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Abstract—Neural Network (NN) based receivers have seen lim-
ited adoption in practical systems due to a lack of explainability
and performance guarantees, despite their efficacy as a data-
driven tool for physical layer signal processing. In order to bridge
this gap in explainability, we present an equivalent NN-based
receiver that performs the same optimizations used by classical
receivers for symbol detection. Achieving equivalence is crucial
to explaining how a NN-based receiver classifies symbols in high-
dimensional channels and determining its structure that is robust
to the underlying channel with minimum training. We realize this
by deriving the risk function that guarantees equivalence, which
also provides a measure of the disparity between NN-based and
classical receivers. Consequently, this information allows us to
derive mathematically tight data-dependent bounds on the bit
error rate of NN-based receivers, and empirically determine its
structure that achieves minimum error rate. Extensive simulation
results show the efficacy of the derived bounds and structure of
NN-based receivers for single and multi-antenna systems over a
variety of channels.

I. INTRODUCTION

Deep Learning (DL) has been shown to be a versatile tool
for physical layer communication due to its proficiency in
systems with model and algorithm deficit [1], and has been
used to replace individual blocks in communication systems
for optimized performance for a given dataset. However, much
of the effort have focused on training neural networks as black-
box systems that lack guarantees on their performance and
model complexity, and have at best approaching the error rate
of classical (non-DL) methods [2], [3]. These often require
prohibitive amount of training and computational resources
[4], [5] that limit their practical adoption. The stringent re-
quirements on reliability and throughput in Next Generation
(xG) propagation environments demand wireless transceivers
to achieve provable performance guarantees over a variety of
channels. Therefore, explaining how an NN-based receiver
detects symbols (generally a multidimensional classification
problem) is paramount to achieve such guarantees [6] while
providing insights on amount of required training and robust-
ness to different signal configurations and channels. In order
to achieve this goal, two things should be mathematically
and semantically understood: 1) A measure of the knowledge
acquired by the NN-based receiver and 2) Bounds on learn-
ability (or error) of the neural network model used for signal
processing. Due to the difficulty of explaining the behaviour
of neural networks in high-dimensional stochastic systems like
wireless channels [1], [7], we have to define an equivalent NN-
based receiver that eventually performs the same optimization
as a classical symbol detector, which is optimal for stationary
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Fig. 1: Equivalence between Jyy and 3, 4p receivers

channel distributions with a known mathematical model [8].
The key to establishing this equivalence, shown in figure 1,
is deriving the risk function and other structural criteria of
the NN-based receiver Jyy that eventually leads to the error
performance of classical symbol detector .7, ,p. This serves
as the much-needed theoretical evidence on the similarity
in the performance of NN-based and classical receivers that
can be the stepping stone towards corroborating the efficacy
and limitations of NN-based transceivers in different channel
conditions. Such an equivalent Z y receiver is not only robust
to data that is not seen during training but also reduces the
amount of training and leads to performance guarantees even
when trained on channels with unknown distribution.

The risk function of the Jyy derived for equivalence also
serves as a measure of the disparity between NN-based and
classical receivers, that is central to deriving mathematically
tight data-dependent bounds on its error rate. Unlike previous
literature, this provides a means to evaluate the best and worst
case performance of such receivers before field testing or
practical implementation. Moreover, this information allows us
to empirically determine the structure of Zyy that approach
the error rate of Z;,p, even under incomplete training. This
allows for the implementation of practical receivers using
data-driven, low-complexity NN structures that is both com-
putationally efficient and robust to the underlying channel.
Therefore, this work enables implementation of tractable NN-
based receivers with guaranteed error rate and model com-
plexity, which is critical to meet the reliability and throughput
requirements in existing and xG networks.
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II. RELATED WORK

Neural Network based Transceivers: Despite the increasing
interest of DL to replace classical communication systems,
these systems have come at the cost of increased training time
and model complexity and have at best approached the error
rate of classical methods [2], [3]. So far, much of the effort
has been focused on replacing individual blocks [9], [10] or
the end-to-end chain [11], [12] in classical transceivers using
“black-box” neural networks to achieve a target error rate
for a specific dataset. These fixed function implementations
that fits a particular dataset cannot be generalized to other
scenarios. This has limited the wide-spread practical adoption
of neural network based communication systems, due to their
lack of explainability [6] and performance guarantees on the
error rate or the complexity (training or hardware complexity).
In order to make wireless communications explainable, we
take the first step towards understanding what happens inside
a NN-based receiver that eventually performs equivalent to
a classical receiver. We use this knowledge to derive tight
bounds on the BER of NN-based receivers that achieve strict
communication guarantees essential for practical adaptation.

Explainable Neural Networks: Explainability of NN-based
transceivers is rare in the literature, attributed primarily due to
their black-box implementation. Of particular relevance here,
is the literature that instead rely on model-driven techniques
to avoid the black box approach, and incorporate expert
knowledge into autoencoder-based communication systems
with the radio transformer network [13] and the OFDM-
autoencoder [14]. The latter combines an autoencoder with a
classical OFDM system to inherit its advantages including ro-
bustness to synchronization errors and multipath equalization.
The model-driven OFDM receiver in [15] combines DL with
expert knowledge and implements two modules for channel
estimation and symbol detection similar to classical systems.
However these approaches are limited by the flexibility and
accuracy of the underlying model and the trained weights,
which limits their applicability to specific channel conditions.
In contrast, we achieve guarantees on the performance of data-
driven NN-based receivers by explaining their internal mech-
anisms and deriving their structure that achieves equivalence
to MAP receiver. This allows for low-complexity NN-based
receivers that are robust to various channels.

III. MODELS AND PRELIMINARIES

The basic communications system consists of a transmitter,
a channel, and a receiver. At the transmitter, the uncoded
messages, mE[1, M| are modulated and the symbols, s, are
transmitted over the channel, where M is the order of the
modulation scheme. The stochastic behavior of the wireless
channel is represented by the conditional likelihood of receiv-
ing a random vector » when symbol s, is transmitted, i.e.,
p(7|s.,) [8]. In general, r€R?K consists of real and imaginary
streams for each antenna k€[l, K], where K is the number
of antennas at the receiver. Upon reception of r, ., 4p and
Inn apply the transformations fy;4p and fyy to produce the

estimates 1y 4p and Mmyy of the transmitted message. The
benefits of coding are complementary to this work, and yield
an added gain in the error rate using existing coding schemes.

Classical Receiver: An optimal .7}, ,p receiver using conven-
tional classical theory strives to achieve minimum probability
of error, also referred to as the Bayesian Risk given by
P.=P[rm#m]|, by maximizing the posterior probability (MAP)
to estimate the most likely transmitted symbol or the likelihood
under the assumption of equal prior. The estimated message
Myap of Tyrap is given by,

Myap=arg maXfMAP(T); fMAP(T)ZZP[Sm |”']7 (1

where fy;4p(7) denotes the mapping from the input r to the
output of J,4p and is equal to the posterior probability of
each symbol, s,,. While the low-complexity nearest neighbour
symbol detection algorithm is provably optimal for Additive
white Gaussian noise (AWGN) channels, there is a lack
of closed-form expressions for fyap(r) for most practical
channels (e.g., with unknown or non-Gaussian distributions)
[8]. Moreover, the complexity of Z,,4p grows exponentially
with K and constellation size [16], and consequently Ty, 4p is
often computationally prohibitive for practical realization and
requires mathematically accurate channel models for optimal
realization. Therefore, practical implementations of Z;,p
relies on a modular structure with additional signal processing
blocks, (e.g., Channel estimation and Equalization) as shown
in figure 1, to whiten the noise by estimating and mitigating
distortions due to fading and interference, to employ the
nearest neighbour decoder. However, we show that there exists
a Jyy that is equivalent to Zj,4p, which is determined by
learning a deterministic mapping function fyy(7) and hence
is computationally tractable.

Neural Network based Receiver: The Zyy is derived by
training a NN model to determine its parameters, & that
minimizes an Empirical risk, R(fyn(r;d,)) for a given
training dataset D by using (2),

d,=argmin [R(fyx(7;d,))] where, 2)

n

R (r:0)) = SOIE (360

where R(fnn(7r;d,)) is the average value of a loss func-
tion, L(fnn(r;05)), fun is the mapping from the inputs r to
the outputs of the Jyy, and n=|D| is the number of training
samples. R(fyn(7;0,)) is an empirical measure of the error
in the estimated and true symbols of the Zyy such as the
mean absolute error, mean-squared error (MSE) or the cross-
entropy loss [17]. Gradient descent and the backpropagation
algorithm [17] is used to determine the parameters, ¢ that
minimizes (2) among all possible parameters with n training
samples, §,,.

For a fully-connected feed-forward deep neural net-
work of depth L, fyy is a composition of L functions,
fi,...,fr, that describe the transitions between neurons via
L—1 intermediate hidden layers. Each function f; is deter-
mined by the parameters 0, ;={W,,b;} and modeled as
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fi (wi—1;01) =¢ (Wiu—1+b;), where W is the weight ma-
trix, b; is the bias vector, and ¢; is a non-linear function
referred to as an activation function. u;_; is the input to the
I layer and ug=r. Therefore, fyy is given by (3),

fNN(r; 6n) = fL ( .. (f2 (fl (r;(sn,l) ;5n,2) .- ) ;5n,L) (3)
where 6,={d,;}, for l€[l,L]. To understand the internal
mechanism of Jyy and compare its performance to Ty, 4p
over stochastic wireless channels, we define the concept of
probabilistic equivalence between Jyy and Ty ap.

Definition 1. (Equivalence of Ty and Tyiap). A Ty with
associated function fyy and Ty ap with associated function
farap, are equivalent if and only if,

fNN(T;5n) i) fMAP(T) or,
nhjgoP [[fxn(r;6n) = frrap(r)[] =0 “4)

where — refers to pointwise convergence in probability
[17]. Therefore, a Iy and F),4p are defined as equivalent if
their outputs converge in probability. Due to space constraint,
the complete proofs of Theorems and Lemmas are provided in
an external document in [18].

A. Impact of Training on Equivalence

Establishing equivalence of Jyy and Z4p is not a
straightforward task because the output of conventional neural
networks are deterministic estimates and not Bayesian prob-
abilities, and the difficulty lies in bridging the gap between
empirical approaches (e.g., data-driven Zyy) and Bayesian
approaches (e.g., model-driven 9, ,p). The disparity of these
techniques are investigated under complete and incomplete
training of the Tyy.

1) Complete Training: This represents the scenario where
the Jyy is trained on a sufficiently rich dataset that is
representative of the entire channel distribution. Due to the
difficulty in establishing effective measures of the quality of
training data that is robust to various channel models, complete
training is guaranteed asymptotically as n—oo. Therefore,
under complete training criteria (2) is represented by (5),

0 =

n

nlLrIgoR(fNN(T;(Sn)) =E[L(fxn(7:60))]

(5) is supported by the law of large numbers, where the
average over the data in (2) is replaced by the statistical
expectation, E[.] over the underlying channel distribution.
Furthermore, from (5) due to the capacity of a feed-forward
NN model with sufficient number of neurons to approximate
any nonlinear function to a desired level of accuracy under
sufficiently large n [19], [17], we can conclude (6),

Tim R(fon (r00) SR (7)) = T fvn (ridn) S f (r)

(6)

Therefore to guarantee equivalence as in (4), it suffices to

show that fyy and fp 4p converge over the same input rl,

im arg min[R(fyn(7;0,))] where, 3)
— 00 6n

'Under the above conditions for complete training, the output of the Ty,
fn o (r;0y) converges to the output of a general function f () as in [20].

ie., fan(r) £, farap(r). In practice, n is finite, therefore
complete training is approximately guaranteed by empirically
determining a value 7y, such that if n>ne,,, the Structural
Risk of the 9y (defined in Section V) is approximately zero,
as explained further in Section VL.

2) Incomplete Training: This represents the scenario, where
the Jy is trained on a finite dataset that is not representative
of the entire channel distribution. Under incomplete training,
where n is finite (in practice, n<nemp), it is difficult to bridge
the gap between Empirical and Bayesian approaches [17].
Therefore, we derive the expected risk of the Jyy, and use
this to quantify the disparity between Jyy and Fy4p.

IV. EQUIVALENCE

The yy unlike Jy;4p, learns to classify the symbols from
the training data, without making any assumptions on the type
of channel or noise. Compared to the exhaustive search em-
ployed by Z,,4p, the Ty estimates the message, 7y y by de-
terministic processing of the received signal (via L layers), and
thereby enables low-latency implementations of the receiver.
Therefore, a single feed-forward neural network typically
suffices to implement the communication receiver, regardless
of the underlying channel distribution. Since Zj;4p strives to
maximize the posterior probability, i.e., firap(7):=P [s;m|7]
to estimate M 4p as in (1), to achieve equivalence as per
(4), we seek to derive the risk function of Jyy, R(fwn)
and other design criteria that guarantee that after training, the
mapping function is precisely the posterior probabilities, i.e.,

P
fan(r) — Plsp|r].
Lemma 1. A Yy with empirical risk, R(fxn(T;0n),8)

trained on labels, 3 is equivalent to Jy;4p under complete
training and the three design criteria in (7b),

1

R(fNN(T;én)vg):gZ{HfNN(T;(Sn)_'§H2} (Ta)
M 1: ;o

1) dim(3)=Mx1, 2)34,=1, 3) Sm,:{ Lim'=m
m (7b)

where S,=fnn(7;0y) is the symbol estimate by Ty, § is
the vector of §,, for all meM, and 5., is the binary label
corresponding to Sp,.

The proof is provided in Appendix A.A in the external
document in [18]. The empirical risk in (7a) that guarantees
equivalence of Jyy and Zy,4p is the MSE risk function?.
Therefore, the estimated message from Jyy is obtained by
employing an argmax function at its output as in figure 1,

. P .
Myy=argmax fyy(r) — arg max P[s,,|r|=muyap (8)
m m
Design Criteria: The design criteria in (7b) ensures that

the derived Jy estimates the posterior probabilities. (7b.1)

2Provided that the design criteria in (7b) are satisfied, it is straightforward
to show the existence of other empirical risk functions (e.g., Categorical Cross
Entropy loss [21]) that achieve equivalence similar to the MSE risk.
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ensures that the output layer of Jy has M neurons as shown
in figure 1, with each neuron corresponding to a posterior of
a particular symbol, s,,, for me[l, M], (7b.2) ensures that
the sum of the values of the output neurons is equal to 1,
to ensure a total probability of 1, where §,, is the value of
the m™ output neuron. In practice, this criteria is guaranteed
by using a softmax activation function at the output layer of
Iyn given by, (bL:%, and (7b.3) ensures that the
Fyn 1s trained with a set of labels, 5€[0, 1]™, which is a one-
hot encoded vector representation of the transmitted symbols,
Sm, where the m™ element, §,, is equal to one and zero
otherwise. Under these criteria, it is straightforward to show
that the posterior probabilities of each symbol s, is exactly
equal to the empirical posterior mean of the one hot encoded
symbols S, i.e., P [s,,|r] =E[5,,|r]. Therefore, to guarantee
equivalence as in (4) it suffices to derive the risk function of the
Inn that computes the empirical posterior mean. Estimating
the empirical mean is tractable using a neural network under
complete training, since it can be estimated from the training
data itself, and does not require knowledge of the channel
distribution.

While, under incomplete training the equivalence of
and J,4p cannot be guaranteed, the performance of Jyy
can be estimated in terms of its expected risk. This provides
a measure of the disparity of Iy and 7y, 4p, which leads to
the following relationship on their error rates.

Lemma 2. Under incomplete training, minimizing the em-
pirical risk of Iy in (7a) minimizes its BER. However, for
known stationary channel distributions, Jyy cannot outper-
form Ty 4p in terms of the average BER.

BERyy 2 BERyap €))

where BERyy and BER);.p are the average BER of Ty
and Dy ap over the entire channel distribution. The equality
holds under equivalence of Ty and Ty sp.

The proof is provided in Appendix A.B in the external
document in [18].

V. BER BOUNDS FOR yn

The Expected Risk of the Ty, R(fyn(7;0,)) measures the
error between the estimated symbols, S, and the transmitted
symbols, s,, over all possible recived symbols, r and hence
is a measure of the average BER. Hence, R(fxn(7;5,)) is a
measure of the robustness of the Jyy to generalize to data
that is not seen during training. Therefore, to derive tight data-
dependent bound on the BER of Zy for stationary channel
distributions, we estimate the expected risk of Jy given by,

R(fun(r;0n)) = Ep [L(fan(T;60))] (10)
where Ep|.] is the expectation over the ensemble of possible
datasets, D (for fixed sample size n). The difficulty here is
that R(fxn(7;6,)) cannot be computed during training and
is a random variable due to the randomness in parameter
initialization and choice of model-complexity [22] for Ty y.
Therefore, we derive expressions for the expected risk in terms

of fyy and fy 4p and use this to derive the lower and upper
bounds on the BER, under complete and incomplete training.

Lemma 3. Under complete training, n—oo the expected risk
of Iy is distributed as a zero mean Gaussian as in (11),

M
R(fan(r;0*))~N(0,0%), 0i=E [Zvar {Emr}] (11)

m=1

The proof is provided in Appendix B.A in the external
document in [18]. Therefore, for any = during testing, we
observe that the expected risk is unbiased, and has a variance,
o7 that is independent of the parameters of Jyy, 6*. o7 only
depends on the received vector, r and the labels, s, and is
determined by the statistics of the channel. In Proposition 1
we further show that for an AWGN channel, the term O'}ZL is
determined only by the Signal-to-Noise ratio (SNR) and the
constellation order M. Therefore, O'% is an irreducible term that
appears due to the physical channel, and cannot be alleviated
by further training or optimization of the Jyy.

Proposition 1. For an AWGN channel with SNR per bit, vy,
and for a decoded modulation scheme of order M, the term
O'}QL in (11) is given by (12),

MMA 2
2 _ T AGM _(1_2
o}, = Sy Togy M where, A\ (1 ﬂ_) , and, (12)
2_ J—
PSK: AM:; PAM: AM=(7M61), QAM: AM:(M3 1)

The proof is provided in Appendix B.B in the external
document in [18]. Alternately, even when a mathematical
model does not exist for the channel, O'}QL can be calculated
directly from the dataset using (11).

Lemma 4. Under incomplete training (finite n), the expected
risk associated of Ty is distributed as a Gaussian as in,

R(faun(ri05)) ~ N (in, 02 + 0ft)  where, (13a)
i = B[ (Fow (1)~ fuar()’] (13b)
0% =E [Ep | (fux(rion) = fun(r))’]] (13¢)

where fnn(r)=Ep[fyn(r;6,)] is the average function as-
sociated with Iy obtained by averaging over all possible
Sfunctions fny(r) when Jyy is trained with n data samples.

The proof is provided in Appendix B.C in the external
document in [18]. Under incomplete training, the expected risk
in (13) has a bias, u, and a variance, 0’7214-0'% that depends
on the parameters of Jyy, the number of training samples,
n and the channel. The exact values of y, and o2 in (13)
are determined by: a) using a subset of the input dataset as
a validation set, and b) extracting the statistics (mean and
variance) of the estimated distribution of the expected risk
as per (13) over the validation set [17].

Corollary 1. Expected risk in (13) can be decomposed as,

ﬁ(fNN(Taa;kL)):fn(N)—’_N(Ov0}21)7 ‘Fn(N):N(ILLn7O-72’L)14
(14)
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where F,(N) is referred to as the Structural Risk, and N=|0} |
is the number of parameters of Ty and is equal to the total
number of weights and biases in Jyy.

The proof is provided in Appendix B.D in the external
document in [18]. Therefore, the expected risk in (13) has two
components: a) the structural risk that depends on the amount
of training, n and the number of parameters of Zy, and b) the
term N(0,07) that depends only on the channel. Moreover,
we observe that when F,, (IV)=0, (14) converges to (11). This
is true when n—o0, since lim,, o f1,=0 and lim,, _,, 02=0,
according to the law of large numbers and the capacity of NNs
to serve as universal function approximators [19]. In practice,
this is also approximately achieved by empirically finding a
value Nepyp, such that F, (N)=0 for n>ney,,. The impact of
the structure of Jy and amount of training on the structural
risk is studied in Section VI, which is used to empirically
determine the value of IV that achieves minimum expected
risk for a given n.

Theorem 1. The BER of the SISO Jyn, BERyn
trained with n  samples with an expected risk of
R(faun(r;05))~N (pin, 02403 ), for an arbitrary modula-
tion scheme of order M is bounded as in (15),

Prp < BERyy < PuB (15)

where Ppp is the equivalent BER of Jyap, BERyap

for known  stationary  channel distributions, i.e.,
Prg=BER)4p. Pyg as derived in (16),
1 7( M(1—pp)—1 )2
Poa= ) W (16)

The bounds on the BER of Jyy is derived by using the
expressions for the expected risk as in (11) and (13) under
complete and incomplete training as provided in Appendix
B.E in the external document in [18]. Since, the BER for
Inw is lower bounded as Pr.g=BER,;.p, a JyN achieves
the minimum average BER for any 7, when it is equivalent
to Jyrap. Therefore, closed form expressions for BE R, 4p
and hence Prp exist for known channel models such as
AWGN and Rayleigh channels [8]. Under complete training,
equivalence is guaranteed as per the design criteria and risk
function of Jy in Lemma 1, and consequently its BER only
depends on the statistics of the channel. Under incomplete
training (finite n), the BER of the 9y is upper bounded
by Pyp. Therefore, Pyp similar to the expected risk, is also
dependent on the parameters of Jy and the statistics of
the channel. Moreover, the gap between Prp and Pyp is a
measure of the deviation of BERyy from BER,;,p under
incomplete training. Figure 2a shows the lower and upper
bounds on the BER of Zy as per (15) for AWGN channels,
under various modulation schemes, for n=10%. We observe
that the gap between Prp and Pyp increases with M, due
to the lower noise margins for higher order constellations. For
example, to achieve a target BER of 1072, Zy would require
at most 2.8dB and 4dB more SNR than the equivalent Z,,4p

) 10° )
S e%eeeoy
| 1072:\ W&"N\&o
{ |[—PgK=1 |
1074 —— PUB:K=1 14

|| —P gBPSK
4
107 | —e—P 5BPSK
] [|——P ,QPSK
10 ||—o—PusQPSK
P 5 16QAM
P g 16QAM
—— P 640AM
—o—P 5 640AM
10-10 I
0

108t

5 10 15 20 0 5 10 15 20
SNR [dB] SNR [dB]

(a) Prp and Pyp for SISO (b) Prp and Pyp for MIMO

Fig. 2: Bounds on the BER of Jyy with n=10%, o7 from
(12), and p,,, 02 determined from the validation set: a) for a
SISO AWGN channel for all modulation schemes, and b) for
a MIMO fading channel for 64-QAM modulation scheme.

for 16-QAM and 64-QAM signals respectively.

For multi-antenna systems (e.g., multiple-input, multiple-
output (MIMO)), Maximum Ratio Combining (MRC) provides
an optimal combining scheme that minimizes the error rate by
exploiting the spatial diversity of the channel, in the absence
of interference. Corollary 2 extends the bounds for BE Ry in
(15) to MIMO systems where MRC is employed at the Ty
to combine the streams from multiple antennas.

Corollary 2. Given the average SNR per channel, 7y, the

upper bound on the BER of the Ty with MRC combiner, for

the MIMO Rayleigh fading channel is given by,

M—1 & 1 M(1—p,)—1
M 1+9NNTk M2 Ay

Pyp= ) gNN= 17

pi

The proof is provided in Appendix B.F in external document
in [18]. Figure 2b shows the lower and upper bounds on
the BER of Jyy as per (15) for MIMO fading channels,
for 16-QAM modulated symbols. The gap between Prp and
Py increases with K, since the disparity between Zyy and
T ap 18 aggregated when multiple streams are combined. For
example, to achieve a target BER of 1072, the Jyy would
require at most 3dB and 4dB more SNR than the equivalent
Frap for K=4 and K=8 respectively.

VI. EVALUATION AND RESULTS

We analyze the impact of training and the model structure
of Jyn on the equivalence with Z;,p using a practical
simulation framework. The simulation parameters are detailed
in table I. Experiments are conducted on 100 sets of training
samples of size n drawn randomly from different channel
distributions including AWGN and Rayleigh channels. The
model structure of Zyy is parameterized by its number of
trained parameters, N=|d%|. In general, N is a measure of
the depth and width of Jyy and determines its capacity to
generalize beyond the training data [17]. 100 different neural
networks for each choice of n and IV are trained using different
training sets and initializations of the Jyy parameters. i,
and o2 are estimated as described in Section V, where the

n
population expectation Ep is estimated over the validation
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TABLE I: Simulation Parameters

Parameters/Hyperparameters Value/Model

Neural Network Type
Empirical Risk (R)
Training Algorithm

Activation Function (¢;)
Channel Models
Antenna Configuration
Number of Hidden Layers
Number of Input Neurons
Number of Output Neurons
Number of Samples (n)
Number of Parameters (V)
Training, Validation, Testing

Deep Feed-Forward NN
Mean-Squared Error (MSE)
Scaled Conjugate Gradient Descent(SCGD)
Hidden:Tan-Sig [24], Output:Softmax
AWGN, Rayleigh
SISO, MIMO
(3, 5]

2 (L,Q streams)

M =[2,4,16,64]

10% - 10°
100 - 105
[60, 20, 20] %

set. Iy is trained using SCGD [23] and its parameters, are
initialized by randomly sampling from a distribution whose
variance is inversely proportional to N, i.e, do~N (0, %I).

A. Model Parameters of Iy for Equivalence

14 25
———Bias

Variance:
15

—Bias |
Variance 12}

Variance (o)

0 [ ~'0
10? 10° 10 10° 10° 10 10 10°
Number of Samples (n) Number of Parameters (N)

(a) With amount of training n  (b) With number of parameters N

Fig. 3: Bias and Variance of the expected risk of Ty y.

Designing computationally efficient a Jyy, require deter-
mining the amount of training and its structure that guarantee
minimum BER. Figure 3 shows the variation of the bias and
variance of Jyy with the number of training samples, n and
the number of parameters, N for received data drawn from
AWGN channels averaged over SNR from 0-20dB. Figure 3a
shows a decreasing trend in the average values of j,, and o2
with increasing n, over all possible /N. This indicates that the
expected risk and consequently the BER decreases as more
training samples are incorporated, However, we also observe
that there is negligible improvement in j,, and o2 for n>103
samples. Therefore, we set nemp=103 for which the structural
risk is approximately zero, and consequently the complete
training criteria is approximately achieved. Figure 3b shows
a convex trend of s, and o2 with increasing N for a fixed
n=10%, with a minimum when N=102. It is clear that under-
parameterized (N<10?) and over-parameterized (N>>10?)
Iy result in large p, and ai and Therefore, we observe
that for a given n, there exists a specific structure of Jyn
with N=102, for which the structural risk and consequently
the BER is minimum.

Figure 4 shows the impact of the structure of Ty (i.e.,
the choice of N) on the learned decision boundaries for an
AWGN channel for 16-QAM constellation when only limited
training samples are available, n=10°. For AWGN channel,
the optimum decision boundaries of .7, 4p are the perpendic-
ular bisectors of the lines connecting the constellations, which

05 0
In-phase Amplitude

o 05 1 El 05 o 05
In-phase Amplitude In-phase Amplitude

(a) Under fitted (b) Over
boundaries, N<10? boundaries, N>>10?

Fig. 4: Decision boundaries of the Z, for AWGN channel
for 16-QAM constellation.

fitted (c) Perfect fitted
boundaries, N=102

guarantees minimum error rate [8]. Therefore the learned
decision boundaries by Jyy, is a visual metric to explain
its behaviour, and gauge its ability to achieve equivalence
and generalize beyond the training data. When Zy is under-
parameterized (IN<102), the decision boundaries are under-
fitted and are not the optimal boundaries. Therefore, more
training samples are required to learn the optimum boundaries.
When .y is over-parameterized (N>>102), the decision
boundaries are overfitted to the specific data samples on which
it is trained and the noise. This is because the .y configures
the decision boundaries to also accommodate outliers in the
training set, and therefore will not generalize to data not seen
during training. Therefore, we observe that for a given n,
there exists a specific structure of Jyy and choice of N
for which the learned decision boundaries are optimum, and
consequently result in the minimum BER. We also highlight
that under complete training, n—o00), Jyy will always learn
the optimum decision boundaries, due to its capacity to as
universal approximators [19], regardless of the choice of V.

B. Impact of Training Schemes on Equivalence

—%—BER 'SNR=6dB
102} | —%—BER,:SNR=0dB
| | —%—BER :SNR=12dB
BER, :each SNR
| |+ -BERall SNR
-¢-BER 0

10-3 L L i L
0 2 4 6
Eb/No (dB)

Fig. 5: BER of the yy for AWGN channel for 16-QAM
modulation scheme with different training schemes.

Bit Error Rate

The impact on the BER by the SNR at which the Ty
is trained is investigated in figure 5. It is clear that under
complete training that is representative of the entire chan-
nel distribution, the Zyy will learn the optimum decision
boundaries. Therefore, we observe that training different Ty
models for each SNR or training a single Zyy model over
all SNR eventually learn the optimum decision boundaries
and achieve equivalent BER as 73, ,p under complete training
(e.g., n=10*>103). These results corroborate the significance
of training the Jyy using a dataset that is representative of the
entire channel distribution. Alternatively, figure 5 also shows
that for AWGN channels, provided that the Jyy is trained
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at a sufficiently low SNR (e.g., SNR=6dB), it is still able to
achieve equivalent BER as .7, 4 p, because it learns the optimal
decision boundaries. However, when the training SNR is high
(SNR>9dB), the decision boundaries are configured for lower-
noise margins and is not able to handle the noise at lower
SNRs, and consequently results in high BER.

C. Error Performance of the Ty

107"
% 2
< ¢
8 5
£ 1g2 | [—e—BERyn=100 g
= —e—BER,(n=500 b
2]
BER,:n=10°
—e—BER:n=10*
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(a) BER for AWGN channel for 16-(b) BER for MIMO Fading channel
QAM modulation scheme. for BPSK modulation scheme.

Fig. 6: BER comparison of Jyy and ) 4p: a) for SISO
AWGN channel, and b) for MIMO Rayleigh fading channel
with MRC employed at the Ty y.

Figure 6 shows the BER of the 5y for SISO and
MIMO systems using AWGN and Rayleigh fading channels
as representative examples of stationary channels with known
distribution. Figure 6a confirms that with more training sam-
ples (n>10%), the BER of Zyy approaches that of Jy4p.
Figure 6b shows the performance of the Jy for multiple-
antenna systems when MRC is employed at the receiver to
combine the streams from each antenna. It is also clear that the
proposed feed-forward neural network based receiver is able
to achieve equivalent BER as .7, ,p under sufficient training
over a variety of channels. This corroborates the theoretical
equivalence of Jyy and 9, 4p, under sufficient training and
choice of structure of Ty .

VII. CONCLUSION

Through rigorous theoretical and empirical analysis we
show that a feed-forward deep NN-based receiver with the
MSE risk is equivalent to the classical receiver, under complete
rich training. We show that under incomplete training, the
expected error is distributed as a Gaussian, and derive tight up-
per bounds on the BER of the NN-based receivers. Extensive
practical simulations have corroborated that the BER of such
NN-based receivers are within the derived theoretical bounds,
and cannot outperform optimal classical receivers when a
rigorous mathematical channel model is available. Moreover,
we empirically derive the model of the NN-based receiver
for which the error rate is minimum with minimum required
training. These guarantees on error rate of NN-based receivers
is a necessary step towards ensuring wide-spread adoption.
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