [(x,x*)] forall 0 < j <
p — 1 and that they are in one-to-one correspondence to the equivalence classes in X.
By definition of ~», the equivalence classes [(x, x*)] are T-minimal components. m

Our next goal is to show that (X, $™) satisfies the Boshernitzan condition on
each minimal component. To this end, we interpret (X, S™) as a subshift over the
alphabet A=Em (X). The legal words of length k in this alphabet are given by
L = A N LX) = L,k (X). That is, there is a topological conjugacy from (X, $™)
to a subshift (X, §) over the alphabet # defined by

Xaxn—>¢(x)€a:\:z,

where (@(X))k = X[km,k+1)m—1]-

Lemma 3.1.11. Let (X, S) be a Boshernitzan subshift and let m € N. Each S™-min-
imal component of X satisfies the Boshernitzan condition.
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Proof. Letg = s(m,X, S) and write X = X; U --- U X, as a disjoint decomposition
of X into S”-minimal components, as provided by Fact 2.1.3. For 1 < j < g, the
rescaled restriction p; = gi|x; is an S™-invariant probability measure on X;. Since
the minimal components are clopen sets, there is a minimal distance separating them.
Hence, there exists a kg € N such that for all k > kg, the set fk splits into the disjoint
union £ = £x Xppu---u efk(Xq). That is, for u € £, the set [u] is completely
contained in one of the S™-minimal components. For such k, we find

(k) = min{u; [u]:u € (X))}
= gmin{uful:u € £,(X;)}
> gmin{uful:u € £, (X)}
= g p(mk). (3.1.11)

Since (X, §) is assumed to be a Boshernitzan subshift, Lemma 3.1.5 gives

limsupk - u(mk) > 0,

k—o0

Combining this with (3.1.11) gives us

limsupk - W (k) > limsup gk - p(mk) > 0,

k—o0 k—o0

which concludes the argument. ]

Interpreting (Y, T') as a (discrete) suspension of (X, $™), we find that an analo-
gous statement holds for this system. An alternative proof is given below.

Corollary 3.1.12. Each T -minimal component in (Y, T) satisfies the Boshernitzan
condition.

Proof. Letu € £(Y) be a legal word of length k € N and denote by u; = 71 (u) and
U, = m,(u) the projections to £(X) and £ (X’) respectively. Hence, [u] = ¢~ ([u1] x
[u2]) and therefore, since v = x ', (v o @)[u] = w[u1]p' [uz] = w[u1]/ p for k large
enough that [u5] is a singleton in X'. Again, for large enough &, the cylinder set [u] is
contained in precisely one 7-minimal component and property () is inherited from
(X, S, n. [

We are now in a position to prove some of our main results.

Proof of Theorem 3.1.7. By Lemma 3.1.10, X x X’ has s(p) distinct 7-minimal com-
ponents, which proves (a). By minimality and continuity of f, o0 (H,) is constant on
each minimal component of 7', and thus there are at most s(p) sets that can arise as
0(H,) for w € X x X/, proving (b).
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By Corollary 3.1.12, each minimal component of (X x X', T') is topologically
conjugate to a Boshernitzan subshift. By our assumptions on f, the restriction of f
to each minimal component is locally constant. In view of these observations, the
conclusion of part (c) follows from [28, Theorem 2]. [ ]

Proof of Theorem 1.2.1. With notation as in the statement of the theorem, let X’
denote the set of translates of Ve, which is clearly a p-periodic subshift. The result
follows from Theorem 3.1.7 by choosing the sampling function f(x,x’) = f1(x) +
x'(0). If Viy 4 Vper is periodic, so is Vy and hence every translate of V) is also peri-
odic. Thus, the dichotomy for the minimal components in Theorem 3.1.7 yields the
claimed dichotomy for x € X. ]

Proof of Theorem 1.2.2. Similar to Theorem 1.2.1, this follows from Theorem 3.1.7
by letting X’ denote the set of translates of A, and choosing sampling functions of
the form f(x,x") = x'(0) - f1(x). [

Remark 3.1.13. Unlike in Theorem 1.2.1, the (a)periodicity of Ap.Vx may depend
on x. This is most easily seen for the case in which X is the period-doubling subshift,
which is generated by the substitution ©: a — ab, b +— aa over a binary alphabet
A = {a,b} C R. Define f; to be evaluation at the origin and

1 ifniseven,

Aern =
per () {0 if 1 is odd.

The reader can check that the pointwise product Ape,Vy is periodic for some, but not
all x € X.

Let us recall that the subshift X associated to a substitution 1%: A — 4™ may be
defined as

Xy = {x e AZ:foralln € Z, k € N, X[nn+k—1] <" (a) forsome m € N, a € 4},

that is, X is precisely the set of sequences whose finite subwords may be found in
words of the form 9™ (a) with a € .

Proof of Theorem 3.1.9. (a) = (b) is trivial, and (b) = (a) is a consequence
of Corollary 3.1.12. One has (b) <= (c) by Lemma 3.1.10.

Since topological eigenvalues comprise a subgroup of the unit circle, one can
check that e2™*/P is an eigenvalue if and only if €2*/? is an eigenvalue whenever
gcd(k, p) = 1. Thus, (¢) <= (d) follows from Proposition 2.1.7. [ ]

The number of distinct spectra that can arise in the present setting is bounded
above by the number of minimal components of (Y, 7’), which can be related to
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topological eigenvalues of (X, S) via Lemma 3.1.10 and Proposition 2.1.7. We con-
clude the present subsection by showing that the requirement for the eigenvalues to
be topological is automatic for Boshernitzan subshifts.

Proposition 3.1.14. Let (X, S) be a Boshernitzan subshift with unique invariant mea-
sure . Givenm € N, let X1, ..., X, denote the S™-minimal components of X. The
S™-ergodic measures on X are given by the set

{anlx,:1<j <q}. (3.1.12)
In particular, s(m) = s'(m) and (X, S™) is minimal if and only if it is uniquely ergodic.

Proof. By S-invariance of pu, we have u(X;) = 1/q for all 1 < j < g. Further,
S™(X;) =Xj forall 1 < j < q because ¢q divides m. Hence, each of the measures

Wi = q [lx;

is an S™-invariant probability measure on X. Since X; and Xy, are disjoint for j # k,
one has p; L uy for j # k. Let o be an arbitrary, S -invariant measure on X. By
Lemma 3.1.11, the system (X, $™|x;, 44;) fulfills the Boshernitzan condition and is
therefore uniquely ergodic for all 1 < j < g. Hence, the restriction of ¢ to X; is a
multiple of p; forall 1 < j < g. This implies that the set {t;: 1 < j < g} coincides
with the set of extremal points in the space of S™-invariant probability measures on
X and hence with the set of S -ergodic measures thereupon. ]

The following consequence of Proposition 3.1.14 is of interest in its own right.

Corollary 3.1.15. Let (X, S) be a Boshernitzan subshift with unique invariant mea-

2mic

sure |L. Every eigenvalue e of (X, 8, ) witha € Q is a topological eigenvalue of

(X, S).

Proof. Without loss of generality, we assume « > 0 and write « = m/n withm,n €
N and m, n relatively prime. Then, e?™¢

e2m/n

is a (topological) eigenvalue precisely if
is a (topological) eigenvalue. Hence, we may assume o = 1/n. If e27/7 is
an eigenvalue, then s'(n) = n due to Lemma A.2. Since the number of S”-minimal
components and S”-ergodic measures on X is the same by Proposition 3.1.14, we
find s(n) = s'(n) = n. With Lemma 2.1.6 we conclude that ¢>*/” is a topological
eigenvalue. ]

Let us emphasize that this result does not extend to irrational eigenvalues. In [13,
Section 6] the authors construct an explicit example of a linearly recurrent subshift
that has non-topological (irrational) eigenvalues.
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3.1.2. Reflection symmetries. In general, points in different minimal components
(X x X', T) can give rise to the same spectrum. We illustrate this in the case that
X and Y have some reflection symmetries. We define the reflection operator Ry at
position k € %Z via

Ri(x)j = xok—j forall j € Z, (3.1.13)

with a similar definition for Ry on & = X x X’. By a short calculation we obtain
StoRg =Ry—gj» =RgoS ‘forall{ € Z, k € 17Z. Let us say that f:Q — R is
reflective if it is locally constant and the window function g can be chosen to satisfy
g(wR) = g(w) where (w; ... wy)® = wpwy—_; ... w; denotes the reflection of the
word w.

Lemma 3.1.16. For every w € X x X' and k € %Z, we have o (Hy, (»)) = 0(Hy)
for any reflective sampling function. Indeed, H,, and Hy, () are unitarily equivalent.

Proof. Suppose f is reflective, and write

f() = glowm...0n4e-1)

for a window function g: A¢ — R satisfying g(w®) = g(w). Define k' = k — ¢ where
c=m+ e%l € %Z denotes the center of the window. The reader can check that the
operator Uy/: {2(Z) — €*>(Z) given by [Ux ] (n) = ¥ (2k’ — n) is a unitary involution
satisfying Uk/ Ha, Uk/ = HRk(w)- Indeed, one has Uk/AUk/ = A and Uk/ Vw Uk/ =
Ry’ Vi». The assumption on f and the choice of k’ yields Vg, (») = R’ V. Indeed,
by our choice of k' and our assumption on g, we have

R Vol(n) = f(T? 7"w) = g(@|ak—ntm 2t—ntm+-1)
= g(w|[2k—n—m—e+1,2k—n—m])
= g(a)|l[{2k—n—m—€+l,2k—n—m])
= f(T" Ry w)
= Vry () (1)

which concludes the proof. |

Example 3.1.17. Assume that X is the Thue—Morse subshift arising from the primi-
tive substitution ¢:a +> ab, b > ba and that X’ is 2-periodic. Since s(2) = 2 (compare
Example 3.1.22), the system (X x X', T') has two minimal components. For an arbi-
trary x’ € X/, we have Ro(x’) = x’. Consider

x* = lim ...9%"(a)9*"(a).9*"(a)9*"(a) ... (3.1.14)

n—>oo

= ...abbabaabbaababba.abbabaabbaababba. . ., (3.1.15)
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which is a fixed point under 2. Since both 1% (a) and 2 (b) are reflection symmetric,
the same holds for 2" (a) for all n € N. Hence, R_; /2(x*) = x* (recall that the dot
in (3.1.14) separates positions —1 and 0) and therefore Ro(x*) = S~ !x*. Because
(x*,x") and Ro((x*, x")) = (S~ 'x*, x) belong to different 7-minimal components,
Lemma 3.1.16 implies that o (H,,) is independent of w for any choice of reflective
sampling function.

In the following, we investigate this phenomenon in a more systematic fashion.

Definition 3.1.18. For a minimal subshift (X, §), the following are equivalent
(1) There are k € %Z, x € X such that R (x) € X.
(2) Re(X) =X forall k € 3Z.

When these statements hold, we say that X is reflection symmetric.

Suppose now that both X and X’ are reflection symmetric. Because X’ consists of
a single finite orbit, this implies that Ri (x’) coincides with a shift of x’ for every k €
%Z. Consequently, there exists a point x” € X’ and k € {0, 1/2} such that R (x") = x.
Let p be the period of X'.

Lemma 3.1.19. Suppose (X, S) is a minimal subshift, p € N, m = s(p), and let
X1,..., X, denote the SP-minimal components as in Fact 2.1.3. The reflection oper-

ator Ry acts as a reflection on the tuple (X1, ..., Xy,) in the sense that there exists
le %Z N1, mTH] such that

R (X)) = Xot—jmoam forall1 < j <m. (3.1.16)

Proof. For notational convenience let us define X; := X 0qam foralli € Z. Let x €
X and let r € {1,...,m} be such that R;(x) € X;. Define £ = (1 + r)/2.For 1 <
j <mand y € X, there exists a sequence (n;);en such that S""+/=1x — y as
i — oo (because S/7!x € X; and X, is S”-minimal). Applying Ry, we obtain

STHMTIHIRL (x) — R (3),

as i — oo. This implies that Rg(y) is in the same S™-minimal component as
ST/HTIR(x) € ST/TN(X,) = X,—j41. Since r = 2¢ — 1, we have Ri(y) € X ;.
Hence, R (X)) € X4 ;. By the same argument R (X5¢_;) € X and the claim fol-
lows. ]

This symmetry relation between the minimal components reduces the upper bound
for the number of different spectra roughly by a factor 1/2. A careful case distinction
on the parity of m and on whether £ € Z or £ € Z + 1/2 yields the following as a
corollary of Lemma 3.1.16 and Lemma 3.1.19.
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Proposition 3.1.20. In the setting of Theorem 3.1.7 assume that both X and X' are
reflection symmetric. Let k € {0, 1/2} be such that Ry (x") = x' for some x" € X'.
Then,

s(p) +1)/2 if s(p) € 2N — 1,

Ho(Ho)o € X3 = { S(p)/2+8(k.p) if s(p) € 2N,

where §(k, p) = 1 if there exists an x € X such that Ry (x) is in the same S? -minimal
component as x and §(k, p) = 0 otherwise.

Proof. The spectrum is constant on every T-minimal component of X x X’. These
are of the form X; x {x'}, with 1 < j < m and m = s(p). Since we have assumed
Ry (x") = x', it follows by Lemma 3.1.19 that there is £ € 2Z N [1, 2] with

Rk(Xj X {X/}) = Xzf—j modm X {X/},

for all 1 < j < m. By Lemma 3.1.16, the spectrum is the same on X; x {x’} and
X2¢—j moam X {x}. Hence, the number of different spectra is bounded from above by
the number of orbits of the map

re: j = 20 — j modm,

on the cyclic group with m elements. Each of these orbits has either one or two ele-
ments. The number j is a fixed point of r; precisely if

j=£Lmodm or j=€—|—%modm,

If m is odd, this condition has precisely one solution, that is, there is precisely one
fixed point of r;, and hence the number of r;-orbits is given by (m + 1)/2. If m is
even, there are either two fixed points or no fixed point, depending on whether £ is an
integer or not. The former is the case if and only if there is x € X such that Ry (x)
and x belong to the same SZ-minimal component. In this case, the number of distinct
rg-orbits is given by (m + 2)/2. Otherwise, every orbit of r; has precisely 2 elements,
such that the number of orbits is given by m /2. |

3.1.3. Examples and applications. We consider the function s(p) for several promi-
nent classes of Boshernitzan subshifts (X, S).

Example 3.1.21. Assume that (X, §) is totally ergodic. Then, s(p) = 1 forall p € N,
so (X x X', T) is a Boshernitzan subshift for all periods p. One prominent example
of a totally ergodic system is the Fibonacci subshift. This can be seen from the fact
that it can be coded by an irrational rotation on the circle. More generally, every
Sturmian subshift is totally ergodic by the same argument [60]. Sturmian subshifts



Operators generated by product systems 1681

will be discussed in more detail in Section 3.2.3. Finally, one also has s(p) = 1 for
all p e N if (X, S, n) is weak mixing.

Example 3.1.22. Assume that (X, S) is the subshift associated to a primitive sub-
stitution ¥ of constant length £ > 2 on the alphabet 4. That is, | (a)| = £ for all
a € A. Letlq,..., £, be the prime factors of £. Recall that we assume (X, ) to be
aperiodic. The discrete dynamical spectrum of (X, S) was completely characterized
in [32]. There is a number 1 < h < #4A, coprime to £, with the following property. For

every p € N, we have
s(p) = 44! .. 4fr iR

where j1,...,jr € Ny and k € Ny are maximal with the property that E{‘ .. .Kf"hk|p.
An algorithm to determine /# was given in [32, Remark 9]. If +4 is a binary alphabet,
we have i = 1. In this case, (X x X/, T') is a Boshernitzan subshift precisely if £
and p are coprime. In particular, this applies to the Thue—Morse substitution and the
period-doubling substitution whenever p is odd.

For general primitive substitution subshifts, characterizing the group of eigenval-
ues is more subtle. Following the seminal paper by Host [49], several characterizations
of eigenvalues and criteria for special cases have been proposed. We present a small
selection. A general algebraic characterization of rational eigenvalues was given in
[40, Proposition 2].

Before we continue, let us introduce some notation.

Definition 3.1.23. Given a substitution ¢, let M denote the corresponding substitu-
tion matrix, that is, M, = |0(b)|, for all a, b € A, where |w|, denotes the number
of occurrences of a in the word w.

Given a primitive substitution, let A; denote the Perron-Frobenius eigenvalue of
M (i.e., A1 > 1 is real and strictly the largest eigenvalue in absolute value) and A,
the second largest eigenvalue in absolute value. The following was shown in [53,
Theorem 1.2].

Proposition 3.1.24. Suppose that |A2| > 1. Then, (X, S) is topologically mixing if
and only if gcd({|9" (a)|:a € A}) = 1 foralln € N.

Since topological mixing implies weak mixing, we find that in this case (XxX/,
T) is a Boshernitzan subshift, irrespective of p. For a recent result, characterizing
the rational eigenvalues in the case of proper primitive substitutions, compare also
[36, Lemma 10].

Example 3.1.25. An interval exchange transformation (IET) on X = [0, 1) is defined
by a choice of a permutation 7 on {1,2,...,n} and A = (41,...,4,) € R’ such
that A; + .-+ A, = 1. Given such a 7 and A, the associated IET, S = S ;, acts on
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X by partitioning X into n intervals where the j-th interval has length A; and then
rearranging those intervals according to the permutation 7. More precisely, defining

k—1
k=Y _Aj. l<k<n+1,
j=1

w(k)—1
Ge= Y Agmiy. 1<k <=n,

j=1
(where empty sums vanish by convention), one puts
Sx=x—cp+¢& forexg <x<cpgr, 1 <k <n. (3.1.17)

One says that the permutation 7 is irreducible if there is no 1 < k < n for which
7({1,2,...,k}) = {1,2,..., k}. Without loss of generality, one restricts attention to
irreducible . In this case, Veech showed that S is totally ergodic for (Lebesgue)
a.e. A [74]. In particular, almost every IET satisfies s(n) = 1 for all n € N. Further-
more, almost every IET satisfies the Boshernitzan condition (in the sense that the
subshift associated to the natural coding of (X, S ) satisfies (B)) [9]. In particular,
the results of the present paper apply to Schrodinger operators defined by almost every
IET with periodic background of any period.

An interesting class of subshifts for which the function s(p) can be made explicit
is the class of Toeplitz subshifts. These are particular symbolic extensions of odome-
ters. We give a brief sketch of this connection and refer to [35] for a comprehensive
review on this topic. An odometer is defined via a scale t = (¢,)nen of natural num-
bers such that #,, divides t, for all n € N. The corresponding odometer is given by
the inverse limit

o0
7(t) = {(m,,)neN € l_[ Zy,:mp = Mpyy1modt, foralln € N}. (3.1.18)

n=1

Equipped with the normalized Haar measure v on the topological group Z(¢) and the
map t: Z(t) — Z(t),
(tm), = my + 1 modt,,

forall n € N, the system (Z (), t, v) is strictly ergodic. The multiplicity function of an
odometer Z(t) assigns to each prime number p a multiplicity «(p) € N U {co} which
is the supremum over all k such that there is n € N with p* dividing #,. Two odome-
ters are isomorphic precisely if they have the same multiplicity function. Another
useful characterization of the multiplicity function is that «(p) is the supremum over
all k € N such that e27/7" is an eigenvalue of (Z(¢), 7, v). Note that for odometers,
all eigenvalues are topological eigenvalues; compare the discussion in Remark B.13.
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Hence, due to Proposition 2.1.7 the value of the multiplicity function x(p) coincides
with the multiplicity £,, alluded to in Fact 2.1.4. That is,

s(ph) = min{p*, p<@P}, (3.1.19)

for every prime number p. A subshift (X, .S) is called a (topological) extension of the
odometer (Z(t), t) if there exists a factor map : X — Z(t), that is, a surjective and
continuous map satisfying 7 o § = v o & on X. Such an extension is called almost
1-1if there is a dense set of points z € Z(t) such that 77! (z) is a singleton.

Definition 3.1.26. We call a subshift (X, S) a Toeplitz subshift if it is minimal and an
almost 1-1 extension of an odometer (Z (), 7).

In this case, the odometer (Z(¢), 7) is the maximal equicontinuous factor of (X, §);
compare [41, Chapter 1] for details on this notion. In particular, both systems share the
same group of topological eigenvalues and hence the same function s(n). Not every
Toeplitz subshift is a Boshernitzan subshift [62]. In the next section, we therefore
restrict our attention to the more special class of simple Toeplitz subshifts on a binary
alphabet 4, as these are known to satisfy the Boshernitzan condition [62, Proposi-
tion 4.1].

3.2. Exclusion of eigenvalues

At present, it is unclear to us whether the addition of a periodic potential can alter
the property of permitting Schrodinger eigenvalues. We therefore check which of the
known criteria for excluding eigenvalues are stable under periodic perturbations.

3.2.1. Uniform absence of eigenvalues: simple Toeplitz subshifts. We borrow
some notation from [62]. Let A C R be a binary alphabet and s = (bg, ng)ren a
coding sequence, with by € + and ng > 2 for all k € N. Recursively, we define
151 = bl and

Wier1 = W by bt 3.2.1)

for all k € N. Since Wy is a prefix of Wy for all k € N, there is a well-defined limit

x(s) := lim wy (3.2.2)
k—o0
in AN . The minimal subshift
X(s) = {x € AL x[j 1 < x(s) forall j <k} (3.2.3)

is called the simple Toeplitz subshift corresponding to s. Every point in X(s) is called
a simple Toeplitz sequence. We make the non-triviality assumption that (bg)ren is
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not eventually constant. This ensures that X(s) is non-periodic. In fact, up to a mod-
ification of the sequence (ny)ren, there is no loss of generality in assuming that the
sequence (by)ren is alternating. That is, we assume by # b1 forall k € N,

Remark 3.2.1. The subshift (X(s), S) is indeed a Toeplitz subshift as defined in
Definition 3.1.26. In fact, it is an almost 1-1 extension of the odometer (Z (), 7),
with scale ¢t = (tx)ren, given by f; = ]_[;;1 nj, for all k € N. Hence, for every
prime p and £ € Ny,

s(p") = min{p*, p*¥},
where k(p) is the total number of times (counted with multiplicities) that p appears
as a factor of ng, as we vary k € N.

Let us write U, for the word that emerges from Wy, by exchanging the last letter by,
with the unique letter b, € A \ {b¢}. By construction, every w € X(s) can be written
as a concatenation of the words Wy and ¥, for every level k, where two occurrences
of U are separated by at least ny — 1 occurrences of wy. In fact, by (3.2.1) and the
assumption that (bg )xen i alternating, we have

1

wk+1 = ﬁzk_ ﬁk and ﬁk+1 = 1'172" (324)

We combine this structure with a p-periodic background potential, where we
assume that p is in some sense commensurate with the Toeplitz structure.

Definition 3.2.2. We call a number p € N commensurate with a coding sequence
s = (ar,ng)ken if there is a number ko € N such that p divides 7, = ]_[i(’zl np.

This is the case precisely if s(p) = p, compare Remark 3.2.1. In the following, let
Q(s, p) = X(s) x Zp, equipped with the map T: (x, m) — (Sx,m + 1). Naturally,
arithmetic in the second coordinate is performed modulo p. Within this section, we
assume that the sampling function f is locally constant of window size one. Shifting
if necessary, we may assume without loss of generality that f is of the form

Sx,m) = g(xo,m) (3.2.5)
for some function g: #4 x Z, — R. Thus, for all (x,m) € Q(s, p) andn € N,
V(x,m)(n) = g(xn’ m —+ n).

In the following, it will be convenient to regard (s, p) as a subshift over the alphabet
A’ = A x Z,, where we define for v = (x,m) € Q(s, p), with some abuse of notation

wp = (Xp.m +n) €A,

for all n € Z. With this convention, V,,(n) = g(wp).
The following theorem is the main result of this section.
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Theorem 3.2.3. Let X(s) be a simple Toeplitz subshift over a binary alphabet A,
assume that p € N is commensurate with s, and suppose that f is of the form (3.2.5).
Then, for all w € Q(s, p), the Schrodinger operator H,, has no eigenvalues.

To the best of our knowledge, this result is new in the stated generality, even if the
periodic background is dropped. We therefore explicitly spell out the case p = 1 asa
corollary.

Corollary 3.2.4. Let X(s) be a simple Toeplitz subshift over a binary alphabet A CR.
Then, for all x € X(s), the Schrodinger operator Hy with potential Vy.(n) = x, has
no eigenvalues.

Corollary 3.2.4 was known in the case n; = 2, which corresponds to the period-
doubling subshift [20]. On the other hand, if n; > 4 for all k € N, uniform absence of
eigenvalues follows from [62, Theorem 1.3]. Hence, Corollary 3.2.4 builds a bridge
between those cases of simple Toeplitz subshifts on a binary alphabet where uniform
absence of eigenvalues is already known to hold.

Another consequence of Theorem 3.2.3 is that periodic decorations of sequences
in the period-doubling subshift cannot produce Schrodinger eigenvalues if the period
is a power of 2. Again, we assume that f is of the form specified in (3.2.5).

Corollary 3.2.5. Let ¥:a + ab, b — aa be the period-doubling substitution and
Xy, S) the corresponding subshift. Assume that p = 2" for some n € Ngy and
QD p) = Xy x Zp. Then, for every w € Q(V, p) the Schrodinger operator Hy, has
no eigenvalues.

Proof. 1t is straightforward to verify that Q(9, p) = Q(s, p), with coding sequence
s = (b, 2)ken, Where boy_1 = a and by = b for all k € N. Indeed, an induction
argument shows that the pair W ,; = 9% (a) and U, = 0¥ (b) satisfies the defining
relation in (3.2.4) for all k € Ny. n

Recall that s(p) = p whenever p is commensurate with s, and so (Q2(s, p), T)
decomposes into precisely p minimal components, each given by the T -orbit closure
Q(s, p)m of (x*,m), form € Z, and some fixed x* € X(s). For the sake of definite-
ness, let us choose x* such that it coincides with x (s) on N. Without loss of generality,
we restrict our attention to (2(s, p)o, T'). The structure of points in (s, p)o is inher-
ited from the original Toeplitz structure. More precisely, the point (x*, m) starts with
the word wg, given by

(Wi)m = (Wx)m,m),

forall k € N and 1 < m < |wg]|. This corresponds to a p-periodic decoration of the
word wg. Since p is assumed to be commensurate with the coding sequence s, there
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exists a number k¢ € N such that p divides |wy| for all k > k. For such k, the relation
W1 = wzkalzlakﬂ (3.2.6)

is inherited from (3.2.1), where ay = (bg, p) for all k > k. Similarly, we obtain

1

Wi = w5 v and vy = wik, (3.2.7)

for all k > k¢ from (3.2.4), where v; emerges from wy by exchanging the last letter
ax = (b, p) with @}, = (b}, p).

Remark 3.2.6. Note that V,, is periodic for all € Q(s, p)¢ precisely if g(bg, p) =
g(b]’c, P), in which case o (H,,) is a union of intervals. More generally, V,, is periodic
for w € Q(s, p)m precisely if g(by,m) = g(b,,m). Note that it is possible to choose
g such that this property holds for some, but not all m € Z,. In this case, 0 (H,) is a
Cantor spectrum of Lebesgue measure O for some, but not all w € Q(s, p). However,
this effect cannot occur if g is of the form g(b, m) = g1(b) + g2(m).

A central tool in the study of spectral properties of H,, is the trace map. For E € R
and a € A, we define

Mg(a) = [E —8(@) _1] (3.2.8)
1 0
and foraword w = ay ...a,, let
MEg(w) = Mg (ay) ... MEg(ay). (3.2.9)
Let us define
Xp = Xk (E) = Tr Mg (wi),  yi = yk(E) = Tr Mg (vg). (3.2.10)

This is related to the cocycle notation introduced in Section 2.3 via
Mg(wy) = A" @), keN,

where w = (x*,0).
We denote by (S,)renN, the sequence of Chebyshev polynomials, given by

So(x) =0, Si(x) =1, Spt1(x) = x85(x) — Sp—1(x).
Lemma 3.2.7. For every k > ko, we have

Xk+1 = Snp (X)) Y — 28n,—1(xk), (3.2.11)
YVi+1 = Sy X)Xk — 28, —1(xk). (3.2.12)

In particular,
|Xk+1 = Vi1 = [Sng (i) Xk — Yiel- (3.2.13)
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Proof. Foralln € N, and A € SL(2, R) we have the relation
A" = S (Tr A)A — Sy—1(Tr A)I

by Cayley—Hamilton and induction, where [ is the identity matrix. Using (3.2.7), this
yields

Virr = Tt Mg (vi1) = Tr ME (W) = Sy () Xk — 280, —1(Xk),

proving (3.2.12).
Recall that wy ends in ay. Let a}c be the last letter of vg. Then,

Mg (wes1) = Mg (Wi o)
= Mg (ap) Mg (ar)™ Mg (wi)"*
= Sy (k)ME (vic) = Sny—1(xk)ME (aj) Mg (ax) ™",
By a direct calculation, Tr Mg (a]/()ME (ax)~! = 2, and thus (using (3.2.7) again) we
have
Xie+1 = Tr Mg (Wit1) = Sy (X)) Yk — 28, —1(xk),
proving (3.2.11). ]

Proposition 3.2.8. Assume that x;(E) = yr(E) for some k > kg. Then, for every
sequence @ € (S, p)o, the number E is not an eigenvalue of H,.

Proof. Letk > ko andleta = g(ax),a’ = g(ay,), where a; denotes the final letter of
wg. On the level of transfer matrices, the variation in the right-most location between
wy and vg is modeled via

Me@Me@™ =y 7]

0
Thus, if
apy aip
Mg (wg) = [ ]
az1 dzp
we obtain

1 a—dlla1q1 a1z
Mg (v) = S
£ (00) [O : }[
. |:a1,1 +(a—ad)ay aip+ (a— a’)az,z]
as azp '

The two traces are therefore

xp(E) =ai +azp
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and

Vi(E) = a1, + (@ —a)az, +aza.
If a = d’, the sequences V,, with w € Q(s, p)o are in fact periodic and hence do not
permit Schrodinger eigenvalues. If a # a’, x; (E) = yr(E) requires that ax 1 = 0. In
the case a,; = 0, the two matrices take the form

e =[5 4]

and

ap, aip+ (a—a')as,
N

and hence an arbitrary product of n such matrices will have the form

n
a |-
0 ajs,

It follows also in this case that the energy in question is not an eigenvalue for any
element of the subshift: if |a;,1| = |as»|™! # 1, then the cocycle (T, Ag) (cf. Sec-
tion 2.3) is uniformly hyperbolic and the energy is not in the spectrum by Johnson’s
theorem; and if |a1,1| = |a2.2|~! = 1, then transfer matrices of this kind obviously do
not admit any decaying solutions, and in particular no square-summable solutions. m

The following is a mild adaptation of a corresponding result on simple Toeplitz
sequences in [62].

Proposition 3.2.9. If £ € 0(H,), it follows that |xi(E)| < 2 for infinitely many
k eN.

Sketch of proof. This is essentially [62, Proposition 3.1]. The interested reader can
verify that all the arguments leading to this result rely on the fact that the recursion
relation (3.2.6) remains true for large enough k € N. ]

For most simple Toeplitz subshifts, the conclusion in Theorem 3.2.3 can be derived
from a combination of the 3-block and the 2-block Gordon lemma, similar to the dis-
cussion in [20].

Lemma 3.2.10. Let s = (ag,ny) be such that ny, # 3 for infinitely many k € N. Then,
for all w € Q(s, p), the Schrodinger operator H,, has no eigenvalues.

Proof. Without loss of generality, let @ € Q(s, p)o. For the sake of establishing a
contradiction, assume that £ € R is an eigenvalue of H, with eigenfunction ¢ €
0%(Z). Let k1 > k¢ be arbitrary. Due to Proposition 3.2.9, there exists a k > k; such
that |xx (E)| < 2. Consider the decomposition of @ into words of the form wy and vg.
Let us use the symbol ~ to note the location of the 0-th position. We proceed by cases.
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Case 1. Assume that around the origin,  is of one of the forms wy wy Oy, wrwy Wy,
Wk Wg W, O Wi Wi Vg In each of these cases, we can apply the 2-block Gordon crite-
rion to conclude that v, is of order 1 for some n € Z with [n| > |wg, |.

Case 2. If Case 1 does not hold, then @ must have one of the following forms near
the origin: vgwy Ux, VWiV Or v wy Wy vk (recall that vy s cannot be adjacent and
indeed must be separated by at least ny — 1 occurrences of wg). In each of these
cases, @ has the form wy41Wg41 near the origin. We can apply the 3-block Gor-
don lemma and reach the same conclusion as in the last case, unless w has the form
Uk 41 Wk 41 Wk +1Vk+1- Note that this requires w to be of the form wy Wy, near the
origin, which we can use to see nx4; = 3. We can repeat the same reasoning until we
reach a level r > k with n, # 3. For this level, the structure v, w, W, v, is not possible
and we can apply the 3-block Gordon lemma. In every case, v, is of order 1 for some
n € Z with |n| > |wg, |.
Since ky was arbitrary, we reach a contradiction to the assumption that ¥ € £2(Z).
[

In view of Lemma 3.2.10, what remains is to handle the case in which (ny)ren
is eventually identically 3. We treat this remaining case by a centered version of the
2-block Gordon lemma. The following lemma does not require the subshift setting.
Thus, we work with an arbitrary sequence w € RZ%, and the associated potential is
simply V,,(n) = wy. For this lemma, simply define Mg by (3.2.8) and (3.2.9) with
g(a) =afora e R.

Lemma 3.2.11. Let o € RZ and suppose there exists a strictly increasing sequence
of natural numbers (Ny)meN Such that

W[—ny,—1] = @[0,n,,,—1]5 (3.2.14)

forallm € N. For E € R, m € N, let x,;,(E) = Tr Mg (w[0,n,,,—1])- If

> lxm(E)? = oo, (3.2.15)

meN

then E is not an eigenvalue of H,.

Proof. For the sake of establishing a contradiction, assume that ¥ € £?(Z) is an eigen-
function of H,, for the eigenvalue E. Let U(n) = (Y, Y—1) ' for all n € Z, and
Mm = MEg(w[o,n,,—17) for all m € N. Note that

M W () = W(0) = MW (—n,,) forallm e N
by (3.2.14). Then, due to the Cayley—Hamilton theorem,

V(nm) + Y(—nm) = xm(E)¥(0).
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Normalizing v according to || (0)|» = 1, and using 2|a|? + 2|b|?> > |a + b|?, this
yields

1
|w—nm|2 + |w—nm+1|2 + |an|2 + |1//nm-i—1|2 > §|xm(E)|2 (3-2-16)

Without loss of generality, we can restrict (n,,)meN to a subsequence such that
Nm+1 > Ny + 1 for all m € N. We then obtain by (3.2.16),

20917 = Y lxm(E)[? = oo,

meN
in contradiction to ¥ € {2(Z). |

Lemma 3.2.12. Let s = (ay, nyx) be such that ny = 3 for all k larger than some
k1 > ko. Then, for all w € Q(s, p), the Schriodinger operator H, has no eigenvalues.

Proof. Again, we restrict our attention to the case w € Q(s, p)o without loss of
generality. Assume E € o(H,) is an eigenvalue with corresponding eigenfunction
Y € £2(Z). If w is not of the form v wi Wy vy for all k larger than k1, we can argue
as in the proof of Lemma 3.2.10 and reach a contradiction. Hence, the assumptions
imply that w is of the form vi w Wy v around the origin for all k > k;. This implies

Dflwg|-1,~1] = [0, |wk|-1]>

and the trace of the corresponding transfer matrix is given by xx(E). By Proposi-
tion 3.2.8 and the assumption that E is an eigenvalue, we have x; # yg forall k > k;.
By Lemma 3.2.11, it suffices to show that

> I (E)? = o0 (3.2.17)

keN

in order to obtain a contradiction. For all k > k;, the assumption ny = 3 implies that
the trace map is of the form

Xk1 = (Xg — Dy — 2x¢,
Vi1 = (xg — Dxg — 2xz.

Again, we directly obtain (3.2.17) unless x;z — 0, which we assume in the following.
This yields
2
lim yp = lim K% _ g
k—00 —00 xk —1
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Let k» > kq be such that | x| < 1/2 for all k > k,. For each such k, iterating (3.2.13)

yields
k

2
|Xk+1 — Viet+1| = [Xk, — Vi 1_[ X0 — 1.
m=k»

By xk, yx — 0 we find that log |xx+1 — Yk+1| — —00 as k — oo and, thereby,

k
li log |1 —x2| = —o0.
Jim > Tlog |1 — x| = —o0
m=ky

It is straightforward to verify that log |1 — x2| > —cx2, for some ¢ > 0, due to the
requirement |x,,| < 1/2. Therefore,

o0 1 o0
> lxml? = —2210g|1—x,2n| = o0

m=k» m=k»>
and the contradiction follows. [
Proof of Theorem 3.2.3. This follows from Lemma 3.2.10 and Lemma 3.2.12. ]

Proof of Theorem 1.2.3. This follows from Theorem 3.2.3 by choosing a sampling
function of the form f(x,m) = g(x,, m) where g: A x Z, — R is of the form

g(b.m) = g1(b) + g2(m). L

3.2.2. Almost-sure exclusion of eigenvalues. In this section, we use Gordon’s crite-
rion in order to exclude Schrodinger eigenvalues almost surely for systems that exhibit
a sufficient degree of local repetitions. As always, we work with locally constant sam-
pling functions f.

Definition 3.2.13. Let (X, S, i) be an ergodic subshift. For n € N, let
X(n) = {x € X: X[—n—1] = X[o,n—1] = X[n,2n—1]}-

We say that (X, S, u) satisfies the Gordon condition if limsup,,_, ., (X (n)) > 0.

By general results, every subshift that satisfies the Gordon condition exhibits
almost sure absence of eigenvalues for the associated Schrodinger operators.

Proposition 3.2.14. If (X, S, i) satisfies the Gordon condition, then for any locally
constant sampling function f1:X — R, the operator Hy = A + Vi has purely con-
tinuous spectrum for p-a.e. x € X (with Vy defined in (1.2.2)).
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Proof. Given a locally constant function f7, denote by X.( f1) the set of x € X for
which Hy has purely continuous spectrum, and write

X, := limsupX(n) = () | X(k).
nmee n>1k>n
If X satisfies the Gordon condition, one has (t(X,) > 0. One also has X, € Xc( f1).
This is an immediate consequence of the three-block version of the Gordon lemma
when f has window size one [19,46]. When the window size of f is larger than 1,
the potentials V, may not exactly satisfy the three-block Gordon condition. How-
ever, modifying the potentials in a neighborhood of the boundary of the three-block
structure can repair this at the cost of a fixed multiplicative constant on the size of
the transfer matrices. Since X.( f) is shift-invariant, it follows that X.( /1) has full
J-measure. ]

Recall that we denote by p the period of the subshift (X', S”). In the following, let
o be a fixed but arbitrary ergodic measure on (X x X', T').

Proposition 3.2.15. Suppose (X, S, ) satisfies limsup,,_, o, w(X(pn)) > 0. Then,
the operator H,, has no eigenvalues for p-almost every w € X x X'.

Proof. Let m = s(p) and let Xy, ..., X,, denote the S”-minimal components as
described in Fact 2.1.3. Fix x’ € X’ and define v = u x u’. Every ergodic measure p
on (X x X', T) is of the form p = m v|y,, where

p—1
Y; = U TF(X; x {x'}),
k=0

for 1 < j < m, is one of the T-minimal components of X x X’. Viewing Y; asa
subshift over the alphabet #4 X ', and using that S(X;) = X4 (with indices mod-
ulo m), we find

p—1
Vi (pn) = | Xj4x(pn) x {(8")*x")
k=0

because the pn-periodic block structure of (.S’ )% x’ is automatic. Note that X(pn) =
Uk=1 Xk (pn) as a disjoint union because X can be partitioned into X, ..., X,,.
Hence, (X (pn)) = Y7, w(Xx (pn)). Using w1’ ({(S")*x’}) = 1/p, we obtain

p—1 1 m
P (pm)) = m 37— (s 4 (p) = %% 3 Xk (pn)) = w(X(pn)),
k=0 k=1

which yields lim sup,,_, ., o(Y; (pn)) = limsup,,_, ., #(X(pn)) > 0 and hence for p-
almost every w € X x X’ the associated Schrodinger operator H,, has no eigenvalues
by the Gordon criterion. ]
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One can show that the Gordon criterion holds for substitution subshifts whenever
words generated by the substitution have suitable repetitions. To make this precise,
we define the index of a word u € £(X) by

1
ind(u) = sup{r € HZJ,_:MV € éﬁ(X)}.
U
Recall that rational powers of a word u are defined as follows. For r = n + “% with
neZ4,0<4{<|u|, one defines

u' =u"ur.. . uy.

For substitution subshifts we obtain the following criterion, which is an adaptation
of [29, Theorem 3].

Proposition 3.2.16. Let (X, S) be a substitution subshift generated by a primitive
substitution ¥. Assume that there exists a word u € £(X) with ind(u) > 3 and such
that p divides |9" (u)| for infinitely many n. Then H,, has no eigenvalues for p-almost
everyw € X x X'

Proof. Since the claim is obvious if (X, S) is periodic, we can assume that ¢ is
aperiodic. Let (nx)ren be an increasing sequence of natural numbers such that p
divides |9"k(u)| for all k € N. By Proposition 3.2.15 it suffices to show that
lim supy oo #(X(|9"* (u)])) > 0. Let up be the first letter of ¥ and k € N. Since
uuuug € £(X), the same holds for 9"k (u) "% (u)3"* (u)9"* (ug). This word con-
tains precisely |9"% (1g)| + 1 blocks of the form www, where |w| = |9 (u)|. By the
unique ergodicity of (X, ), it suffices to bound the frequency of (non-overlapping)
appearances of such a pattern in an arbitrary element x € X. A lower bound for this is
given by the frequency of times that (S7x);ez enters the set 9" ([uuuuo)). Denoting
by A > 1 the Perron—Frobenius eigenvalue of the substitution matrix, this is given by

L (o).

O™ (o)) = -

which follows because ¥ is aperiodic and primitive [67, Theorem 5.10 and Corol-
lary 5.11]. Since each j € Z such that S/ x € 9"k ([uuuug]) contributes |3 (ug)| + 1
occurrences of a three block structure with the required length, we get

e
PR @) = 197 o)l (o)) = = O ).

By primitivity, A7k |#"% (uy)| converges to the corresponding entry L,, > 0 of the
left Perron—Frobenius eigenvector L as ny — oo and the assertion follows. |
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Example 3.2.17. Assume that ¥ is a substitution of constant length £ and that p is a
divisor of £ for some m € N. If the index of the associated subshift (X, S), given by
ind(X) = sup{ind(u): u € £(X}, is greater than 3, Proposition 3.2.16 yields almost
sure absence of Schrodinger eigenvalues. This applies in particular to the case that ¢
is given by the period-doubling substitution 9:a + ab, b > aa and p = 2" for some
n € N.

If the substitution matrix M associated to ¥ (cf. Def. 3.1.23) is invertible over the
integers, we get the following consequence of Proposition 3.2.15.

Corollary 3.2.18. Let (X, S) be a substitution subshift for some primitive substitu-
tion ¥ with a substitution matrix M that is invertible over Z. If there exists a word
u € £(X) such that ind(u) > 3 and p divides |u| then Hy, has no eigenvalues for
p-almost every w € X x X',

Proof. Let ®(u) be the abelianization of u, that is ®(u), = |u|, for all a € A. The
length of u is then given by |u| = ||®(u)]||1. By construction, ®(9" (u)) = M" P(u)
and hence |9" (u)| = ||M" ®(u)||; for all n € N. Since M has only integer entries,
M coincides with M v’ modulo p whenever the entries of v and v’ coincide mod-
ulo p. This shows that (M"v),eN, is eventually periodic modulo p for every vector v.
Since M ! also has integer entries by assumption, the sequence (M"v), ¢ is in fact
periodic modulo p. Applying this to v = ®(u) and taking the 1-norm, we find that
(|19" (w)|)nen, is periodic modulo p. Since |u| = 0 modulo p, the same holds for
|9" (u)| for infinitely many n € N, and thus Proposition 3.2.16 yields the desired
result. ]

Example 3.2.19. Let ¢ be the Fibonacci substitution ¢: a — ab, b +> a. The substi-
tution matrix has determinant —1 and is hence invertible over Z. The corresponding
subshift (X, S) is a Sturmian subshift. In the notation of Berstel [7] we have that
" (a) = sy, with directive sequence (1,1, 1,...). By [7, Proposition 4], the index of
1" (a) is larger than 3 for large enough 7. On the other hand, as detailed in the proof
of Corollary 3.2.18, (M" ®(a)),ez is periodic modulo p for all p € N. Since

M™2®(a) = [_ﬂ

it follows that |9 (a)| = (1, 1) M" ®(a) is divisible by p for a lattice of integers n.
Hence, H,, has no eigenvalues for p-almost every w € X x X',

3.2.3. Sturmian sequences. Let @ € (0, 1) be an irrational number with continued
fraction expansion

a =lay,az,asz,...]:=
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For 0 € [0, 1), consider the Sturmian sequences s(«, 6) and 5" («, 0), defined by

sn(a7 0) = X[l—a,l)(na + 0 mOd 1)’
sy, 0) = x(1—a11(n + O mod 1),

for n € Z, where y4 denotes the characteristic function of the set A. The Sturmian
subshift (X, S) of slope o, with

Xg = {s(,0):0 € [0, D)} U {s'(a, 0):60 € [0, 1)}

is a strictly ergodic subshift of ({0, l}Z, S), satisfying the Boshernitzan condition [23].
Let p denote the unique ergodic measure.

It is worth mentioning that Xy \ {s(x, 8):0 € [0, 1)} is a countable set and has
therefore w-measure 0. For measure-theoretic purposes we therefore restrict our atten-
tion to the measurable subset X, = {s(c, #): 6 € [0, 1)} and identify p with the
restriction of p to X, . The bijective map f:[0,1) — X, 6 — s(c, 0) gives an explicit
parametrization and p coincides with the pushforward of the Lebesgue measure on
[0, 1) under this map. In particular, every property that holds p-almost surely is ful-
filled for Lebesgue almost every 6 € [0, 1).

The restriction of s(c, 8) to N coincides with w = limy,— o Wy, Where
w_1=1, we=0, w;= wgl_lw_l, Wy = Wi wp—p  forn >2. (3.2.18)

It was shown in [26] that for every n € N, every bi-infinite sequence x € X, has a
unique partition into words of the form w,—; and w,. More precisely,

o ¢ ¢
X = .. W W, ' Wpo W, W W we g (3.2.19)

where the origin is somewhere in the block wn_lwﬁo and ¢; € {an+1,an+1 + 1} for
alli € Z.

Proposition 3.2.20. Assume that X’ has period p, that @ = [ay, a», as, . ..] satisfies

limsupa, > 4p, (3.2.20)

n—>oo

and that p is a T-ergodic measure on X x X'. Then, H,, has no eigenvalues for
p-almost every w € X x X',

Proof. By Proposition 3.2.15, it suffices to show that

lim sup (X4 (pn)) > 0. (3.2.21)
n—>oo

Let (nj)jen be an increasing sequence of integers such thatn; — oo as j — oo and
an;+1 = 4p for all j € N. The assumption on a4+ implies that the word wzf is
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legal and contains blocks of the form www with |w| = |w,1,’j | at precisely |w,’,’j |+ 1
positions. Given x € X, whenever two occurrences of wﬁf are separated by at least
|w,‘fj |, all of these blocks www indeed appear at different positions within x. Using
the structure in (3.2.19), we can find an increasing sequence of positions (g;);ez such
that foralli € Z,

L. X[g,+1.q;+m] = wﬁf, where m = |wf,'f|,

2. [wh| < giv1—qi < 2lwa?).
Hence, the sequence (g;)iez is relatively dense in Z with frequency at least
1/(8p|wn; ). The separation by |w,§’j | ensures that each such occurrence of wzf.’ con-
tributes (|w,’,’j| + 1) occurrences of 3-blocks www, satisfying |w| = p|wy, | within

x. This yields

n(Xe(plwn;|) = plwn;| =

8p|wn, | 8’

Taking the lim sup as j — oo yields (3.2.21). ]

Corollary 3.2.21. Assume that X' has period p and that o = [a1,as, as,...] has
unbounded continued fraction expansion, that is,

limsupa, = oo. (3.2.22)

n—>o0
Then, H,, has no eigenvalues for p-almost every w € X x X',

Corollary 3.2.22. Let x’ be a periodic sequence and t(«, 0) = s(, 0) x x'. Then,
Hy(a,0) has no eigenvalues for Lebesgue almost every a and almost every 6.

Proof. Let (X', S’) be the periodic subshift generated by x’. By [54, Theorem 29],
Lebesgue almost every « € (0, 1) has an unbounded continued fraction expansion and
hence Corollary 3.2.21 applies to X, x X’ for almost every «. Since it holds for every
ergodic measure p and v = u X ' is a finite linear combination of those by Choquet’s
theorem (see, e.g., [65]), it also follows that H,, has no eigenvalues for v-almost every
w € X, x X’. Hence,

0 =v({t(x,0) € Xo x X": Hy(4,0) has eigenvalues})

1
—n({s(a, 0) € Xo: Hy(q,9) has eigenvalues})
p

1
— Leb({6 € [0, 1): H;(q,9) has eigenvalues}).
p

Thus, for almost every o and almost every 0 it holds that H,(4,¢) has no eigenvalues.
]
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3.2.4. Quasi-Sturmian subshifts. Suppose the subshift (X, S) is (quasi-)Sturmian,
that is, X is minimal and there exist m,ng € N such that p(n) = n + m for all n > ny,
where p(n) = #£,(X) denotes the complexity function of X. Every quasi-Sturmian
subshift (X, §) is a Boshernitzan subshift [30, Corollary 1]. Compare [16] and [27]
for the following result.

Proposition 3.2.23. A subshift (X, S) is quasi-Sturmian if and only if there exists a
Sturmian subshift (Xq, S) and an aperiodic substitution ¢ on {0, 1} such that every
x € X can be written as

x=587¢().
forsome y € Xy and j € 7.

In that situation, we call (¢, ¢) a production pair of (X, S). Recall that we denote
by p an ergodic measure on (X x X/, T').

Proposition 3.2.24. Let (X, S) be a quasi-Sturmian subshift with production pair
(a, @). Assume that (X', S”) has period p and that o = [a1, as, as, ...] satisfies
limsup,,_, o, @n > 4p. Then, for p-almost every w € X x X', H,, has no eigenval-
ues.

We omit the proof as it is completely analogous to the proof of Proposition 3.2.20.
This is because the structure used in the proof of Proposition 3.2.20 is preserved under
the substitution ¢.

Remark 3.2.25. Let (o, ¢) be a production pair of the quasi-Sturmian subshift (X, S)
and let p € N be the period of (X', S’). In the special case that p divides both |¢(0)]
and |¢(1)], the system (X x X', T') decomposes into p minimal components. This
follows from the fact that every aperiodic substitution acting on a subshift over a
binary alphabet is recognizable [8, Theorem 3.1]. Given x” € X’ and u € &£,, with
n large enough, each of the sets [u] x {(S’)/x’}, for 1 < j < p, is contained in pre-
cisely one of the 7-minimal components. Hence, each of the 7-minimal components
has a complexity function that eventually coincides with the complexity function
of X, and thereby comprises a quasi-Sturmian subshift for which uniform absence
of Schrodinger eigenvalues and fractional Hausdorff continuity of the spectrum is
known [27].

3.3. Periodic and Bernoulli

The discussion presented in this subsection is motivated by the following problem. In
the study of the Anderson model (i.e., the potential is given by i.i.d. random variables),
a fundamental result states that the spectrum of the random operator is almost surely
equal to an explicit set. This set is given by the Minkowski sum of the spectrum of the
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Laplacian and the topological support of the single-site distribution. Thus, we have
the pleasant feature that the almost sure spectrum of the sum of the Laplacian and a
random potential is given by the sum of the spectrum of the Laplacian and the almost
sure spectrum of the random potential. As we are generally interested in this paper in
retaining crucial spectral features after the addition of a periodic background potential,
the specific question we are facing here is whether there is an explicit description® of
the almost sure spectrum of a Schrodinger operator whose potential is given by a sum
of a periodic term and a term of Anderson type. This question appears to be open
and surprisingly difficult for periods greater than one. What we accomplish in this
section is to provide an answer in the case of period two (and finitely supported single-
site distribution) and to explain why the natural extension of the period-two result
fails in the case of period three. In fact, the relevant question is purely topological in
nature, that is, the almost-sure spectrum only depends on the support of the single-site
measure, not on the particular choice of probabilities.

In the following we consider the product space (X x Z,, T), where X = AZ is
the full shift on m € N symbols and T: (x, j) — (Sx, j + 1), with addition modulo
p in the second coordinate. In this case, (X x Z,, T') is (topologically conjugate to) a
subshift of finite type. We equip the full shift with the Bernoulli measure y = M% for
a measure [4o on # which can be chosen to satisfy po({a}) > 0 for all a € A without
loss of generality. One can specify a family of random potentials by fixing a locally
constant sampling function f of window size one. Up to shifting, we may assume
that f is of the form

f(x,j) = g(xo0,)) (3.3.1)

for some g: A X Z, — R.
In what follows, we further make the simplifying assumption that p = 2, such that
Zp = Z, is two-periodic. In this case it turns out that it suffices to consider the m?
two-periodic sequences
wap = ((ab)”,0)

for a,b € . The individual spectra can be determined using the trace of the corre-
sponding monodromy matrix. More precisely, let

Mg (a.b) = Mg[(b. 1)]ME[(a,0)]

_ [(E —gb. D)E—-g(a,0)—-1 g(b1)— E}
B E—g(a,0) -1 ’

3By “explicit” we mean effective. For example, for any given E, can we decide in finite time
whether it belongs to the almost sure spectrum? Also, can we answer questions of the following
type: does the almost sure spectrum have only finitely many gaps?
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the trace of which is given by P, ,(E) := (E — g(b,1))(E — g(a,0)) — 2. The spec-
trum
0(Hy,,) ={E € R: P, ,(E) € [-2,2]}

is given by the union of two intervals that can be calculated explicitly.

Denoting by p’ the normalized counting measure on Zo, it is straightforward to
verify that v = u x ' is an T-ergodic measure. Indeed, this follows easily from the
fact that y is S2-ergodic.

Theorem 3.3.1. For v-almost every w € X X Z,, the spectrum of the corresponding
Schriodinger operator is given by

o(Hy) = Jo(Ha,,). (3.3.2)
a,beA
Moreover, one has
o(Hy) S| o (Ha,,)- (3.3.3)
a,beA

forallw € X X Z5.

Remark 3.3.2. As one can readily see from the proof below, the full-measure set on
which (3.3.2) holds contains every w € X x Z, that has a dense T -orbit. In partic-
ular, the almost-sure spectrum of H,, depends only on the support of the single-site
distribution j¢.

Proof of Theorem 3.3.1. The inclusion 0 (H,,,) € 0(H,) foralla, b € + and almost
every w follows from strong approximation and the fact that almost every w has a
dense orbit. It therefore suffices to prove (3.3.3) for all w. Writing o(H ) for the resol-
vent set of H, we will show that

(o(Ha,,) S o(Hay)
a,beA

for all w € X x Z,. To that end, assume that £ € o(H,,,) for all a,b € A. Then
ME (a, b) is hyperbolic for all a, b € 4. For a moment, let us fix a, b € A and set
x=xp=FE—g(b,1)and y = y, = E — g(a,0). The expanding eigendirection
of Mg(a,b) is given by v = (v{", 1)T and the contracting eigendirection by v~ =
(vy . 1)T where

—4
v = vi(a,b) = % (I:I: x);y )

The statement E € o(H,,,) is equivalent to xy € R \ [0, 4]. For a moment, let us
fix y # 0. A direct calculation yields that v is monotonically decreasing in x and
that limy_, 1o, v]7 = 1/y. From the boundary cases vi = x/2 =2/y for xy = 4 and
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vy = 0 for x = 0, we infer that v] lies strictly between 0 and 2/y for all x with
xy € R\ [0, 4]. Let

y+ = inf{yz:a € A, y, > 0},
y— =sup{yqia € A, y, <0}

be the smallest positive and the largest negative value of y, respectively where we
adopt the conventions inf @ = oo sup @ = —oo to deal with cases in which one of the
sets of y’sis empty. If y, = y4, then E € o(H,,,) implies that x;, <Oorx; >4/y
for all b € 4. Similarly, we obtain that x, > 0 or x;, < 4/y_. Note that this is still
valid for the degenerate cases y4 = oo and y_— = —oo. In summary, we have

4 4
Xp < — or Xxp>—
y— Y+
for all b € #. For a moment, assume that xj, y, > 0. Then,

2 2 2
vfr>x—b>— and 0<v] < — < —,
2 V4 Ya Y+
Exhausting all possible cases in a similar manner, we obtain that
2 2 2 2
v (a.b) € (—, —) and vi(a.b) R\ [—, —] (3.3.4)
Y- Jr+ Y- I+

for all @, b € 4. Identify in the following all vectors with their representatives on the
real projective space P!. The dichotomy in (3.3.4) amounts to the observation that
there exists an open interval I C P! such that Mg (a, b) acts as a contraction on / for
alla,b € A. By [5, Theorem 2.2] this implies that every cocycle that is built from the
matrices {Mg (a, b)} is uniformly hyperbolic. Hence, E € o(H,,) forallw € X x X’
by Johnson’s theorem [22,52, 80]. n

Proof of Theorem 1.2.4. This follows immediately from Theorem 3.3.1 and a suitable
choice of sampling function. ]

Remark 3.3.3. At first, we might expect that we could get a similar result for larger
periods as well. However, if Z, = Z3 is 3-periodic, the situation is already different.
For a concrete example, consider X = {0, 3}Z, let

@ape = ((abc)”.0),
fora,b,c € {0, 3}, and let the corresponding sampling function be given by g(a, j) =
g1(a) + g2(j), with g1(a) = a fora € {0, 3}, and

00,
22412,
2 3.
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By explicit calculations, we obtain that the spectrum of H,, with the sequence w =
((000333)Z, 0) contains the interval [1.385, 1.423] which is disjoint from o (Hy,,. ),
forall a, b, c € {0, 3}. Hence,

o (Haue) G 0(Hor),
a,b,ceA

where @™ is any point with a dense orbit in X x Z3. The natural analogue of Theo-
rem 3.3.1 therefore fails in the 3-periodic case.

Let us return to the case of general periods. We consider again f of the form
(3.3.1), where the periodic factor is given by Z,, with p € N. As before, let v =
w x w', with i’ the normalized counting measure on Z .

The Lyapunov exponent is given by

1
L(E)=L(E;v) = lim —/log | A% (0)|| dv(w).
n—oon
Q
One is naturally interested in proving positivity of L on a rich set of energies as a

starting point towards a proof of Anderson localization. Indeed, we will show this
happens as soon as the function g assumes different values.

Theorem 3.3.4. If g is non-constant, then L(E) > 0 for all but finitely many E € R.

The following lemma is helpful. This does not need a random or ergodic setting.
Forae Randw =a; .. .a,,define Mg and Mg by (3.2.8) and (3.2.9) with g(a) = a.

Lemma 3.3.5. Let u and v denote words. If M,(u) = M, (v) for all z € C, then
u=v. Thatis |u| = |v| = Landu; =v; foralll < j <.

Proof. If M,(u) = M, (v), itis clear that |u| = |v| by degree considerations. We now
proceed by induction on £ = |u| = |v|. The claim is trivial when £ = 1 and follows
from the observation

[ ' u2>x<_21| = M;(u1uz) = M;(v1vp) = |: * vz—zi|

Z— Uy Z—v *

when £ = 2. Now, assume £ > 3 and M, (u) = M, (v). Write u’ = uy .. .ug_,. Notice
that for any w, the degree of [M;(w)]>; is |w| — 1. Thus, we have the following
(making use of [M;(u")]11 = [Mz(u)]21):

M. ()]i1 = (z — u) [Mz ()11 — [Mz ()21 = (z —ug)[M (W)]21 + O(z*72).

Perform the analogous calculation for [M;(v)]11, use [Mz(v)]21 = [M;(u)]21, and
compare the z¢~! terms to see that uy = v,. The result follows by induction. ]
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Proof of Theorem 3.3.4. Since L is positive away from the almost-sure spectrum, it
suffices to show that L can only vanish on a discrete set. Consider the regrouped
alphabet A = A” and [y = uf.Fora = (ai,...,ap) € Aand E € C, define

Ag(a)=Mg(ap. p)...Mg(ay, 1)

_|E—glap,p) —1||E—glap-1,p—1) -1 E—g(a;,1) -1
B 1 0 1 0| " 1 0/

and consider the induced cocycle (7, A E)oOn AZ with ergodic measure i = [LOZ and
its associated Lyapunov exponent

~ 1 ~
L(E) = lim ~ / log | AZ(@)|| d 4(®). (3.3.5)

—o00o N

AZ

Fora,b € A, Lemma 3.3.5 implies that the commutator [M g (a), Mg (b)] vanishes
identically in E € C ifand only if (g(a1,1),....g(ap, p)) = (g(b1,1),...,8(bp. p)).
Thus, by the assumption on g, there exist a, b € 4 and E € C such that M E(a) and
ME (b) do not commute, and hence Lis positive away from a discrete set by the
abstract Furstenberg criterion from [14]. The result then follows by using interpolation
to note that ]:(E) = pL(E). [

As one can see from the regrouping construction in the proof, the models dis-
cussed here are special cases of random word models, which are known to exhibit
Anderson localization. Indeed, the result described in Theorem 3.3.4 was already
known. We give the proof here, since it is much simpler than the argument from [31].
However, the spectrum (as a set) is not explicitly identified as in Theorem 3.3.1 in
complete generality.

4. Periodic and one-frequency quasi-periodic

We now turn to the second main family of examples of product systems: products
of circle rotations and translations on finite cyclic groups. To keep the length of the
paper in check, we do not attempt an exhaustive survey of all possible results in this
scenario. Rather, we look at a selection of results that we consider interesting.
The motivating example is that of a quasi-periodic potential with a periodic back-
ground:
V(n) = Vx(n) + Vper(”)’

where Ve, has period p and Vy (n) = fi(na + x) for some f; € C(T,R),x € T :=
R/Z,and @ € T irrational. One can clearly encode this via the product system (€2, 7T)



Operators generated by product systems 1703

where
Q=Tx2, Tkxk=x+ok+1), xeT, keZ,. 4.0.1)

One generates Vy + Vier as Vix0)(n) = f (T"(x,0)) via the sampling function
f(x. k) = fi(x) + fa(k) where f>(k) = Vper(k) for any representative k of the
residue class k € Zp. We will be mainly interested in this case, but we can be a
bit more general, considering for example trigonometric polynomials on the space €2
(see Definition 4.2.3 below).

4.1. Generalities

Given « € T irrational and p € Z, we consider the associated product system as in
(4.0.1). As a consequence of the general discussion in Appendix B, let us note the
following basic facts about this particular product system.

Proposition 4.1.1. Given p e Nando e R\ Q, let Q =T x Z, and T(x,k) =
(x +a.k+1).
Q is a compact abelian group.
b. (2, T) is minimal.
c. (R,T, ) isergodic, where L = [L1 X [La, | denotes Lebesgue measure on'T,

and [ denotes normalized counting measure on Zp.

d. (2, T) is uniquely ergodic with unique invariant measure (4 as in part (c).

Let f € C(2,R) be given. With the help of Proposition 4.1.1, we make a few
observations. First, by minimality of (2, 7') and continuity of f, there is a uniform
set ¥ = Xy, with £ = 0(Hpgg,) forallw € Q.

Recall the one-step cocycle map

4.1.1)

Au(w) = |:Z—];(Ta)) —1]

0

and the associated Lyapunov exponent

1
Le) = L. fa) = Jim = [ log |42 )] duo).
n—oon
Q
One of the main ideas in the analysis of this family of product systems is to pass
from 2 =T x Z, to T by regrouping. Concretely, define B, = B, 74:T — SL(2,C)
by
1 .

— f(T7(x,0) -1

B.(x) = 1_[ [Z /( . (x,0)) 0} = AZ((x,0)), xeT. (4.1.2)

Jj=p
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This map has iterates
B} (x) = B (x + (n — 1) pat) -+ B (x + pa)B,(x) = A7P((x,0)). (4.1.3)

Denote the corresponding Lyapunov exponent by L(z) = L(z, f,a):

1

- 1
L) = tim o+ [ toglB2 (0] dx.
0

Proposition 4.1.2. L = pL. In particular, L(z) > 0 <= L(z) > 0.
Proof. This follows from (4.1.3). [ ]

From Proposition 4.1.2, we define

Z ={E:L(E)=0}={E:L(E) = 0}.

4.2. Proofs of Theorems 1.2.5 and 1.2.6

Let us briefly recall the terminology from Avila’s global theory of one-frequency
analytic cocycles [3]. Let « € R \ Q be given, and suppose B: T — SL(2, R) is
real-analytic with analytic extension to a strip Ty = {z: |Im(z)| < s} for some s > 0.
For each ¢ € R with |¢| < s, one may consider the cocycle B, := B(: + i¢) and the
associated Lyapunov exponent

1
L(Be, &) = lim ;/IOg [ Be(x + (n — Da) -+ Be(x + o) Be(x) || dx
T

1
= lim —/log | B (x)| dx. 4.2.1)

n—oon

T

Theorem 4.2.1 (Avila [3]). Given € R\ Q and B: T — SL(2, R) with analytic
extension to T, the function A: e — L(B., a) enjoys the following properties.

a. A is continuous, convex, and piecewise affine on (—s, s).

b. Quantization of acceleration. For all || < s, the acceleration
1
w(B,¢) :=lim —(A(s + 1) — A(e))
140 27t

exists and must lie in 7.

In view of Theorem 4.2.1, one classifies cocycle maps as follows.
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Definition 4.2.2. With B and « as above, we say that the cocycle (B, «) is
» subcritical if for some § > 0, L(Bg, ) = 0 for all |¢] < §;
* critical if L(B,«) = 0, but (B, ) is not subcritical;
* supercritical if L(B) > 0 but (B, «) is not uniformly hyperbolic; and
* acritical if it is not critical.
As discussed in the introduction, we will consider periodic decorations of quasi-
periodic potentials generated by trigonometric polynomials, and this is most com-

monly accomplished with the addition of a periodic background. The arguments can
handle a more general situation, which we now formulate precisely.

Definition 4.2.3. Recall that a character of a topological group G is a continuous
homomorphism G — S = {z € C:|z| = 1} and a trigonometric polynomial is a linear
combination of characters. We write TP(G) for the set of trigonometric polynomials
on G.

The following well known characterization of trigonometric polynomials on
T x Z, will be helpful.

Proposition 4.2.4. One has [ € TP(T x Z,) if and only if f(-,k) € TP(T) for each
k € Zp.

Proof. This is well known and not hard to show using unitarity of the discrete Fourier
transform. For the reader’s convenience, we give the arguments. The characters of
T x Z, are of the form

Im.o: (X, k) > 2T D) Gy e 7 e 7, (4.2.2)

Thus, if f € TP(T x Z,), then

f :Z Zcm,e)(m,ﬁ (4.2.3)

meZ (7,

for suitable coefficients {c,, ¢}, which certainly implies f(-, k) € TP(T) for each k.
Conversely, if f(-,k) € TP(T) for each k, write

SO k) =) o g™

meZ

for some coefficients {C,, x }. To write f in the form (4.2.3), define

I ot/ s
Cmt = D e e,

k'€Zp



D. Damanik, J. Fillman, and P. Gohlke 1706

foreachm € Z, £ € Zp, and note that

Z Zcm,KXm,Z(X,k) = Z Z Z %@n’k,eZﬂimxezme(k_k/)/p

meZ Lely meZ k'€Zpy Lely
— Zé\m’keZnimx — f(x,k),
mez
as desired. [ ]

In view of Proposition 4.2.4, we can identify trigonometric polynomials on
T x Z, with p-tuples of trigonometric polynomials on T. For f € C(£2), we call
f® = £(., k) a component of f.

Theorem 4.2.5. Let o € R\ Q and p € N be given, and suppose f is a real-valued
trigonometric polynomial on Q@ =T x Z, such that no component of f vanishes
identically. If |A| is sufficiently large, then the cocycle Bg ;yq defined by (4.1.2) is
supercritical for all E € 3. Indeed, one has

~ 1
L(E,Af,a) > 5p10g|)&| 4.2.4)

forall E € 3 and all || sufficiently large.

Proof. This follows readily from Herman’s subharmonicity argument; compare [11,
48]. ]
Remark 4.2.6. Let us make a few comments about Theorem 4.2.5.

a. The assumption that no component of f vanishes is essential. Indeed, consider
the case p =2 and f € TP(T x Z5) for which £l =0and £ is some non-constant
real-valued trigonometric polynomial on T. For energy E = 0, one sees immediately

[0 1=/ —17 [ -1 0
BO(X)_[l OM 1 0}_[—f[°](X) —1]’

1 0
Bl(x) = (_1),,[2?;(1) Ol 427 J, (4.2.5)

This suffices to show that 0 is a generalized eigenvalue of Hy , for every x € T and

leading to

that Z(O) = L(0) = 0, so the associated 2-step cocycle is not supercritical, regardless
of the size of f.

b. On the other hand, in the case in which one considers the product system
associated with the sum of a quasi-periodic potential generated by f, € TP(T) and a
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periodic background V., the associated sampling function is of the form f(x,k) =
fo(x) + fi(k). In particular, the obstruction noted in (a) cannot occur in this setting.

c. While this paper was under review, Matthew Powell proved a generalization
of Theorem 4.2.5 for potentials of the form V; + V5, in which V; takes finitely many
values and the quasiperiodic potential V, has analytic sampling function [66].

Remark 4.2.7. One can also prove subcriticality at small coupling under suitable
assumptions on f. More precisely, if « € R\ Q and p € N are given, and f €
C(T x Zp) is such that every component of f is analytic, then there is a constant
¢ = c(f) such that the cocycle Bg , 1, defined by (4.1.2) is subcritical for all £ € X
whenever |A| < ¢. This follows immediately from Avila’s global theory, namely the
quantization of acceleration as in Theorem 4.2.1 and openness of acriticality (com-
pare the discussion on [3, p. 13]). The constant c( ) can be made explicit for specific
examples, for instance by following the method of [64]. Notice that this remark
applies in the case in which one considers periodic perturbations of a quasi-periodic
operator whose potential is generated by an analytic function on T'.

Proof of Theorem 1.2.5. Suppose fo is a non-constant trigonometric polynomial
on T, and define fi(k) = Vper(lg) for any representative k of k € Z,. The desired
result then follows by applying Theorem 4.2.5 and Remark 4.2.7 with the sampling
function f(x,k) = fo(x) + f1(k). ]

Proof of Theorem 1.2.6. This follows immediately from Theorem 1.2.5. ]

A. Ergodic measures on accelerated systems

Given a uniquely ergodic topological dynamical system (X, S), the setting of the
present paper naturally motivates one to understand the structure of the space of
S™-invariant (and S -ergodic) measures on X. We collect some basic results to that
effect here. The results in this section are measure-theoretic analoges of statements
from Section 2 in the topological setting. Throughout this part of the appendix, assume
that (X, S) is uniquely ergodic with unique invariant measure /.

Lemma A.1. For every m € N, there is a measurable subset A C X and a number
q € N dividing m with the following properties. A = S9(A), and the set of ergodic
probability measures on (X, S™) is given by

{qulacS™:0<j<q—1}.

Further, ;1|4 o S79 = |4, n(A) = 1/q and the set U;I ' §7(A) has full pi-measure.
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Proof. Let o be an S™-ergodic probability measure on X. First note that o o S~/ is
S™ ergodic for all j € N. Indeed, if B is S""-invariant, then so is S —J B and hence
00S /(B) =0(S7/B) € {0, 1}. Hence, either po S~/ = porpo S~/ L o. Let
q € N be minimal with the property that o = o o S74. Since g is S™-invariant, ¢
needs to divide m. The measure

is an S-invariant probability measure on X by construction. Due to the unique
ergodicity of (X, S, u) it follows that ¢ = . Let A’ be a measurable set such that
o(A)=1and go S~/ (4") =0forall 1 < < g — 1. The same holds for the set
A = NjezS/9(A’), which in addition satisfies S7(4) = A. For an arbitrary subset
C C X we obtain

Wa(C) = w(ANC) = BANC) = 59(0),

implying that o = ¢ |4. In particular, u(A) = w|4(A) = 0(A)/q = 1/q. Further, we
find

-1 1 9= -1 1 q—1
n(Us/@) = —Z (s*(Us'@))=-> e =1
j=0 9 =0 j=0 9120

Suppose there is another S”-ergodic probability measure v on X, which is then sin-
gular to each of the o o S /. The same holds for each of the measures v o S~/ with
j € N. By the same argument as above, there exists ¢’ € N such that u = v :=
1/q Z 0 v o S7/. On the other hand, ¥ L ¢ leading to a contradiction. ]

Lemma A.2. For every m € N, e2™/™ s an eigenvalue of (X, S, i) if and only if
(X, 8™) has precisely m ergodic probability measures.

Proof. Suppose e>™/™ is an eigenvalue of (X, S, ;) with (almost-surely) normalized

eigenfunction f.For0 < j <m —1, let
Aj = fTHES™ 0 j/m <@ < (j +1)/m)).

By construction, all the A; are disjoint and we have for0 < j <m —2that S(4;) =
Aj4qaswellas S(Am—1) = Ao and hence (A ) does notdependon j. Since | f| =1
almost surely, the union Ag U --- U Ay, has full measure, implying that p(A4;) =
1/mforall 0 < j <m — 1. The probability measures j; = m ji|4; are S™-invariant
and pairwise singular to each other for all 0 < j < m — 1. By Lemma A.1, there are
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at most m ergodic measures for (X, S™), so we obtain that the measures p; are in fact
ergodic and that there are precisely m ergodic probability measures on (X, S™).

Conversely, suppose that there are precisely m ergodic probability measures on
(X, S™). Let A be as in Lemma A.1. The function

m—1

UOED B PN

Jj=0

almost surely satisfies f(Sx) = e2™/™ f(x) and is hence a measurable eigenfunction

with eigenvalue e27/ n

Recall from Definition 2.2.1 that s'(m) denotes the number of S™-ergodic Borel
probability measures on X.

Lemma A.3. Let m € N and let k be the largest divisor of m such that ¢*™/¥ is an
eigenvalue. Then, s'(m) = k.

Proof. If my divides m,, then s'(m3) > s’(my). This is because an S™!-invariant
measure is also S™2-invariant. Hence, there are at least s'(m7) mutually singular
measures that are S™2-invariant. Given j, g € N, an S/%-ergodic measure ' that
is S?-invariant is also S?-ergodic. Therefore, if s'(m) = ¢, then s'(¢) = ¢ due to
Lemma A.l. By Lemma A.2, e27i/4 is an eigenvalue. It remains to show that ¢q is
maximal with this property. Suppose £ > ¢ is also a divisor of m such that e27/¢ is
an eigenvalue, implying s’(£) = £. Using our first observation in this proof, we obtain

s'(m) = s'({) = £ > q = s'(m), a contradiction. [

Lemma A.4. If my and my are relatively prime, then s'(mim,) = s'(m1) s'(m>).
Further, for each prime p there exists a number £, € No U {oo} such that s(pt) =
min{ pt, p*»} for all £ € N,.

Proof. This follows essentially via the characterization in terms of eigenvalues. Let
s'(mimy) = k. Since my, m, are coprime, k can be written uniquely as k = k1k»
such that ky|m; and k»|m,. Since e?7V/k

group, also e>™/k1 and e/ k2 are eigenvalues. If there was an £ > k; with £|m; and
2mi/l
e

is an eigenvalue and the eigenvalues build a

an eigenvalue, then also e>/“k2) would be an eigenvalue. This would imply
s'(m1my) > Lky > k, a contradiction. Hence, k1 is maximal with that property and
s'(m1) = ky. Analogously, we find that s’ (m,) = k. This shows the first claim.
Given a prime p, let £,, be the largest power such that e271/? 7 is an eigenvalue of
(X,S, ). If e27/P is an eigenvalue for all £ € Ny, set £, = 0o. Since the eigenvalues
form a group, e>V/ 7" is also an eigenvalue and hence s'(p%) = p* forall 0 < £ <
Lp. If £, # oo and £ > {,, the statement s’( pY) = pt» follows immediately from

Lemma A.3. n
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B. Strict ergodicity of product systems

Here, we pursue the question under which condition the product of two uniquely
ergodic/minimal systems is again uniquely ergodic/minimal. This is closely related to
the joining theory of dynamical systems, pioneered by Furstenberg in [43]. We give
an overview of some elementary results for the reader’s convenience.

Here, a (topological) dynamical system (X, T') consists of a compact metric space
X and a homeomorphism 7" on X.

Definition B.1. A (fopological) joining of two dynamical systems (X, 77) and
(X2, T») is a non-empty and closed, T} x T»-invariant subset Z € X; x X, such
that 71(Z) = X1 and m2(Z) = X,, where 71, w2 denote the projections to the first
and second coordinate, respectively.

We call (X, T1) and (X3, T») (topologically) disjoint if (X1 x X5, Ty x Ty) is
their only joining. For the following, compare [45].

Fact B.2. Two minimal dynamical systems (X1, T1) and (X2, T>) are (topologically)
disjoint if and only if their product system is minimal.

There is a natural analogue of this observation in measure-theoretic terms. If
(X, T) is a topological dynamical system and p a T -invariant Borel probability mea-
sure on X, we call (X, T, i) a (measure-preserving) dynamical system.

Definition B.3. The joining of two measure-preserving dynamical systems (X1, 71,
u1) and (X5, Tz, up) is a Ty x Th-invariant Borel probability measure i on X7 x X,
such that p; = pon ! fori € {1,2}.

The dynamical systems (X1, 71, 11) and (X5, T, up) are called disjoint if
1 X Mo is their only joining.

Lemma B.4. Two uniquely ergodic dynamical systems (X1, Ty, 1) and (X3, Tz, 42)
are disjoint if and only if their product system is uniquely ergodic.

Proof. First, assume that (X, T1, 1) and (X3, T3, (42) are not disjoint. Then, there
exist at least two different joinings u and v on (X x X2, T7 x T3). By assumption,
p and v are both 77 x T-invariant and hence, the product system is not uniquely
ergodic.

Conversely, assume that (X, 71, 1) and (X3, 7, i») are disjoint and let p be
an arbitrary 77 x T>-invariant measure on X1 X X5. Since j o 7r;” 1 is T;-invariant for
eachi € {1,2}, the unique ergodicity of (X;, T, ;) implies that y o 77! = ;. That
is, ( is a joining and as such unique. ]
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At this point, we have reformulated the original problem in terms of the question
under which conditions two minimal/uniquely ergodic dynamical systems are disjoint.

There is an abundance of useful characterizations and criteria for disjointness;
compare for example [43,45,73]. In order to exclude disjointness, it suffices to find a
non-trivial common factor of both dynamical systems. More precisely, we call (Y, S)
a (topological) factor of (X, T) if there is a continuous surjective map 7: X — Y
such that w o T = § o m. The factor is called trivial if it coincides with the identity
map on a singleton. For the following, see [43, Proposition I1.2].

Fact B.5. If (X1, T1) and (X2, T3) have a non-trivial common topological factor, they
are not disjoint.

There is a natural analogue of this criterion in the measure-theoretic regime. Here,
(Y, S, v) is called a factor of (X, T, u) if there is a measurable map 7: X — Y such
that 7 o T = S o 7 up to null sets, and v = w o !, Such a factor is called trivial it
is isomorphic to the identity map on a singleton. The following analogue of Fact B.5
can be found in [43, Proposition 1.2].

FactB.6. If (X1,T1, 1) and (X5, T, (u2) have a non-trivial common factor, they are
not disjoint.

Remark B.7. The converse is not true in general [69]. However, the more general
statement in [45, Theorem 8.4] provides a characterization of disjointness in terms of
factors and a more general concept, termed quasifactors.

There is a sufficient criterion for disjointness that relies on spectral properties of
the dynamical systems [45, Theorem 6.28].

Fact B.8. Two dynamical systems (X1, T1, t1) and (X2, Tz, i2) are disjoint if their
reduced maximal spectral measures are mutually singular.

Remark B.9. Again, the converse of this result is not true. In fact, there are ergodic
dynamical systems (X, T, i) that are disjoint from their inverse (X, 7!, uu); see
for example [6, 33]. On the other hand, the reduced maximal spectral measures of
(X,T,u)and (X, T~!, u) are always equivalent; compare [61].

We are mostly concerned with ergodic dynamical systems. If we further restrict
to the class of systems with pure point dynamical spectrum, disjointness has a simple
spectral characterization.

Corollary B.10. Two ergodic systems (X1, T1, u1) and (X5, T, ju2) with pure point
dynamical spectrum are disjoint if and only if they do not have a common eigenvalue
except 1.



D. Damanik, J. Fillman, and P. Gohlke 1712

Proof. First, assume that 1 is the only shared eigenvalue. Because we assumed that
both systems have pure point dynamical spectrum, this implies that the reduced max-
imal spectral measures are mutually singular, implying disjointness by Fact B.8.
Conversely, assume that both systems share an eigenvalue of the form A = 271,
with @ € (0, 1). For a moment, assume that « is irrational. Then, ergodicity implies
that the torus translation R,: T — T, x + x + «, equipped with the normalized Haar
measure is a factor of both systems by standard arguments; compare for example
[41, Lemna 1.6.2]. If o € Q, we may assume that « = 1/r for some r € N without
loss of generality. In this case, the cyclic group (Z,, +1, v), where v is the normalized
counting measure is a factor of both systems; see [41, Lemma 1.6.4]. In both cases,
the systems cannot by disjoint, due to Fact B.6. ]

Almost-periodic potentials have attracted particular attention in the spectral study
of Schrodinger operators. Recall that almost-periodic sequences are precisely those
that can be obtained from a continuous sampling function f on some minimal group
rotation (€2, R), where 2 is a compact metrizable group. In fact, the subshift gener-
ated by an almost-periodic sequence has itself the structure of such a group rotation.
There is a useful characterization of the strict ergodicity of rotations on a compact
metric group [41, Theorem 1.4.10].

Fact B.11. Let R: Q2 — Q,x — ax be a rotation on a compact metric group 2. The
following are equivalent:

1. (2, R) is minimal;

2. (2, R) is uniquely ergodic;

3. {a":n € N} is dense in Q.
In this case, the group 2 is abelian.

It is further known that the rotation R on a compact abelian group €2 has pure
point dynamical spectrum [41, Chapter 1].

Corollary B.12. Let (21, Ry) and (2, Ry) be each a minimal group rotation on a
compact metrizable group. Then, the following are equivalent:

1. (21, Ry) and (2, Ry) have no non-trivial shared eigenvalues;

2. (21 X Q3, R1 X Ry) is uniquely ergodic;

3. (21 x Q2, R X Ry) is minimal.
Proof. The equivalence of (1) and (2) follows by combining Lemma B.4 with Corol-

lary B.10. Since (€21 x €2, R; X R») is again a group rotation on a compact metriz-
able group, the equivalence of (2) and (3) follows from Fact B.11. [
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Remark B.13. Let R: 2 — Q, x > ax be a minimal group rotation on a compact
metrizable group 2. A character on Q2 is a continuous group homomorphism y: Q2 —
S! = {z € C:|z| = 1}. We denote by Q the dual group of all characters on 2. In
this setup, the characters form a basis of eigenfunctions in L2(2, i), where j is the
Haar measure on G, each with eigenvalue y(a). Hence, the group of (topological)
eigenvalues of (€2, R) is precisely

G ={yla):ye Q}.

The pullback of this group under the projection ¢: R — S!, ¢ > e?* is often called
the frequency module of (2, R), denoted by . This object is central in the gap
labeling theorem; compare [24, 34, 51]. By construction, the frequency module auto-
matically contains the set Z. We can easily adapt Corollary B.12 to the statement that
the product of (21, Ry) and (€23, R») is strictly ergodic if and only if their frequency
modules have a trivial intersection, given by Z.
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