
Journal of Functional Analysis 283 (2022) 109711

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Full Length Article

Limit-periodic Dirac operators with thin spectra

Benjamin Eichinger a,1, Jake Fillman b,2, Ethan Gwaltney c,∗,3, 

Milivoje Lukić c,4

a Institute of Analysis and Scientific Computing, Vienna University of Technology, 
Wien A-1040, Austria
b Department of Mathematics, Texas State University, San Marcos, TX 78666, 
USA
c Department of Mathematics, Rice University, Houston, TX 77005, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 April 2022
Accepted 28 August 2022
Available online 13 September 2022
Communicated by Benjamin Schlein

Keywords:
Dirac operators
Limit-periodic
Spectrum
Hausdorff dimension

We prove that limit-periodic Dirac operators generically have 
spectra of zero Lebesgue measure and that a dense set of 
them have spectra of zero Hausdorff dimension. The proof 
combines ideas of Avila from a Schrödinger setting with 
a new commutation argument for generating open spectral 
gaps. This overcomes an obstacle previously observed in the 
literature; namely, in Schrödinger-type settings, translation of 
the spectral measure corresponds to small L∞-perturbations 
of the operator data, but this is not true for Dirac or 
CMV operators. The new argument is much more model-
independent. To demonstrate this, we also apply the argument 
to prove generic zero-measure spectrum for CMV matrices 
with limit-periodic Verblunsky coefficients.

© 2022 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: benjamin.eichinger@tuwien.ac.at (B. Eichinger), fillman@txstate.edu (J. Fillman), 
ethan.gwaltney@rice.edu (E. Gwaltney), milivoje.lukic@rice.edu (M. Lukić).

1 B.E. was supported by the Austrian Science Fund FWF, project no: P33885.
2 J.F. was supported in part by Simons Foundation Collaboration Grant #711663 and NSF Grant DMS–

2213196.
3 E.G. was supported in part by NSF grant DMS–1745670.
4 M.L. was supported in part by NSF grants DMS–1700179 and DMS–2154563.

https://doi.org/10.1016/j.jfa.2022.109711
0022-1236/© 2022 Elsevier Inc. All rights reserved.



2 B. Eichinger et al. / Journal of Functional Analysis 283 (2022) 109711

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Preparatory work for Dirac operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Proofs of main results for Dirac operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4. The CMV setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Data availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1. Introduction

We study Dirac operators in the form

Λϕ =

[
i 0
0 −i

]
d

dx
+

[
0 ϕ(x)

ϕ(x) 0

]

with operator data ϕ : R → C; up to a pointwise unitary conjugation, this is equivalent 

to the classical form of Dirac operators [7,28,32] given by

Lϕ =

[
0 −1
1 0

]
d

dx
−
[

Re ϕ(x) Im ϕ(x)
Im ϕ(x) − Re ϕ(x)

]
.

We assume ϕ ∈ L∞(R); in this case, Λϕ is an unbounded self-adjoint operator on 

L2(R, C2) with domain H1(R, C2).

As one of the simplest classes of differential operators with equal deficiency indices 

(and therefore existence of self-adjoint operators), Dirac operators have historically been 

studied in parallel with Schrödinger operators. The later discoveries of integrable PDEs 

further motivate the importance of the corresponding classes of operators; in particular, 

just as Schrödinger operators appear in the Lax pair representation of the KdV equation, 

Dirac operators of the form Λϕ appear in the Zakharov–Shabat Lax pair representation 

for the defocusing NLS [28,41]. The results in this paper can also be motivated from this 

point of view: the inverse spectral theory of reflectionless Schrödinger operators [26,40]

and the study of almost periodicity in time of solutions of the KdV equation with al-

most periodic data [3,16,17,20] require “thickness” assumptions on the spectrum such 

as the Widom condition, the “direct Cauchy theorem” property and a gap summabil-

ity condition; thus, constructions of Schrödinger operators with thin spectra [10,11,31]

indicate their limitations. Analogously, the results of this paper indicate the limitations 

of existing inverse results about reflectionless Dirac operators [2,18] and the defocusing 

NLS equation with almost periodic data.

We say that ϕ is periodic (of period T > 0) if ϕ = ϕ(· − T ). We say that ϕ is 

(uniformly) limit-periodic if it lies in the closure of the set of periodic elements of C(R)

(in the L∞ topology).

Let LP(R, C) denote the set of all limit-periodic functions R → C. This is a complete 

metric space in the L∞ metric (note however that LP(R, C) is not a Banach space since 
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the sum of periodic functions with incommensurable frequencies will not be limit-periodic 

in general).

Recall that a residual subset of a complete metric space X is one that contains a dense 

Gδ subset of X. We say that a property holds for generic x ∈ X if the set of x for which 

it holds is residual.

We say that S ⊆ R is a generalized Cantor set if it is closed (not necessarily compact), 

perfect, and nowhere dense. Our main result is that the spectra of Dirac operators with 

limit-periodic potentials are (typically) generalized Cantor sets that are moreover very 

thin in the measure-theoretic sense.

Theorem 1.1. For generic ϕ ∈ LP(R, C), σ(Λϕ) is a generalized Cantor set of zero 

Lebesgue measure, and the spectral type of Λϕ is purely singular continuous.

One can strengthen the zero-measure statement to spectrum of zero Hausdorff dimen-

sion for a dense set of operator data:

Theorem 1.2. For a dense set of ϕ ∈ LP(R, C), σ(Λϕ) is a generalized Cantor set of 

zero Hausdorff dimension and zero lower box-counting dimension, and the spectral type 

of Λϕ is purely singular continuous.

Let us comment on the proofs of Theorems 1.1 and 1.2. Beginning with the seminal 

paper of Avila [1], there is by now a well-established path to obtaining thin spectra for 

limit-periodic operators, provided one can perform a version of Avila’s perturb-and-grow 

technique [11,13,14,24]. The construction of [1] begins with a periodic operator, performs 

a finite number of small perturbations to move energies out of the spectrum, and exploits 

uniform hyperbolicity of cocycles in the resolvent set in conjunction with connections 

between the density of states and rotation number. The key perturbative argument is 

done in two steps: first, to open up many small gaps in the spectrum via a perturbation 

to an operator of much higher period, and then to shift these new gaps around in a 

carefully controlled fashion.

The first step is generally straightforward to implement, and follows readily from Flo-

quet theory; compare [37]. The second step has traditionally relied on small translations 

(or dilations [13]) of the spectral measure in the self-adjoint setting, or rotations of the 

spectral measure in the unitary setting. In the Schrödinger setting, a translation of the 

spectral measure corresponds to a constant shift to the potential, so small translations 

correspond to uniformly small perturbations of the potential. This is not the case for 

Dirac operators: translation of the spectral measure corresponds to multiplication of 

the operator data ϕ(x) by eikx, which is in general not a small perturbation in L∞(R)! 

A similar obstruction was noted in [24] in the setting of CMV matrices: rotation by angle 

θ corresponds to multiplication of the n-th Verblunsky coefficient αn by e−i(n+1)θ (cf. 

[38, p. 960]). In that paper, the authors noted that defect and overcame it by enlarging 

the class of operators under consideration to include simple spectral shifts. However, 
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they noted at the time that this enlargement of the space of operators was somewhat 

contrived and that one should be able to perform the desired perturbative analysis with-

out passing to an artificial enlargement of the parameter space, stating in particular 

“Additional ideas are needed to refine our techniques down to this setting; we regard this 

as an interesting open question.” [24, Page 5114].

We overcome this difficulty in Section 3 by using an indirect argument to move energies 

out of the spectrum via noncommutation of transfer matrices, which is itself inspired by 

recent work on verifying the hypotheses of Furstenberg’s theorem [25] via ideas in inverse 

spectral theory [4]. We also exploit compactness to simplify some arguments in a manner 

that has not been exploited in the current setting before.

The approach described for Dirac operators is robust in the sense that it can be applied 

in any situation in which one has suitable inverse spectral results. To demonstrate the 

versatility of this approach, we prove in Section 4 related theorems for extended CMV 

matrices.

Let D = {z ∈ C : |z| < 1} and ∂D = {z ∈ C : |z| = 1} denote the open unit disk and 

the unit circle in C. Given a sequence α = {αn}n∈Z ∈ DZ, the corresponding extended 

CMV matrix E = Eα is given by

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
α0ρ−1 −α0α−1 α1ρ0 ρ1ρ0

ρ0ρ−1 −ρ0α−1 −α1α0 −ρ1α0

α2ρ1 −α2α1 α3ρ2 ρ3ρ2

ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2

α4ρ3 −α4α3 α5ρ4 ρ5ρ4

ρ4ρ3 −ρ4α3 −α5α4 −ρ5α4

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.1)

where ρn = (1 − |αn|2)1/2.

The extended CMV operator is a significant object in mathematical physics, with 

connections to orthogonal polynomials [38,39], quantum walks on the integers [5,6], and 

gap-labelling problems for the ferromagnetic Ising model [12,15].

Naturally, α is q-periodic for q ∈ N if αn+q ≡ αn. To avoid trivialities in the present 

setting, we only want to consider α that are bounded way from ∂D, that is ‖α‖∞ < 1. 

On the other hand, in order to apply Baire category arguments, one wants to work with 

a complete metric space of operator data. This was achieved in [24] by fixing an a priori

bound 0 < r < 1 and considering those limit-periodic α for which ‖α‖∞ ≤ r. The 

following definition gives us a way to consider all limit-periodic sequences in D that are 

bounded away from ∂D without enforcing a priori bounds.

Definition 1.3. Equip D with the Poincaré metric δ(z1, z2) = tanh−1
∣∣∣ z1−z2

1−z1z2

∣∣∣. For se-

quences α, β ∈ DZ, denote by

δ(α, β) = sup{δ(αn, βn) : n ∈ Z} (1.2)
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the induced metric on DZ.

Notice that δ(α, 0) < ∞ if and only if supn |αn| < 1. Let us say that α ∈ DZ is limit-

periodic if there exist periodic sequences α(n) ∈ DZ such that δ(α(n), α) → 0. Denote by 

LP(Z, D) the set of limit-periodic sequences. The reader can readily check that LP(Z, D)

is complete in the metric δ and that supn |αn| < 1 for every α ∈ LP(Z, D).

Since extended CMV operators are unitary, their spectra are contained in ∂D, the 

unit circle. We will say that S ⊆ ∂D is a Cantor subset of ∂D if it is closed, perfect, and 

nowhere dense (in the relative topology as a subset of ∂D).

Theorem 1.4. For generic α ∈ LP(Z, D), σ(Eα) is a Cantor subset of ∂D of zero Lebesgue 

measure, and the spectral type of Eα is purely singular continuous.

As in the Dirac case, one can strengthen the result to show the spectrum has zero 

Hausdorff dimension for a dense set of operator data:

Theorem 1.5. For a dense set of α ∈ LP(Z, D), σ(Eα) is a Cantor subset of ∂D of zero 

Hausdorff dimension and zero lower box-counting dimension, and the spectral type of Eα

is purely singular continuous.

The paper is organized as follows. We recall some general facts about Dirac operators 

in Section 2. We prove Theorems 1.1 and 1.2 in Section 3 and Theorems 1.4 and 1.5 in 

Section 4.

Acknowledgments. We are grateful to Christian Sadel and Hermann Shulz-Baldes for 

helpful conversations. J.F. thanks the American Institute of Mathematics for hospitality 

and support during a January 2022 visit, during which part of this work was completed. 

J.F. also gratefully acknowledges support from the Simons Center for Geometry and 

Physics, where some of this work was done. We thank the anonymous referee for com-

ments that improved the presentation.

2. Preparatory work for Dirac operators

2.1. Generalities

In this section, we consider various properties of Dirac operators on R that are essen-

tial in the proofs of Theorems 1.1 and 1.2 (see also [7,8,28,32]).

We will denote

j =

[
−1 0
0 1

]
, J =

[
0 i
−i 0

]
, J =

[
0 1
1 0

]
(2.1)

Note that J , −J , and −j are the Pauli matrices, often denoted σ1, σ2, and σ3, respec-

tively. The Dirac operator Λϕ with operator data ϕ : I → C is defined by the differential 

expression
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Λϕ = −ij
d

dx
+ Φ(x), Φ(x) =

[
0 ϕ(x)

ϕ(x) 0

]
,

together with an appropriately defined domain in the Hilbert space L2(I, C2). On the 

line I = R, if ϕ is uniformly locally L2 in the sense that

sup
x∈R

x+1∫

x

|ϕ(t)|2 dt < ∞, (2.2)

then the operator is limit-point at ±∞ and Λϕ defines a self-adjoint operator on the 

domain D(Λϕ) = H1(R, C2). We employ a standard abuse of notation here, writing Λϕ

both for the self-adjoint operator on D(Λϕ) and the differential expression, which may 

act on any function with at least one (weak) derivative.

For any z ∈ C, the Dirac eigenequation on an interval I ⊆ R is given by

ΛϕU(x, z) = zU(x, z), U(·, z) ∈ ACloc(I,C2), (2.3)

where ACloc(I, C2) denotes those functions that are absolutely continuous on compact 

subintervals of I. A solution U of (2.3) is called an eigensolution at z. The Wronskian

of any two functions U, V ∈ ACloc(I, C2) is defined by

W [U, V ](x) = U(x)�JV (x) = i(U1(x)V2(x) − U2(x)V1(x)), x ∈ I.

The limit-point conditions also state that the boundary Wronskian at ±∞ is trivial, i.e. 

for all U, V ∈ D(Λϕ),

lim
x→±∞

W [U, V ](x) = 0.

By computing (using J = ijJ)

W [U, V ]′(x) = (ΛϕU(x))�J V (x) − U(x)�J (ΛϕV (x)), (2.4)

we can see that if U and V are eigensolutions at a given z ∈ C, W [U, V ](x) is a constant 

independent of x. Moreover, W [U, V ] = 0 if and only if U and V are linearly dependent.

A Weyl solution at z ∈ C for the endpoint ±∞ is a nontrivial eigensolution ψ±(·, z)

at z that is square-integrable on the half-line [0, ±∞); due to (2.2), there is a unique 

(up to normalization) Weyl solution at each endpoint ±∞ for every z ∈ C \ σ(Λϕ), and 

W [ψ+, ψ−] 	= 0. We will write formulas in a normalization-independent way, unless a 

normalization for ψ± is explicitly stated.

Weyl functions generate the Green function via

G(x, y; z, ϕ) =

{
1

W [ψ+,ψ−] ψ
−(x, z)ψ+(y, z)�J , x < y

1
W [ψ+,ψ−] ψ

+(x, z)ψ−(y, z)�J , x > y
(2.5)
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which is the integral kernel of (Λϕ − z)−1 in the sense that

((Λϕ − z)−1f)(x) =

∫
G(x, y; z, ϕ)f(y) dy, ∀f ∈ D(Λϕ), (2.6)

which the reader can check by a direct calculation by differentiating under the integral 

sign.

Given x ∈ R and z ∈ C, let Az(x, ϕ) be the matrix solution of

ΛϕAz(x, ϕ) = zAz(x, ϕ), Az(0, ϕ) = I. (2.7)

These are transfer matrices starting from 0; defining the matrices

Az(y, x, ϕ) = Az(y, ϕ)Az(x, ϕ)−1 (2.8)

for x, y ∈ R, z ∈ C, one has

U(y) = Az(y, x, ϕ)U(x) (2.9)

whenever U is an eigensolution of Λϕ at z.

Notice that conservation of the Wronskian as in (2.4) implies det(Az(y, x, ϕ)) = 1 for 

all x, y, z, and ϕ. For z, w ∈ C, differentiating Aw(y, x, ϕ)∗jAz(y, x, ϕ) with respect to 

y and using (2.7) we get

∂y(Aw(y, x, ϕ)∗jAz(y, x, ϕ)) = i(z − w)Aw(y, x, ϕ)∗Az(y, x, ϕ) (2.10)

which (using Aw(x, x, ϕ) = Az(x, x, ϕ) = I) leads to

Aw(y, x, ϕ)∗jAz(y, x, ϕ) − j = i(z − w)

y∫

x

Aw(t, x, ϕ)∗Az(t, x, ϕ) dt. (2.11)

In particular, applying (2.11) at a real parameter z = w = λ ∈ R, one has

Aλ(y, x, ϕ)∗jAλ(y, x, ϕ) = j,

which (together with det Aλ = 1) implies Aλ(y, x, ϕ) ∈ SU(1, 1).

The Schur functions associated to ϕ at the point x ∈ R are defined using the Weyl 

solutions as

s+(x, z) =
ψ+

1 (x, z)

ψ+
2 (x, z)

, s−(x, z) =
ψ−

2 (x, z)

ψ−
1 (x, z)

. (2.12)

For each fixed x ∈ R, s±(x, ·) is an analytic function from the upper half-plane C+ =

{z : Im z > 0} to D (compare [19, Lemma 2.1] and surrounding discussion). These can 
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be characterized by a Weyl disk formalism: Weyl disks in this setting can be defined in 

Ĉ = C ∪ {∞} as

D(x, z) =

{
w ∈ Ĉ :

[
w
1

]∗

Az(x, ϕ)∗jAz(x, ϕ)

[
w
1

]
≥ 0

}
,

with the natural convention [∞, 1] = [1, 0] in projective coordinates. The relation (2.11)

ensures their nesting property, D(x2, z) ⊆ D(x1, z) whenever x1 < x2. We are in the 

limit-point case so one has

{s+(0, z)} =
⋂

x≥0

D(x, z). (2.13)

We will now discuss some foundational results with proofs, including a Combes–

Thomas estimate and a Schnol’s theorem in the Dirac setting. We formulate some results 

for ψ+, but analogous results hold for ψ−.

Lemma 2.1. Suppose ϕ : R → C obeys (2.2), let ψ+(·, z) be a Weyl solution at +∞, and 

suppose z /∈ σ(Λϕ). For any [c, d] ⊆ R, there exists f ∈ L2(R, C2) such that fχ[c,d] = f

and (Λϕ − z)−1f is a nontrivial constant multiple of ψ+ on [d, ∞).

Proof. If f ∈ L2(R, C2) with fχ[c,d] = f , then (2.5) and (2.6) yield the following for 

x > d:

((Λϕ − z)−1f)(x) =

∫
G(x, y; z, ϕ)f(y) dy

=
1

W [ψ+, ψ−]

∫
ψ+(x, z)ψ−(y, z)�J f(y) dy.

= Cψ+(x, z),

where C = C(f) = 1
W

∫ d

c
ψ−(y, z)�J f(y) dy. Since ψ− does not vanish identically, 

f ∈ L2([c, d], C2) can be chosen so that C(f) is nonzero. �

The proof applies more generally, for any kind of left endpoint; in particular, the same 

proof yields the following:

Lemma 2.2. Suppose ϕ : [0, ∞) → C obeys

sup
x≥0

x+1∫

x

|ϕ(t)|2 dt < ∞,

let ψ+(·, z) be a Weyl solution at +∞, and let Λϕ denote the Dirac operator on [0, ∞)

with a Dirichlet boundary condition f1(0) = f2(0) at zero. Suppose z /∈ σ(Λϕ). For any 
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[c, d] ⊆ [0, ∞), there exists f ∈ L2([0, ∞), C2) such that fχ[c,d] = f and (Λϕ − z)−1f is 

a nontrivial constant multiple of ψ+ on [d, ∞).

Lemma 2.3. If ϕ obeys (2.2), then for any z ∈ C \ σess(Λϕ), the Weyl solution ψ+(·, z)

obeys ‖ψ+(x, z)‖ = O(e−γx) as x → +∞, for some γ > 0.

Proof. Since ψ+ is a nontrivial eigensolution, choose ω ∈ ∂D such that

[1 ω ] ψ+(0, z) 	= 0 (2.14)

(indeed, equality can hold for at most one value of ω). Fix such an ω and define a half-line 

Dirac operator Λ0 by the same differential expression as Λ on the domain

D(Λ0) =
{

f ∈ H1([0, ∞),C2) : [1 ω ] f(0) = 0
}

.

Due to (2.14) and the assumption z /∈ σess(Λϕ), we have z /∈ σ(Λ0). Given γ > 0, define 

Λγ as Λγ := eγxΛ0e−γx with domain D(Λγ) = D(Λ0). To see that Λγ with such a domain 

defines a (non-self adjoint) operator, note that the difference

Λγ − Λ0 = iγj (2.15)

is a bounded (non-self adjoint) operator.

If V ∈ D(Λγ), then using z /∈ σ(Λ0) and ‖V ‖ ≤ ‖(Λ0 − z)−1‖‖(Λ0 − z)V ‖ yields

‖(Λγ − Λ0)V ‖ = ‖iγjV ‖ = γ‖V ‖ ≤ Cγ‖(Λ0 − z)V ‖

with C = ‖(Λ0 − z)−1‖ > 0. Taking γ > 0 sufficiently small, we obtain

‖(Λγ − Λ0)(Λ0 − z)−1‖ < 1,

so that

Λγ − z = [(Λγ − Λ0)(Λ0 − z)−1 + I](Λ0 − z)

is invertible. By Lemma 2.2, there exists f ∈ L2([0, ∞); C2) such that supp f ⊆ [0, 1]

and (Λ0 − z)−1f is a nontrivial multiple of ψ+ on [1, ∞). Then, on [1, ∞),

(Λγ − z)−1(eγxf)

is a nontrivial multiple of eγxψ on [1, ∞). Since (Λγ − z)−1(eγxf) ∈ D(Λ0) ⊆
L∞([0, ∞); C2) by a Sobolev embedding theorem, ‖ψ+(x, z)‖ = O(e−γx) as x → ∞. �

Theorem 2.4 (Schnol’s Theorem). Let Λ = Λϕ be a Dirac operator with ϕ satisfying (2.2). 

For a fixed κ > 1/2, let Sκ denote the set of λ ∈ C for which there exists a nontrivial 

eigensolution U(x, λ) obeying ‖U(x, λ)‖ = O(|x|κ) as x → ±∞. Then:
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(a) Sκ ⊆ σ(Λ);

(b) The maximal spectral measure of Λ is supported on Sκ;

(c) Sκ = σ(Λ).

Proof. (a) Let λ /∈ σ(Λ) and let ψ±(·, λ) be the associated Weyl solutions at ±∞. By 

Lemma 2.3, the Weyl solutions obey

‖ψ±(x, λ)‖ = O(e−γ|x|) as x → ±∞,

for some γ > 0. Suppose for the purpose of establishing a contradiction that λ ∈ Sκ, 

and let U(x, λ) denote an eigensolution satisfying ‖U(x, λ)‖ = O(|x|κ) as x → ±∞. 

The growth estimates on U and ψ± imply that the Wronskian satisfies W [U, ψ±](x) =

O(e−γ|x||x|κ) as x → ±∞. Using conservation of the Wronskian, we have W [U, ψ±] = 0, 

which implies that ψ+ and ψ− are linearly dependent, which in turn implies λ ∈ σ(Λ), 

a contradiction.

(b) The eigenfunction expansion for Λ is a unitary map U : L2(R, C2; dx) →
L2(R, C2; dΩ), with dΩ(λ) = W (λ) dμ(λ) a matrix-valued measure and μ a maximal 

spectral measure for Λ, defined on compactly supported functions by

(Uf)(λ) =

∫
Aλ(x)∗f(x) dx (2.16)

and extended by continuity.

For fixed x ∈ R, z ∈ C \ R, and e1 := (1, 0)�, e2 := (0, 1)�, the functions fk(y) =

G(x, y; z)ek are mapped to (Ufk)(λ) = 1
λ−z Aλ(y)∗ek. Since U is unitary,

∫
‖G(x, y; z)ek‖2 dx =

∫
e∗

kAλ(y)W (λ)Aλ(y)∗ek|λ − z|−2 dμ(λ). (2.17)

Now, since D(Λ) ⊆ L∞(R, C2), for any f ∈ L2(R, C2),

sup
x∈R

∣∣∣∣
∫

e∗
kG(x, y; z)∗f(y) dy

∣∣∣∣ < ∞,

so by the uniform boundedness principle,

sup
x∈R

∫
‖G(x, y; z)ek‖2 dy < ∞.

This combined with (2.17) implies

sup
x∈R

∫
e∗

kAλ(y)W (λ)Aλ(y)∗ek|λ − z|−2 dμ(λ) < ∞.

Multiplying by the integrable function (1 + x2)κ and integrating in x yields
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∫∫
(1 + x2)κe∗

kAλ(y)W (λ)Aλ(y)∗ek|λ − z|−2 dμ(λ) dx < ∞.

Fubini’s theorem then implies

∫
(1 + x2)κe∗

kAλ(y)W (λ)Aλ(y)∗ek dx < ∞, μ-a.e. λ, k = 1, 2. (2.18)

Gronwall’s inequality for ΛϕAz = zAz gives an estimate

‖Aλ(x)‖ ≤ C

x+1∫

x

‖Aλ(y)‖ dy

with an x-independent value of C. Thus, (2.18) implies ‖U(x, λ)‖ = O(|x|κ) for μ-a.e. λ.

(c) Sκ ⊆ σ(Λ) implies Sκ ⊆ σ(Λ); conversely, since μ is supported on Sκ, σ(Λ) =

supp μ ⊆ Sκ. �

Let us briefly recall a tool that we will use later. The Hausdorff distance between two 

nonempty closed subsets of R is given by

dHd(K1, K2) = inf {ε > 0 : K1 ⊆ Bε(K2) and K2 ⊆ Bε(K1)} , (2.19)

where Bε(S) = {y : |x − y| < ε for some x ∈ S} denotes the open ε-neighborhood of the 

set S.

Proposition 2.5. Given ϕ1, ϕ2 ∈ L∞(R, C), one has

dHd(σ(Λϕ1
), σ(Λϕ2

)) ≤ ‖ϕ1 − ϕ2‖∞. (2.20)

Proof. This follows from

dHd(σ(Λϕ1
), σ(Λϕ2

)) ≤ ‖Λϕ1
− Λϕ2

‖ = ‖ϕ1 − ϕ2‖∞.

The inequality is a consequence of general perturbation theory for self-adjoint operators 

and the equality follows from a direct calculation. �

2.2. Floquet theory

Now that we have set up the tools that we need for general Dirac operators with 

uniformly locally L2 operator data, we specialize to the case of periodic ϕ. We assume 

that ϕ ∈ C(R, C) has period T > 0. Recall that Az(x, ϕ) and Az(y, x, ϕ) are the transfer 

matrices defined in (2.7) and (2.8) respectively. Recall also from (2.11) that whenever 

λ ∈ R, one has
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Aλ(y, x, ϕ) ∈ SU(1, 1) := {A ∈ SL(2,C) : A∗jA = j}, (2.21)

where j is as in (2.1).

If ϕ is periodic of period T , we call

Mz(x, ϕ) := Az(x + T, x, ϕ) (2.22)

the monodromy matrix and D(z, ϕ) = Tr(Mz(x, ϕ)) the discriminant. We sometimes 

abbreviate Mz(ϕ) = Mz(0, ϕ) and write Mz(x) when ϕ is clear from context. Let us 

briefly summarize the aspects of Floquet theory that are needed for our proofs.

Theorem 2.6 (Floquet Theory). Suppose ϕ ∈ C(R, C) is T -periodic and let Mz(x, ϕ) and 

D(z, ϕ) = Tr(Mz(x, ϕ)) denote the associated monodromy and discriminant.

(a) spr(Mz(x, ϕ)) and Tr(Mz(x, ϕ)) do not depend on x. In particular, D(z, ϕ) is well-

defined.

(b) The Lyapunov exponent5 is given by

L(z) := lim
x→∞

1

x
log ‖Az(x, 0, ϕ)‖ =

1

T
log spr(Mz(x, ϕ)). (2.23)

(c) z is a generalized eigenvalue of Λϕ if and only if D(z, ϕ) ∈ [−2, 2].

(d) The spectrum of Λϕ is given by

Σ = σ(Λϕ) = {λ ∈ R : D(λ) ∈ [−2, 2]} = Z.

(e) If D(λ) ∈ (−2, 2), then for each x there is Bλ(x) ∈ SU(1, 1) such that

Bλ(x)Mλ(x, ϕ)Bλ(x)−1 ∈ K =

{[
eiθ 0
0 e−iθ

]
: θ ∈ [0, 2π]

}
. (2.24)

This conjugacy is unique modulo left-multiplication by elements of K. That is, if 

B
(1)
λ (s) also satisfies (2.24), one has Bλ(s) = QB

(1)
λ for some Q ∈ K.

(f) Given R > 0 there are at most 2 
(

T
π (R + ‖ϕ‖∞) + 1

)
bands of σ(Λϕ) that intersect 

[−R, R].

Proof. For the most part, these results are standard fare [32]; we supply arguments to 

keep the paper more self-contained for the reader’s convenience.

(a) This follows from periodicity and cyclicity of the trace.

(b) This follows from periodicity, Gelfand’s formula, and interpolation.

(c) If D(z) ∈ [−2, 2], Mz(ϕ) has a unimodular eigenvalue, so ΛϕU = zU enjoys a 

bounded solution, and thus z is a generalized eigenvalue. If D(z) ∈ C \ [−2, 2], then 

5 The first equality of (2.23) is the definition of L(z).
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Mz(ϕ) has eigenvalues λ± with |λ+| > 1 > |λ−|, so every solution of ΛϕU = zU grows 

exponentially on at least one half-line, and thus z is not a generalized eigenvalue.

(d) Since D(z) is analytic (in particular, continuous), the set of z with D(z) /∈ [−2, 2]

is open, so this follows from (b), (c), and Theorem 2.4.

(e) This is a standard fact about SU(1, 1) matrices. We will want to use some notation 

and ideas from the proof later, so we recall the argument here. Recall that any invertible 

M ∈ C2×2 acts on Ĉ = C ∪ {∞} by Möbius transformations:

M̂z =
m11z + m12

m21z + m22
, z ∈ Ĉ.

The reader can check that if M ∈ SU(1, 1), then Tr(M) ∈ (−2, 2) if and only if M̂ has 

a unique fixed point in D. Furthermore, if M ∈ SU(1, 1), then M̂0 = 0 if and only if 

M ∈ K, so the desired conjugacy is obtained by choosing B ∈ SU(1, 1) with B̂ξ = 0, 

where ξ ∈ D is the unique fixed point of M̂ in the unit disk. The uniqueness statement 

follows since this discussion implies that B(B′)−1 ∈ K if B′ also conjugates M to a 

rotation. Since s+(x, λ + i0) is that fixed point, the reader may note that

Bλ =
1√

1 − |s+(x, λ + i0)|2

[
1 −s+(x, λ + i0)

−s+(x, λ + i0) 1

]
(2.25)

belongs to SU(1, 1) and satisfies (2.24).

(f) Consider Λ0, the free Dirac operator (i.e., the Dirac operator with ϕ ≡ 0), and 

view it as a T -periodic operator. The associated monodromy is

Mz(x, 0) =

[
e−izT 0

0 eizT

]
. (2.26)

Thus, the associated discriminant is just D(z) = 2 cos(Tz) and hence the bands are given 

by

Bn =

[
nπ

T
,

(n + 1)π

T

]
, n ∈ Z. (2.27)

Choose n ∈ Z+ maximal with nπ/T ≤ R + ‖ϕ‖∞. Combining (2.27) with standard 

eigenvalue perturbation theory, at most 2(n +1) bands of Λϕ may then intersect [−R, R]. 

Since nπ/T ≤ R+‖ϕ‖∞, the number of bands intersecting [−R, R] is bounded from above 

by

2(n + 1) ≤ 2

(
T

π
(R + ‖ϕ‖∞) + 1

)
,

as desired. �
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2.3. A helpful formula for the Johnson-Moser function

Using the Dirac equation, we can express the logarithmic derivative of the dominant 

component of the Weyl solution,

∂xψ+
2 (x, z)

ψ+
2 (x, z)

= iz − iϕ(x)s+(x, z), (2.28)

−∂xψ−
1 (x, z)

ψ−
1 (x, z)

= iz − iϕ(x)s−(x, z). (2.29)

This motivates the definition of the Johnson–Moser function of a T -periodic Dirac op-

erator,

w(z) =
1

T

T∫

0

(iz − iϕ(x)s+(x, z)) dx (2.30)

for z ∈ C+. Let us briefly note how w(z) is related to objects already introduced.

Proposition 2.7. Suppose ϕ ∈ C(R) is T -periodic. For all z ∈ C+,

D(z) = 2 cosh(Tw(z)) (2.31)

L(z) = − Re w(z). (2.32)

Proof. Note that s+(T, z) = s+(0, z) by periodicity, so the vector (s+(0, z), 1)� is 

an eigenvector of the monodromy matrix with eigenvalue ψ+
2 (T, z)/ψ+

2 (0, z). By inte-

grating (2.28) it follows that the corresponding eigenvalue is equal to eT w(z). Due to 

det Mz(0, ϕ) = 1, the other eigenvalue is e−T w(z) and thus

D(z) = eT w(z) + e−T w(z) = 2 cosh(Tw(z)),

proving (2.31).

The previous argument shows that eT w(z) = ψ+
2 (T, z)/ψ+

2 (0, z) is one of the eigen-

values of the monodromy matrix. Since ψ+ is the Weyl solution at +∞, it follows that 

e−T w(z) is the dominant eigenvalue of Mz(0, ϕ), so (2.23) implies

− Re w(z) =
1

T
log

∣∣∣∣
ψ+

2 (0, z)

ψ+
2 (T, z)

∣∣∣∣ = L(z),

as promised. �

Since the Lyapunov exponent defines a non-negative, symmetric, subharmonic func-

tion on C that is harmonic and positive on C \R, it follows by complexifying [19, Lemma 

3.2] that w(z) is related to the density of states measure ρ by
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−w(z) = c0z + c1 +

1∫

−1

log(λ − z) dρ(λ) +

∫

R\(−1,1)

(
log

(
1 − z

λ

)
+

z

λ

)
dρ(λ),

where c0, c1 are some constants. Differentiating and passing from a normalization at 0

to a normalization at i, we find c2 so that

w′(z) = c2 +

∫

R

(
1

λ − z
− λ

1 + λ2

)
dρ(λ), c2 = Re w′(i). (2.33)

On the other hand, we will express it in terms of the full-line Green function. As a 

preliminary, we need:

Lemma 2.8. Let z, z0 ∈ C \R.

(a) Whenever z 	= z0,

ψ+(x, z0)�(−iJ)ψ+(x, z) = −i(z − z0)

+∞∫

x

ψ+(y, z0)�J ψ+(y, z) dy. (2.34)

(b) If Weyl solutions are normalized by ψ+
2 (x, z) = 1, then

1 − s+(x, z0)s+(x, z) = −i(z − z0)

+∞∫

x

ψ+(y, z0)∗ψ+(y, z) dy. (2.35)

(c) Weyl solutions are L2([x, ∞), C2)-continuous on C+, that is, if we assume that Weyl 

solutions are normalized by ψ+
2 (x, z) = 1, then

lim
z→z0

+∞∫

x

‖ψ+(y, z) − ψ+(y, z0)‖2 dy = 0. (2.36)

(d) For all z ∈ C+,

∂zs+(x, z) = i
1

(ψ+
2 (x, z))2

+∞∫

x

ψ+(y, z)�J ψ+(y, z) dy. (2.37)

Proof. (a) Recall that Az(x, ϕ) denotes the transfer matrix from 0 to x; since ϕ is fixed 

in this argument, we suppress it from the notation. Starting with the formula (2.10), we 

get
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Az0
(x1)∗jAz(x1) − Az0

(x2)∗jAz(x2) = −i(z − z0)

x2∫

x1

Az0
(y)∗Az(y) dy.

Multiplying by ψ+(0, z0)∗ on the left and by ψ+(0, z) on the right gives

ψ+(x1, z0)∗jψ+(x1, z) − ψ+(x2, z0)∗jψ+(x2, z) = −i(z − z0)

x2∫

x1

ψ+(y, z0)∗ψ+(y, z) dy.

To obtain an expression analytic in both z and z0, we note that by a direct verification 

[19, Lemma 2.4], J ψ+(x, z0) is an eigensolution at energy z0 (with complex conjugation 

applied componentwise). It is also square-integrable on [0, ∞) so it is a Weyl solution at 

energy z0. Inserting

ψ+(x, z0) = J ψ+(x, z0) (2.38)

we obtain

ψ+(x1, z0)�J jψ+(x1, z) − ψ+(x2, z0)�J jψ+(x2, z)

= −i(z − z0)

x2∫

x1

ψ+(y, z0)�J ψ+(y, z) dy.

Replacing z0 by z0 and using J j = −iJ , we finally get a bianalytic expression

ψ+(x1, z0)�(−iJ)ψ+(x1, z) − ψ+(x2, z0)�(−iJ)ψ+(x2, z)

= −i(z − z0)

x2∫

x1

ψ+(y, z0)�J ψ+(y, z) dy.

Due to the limit-point condition, the Wronskian ψ+(x2, z0)�Jψ+(x2, z) decays as x2 →
∞, so taking x2 → ∞ and writing x1 = x gives (2.34).

(b) By using the reflection symmetry (2.38) again on (a) we obtain

ψ+(x, z0)∗jψ+(x, z) = −i(z − z0)

∞∫

x

ψ+(y, z0)∗ψ+(y, z) dy,

so in particular if ψ+
2 (x, z) = ψ+

2 (x, z0) = 1 we obtain (2.35).

(c) For any z0 	= z we can expand the integral

+∞∫

x

‖ψ+(y, z) − ψ+(y, z0)‖2 dy
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into four terms and apply part (b) to each term to obtain

+∞∫

x

‖ψ+(y, z) − ψ+(y, z0)‖2 dy =
1 − s+(x, z)s+(x, z)

−i(z − z)
− 1 − s+(x, z0)s+(x, z)

−i(z − z0)

− 1 − s+(x, z)s+(x, z0)

−i(z0 − z)
+

1 − s+(x, z0)s+(x, z0)

−i(z0 − z0)

and taking z0 → z, the right-hand side converges to 0.

(d) Dividing (a) by ψ+
2 (x, z0)ψ+

2 (x, z), we obtain

s+(x, z0) − s+(x, z) = − i(z − z0)

ψ+
2 (x, z0)ψ+

2 (x, z)

+∞∫

x

ψ+(y, z0)�J ψ+(y, z) dy

Dividing by z0 − z and taking the limit z0 → z gives (2.37). �

We can now represent ∂zw(z) as an average of the trace of the matrix-valued diagonal 

Green functions:

Lemma 2.9. For a T -periodic Dirac operator, the derivative of the Johnson-Moser func-

tion is

w′(z) =
1

T

T∫

0

ψ−(x, z)�J ψ+(x, z)

W [ψ+, ψ−]
dx, z ∈ C+. (2.39)

Proof. By a Cauchy formula and Fubini’s theorem, it is allowed to differentiate the 

definition of the Johnson–Moser function inside the integral to obtain

w′(z) =
1

T

T∫

0

(i − iϕ(x)∂zs+(x, z)) dx.

To rewrite this, we essentially use an integration by parts. We start from an inspired 

guess

h(x, z) =
s−(x, z)∂zs+(x, z)

1 − s+(x, z)s−(x, z)
=

iψ−

2 (x,z)

ψ−

1 (x,z)
1

(ψ+
2 (x,z))2

∫ +∞

x
ψ+(y, z)�J ψ+(y, z) dy

i 1
ψ−

1 (x,z)ψ+
2 (x,z)

ψ+(x, z)�Jψ−(x, z)
.

Writing W = ψ+(x, z)�Jψ−(x, z) for the Wronskian of ψ+ and ψ−, this simplifies to

h(x, z) =
ψ−

2 (x, z)

Wψ+
2 (x, z)

+∞∫

x

ψ+(y, z)�J ψ+(y, z) dy.
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To differentiate this in x, we will use

∂x

(
ψ−

2 (x, z)

ψ+
2 (x, z)

)
=

∂xψ−
2 (x, z)ψ+

2 (x, z) − ψ−
2 (x, z)∂xψ+

2 (x, z)

(ψ+
2 (x, z))2

.

Using the eigenfunction equation and simplifying gives

∂x

(
ψ−

2 (x, z)

ψ+
2 (x, z)

)
=

ϕ(x)ψ+(x, z)�Jψ−(x, z)

(ψ+
2 (x, z))2

=
ϕ(x)W

(ψ+
2 (x, z))2

so the derivative of h is

∂xh(x, z) =
ϕ(x)

(ψ+
2 (x, z))2

+∞∫

x

ψ+(y, z)�J ψ+(y, z) dy − ψ−
2 (x, z)

Wψ+
2 (x, z)

ψ+(x, z)�J ψ+(x, z)

and computing ψ+(x, z)�J ψ+(x, z) = 2ψ+
1 (x, z)ψ+

2 (x, z), this simplifies to

∂xh(x, z) = −iϕ(x)∂zs+(x, z) − 2
ψ+

1 (x, z)ψ−
2 (x, z)

W
. (2.40)

The function h(x, z) is T -periodic because s±(x, z) are T -periodic, so its derivative has 

zero integral on [0, T ]. Thus, integrating ∂xh(x, z) from 0 to T gives

i

T∫

0

ϕ(x)∂zs+(x, z) dx = −2

T∫

0

ψ+
1 (x, z)ψ−

2 (x, z)

W
dx

so

∂zw(z) = i +
2

T

T∫

0

ψ+
1 (x, z)ψ−

2 (x, z)

W
dx.

Thus,

∂zw(z) = i +
1

T

T∫

0

2ψ+
1 (x, z)ψ−

2 (x, z)

i(ψ+
1 (x, z)ψ−

2 (x, z) − ψ+
2 (x, z)ψ−

1 (x, z))
dx.

Bringing i into the integral and combining terms gives (2.39). �

We now combine those two formulas leads to get a helpful formula for the density of 

states.
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Lemma 2.10. For a T -periodic Dirac operator, the density of states measure is absolutely 

continuous with respect to Lebesgue measure. Inside spectral bands (i.e., for λ such that 

D(λ) ∈ (−2, 2)), its Radon–Nikodym derivative is

dρ

dλ
(λ) =

1

πT

T∫

0

1

1 − |s+(x, λ + i0)|2 dx. (2.41)

Proof. In the formula (2.39), cancelling ψ−
1 ψ+

2 from the fraction gives

w′(z) =
i

T

T∫

0

1 + s−(x, z)s+(x, z)

1 − s−(x, z)s+(x, z)
dx

and therefore

Im w′(z) =
1

T

T∫

0

1 − |s−(x, z)s+(x, z)|2
|1 − s−(x, z)s+(x, z)|2 dx.

On any spectral band, s±(x, z) have continuous boundary values in D. From (2.33), by 

Stieltjes inversion, we can recover ρ from w′. For (a, b) ⊆ {λ ∈ R : D(λ, ϕ) ∈ (−2, 2)},

ρ((a, b)) + ρ([a, b])

2
=

1

πT

b∫

a

T∫

0

1 − |s−(x, λ + i0)s+(x, λ + i0)|2
|1 − s−(x, λ + i0)s+(x, λ + i0)|2 dx dλ

Periodic operators are reflectionless, so for D(λ) ∈ (−2, 2), s−(x, λ + i0) = s+(x, λ + i0), 

which simplifies the formula to the final result. �

Lemma 2.11. There is a constant c0 > 0 with the following property. Suppose ϕ ∈ C(R)

is T -periodic with T > 0. Denote the associated discriminant by D and the density of 

states by ρ. Inside spectral bands (i.e., for λ such that D(λ) ∈ (−2, 2)), one has

dρ

dλ
(λ) ≥ c0

T

T∫

0

‖Bλ(x)‖2 dx, (2.42)

where Bλ(x) is the conjugacy defined by (2.24).

Proof. Since Bλ(x) is unique modulo left-multiplication by an element of K, its Hilbert–

Schmidt norm is independent of the choice of conjugacy. Since (2.25) furnishes an 

example of a matrix that conjugates Mλ(x) to a rotation (recall s+(x) = s+(x, λ + i0)), 

we may explicitly compute the Hilbert–Schmidt norm of Bλ(x)
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‖Bλ(x)‖2
2 = 2

(
1 + |s+(x, λ + i0)|2
1 − |s+(x, λ + i0)|2

)
. (2.43)

Since |s+| < 1, we get

‖Bλ(x)‖2
2 ≤ 4

1 − |s+(x, λ + i0)|2 , (2.44)

which gives the statement of the lemma upon applying Lemma 2.10 and recalling that 

all matrix norms on 2 × 2 matrices are mutually equivalent. �

2.4. Gordon lemmas for Dirac operators

In the present subsection, we explain how to exclude eigenvalues for Dirac operators 

with suitable repetitions in the potential ϕ. The central idea dates back to Gordon [27]

and has been implemented in a wide variety of settings over the years; see [9,30,34–36]

for an incomplete list of examples.

The following lemma is well known. The proof is short, so we give it for the reader’s 

convenience.

Lemma 2.12. For any M ∈ SL(2, C) and any v ∈ C2, one has

max(‖M−1v‖, ‖Mv‖, ‖M2v‖) ≥ 1

2
‖v‖ (2.45)

max(‖Mv‖, ‖M2v‖) ≥ 1

2
min

(
1,

1

|Tr M |

)
‖v‖. (2.46)

Proof. By the Cayley–Hamilton theorem, one has

M2 = (Tr M)M − I (2.47)

M−1 = (Tr M)I − M. (2.48)

Applying (2.47) when |Tr M | ≤ 1 and (2.48) when |Tr M | > 1 proves (2.45), while (2.46)

follows directly from (2.47). �

Theorem 2.13 (3-Block Gordon Lemma). Let ϕ ∈ L∞(R) be given. If there exist 0 <

qk → ∞ such that

ϕ(x ± qk) = ϕ(x) ∀0 ≤ x < qk,

then Λϕ has empty point spectrum.

Proof. The given assumption implies Az(2qk, qk, ϕ) = Az(qk, 0, ϕ) = Az(0, −qk, ϕ) for 

any z. Lemma 2.12 implies that any eigensolution U at z must satisfy
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‖U(xk)‖ ≥ 1

2
‖U(0)‖ (2.49)

for a sequence xk ∈ R with |xk| → ∞. By Gronwall’s inequality

‖U(x)‖ ≥ ‖U(xk)‖ exp

⎛
⎝−

x∫

xk

(‖Φ(t)‖ + |z|) dt

⎞
⎠

for x > xk, with a similar estimate for x < xk. In particular, since ϕ ∈ L∞(R), there 

exists δ > 0 independent of k such that ‖U(x)‖ ≥ ‖U(0)‖/3 for x in the δ-neighborhood 

of each xk, which implies U /∈ L2. �

An additional assumption on the traces allows one to prove a result that requires 

fewer repetitions.

Theorem 2.14 (2-Block Gordon Lemma). Let ϕ ∈ L∞(R) be given. If there exist 0 <

qk → ∞ such that

ϕ(x + qk) = ϕ(x) ∀0 ≤ x < qk,

and if

sup
k

|Tr Az(qk, 0, ϕ)| < ∞ (2.50)

then z is not an eigenvalue of Λϕ.

Proof. This follows from the same proof as Theorem 2.13, but using the inequality (2.46)

instead of (2.45). �

Clearly, one can perturb around this and preserve the absence of eigenvalues.

Definition 2.15. We say that ϕ ∈ L∞(R) is of Gordon type if there exist 0 < qk → ∞
such that

lim
k→∞

Cqk sup
0≤x<qk

|ϕ(x − qk) − ϕ(x)| = lim
k→∞

Cqk sup
0≤x<qk

|ϕ(x + qk) − ϕ(x)| = 0 (2.51)

for every C > 0.

Theorem 2.16. If ϕ ∈ L∞(R) is of Gordon type, then Λϕ has empty point spectrum.

Proof. Fix k and let ϕ̃k denote the qk-periodic function that agrees with ϕ on [0, qk).

Consider z and a nontrivial solution U of ΛϕU = zU . By Lemma 2.12, we can choose 

xk ∈ {−qk, qk, 2qk} such that
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‖Az(xk, 0, ϕ̃k)U(0)‖ ≥ 1

2
‖U(0)‖. (2.52)

By variation of parameters,

Az(xk, 0, ϕ) − Az(xk, 0, ϕ̃k) =

xk∫

0

Az(xk, x, ϕ̃k)ij[Φ̃(x) − Φ(x)]Az(x, 0, ϕ) dx

and by Gronwall’s inequality, ‖Az(xk, x, ϕ̃k)‖ ≤ Cxk−x and ‖Az(x, 0, ϕ)‖ ≤ Cx for some 

C depending on z and ‖ϕ‖∞, ‖ϕ̃k‖∞. Thus, by (2.51),

‖Az(xk, 0, ϕ) − Az(xk, 0, ϕ̃k)‖ � Cqk sup
y∈Ik

|ϕ(y) − ϕ̃k(y)|

→ 0, (2.53)

where C > 0 is a suitable constant and Ik = [0, xk] or [xk, 0] according to whether xk is 

positive or negative. Putting together (2.52) and (2.53), we get the following for large k:

‖U(xk)‖ = ‖Az(xk, 0, ϕ)U(0)‖

= ‖Az(xk, 0, ϕ̃k)U(0) + (Az(xk, 0, ϕ) − Az(xk, 0, ϕ̃k))U(0)‖

≥ 1

2
‖U(0)‖ − ‖Az(xk, 0, ϕ) − Az(xk, 0, ϕ̃k)‖‖U(0)‖

≥ 1

4
‖U(0)‖.

The conclusion follows from Gronwall’s inequality as before. �

Proposition 2.17. Recall that LP(R, C) denotes the set of continuous uniformly limit-

periodic functions R → C. If G denotes the set of Gordon-type elements of LP(R, C), 

then G is a dense Gδ subset of LP(R, C).

Proof. Let P(R, T ) denote the set of T -periodic elements of LP(R, C), and observe that

G =

∞⋂

N=1

⋃

T ≥N

⋃

ϕ∈P (R,T )

B(ϕ, N−T ), (2.54)

where B(ϕ, r) denotes the open ball of radius r centered at ϕ. Since G is clearly dense, 

this shows that G is a dense Gδ. �
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3. Proofs of main results for Dirac operators

3.1. Proofs of main results

We now put the results from the previous section to work to prove Theorem 1.1 and 

1.2. Given that limit-periodic operators are limits of periodic operators in the uniform 

topology, the key to producing the desired limit-periodic operators with thin spectra is 

a construction of periodic operators with thin spectra. Here is the crucial lemma.

Lemma 3.1. Suppose ϕ ∈ C(R) is T -periodic. For all R, ε > 0, there exist N0 =

N0(ϕ, R, ε) ∈ N and c0 = c0(ϕ, R, ε) ∈ N such that for every N ∈ N for which N ≥ N0, 

there in turn exists ϕ̃ ∈ C(R) of period T̃ = NT such that

‖ϕ − ϕ̃‖∞ < ε (3.1)

and such that

Leb(σ(Λϕ̃) ∩ [−R, R]) ≤ e−c0T̃ . (3.2)

Before proving Lemma 3.1, let us see how it implies the main statements. Let us note 

that these arguments deducing Theorems 1.1 and 1.2 from Lemma 3.1 are standard and 

supplied for the reader’s convenience. The key remaining challenge to overcome lies in 

the proof of Lemma 3.1.

Proof of Theorem 1.1. For ε, R > 0, let M(ε, R) ⊆ LP(R, C) denote the set of ϕ such 

that Leb(σ(Λϕ) ∩ [−R, R]) < ε. Since M(ε, R) is dense by Lemma 3.1 and open by 

Proposition 2.5, it follows that

M =
⋂

n∈N

M(1/n, n) (3.3)

is a dense Gδ subset of LP(R, C). For each ϕ ∈ M, the spectrum has zero Lebesgue mea-

sure and hence empty interior. By general principles, the spectrum of Λϕ does not have 

isolated points whenever ϕ is limit-periodic [33] (Pastur works with ergodic Schrödinger 

operators, but the proof applies in the case of ergodic Dirac operators with cosmetic 

modifications).

Thus, σ(Λϕ) is a zero-measure Cantor set for every ϕ ∈ M.

Let G denote the set of ϕ ∈ LP(R, C) of Gordon type (cf. Definition 2.15). We know 

that G is residual by Proposition 2.17, so we claim that the desired residual set is given 

by M ∩ G. Given ϕ ∈ M ∩ G, the spectral type of Λϕ is purely singular since ϕ ∈ M
implies the spectrum has zero Lebesgue measure (and hence cannot support absolutely 

continuous measures). On the other hand, the spectral type is purely continuous by 

Theorem 2.16. Since σ(Λϕ) is a zero-measure Cantor set for ϕ ∈ M, the proof is done. �
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Next we discuss density of the set of ϕ ∈ LP(R, C) for which σ(Λϕ) has zero Hausdorff 

dimension. Let us briefly recall how Hausdorff measures and dimension are defined; for 

further details, see Falconer [21].

Given a set S ⊆ R and an α ≥ 0, one defines the α-dimensional Hausdorff measure

of S by

hα(S) = lim
δ↓0

inf

⎧
⎨
⎩
∑

j

|Ij |α : {Ij} is a δ-cover of S

⎫
⎬
⎭ , (3.4)

where {Ij} is a δ-cover of S if and only if |Ij | < δ for all j and S is contained in the 

union of all Ij . For each S ⊆ R, there is a unique α0 ∈ [0, 1] with the property that

hα(S) =

{
∞ 0 ≤ α < α0

0 α0 < α

We denote α0 = dimH(S) and refer to this value as the Hausdorff dimension of the 

set S.

Let us also briefly recall some definitions related to box-counting dimension. For a 

bounded set S ⊆ R and ε > 0, write N(S, ε) for the minimal number of intervals of 

length ε needed to cover S. The upper and lower box-counting dimensions of S are given 

by

dim+
B(S) = lim sup

ε↓0

log N(S, ε)

log(1/ε)
, dim−

B(S) = lim inf
ε↓0

log N(S, ε)

log(1/ε)
. (3.5)

When S is bounded, one has

dimH(S) ≤ dim−
B(S) ≤ dim+

B(S). (3.6)

Proof of Theorem 1.2. Let ϕ ∈ LP(R, C) and ε > 0 be given. Since the periodic elements 

are dense, we may assume without loss that ϕ is T -periodic for some T > 0.

Define ϕ(0) = ϕ and ε0 = ε/2. Using Lemma 3.1 inductively we may construct for 

n ∈ N operator data ϕ(n) ∈ LP(R, C) of period Tn and εn > 0 such that

‖ϕ(n) − ϕ(n+1)‖∞ < εn, n ≥ 0 (3.7)

where

0 < εn < min

(
εn−1

2
,

1

2
(n + 1)−Tn ,

1

4
Leb([−n, n] ∩ σ(Λϕ(n)))

)
, n ≥ 1 (3.8)

and such that
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Leb([−n, n] ∩ σ(Λϕ(n)) ≤ exp(−T 1/2
n ), n ≥ 1. (3.9)

By (3.7) and (3.8), we see that ϕ(n) → ϕ(∞) for some ϕ(∞) ∈ LP(R, C). Let us abbreviate 

Λn = Λϕ(n) and Σn = σ(Λn) for 0 ≤ n ≤ ∞. By (3.8) and the choice of ε0, one has

‖ϕ − ϕ(∞)‖∞ ≤
∞∑

n=0

εn <
∞∑

n=0

2−n−1ε = ε.

From (3.8), we also see that

‖ϕ(m) − ϕ(∞)‖∞ ≤
∞∑

n=m

εn < (m + 1)−Tm ,

which implies that Λ∞ satisfies the Gordon criterion and hence has purely continuous 

spectrum.

As before, σ(Λ∞) lacks isolated points and cannot support absolutely continuous 

measures if it has zero Lebesgue measure, so all that remains is to prove dimH(Σ∞) = 0.

Fix n ∈ N. Applying (3.8) and Proposition 2.5, for each k ≥ n, the 2εk-neighborhood 

of [−n, n] ∩ Σk covers [−n, n] ∩ Σ∞ and hence writing this covering as {Ij}, one has a 

covering of [−n, n] ∩ Σ∞ by intervals of length at most 2e−T
1/2
k . By Theorem 2.6, this 

covering consists of � Tk intervals. This leads to

dim−
B([−n, n] ∩ Σ∞) = lim inf

ε↓0

log N([−n, n] ∩ Σ∞, ε)

log ε−1
≤ lim sup

k→∞

log N(Σ∞, 2e−T
1/2
k )

log[2eT
1/2
k ]

≤ lim sup
k→∞

log Tk√
Tk

= 0,

which suffices to show dim−
B([−n, n] ∩ Σ∞) = 0 for each fixed n ∈ N.

From

0 ≤ dimH([−n, n] ∩ Σ∞) ≤ dim−
B([−n, n] ∩ Σ∞) = 0,

we see that [−n, n] ∩ Σ∞ has zero Hausdorff dimension as well. Sending n → ∞, Σ∞ has 

Hausdorff dimension zero, as desired. �

3.2. Proof of Lemma 3.1

Now let us work on Lemma 3.1. The first crucial ingredient is the following noncom-

mutation lemma. Although it is straightforward to state and prove, we want to highlight 

this, as it is the key conceptual idea that made the analysis of the present work possible. 

Recall that an element A ∈ SU(1, 1) is called elliptic if Tr A ∈ (−2, 2) and hyperbolic if 
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Tr A ∈ R \ [−2, 2]. An elliptic matrix A is characterized by having complex conjugate 

eigenvalues λ± = e±iθ for some θ ∈ (0, π) while hyperbolic matrices are characterized by 

having eigenvalues λ± = λ±1, where λ ∈ R \ [−1, 1].

Lemma 3.2. Suppose A, B ∈ SU(1, 1) are elliptic and [A, B] 	= 0. Then the semigroup 

generated by A and B contains a hyperbolic element of SU(1, 1).

Proof. It is well-known that the closed subgroup of SU(1, 1) generated by A and B

contains a hyperbolic element [38, Lemma 10.4.14].

Now, let A be elliptic with eigenvalues e±2πit, t ∈ [0, 1/2]. If t = p/q is rational, then 

one has A−1 = Aq−1. If t is irrational, then choosing rationals pk/qk → t one can check 

that Aqk−1 → A−1, so one can approximate A−1 to arbitrary precision with positive 

powers of A. In either case, the closed semigroup generated by two elliptic matrices is 

the same as the closed subgroup they generate.

Since the closed semigroup generated by A, B contains a hyperbolic element and the 

set of hyperbolic matrices is open, the semigroup generated by A, B contains a hyperbolic 

element. �

By conjugating with a Cayley transform, one can immediately push this result to 

SL(2, R). Though we do not need it for the present work, we record it here, since it may 

be of independent interest.

Corollary 3.3. Suppose A, B ∈ SL(2, R) are elliptic and [A, B] 	= 0. Then the semigroup 

generated by A and B contains a hyperbolic element of SL(2, R).

Proof. Recall that A ∈ SL(2, R) ⇐⇒ WAW ∗ ∈ SU(1, 1), where

W = − 1

1 + i

[
1 −i
1 i

]
. (3.10)

Thus, the result follows by applying Lemma 3.2 to WAW ∗ and WBW ∗. �

In view of Lemma 3.2, it is helpful to know when matrices commute. For a set H ⊆
SL(2, C), denote by Z(H) = {g ∈ SL(2, C) : gh = hg ∀h ∈ H} its centralizer. For 

T > 0, let Q(T, z) denote the set of all periodic Dirac transfer matrices over period T

with energy z, that is,

Q(T, z) = {Az(T, ϕ) : ϕ ∈ C(R) is T -periodic} . (3.11)

Lemma 3.4. For each T > 0 and z ∈ C, Z(Q(T, z)) = {±I}.

Proof. Let z ∈ C and T > 0 be given, and consider ϕ(x) ≡ c the constant function. The 

corresponding transfer matrices are given by solving
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[
i 0
0 −i

]
∂xA +

[
0 c
c 0

]
A = zA (3.12)

leading to

∂xA =

[
−iz ic
−ic iz

]

︸ ︷︷ ︸
=:B(z,c)

A (3.13)

which gives the transfer matrix Az(T, c) = eT B(z,c). The matrix B(z, c) has eigenvectors

v± =

[
z ±

√
z2 − |c|2
c

]
(3.14)

so any matrix D ∈ Z(Q(T, z)) must have the same eigenvectors. By varying c, we see 

that D has more than two linearly independent eigenvectors that are not multiples of 

each other. Thus, D = ±I. �

We will now combine this with analyticity. The transfer matrix Az(T, ϕ) is a solution 

of the initial value problem so it is an analytic function of ϕ, ϕ (see [28]): it can be 

represented as a convergent power series

Az(T, ϕ) =

∞∑

n=0

Pn(ϕ, ϕ̄)

where each Pn is homogeneous of degree n in ϕ, ϕ̄. It is therefore also a real analytic 

function of Re ϕ, Im ϕ ∈ C([0, T ], R) with values in the space of 2 × 2 matrices, viewed 

as a real Banach space.

Lemma 3.5. For every T -periodic ϕ0 ∈ C(R), λ ∈ R, and ε > 0, there exists ϕ̃ ∈ C(R)

of period T̃ ∈ T N such that ϕ̃(0) = ϕ(0),

‖ϕ0 − ϕ̃‖∞ < ε, (3.15)

and

λ /∈ σ(Λϕ̃). (3.16)

Proof. We begin by noting that it suffices to prove existence of ϕ̃ satisfying all condi-

tions except ϕ̃(0) = ϕ(0); that condition can be added by a continuous perturbation in a 

neighborhood of 0 which can furthermore be chosen to be an arbitrarily small perturba-

tion in L2([0, T̃ ]) norm. Since gap edges of the T̃ -periodic operator are continuous with 

respect to L2([0, T̃ ]) norm, this can be done without affecting the other conclusions.
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From here, the argument falls into three cases, according to the monodromy matrix 

Mλ(ϕ0) = Aλ(T, ϕ0).

Case 1: Tr Mλ(ϕ0) ∈ R \ [−2, 2]. In this case, λ /∈ σ(Λϕ0
), so set ϕ̃ = ϕ0.

Case 2: Tr Mλ(ϕ0) ∈ (−2, 2). In this case Mλ(ϕ0) 	= ±I so, by Lemma 3.4, there 

exists a T -periodic ϕ1 ∈ C(R) such that

[Mλ(ϕ0), Mλ(ϕ1)] 	= 0. (3.17)

This commutator is a real analytic function of ϕ1 ∈ C([0, T ]), viewed as a real Banach 

space. Since the commutator is not identically zero, its zero set has empty interior by 

the identity principle for real analytic functions [22, 3.1.24]. Moreover, elliptic elements 

form an open set; thus, there exists ϕ1 ∈ C([0, T ]) with ‖ϕ0 − ϕ1‖∞ < ε such that 

(3.17) holds and both Mλ(ϕ0) and Mλ(ϕ1) are elliptic. As discussed at the beginning 

of the proof, we can wiggle ϕ1 slightly to ensure ϕ0(0) = ϕ1(0). By Lemma 3.2 the 

semigroup generated by Mλ(ϕ0) and Mλ(ϕ1) contains a hyperbolic element, so we may 

choose L ∈ N, k1, k2, . . . , kL ∈ N, and s1, s2, . . . , sL ∈ {0, 1} so that the matrix

Ã = Mλ(ϕsL
)kLMλ(ϕsL−1

)kL−1 · · · Mλ(ϕs1
)k1 (3.18)

is hyperbolic. The desired perturbation of ϕ0 is the corresponding concatenation of ϕ0

and ϕ1. Define ϕ̃ by

ϕ̃(x) = ϕs�
(x) whenever T

�−1∑

j=1

kj ≤ x < T

�∑

j=1

kj , (3.19)

and extend ϕ̃ to a KT -periodic function, where K = k1 + · · · + kL.

Case 3: Tr Mλ(ϕ0) = ±2. The entries of Mλ(ϕ) and its trace are real analytic func-

tions of ϕ. Since neither of the equalities Tr Mλ(ϕ) = ±2 hold identically in ϕ, the set 

where it holds has empty interior, again by the identity principle for real analytic func-

tions. Thus, by an arbitrarily small perturbation of ϕ0 we reduce to Case 1 or Case 2. �

Now, all that remains is to prove the key lemma.

Proof of Lemma 3.1. Let ϕ, R, and ε > 0 be given. By Lemma 3.5 and compactness, we 

may find {ϕj}m
j=1 with period T ′ ∈ TN such that

m⋃

j=1

ρ(Λϕj
) ⊇ [−R, R]

and

ϕ(0) = ϕj(0), j = 1, 2, . . . , m
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(of course, the periods may not be the same at first; however, since all periods are 

multiples of T , one can clearly pass to the least common multiple of the finite collection).

Let L(λ, ϕ) refer to the Lyapunov exponent at energy λ associated with the operator 

Λϕ. Since L(λ, ϕ) is a continuous function of λ ∈ R that is positive away from the 

spectrum of Λϕ, the construction gives

κ := min
|λ|≤R

max
1≤j≤m

L(λ, ϕj) > 0. (3.20)

Consider N ∈ N large, and choose N̂ maximal with m(N̂ + 1)T ′ ≤ NT . Thus,

N̂T ′ >
NT

m
− 2T ′ ≥ NT

2m
, (3.21)

where the second equality holds if N is sufficiently large. Put T̃ = NT and define a 

T̃ -periodic potential ϕ̃ by concatenating a total of N̂ + 1 copies of each ϕj and filling in 

the remainder with ϕ’s. More precisely, let sj = j(N̂ + 1)T ′, put

ϕ̃(x) =

{
ϕj(x) sj−1 ≤ x < sj

ϕ(x) sm ≤ x < T̃ ,
(3.22)

and extend to a T̃ -periodic function. By construction, one can see that ϕ̃ is continuous 

and satisfies ‖ϕ − ϕ̃‖∞ < ε.

By a repetition of the arguments of [1,11], one arrives at

Leb(σ(Λϕ̃) ∩ [−R, R]) ≤ e−cT̃ (3.23)

for a suitable constant c.

For the reader’s convenience, let us supply the details. Recall that Mλ(s) = Aλ(s +

T̃ , s, ϕ̃) denotes the monodromy matrix starting at s ∈ R and D(λ) = Tr(Mλ(s)) denotes 

the discriminant. Let λ ∈ [−R, R] be given such that D(λ) ∈ (−2, 2), and use (3.20) to 

choose j with 1 ≤ j ≤ m such that L(λ, ϕj) ≥ κ.

For s ∈ R, define also

Xλ(s) = Aλ(s + N̂T ′, s, ϕ̃).

Thus, Xλ(s) transfers across a subinterval of length N̂T ′ beginning at s. By T̃ -periodicity 

of ϕ̃, the reader can readily check that

Xλ(s)−1Mλ(s + N̂T ′)Xλ(s)

= Aλ(s + N̂T ′, s, ϕ̃)−1Aλ(s + N̂T ′ + T̃ , s + N̂T ′, ϕ̃)Aλ(s + N̂T ′, s, ϕ̃)

= Aλ(s, s + N̂T ′, ϕ̃)Aλ(s + N̂T ′ + T̃ , s, ϕ̃)
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= Aλ(s + T̃ , s + N̂T ′ + T̃ , ϕ̃)Aλ(s + N̂T ′ + T̃ , s, ϕ̃)

= Aλ(s + T̃ , s, ϕ̃)

= Mλ(s) (3.24)

for any s.

For s ∈ [sj , sj + T ′], notice that ϕ̃ coincides with ϕj on the interval [s, s + N̂T ′], so 

we have the following lower bound for every s ∈ [sj , sj + T ′]:

‖Xλ(s)‖ = ‖Aλ(s + N̂T ′, s, ϕ̃)‖

= ‖Aλ(s + T ′, s, ϕj)N̂ ‖

≥ spr(Aλ(s + T ′, s, ϕj))N̂

= eL(λ,ϕj)N̂T ′

≥ eκN̂T ′

. (3.25)

Combining (3.25) with (3.21)

‖Xλ(s)‖ ≥ ec1T̃ , ∀ s ∈ [sj , sj + T ′] (3.26)

where c1 = κ/(2m) > 0.

Since |D(λ)| < 2, let us denote by Bλ(s) the conjugacies from Theorem 2.6 such 

that Bλ(s)Mλ(s)Bλ(s)−1 ∈ K (where K denotes the diagonal elements of SU(1, 1) as in 

(2.24)). From (3.24), we see that Mλ(s) is conjugated to a rotation by both Bλ(s) and 

Bλ(s + N̂T ′)Xλ(s). By uniqueness of conjugacies modulo diagonal rotations, we have

Bλ(s + N̂T ′)Xλ(s) = QBλ(s) (3.27)

for some diagonal Q ∈ SU(1, 1). This implies

max(‖Bλ(s)‖, ‖Bλ(s + N̂T ′)‖) ≥ ec1T̃ /2, s ∈ [sj , sj + T ′]. (3.28)

According to Lemma 2.11, this gives

dρ

dλ
(λ) ≥ c0T̃ −1

T̃∫

0

‖Bλ(s)‖2 ds ≥ c0T ′T̃ −1ec1T̃ .

Since the density of states measure gives weight 1/T̃ to each band of the spectrum, each 

band in [−R, R] has measure at most

|B| � (T ′)−1e−c1T̃ . (3.29)
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In view of Theorem 2.6, there are � T̃ such bands, and hence we obtain

Leb(σ(Λϕ̃) ∩ [−R, R]) � (T ′)−1T̃ e−c1T̃ .

Choosing a constant 0 < c < c1 and N sufficiently large, we obtain (3.23) and hence the 

lemma is proved. �

4. The CMV setting

To demonstrate the versatility of this approach, we show how it can be used to resolve 

the corresponding issue for CMV matrices. Indeed, it is known that new ideas were 

necessary to resolve the question of zero-measure Cantor spectrum for limit-periodic 

CMV matrices. Compare the discussion on [24, pp. 5113–5114].

The main new technique here is to apply the noncommutation idea from the Dirac 

operator setting to perturb spectra of CMV matrices and introduce spectral gaps in a 

controlled fashion. As before, the construction of periodic sequences of α’s with thin 

spectra is the crucial technical step. The overall program is similar (but technically 

simpler in a few steps) for the CMV setting.

Recall that δ denotes the hyperbolic metric on D and the induced uniform metric on 

DZ as in Definition 1.3.

Lemma 4.1. For any q-periodic α ∈ D
Z and ε > 0, there exist c0 = c0(α, ε) > 0 and 

N0 = N0(α, ε) ∈ N such that for any N ≥ N0, there exists α̃ ∈ LP(Z, D) of period 

q̃ = Nq such that

δ(α, α̃) < ε (4.1)

and

Leb(σ(Eα̃)) ≤ e−c0q̃ (4.2)

As in the Dirac case, Lemma 4.1 yields the desired results.

Proof of Theorems 1.4 and 1.5. Theorems 1.4 and 1.5 follow from Lemma 4.1 in pre-

cisely the same manner that Theorems 1.1 and 1.2 followed from Lemma 3.1. The relevant 

version of the Gordon lemma in the CMV case is given in [23]. In fact, the arguments are 

very slightly simpler, since ∂D is compact, so there is no need to work locally in energy 

in this setting. �

The remainder of the section is concerned with the proof of Lemma 4.1, which is 

similar to that of Lemma 3.1; we concentrate on the key steps. Let us introduce some 

tools and characters. Given a ∈ D and z ∈ C, the Szegő matrix is given by
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A(a, z) =
1√

1 − |a|2

[
z −ā

−az 1

]
. (4.3)

For n, m ∈ Z, we also define

Az(n, m, α) =

⎧
⎪⎪⎨
⎪⎪⎩

A(αn−1, z) · · · A(αm, z) n > m

I n = m

[Az(m, n, α)]−1 n < m.

Of course, the final line is not well-defined if z = 0, but this is not an issue since we will 

only consider z ∈ ∂D.

If α is q-periodic, the monodromy matrix is given by Mz = Mz(α) = z−q/2Az(q, 0, α)

and determines the spectrum via

σ(Eα) = {z ∈ ∂D : Tr(Mz) ∈ [−2, 2]}

in that case. For this and other facts about periodic CMV matrices, we direct the reader 

to Simon [38].

As we did with Dirac operators, we will use real-analyticity of the discriminant and 

Szegő matrices as functions of Re αn and Im αn. The following identity principle supplies 

the needed input. For more details about multivariate analytic functions, we direct the 

reader to Gunning–Rossi [29], particularly Theorem 6 of Chapter 1.

Theorem 4.2. If a real-analytic function of n variables vanishes on an open subset of Rn, 

then it vanishes identically.

As a consequence of this, we can deduce the following helpful fact.

Proposition 4.3. Suppose α ∈ DZ is q-periodic, z ∈ ∂D, Mz(α) 	= ±I. For every ε > 0, 

there exists β of period q such that δ(α, β) < ε and

[Mz(α), Mz(β)] 	= 0. (4.4)

Proof. Suppose that for some q-periodic α ∈ DZ and some z ∈ ∂D, the function

D
q � β �→ [Mz(α), Mz(β)] ∈ C2×2 (4.5)

vanishes6 on an open set in Dq. Since the commutator in (4.5) is a real-analytic function 

of the variables {Re βj , Im βj : 1 ≤ j ≤ q}, this implies that the commutator vanishes 

for all β ∈ Dq. In particular, Mz(α) and Mz(β) are simultaneously diagonalizable for all 

6 In a minor abuse of notation, we write β both for the element of Dq and the obvious q-periodic extension 
in DZ.
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β ∈ Dq. By choosing β = (a, a, . . . , a) for some a ∈ D, we see that this implies Mz(α) =

cI for a constant c, which in turn forces Mz(α) = ±I (because Mz(α) ∈ SU(1, 1)), as 

desired. �

Lemma 4.4. Suppose Eα is a q-periodic extended CMV matrix. For all ε > 0 and all 

z ∈ ∂D, there exists N ∈ N and an Nq-periodic β ∈ DZ such that δ(α, β) < ε and 

z /∈ σ(Eβ).

Proof. Let z ∈ ∂D and ε be given.

Case 1: Tr Mz(α) ∈ R \ [−2, 2]. In this case, z /∈ σ(Eα), so set β = α.

Case 2: Tr Mz(α) ∈ (−2, 2). In this case Mz(α) 	= ±I so, by Proposition 4.3, there 

exists a q-periodic γ such that

[Mz(α), Mz(γ)] 	= 0, (4.6)

and δ(α, γ) < ε. Taking ε small enough, we may ensure that Mz(γ) also has trace 

in (−2, 2). By Lemma 3.2 the semigroup generated by Mz(α) and Mz(γ) contains a 

hyperbolic element. We may choose L ∈ N, k1, k2, . . . , kL ∈ N, and σ1, σ2, . . . , σL ∈
{α, γ} so that the matrix

M̃ = Mz(σL)kLMz(σL−1)kL−1 · · · Mz(σ1)k1 (4.7)

is hyperbolic. The desired perturbation of α is the corresponding concatenation of α and 

γ. That is, define β by

βn = (σ�)n

�−1∑

j=1

kj ≤ n <
�∑

j=1

kj , (4.8)

and extend β to a Kq-periodic function, where K = k1 + · · · + kL.

Case 3: Tr Mz(α) = ±2. The entries of Mz(α) and its trace are real-analytic func-

tions of {Re αj , Im αj : 1 ≤ j ≤ q}. Since the equality TrMz(α) = ±2 does not hold 

identically in α, the set where it holds has empty interior, again by the identity principle 

for real analytic functions. Thus, by an arbitrarily small perturbation of ϕ0 we reduce 

to Case 1 or Case 2. �

We now have all the pieces that are needed.

Proof of Lemma 4.1. The crucial observation is supplied by Lemma 4.4. With that 

lemma in hand, the proof follows from precisely the same arguments used to prove 

[24, Lemma 5.3]. �
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