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1. Introduction

We study Dirac operators in the form

el el

with operator data ¢ : R — C; up to a pointwise unitary conjugation, this is equivalent

p(x) 0

to the classical form of Dirac operators [7,28,32] given by

e b ] [l )

We assume ¢ € L*°(R); in this case, A, is an unbounded self-adjoint operator on
L*(R, C?) with domain H'(R, C?).

As one of the simplest classes of differential operators with equal deficiency indices
(and therefore existence of self-adjoint operators), Dirac operators have historically been
studied in parallel with Schréodinger operators. The later discoveries of integrable PDEs
further motivate the importance of the corresponding classes of operators; in particular,
just as Schrodinger operators appear in the Lax pair representation of the KdV equation,
Dirac operators of the form A, appear in the Zakharov—-Shabat Lax pair representation
for the defocusing NLS [28,41]. The results in this paper can also be motivated from this
point of view: the inverse spectral theory of reflectionless Schrodinger operators [26,40]
and the study of almost periodicity in time of solutions of the KdV equation with al-
most periodic data [3,16,17,20] require “thickness” assumptions on the spectrum such
as the Widom condition, the “direct Cauchy theorem” property and a gap summabil-
ity condition; thus, constructions of Schrédinger operators with thin spectra [10,11,31]
indicate their limitations. Analogously, the results of this paper indicate the limitations
of existing inverse results about reflectionless Dirac operators [2,18] and the defocusing
NLS equation with almost periodic data.

We say that ¢ is periodic (of period T > 0) if ¢ = (- — T). We say that ¢ is
(uniformly) limit-periodic if it lies in the closure of the set of periodic elements of C'(R)
(in the L™ topology).

Let LP(R, C) denote the set of all limit-periodic functions R — C. This is a complete
metric space in the L metric (note however that LP(IR, C) is not a Banach space since
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the sum of periodic functions with incommensurable frequencies will not be limit-periodic
in general).

Recall that a residual subset of a complete metric space X is one that contains a dense
G5 subset of X. We say that a property holds for generic x € X if the set of = for which
it holds is residual.

We say that S C R is a generalized Cantor set if it is closed (not necessarily compact),
perfect, and nowhere dense. Our main result is that the spectra of Dirac operators with
limit-periodic potentials are (typically) generalized Cantor sets that are moreover very
thin in the measure-theoretic sense.

Theorem 1.1. For generic ¢ € LP(R,C), o(A,) is a generalized Cantor set of zero
Lebesgue measure, and the spectral type of A, is purely singular continuous.

One can strengthen the zero-measure statement to spectrum of zero Hausdorff dimen-
sion for a dense set of operator data:

Theorem 1.2. For a dense set of ¢ € LP(R,C), o(A,) is a generalized Cantor set of
zero Hausdorff dimension and zero lower boz-counting dimension, and the spectral type
of Ay is purely singular continuous.

Let us comment on the proofs of Theorems 1.1 and 1.2. Beginning with the seminal
paper of Avila [1], there is by now a well-established path to obtaining thin spectra for
limit-periodic operators, provided one can perform a version of Avila’s perturb-and-grow
technique [11,13,14,24]. The construction of [1] begins with a periodic operator, performs
a finite number of small perturbations to move energies out of the spectrum, and exploits
uniform hyperbolicity of cocycles in the resolvent set in conjunction with connections
between the density of states and rotation number. The key perturbative argument is
done in two steps: first, to open up many small gaps in the spectrum via a perturbation
to an operator of much higher period, and then to shift these new gaps around in a
carefully controlled fashion.

The first step is generally straightforward to implement, and follows readily from Flo-
quet theory; compare [37]. The second step has traditionally relied on small translations
(or dilations [13]) of the spectral measure in the self-adjoint setting, or rotations of the
spectral measure in the unitary setting. In the Schrédinger setting, a translation of the
spectral measure corresponds to a constant shift to the potential, so small translations
correspond to uniformly small perturbations of the potential. This is not the case for
Dirac operators: translation of the spectral measure corresponds to multiplication of
the operator data ¢(x) by e**, which is in general not a small perturbation in L>(IR)!
A similar obstruction was noted in [24] in the setting of CMV matrices: rotation by angle
6 corresponds to multiplication of the n-th Verblunsky coefficient a,, by e 1("+1¢ (cf.
[38, p. 960]). In that paper, the authors noted that defect and overcame it by enlarging
the class of operators under consideration to include simple spectral shifts. However,
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they noted at the time that this enlargement of the space of operators was somewhat
contrived and that one should be able to perform the desired perturbative analysis with-
out passing to an artificial enlargement of the parameter space, stating in particular
“Additional ideas are needed to refine our techniques down to this setting; we regard this
as an interesting open question.” [24, Page 5114].

We overcome this difficulty in Section 3 by using an indirect argument to move energies
out of the spectrum via noncommutation of transfer matrices, which is itself inspired by
recent work on verifying the hypotheses of Furstenberg’s theorem [25] via ideas in inverse
spectral theory [4]. We also exploit compactness to simplify some arguments in a manner
that has not been exploited in the current setting before.

The approach described for Dirac operators is robust in the sense that it can be applied
in any situation in which one has suitable inverse spectral results. To demonstrate the
versatility of this approach, we prove in Section 4 related theorems for extended CMV
matrices.

Let D={z€ C:|z|] < 1} and 9D = {z € C: |z| = 1} denote the open unit disk and
the unit circle in C. Given a sequence o = {ay, }nez € D%, the corresponding extended
CMV matriz € = &, is given by

Qop—1  —O0p0—1 0 po P1P0

Pop—1  —pPoQ—1 —O10g  —pP1Qp
£ — Q2p1  —Q201 3Pz P3P2 . (L11)
P2P1 —p20x;  —Q3y — P30
Qgps  —0ue3 Qsps P5P4
p4p3  —pPaQz  —Q50y  —pP504

where p, = (1 — |, |?)/2.

The extended CMV operator is a significant object in mathematical physics, with
connections to orthogonal polynomials [38,39], quantum walks on the integers [5,6], and
gap-labelling problems for the ferromagnetic Ising model [12,15].

Naturally, o is g-periodic for ¢ € N if a4 g = ov,. To avoid trivialities in the present
setting, we only want to consider « that are bounded way from 9D, that is ||| < 1.
On the other hand, in order to apply Baire category arguments, one wants to work with
a complete metric space of operator data. This was achieved in [24] by fixing an a priori
bound 0 < r < 1 and considering those limit-periodic a for which ||a|e < r. The
following definition gives us a way to consider all limit-periodic sequences in D that are
bounded away from 0D without enforcing a priori bounds.

Z1—23

i . For se-
—Z122

Definition 1.3. Equip D with the Poincaré metric 6(z;,25) = tanh™*
quences «, 3 € D%, denote by

0(a, B) = sup{d(an, Bn) : n € Z} (1.2)
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the induced metric on DZ.

Notice that §(«,0) < oo if and only if sup,, |, | < 1. Let us say that o € DZ is limit-
periodic if there exist periodic sequences o™ € D% such that 6(04(”), a) — 0. Denote by
LP(Z, D) the set of limit-periodic sequences. The reader can readily check that LP(Z, D)
is complete in the metric § and that sup,, |a,| < 1 for every a € LP(Z, D).

Since extended CMV operators are unitary, their spectra are contained in JD, the
unit circle. We will say that S C 9D is a Cantor subset of 0D if it is closed, perfect, and
nowhere dense (in the relative topology as a subset of D).

Theorem 1.4. For generic « € LP(Z, D), 0(&,) is a Cantor subset of 0D of zero Lebesgue
measure, and the spectral type of €, is purely singular continuous.

As in the Dirac case, one can strengthen the result to show the spectrum has zero
Hausdorff dimension for a dense set of operator data:

Theorem 1.5. For a dense set of a € LP(Z, D), 0(&y) is a Cantor subset of D of zero
Hausdorff dimension and zero lower box-counting dimension, and the spectral type of &,
is purely singular continuous.

The paper is organized as follows. We recall some general facts about Dirac operators
in Section 2. We prove Theorems 1.1 and 1.2 in Section 3 and Theorems 1.4 and 1.5 in
Section 4.

Acknowledgments. We are grateful to Christian Sadel and Hermann Shulz-Baldes for
helpful conversations. J.F. thanks the American Institute of Mathematics for hospitality
and support during a January 2022 visit, during which part of this work was completed.
J.F. also gratefully acknowledges support from the Simons Center for Geometry and
Physics, where some of this work was done. We thank the anonymous referee for com-
ments that improved the presentation.

2. Preparatory work for Dirac operators
2.1. Generalities

In this section, we consider various properties of Dirac operators on IR that are essen-
tial in the proofs of Theorems 1.1 and 1.2 (see also [7,8,28,32]).

We will denote
. -1 0 0 i 0 1

Note that J,—J, and —j are the Pauli matrices, often denoted o1, 02, and o3, respec-
tively. The Dirac operator A, with operator data ¢ : I — C is defined by the differential
expression
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o ..d [0 e(=x)
together with an appropriately defined domain in the Hilbert space L?(I,C?). On the
line I = R, if ¢ is uniformly locally L? in the sense that

z+1

sup /|<p(t)|2dt < o0, (2.2)
z€R

then the operator is limit-point at oo and A, defines a self-adjoint operator on the
domain D(A,) = H* (R, C?). We employ a standard abuse of notation here, writing A,
both for the self-adjoint operator on D(A,) and the differential expression, which may
act on any function with at least one (weak) derivative.

For any z € C, the Dirac eigenequation on an interval I C R is given by

AU (2, 2) = 2U(z,2), U(+,2) € ACi0c(I, C?), (2.3)

where ACj,.(I, C?) denotes those functions that are absolutely continuous on compact
subintervals of I. A solution U of (2.3) is called an eigensolution at z. The Wronskian
of any two functions U,V € ACy,(I, C?) is defined by

WU, V|(z) = U(x)" JV(x) = (U (2)Va(z) — Us(2)Vi(z)), =z €I

The limit-point conditions also state that the boundary Wronskian at +oo is trivial, i.e.
for all U,V € D(A,),

lim WI[U,V](z) = 0.

z—+oo

By computing (using J = ijJ)
WU V] () = (AU (2) " TV (2) = U(z) " T (A, V (@), (2.4)

we can see that if U and V are eigensolutions at a given z € C, W[U, V](z) is a constant
independent of x. Moreover, W[U, V] = 0 if and only if U and V are linearly dependent.

A Weyl solution at z € C for the endpoint oo is a nontrivial eigensolution ¥* (-, 2)
at z that is square-integrable on the half-line [0, +00); due to (2.2), there is a unique
(up to normalization) Weyl solution at each endpoint oo for every z € C\ o(A,), and
Wt ~] # 0. We will write formulas in a normalization-independent way, unless a
normalization for ¢* is explicitly stated.

Weyl functions generate the Green function via

Ww’(x,z)q/ﬁ(y,zfj’ r <y

1 + - T (2.5)
W (@ Y (y,2) T, w >y

G(x,y;2,0) = {
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which is the integral kernel of (A, — 2)~! in the sense that

(Mw—@”ﬂ@%=/G@wwwV@km vf € D(A,), (2.6)

which the reader can check by a direct calculation by differentiating under the integral
sign.
Given z € R and z € C, let A,(x, ) be the matrix solution of

ApAy(z,0) = zA.(z, ), A:(0,0) = 1. (2.7)

These are transfer matrices starting from 0; defining the matrices

Ay, 2, 0) = A.(y, ) Ax(z,0) (2.8)

for x,y € R, z € C, one has

Uly) = Az(y, z, 9)U(z) (2.9)

whenever U is an eigensolution of A, at z.

Notice that conservation of the Wronskian as in (2.4) implies det(A,(y,z,¢)) = 1 for
all z, y, z, and . For z,w € C, differentiating A, (y, z,»)*jA.(y, z, ) with respect to
y and using (2.7) we get

which (using A, (z,z,¢) = A.(z,z,¢) = I) leads to

Yy
Aw(yawi)*jAZ(yvxa 50) _j = I(Z —E)/Aw(t,x,ap)*Az(t,x,ap) dt (211)

x

In particular, applying (2.11) at a real parameter z = w = A € R, one has

A)\(y’l'v (P)*jA)\(y,l', SO) =7

which (together with det Ay = 1) implies Ax(y, z, ) € SU(1,1).
The Schur functions associated to ¢ at the point x € R are defined using the Weyl
solutions as

N 0 NN -
+( ’ ) w;.(x’z)a 7( ) ) wl_(x’z) (212)

For each fixed z € R, s+(x,) is an analytic function from the upper half-plane C; =
{z :Imz > 0} to D (compare [19, Lemma 2.1] and surrounding discussion). These can
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be characterized by a Weyl disk formalism: Weyl disks in this setting can be defined in
C=CU{c0}as

D) = {wee: [§] dmpriaten 1] 20},

with the natural convention [0o, 1] = [1, 0] in projective coordinates. The relation (2.11)
ensures their nesting property, D(z9,2) C D(z1,2) whenever x; < z2. We are in the
limit-point case so one has

{54(0,2)} = () D(x,2). (2.13)
x>0

We will now discuss some foundational results with proofs, including a Combes—
Thomas estimate and a Schnol’s theorem in the Dirac setting. We formulate some results
for ¢+, but analogous results hold for )~

Lemma 2.1. Suppose ¢ : R — C obeys (2.2), let 7 (-, 2) be a Weyl solution at +o0, and
suppose z & o(Ay,). For any [c,d] C R, there exists f € L*(R, C?) such that fXjcaq = f
and (Ay — 2)71 f is a nontrivial constant multiple of YT on [d, o0).

Proof. If f € L?(R,C?) with IXie,aq) = [, then (2.5) and (2.6) yield the following for
x> d:

(Ay — )7 )(a) = / Gy 2 9) () dy
W/Z/ﬁxz (%)Jf()
:Cer(x?Z)a

where C = C(f) = w f Y~ (y,2) T T f(y)dy. Since 1~ does not vanish identically,
f € L?([e,d],C?) can be chosen so that C(f) is nonzero. 0O

The proof applies more generally, for any kind of left endpoint; in particular, the same
proof yields the following:

Lemma 2.2. Suppose ¢ : [0,00) — C obeys

r+1
sup [ fo(0) dt < oc,
x>0

let Y7 (-, z) be a Weyl solution at +o0, and let A, denote the Dirac operator on [0, 00)
with a Dirichlet boundary condition f1(0) = f2(0) at zero. Suppose z ¢ o(Ay). For any
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[e,d] C [0,00), there exists f € L*([0,00),C?) such that fx(cq = [ and (Ay, —2)71f is
a nontrivial constant multiple of 1™ on [d, ).

Lemma 2.3. If ¢ obeys (2.2), then for any z € C\ 0ess(Ay), the Weyl solution 7 (-, z)
obeys [P T (x,2)|| = O(e™7*) as x — +o0, for some vy > 0.

Proof. Since ¥ is a nontrivial eigensolution, choose w € dD such that
1 w]eH(0,2) #0 (2.14)

(indeed, equality can hold for at most one value of w). Fix such an w and define a half-line
Dirac operator Ag by the same differential expression as A on the domain

D(Ao) = {f € H'([0,00),C?) : [1 w] f(0) =0}.
Due to (2.14) and the assumption z ¢ oess(Ay), we have z ¢ o(Ag). Given vy > 0, define
Ay as A, := €7 Age™ 7" with domain D(A,) = D(Ay). To see that A, with such a domain
defines a (non-self adjoint) operator, note that the difference

Ay, — Ao =iyj (2.15)

is a bounded (non-self adjoint) operator.
If V € D(A,), then using z ¢ o(Ag) and |V < [|(Ao — 2) 7 H|[|(Ao — 2) V|| yields

[(Ay = M)V = [ V| = AV < CHl[(Ao = 2)V |
with C = ||(Ag — 2)7t|| > 0. Taking v > 0 sufficiently small, we obtain
1Ay = Ao)(Ao — 2) 71 < 1,
so that
Ay —z=[(Ay — Ao)(Ag — 2) " +T](Ao — 2)

is invertible. By Lemma 2.2, there exists f € L2([0,00); C?) such that supp f C [0, 1]
and (Ag — z)~1f is a nontrivial multiple of ¥ on [1,00). Then, on [1, 00),

(Ay = 2)7H (")

is a nontrivial multiple of €’ on [1,00). Since (A, — 2)"'(e?f) € D(Ag) C
L%°(]0,00); €C?) by a Sobolev embedding theorem, [[1)*(z,2)|| = O(e™7*) as x — co. O

Theorem 2.4 (Schnol’s Theorem). Let A = A, be a Dirac operator with ¢ satisfying (2.2).
For a fized k > 1/2, let S, denote the set of A € C for which there exists a nontrivial
eigensolution U(x, \) obeying ||U(x, )| = O(|z|*) as © — £oo. Then:
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(a) Sx Ca(A);
(b) The mazimal spectral measure of A is supported on S,;

(c) S.=a(A).

Proof. (a) Let A ¢ o(A) and let 1)*(-,\) be the associated Weyl solutions at +o0o. By
Lemma 2.3, the Weyl solutions obey

% (2, \)| = O(e™*!) as @ — +oo,

for some v > 0. Suppose for the purpose of establishing a contradiction that A € S,
and let U(x,\) denote an eigensolution satisfying [|U(z,A)|| = O(|z|") as z — +oo.
The growth estimates on U and ¢* imply that the Wronskian satisfies WU, *](x) =
O(e71#l|z|*) as 2 — +o0. Using conservation of the Wronskian, we have WU, ¢*] = 0,
which implies that ¢ and ¢~ are linearly dependent, which in turn implies A € o(A),
a contradiction.

(b) The eigenfunction expansion for A is a unitary map U : L?*(R,CZ%dz) —
L*(R,C?;dQ), with dQ(A\) = W()\)du()\) a matrix-valued measure and p a maximal
spectral measure for A, defined on compactly supported functions by

UM = [ s (o) do (216)
and extended by continuity.

For fixed * € R, z € C\ R, and e; := (1,0)7, ea := (0,1) ", the functions fi(y) =
G(z,y; z)ey, are mapped to (Ufi)(A) = 12 Ax(y)*ex. Since U is unitary,

/ 1G e, y: 2)exl]? de = / €A ()W (N Ar (9)"exl A — 22 dpa(N). (2.17)
Now, since D(A) C L>=(R,C?), for any f € L*(R,C?),

sup
zeR

[ G @) <o,
so by the uniform boundedness principle,

Sup/llG(xvy;Z)ekIIQdy < 00.
z€R

This combined with (2.17) implies

sug/e,*CAA(y)W()\)AA(y)*ekP\ — 2|72 du()) < .
[AS

Multiplying by the integrable function (1 + 2?)* and integrating in x yields
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//(1 +22) el An ()W (V) Ax (1) ex]A — 2|2 dp()) da < oo.
Fubini’s theorem then implies
/(1 + 2%) er Ax(y)W (N Ax(y)*er do < 0o, p-ae. A, k=1,2. (2.18)

Gronwall’s inequality for A, A, = zA, gives an estimate

xz+1
lAx(@)]| < C / 1Ax(w)]| dy

with an z-independent value of C. Thus, (2.18) implies ||U(z, A)|| = O(Jz|") for p-a.e. A.
(c) S, C o(A) implies S, C o(A); conversely, since u is supported on S,, o(A) =
suppp € S,. O

Let us briefly recall a tool that we will use later. The Hausdorff distance between two
nonempty closed subsets of R is given by

de(Kl,KQ) = inf {5 >0: K C BE(KQ) and Ky C Bs(Kl)}7 (219)

where B.(S) = {y : |x — y| < e for some = € S} denotes the open e-neighborhood of the
set S.

Proposition 2.5. Given ¢1,p2 € L (R, C), one has

dua(0 (Mg, ), 0(Ag,)) < 1 = waloo- (2.20)

Proof. This follows from

dra(0(Apy); 0(Ag,)) < Mg, = Ag, [ = llor = #2]loo-

The inequality is a consequence of general perturbation theory for self-adjoint operators
and the equality follows from a direct calculation. O

2.2. Floquet theory

Now that we have set up the tools that we need for general Dirac operators with
uniformly locally L? operator data, we specialize to the case of periodic ¢. We assume
that ¢ € C'(R, C) has period T' > 0. Recall that A,(x, ) and A, (y,x, ) are the transfer
matrices defined in (2.7) and (2.8) respectively. Recall also from (2.11) that whenever
A € R, one has
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Ax(y,m, ) € SU(1,1) := {A € SL(2,C) : A*jA = j}, (2.21)

where j is as in (2.1).
If ¢ is periodic of period T, we call

M, (x,p):=A,(x+T,z,0) (2.22)

the monodromy matriz and D(z,¢) = Tr(M,(x,¢)) the discriminant. We sometimes
abbreviate M, (¢) = M,(0,¢) and write M,(z) when ¢ is clear from context. Let us
briefly summarize the aspects of Floquet theory that are needed for our proofs.

Theorem 2.6 (Floquet Theory). Suppose ¢ € C(R, C) is T-periodic and let M (x,p) and
D(z,¢) = Tr(M,(x,p)) denote the associated monodromy and discriminant.

(a) spr(M,(z,p)) and Tr(M,(x,¢)) do not depend on x. In particular, D(z,p) is well-
defined.
(b) The Lyapunov exponent’ is given by

! 1
L(z) == lim —log|[A:(z,0,¢)|| = 7 logspr(M- (2, 9))- (2.23)

(c) z is a generalized eigenvalue of A, if and only if D(z,¢) € [—2,2].
(d) The spectrum of A, is given by

S=0(A,)={AeR: D) €[-2,2]} = 2.

(e) If D(\) € (—2,2), then for each x there is By(x) € SU(1,1) such that

Bu(2) My (z,9)Bx(z)"' € K = He;g eoie] .0 eo, 2771}. (2.24)

This conjugacy is unique modulo left-multiplication by elements of K. That is, if
Bg\l)(s) also satisfies (2.24), one has Byx(s) = QBS) for some Q € K.

(f) Given R > 0 there are at most 2 (L (R + [|¢|l«) + 1) bands of o(Ay) that intersect
[_R7 R]

Proof. For the most part, these results are standard fare [32]; we supply arguments to
keep the paper more self-contained for the reader’s convenience.
(a) This follows from periodicity and cyclicity of the trace.

(b) This follows from periodicity, Gelfand’s formula, and interpolation.
(c) If D(2) € [-2,2], M.(¢) has a unimodular eigenvalue, so A,U = zU enjoys a
bounded solution, and thus z is a generalized eigenvalue. If D(z) € C\ [-2,2], then

5 The first equality of (2.23) is the definition of L(z).
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M. (p) has eigenvalues A with |[A;| > 1 > |A_|, so every solution of A,U = zU grows
exponentially on at least one half-line, and thus z is not a generalized eigenvalue.

(d) Since D(z) is analytic (in particular, continuous), the set of z with D(z) ¢ [—2, 2]
is open, so this follows from (b), (c), and Theorem 2.4.

(e) This is a standard fact about SU(1, 1) matrices. We will want to use some notation

and ideas from the proof later, so we recall the argument here. Recall that any invertible
M € ©2*2 acts on € = C U {oo} by Mébius transformations:

~ mii12 + mi2 ~
Mz=——"=2z€e(.
mo12 + Moo

The reader can check that if M € SU(1,1), then Tr(M) € (—2,2) if and only if M has
a unique fixed point in D. Furthermore, if M € SU(1,1), then MO0 = 0 if and only if
M € K, so the desired conjugacy is obtained by choosing B € SU(1,1) with B¢ =0,
where £ € D is the unique fixed point of M in the unit disk. The uniqueness statement
follows since this discussion implies that B(B’)~! € K if B’ also conjugates M to a
rotation. Since sy (x, A +10) is that fixed point, the reader may note that

By (2.25)

1 1 —s+(x, A +10)
VI @A) [ —si (@A +10) 1

belongs to SU(1, 1) and satisfies (2.24).

(f) Consider Ag, the free Dirac operator (i.e., the Dirac operator with ¢ = 0), and
view it as a T-periodic operator. The associated monodromy is

M. (2,0) = [e_w 0 }

0 eizT (226)
Thus, the associated discriminant is just D(z) = 2 cos(7T'z) and hence the bands are given
by

[ (n+ D)7
Bn—{T, . } n e Z. (2.27)
Choose n € Z; maximal with n7r/T < R + ||¢|lcc. Combining (2.27) with standard
eigenvalue perturbation theory, at most 2(n+1) bands of A, may then intersect [—R, R].
Since nw/T < R+||¢|| 0o, the number of bands intersecting [— R, R] is bounded from above

by

20+ 1) < 2 ( TR+ ll) +1)

as desired. O
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2.3. A helpful formula for the Johnson-Moser function

Using the Dirac equation, we can express the logarithmic derivative of the dominant
component of the Weyl solution,

Outhy (, 2 . —
1/)?(735’2)) =iz —ip(x)sy(z,2), (2.28)
—a;:fl;—g(:’x’z? =iz —ip(z)s_(z, 2). (2.29)

This motivates the definition of the Johnson—-Moser function of a T-periodic Dirac op-
erator,

T
1
O/ iz —ip(x)sy (z,2))dz (2.30)

for z € C,. Let us briefly note how w(z) is related to objects already introduced.
Proposition 2.7. Suppose ¢ € C(R) is T-periodic. For all z € C,,

D(z) = 2 cosh(Tw(z)) (2.31)
L(z) = —Rew(z). (2.32)

Proof. Note that s, (7,z) = s,(0,2) by periodicity, so the vector (s (0,2),1)7 is
an eigenvector of the monodromy matrix with eigenvalue 3 (T, 2)/15 (0, 2). By inte-
grating (2.28) it follows that the corresponding eigenvalue is equal to eT(2) Due to
det M. (0, ) = 1, the other eigenvalue is e~ 7*(*) and thus

D(z) = eTw(2) 4 o=Tw(z) — 2 cosh(Tw(z)),

proving (2.31).

The previous argument shows that e7*(*) = (T, 2) /45 (0, 2) is one of the eigen-

values of the monodromy matrix. Since 1 is the Weyl solution at +oo, it follows that

e~ Tw(2) is the dominant eigenvalue of M, (0, ), so (2.23) implies

V3 (0,2)

1
—Rew(z) = Tlog )

= L(2),

as promised. O

Since the Lyapunov exponent defines a non-negative, symmetric, subharmonic func-
tion on € that is harmonic and positive on C\R, it follows by complexifying [19, Lemma
3.2] that w(z) is related to the density of states measure p by
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1
—w(z) = coz+c1 + /log()\ —2)dp(\) + / (log (1 — §> + ;) dp(N),
e R\(-1,1)

where ¢y, c; are some constants. Differentiating and passing from a normalization at 0
to a normalization at i, we find ¢y so that

w'(2) = ca +HZ ()\ i o T)\)\Q> dp(\), co =Rew'(i). (2.33)

On the other hand, we will express it in terms of the full-line Green function. As a
preliminary, we need:

Lemma 2.8. Let z,2z0 € C\ R.

(a) Whenever z # z,

+oo
(@, 20) " (—i)¢T (2, 2) = —i(z — 20) / Y (y,20) T (y, 2) dy. (2.34)

(b) If Weyl solutions are normalized by 3 (z,2) = 1, then

+oo
1~ 51( 20)54 (2, 2) = —i(z — o) / G ) Ut ) dy. (2.35)

(c) Weyl solutions are L?([x, 00), C?)-continuous on Cy, that is, if we assume that Weyl
solutions are normalized by 15 (z,2) = 1, then

Z—Z20

“+o0
lim / 197" (9, 2) = ¥ * (y, 20) > dy = 0. (2.36)

(d) For all z € Cy4,

0,84 (x,2) =1

+oo
ﬁ / 6 (9, 2) T TV (v, 2) dy. (2.37)

Proof. (a) Recall that A,(z,¢) denotes the transfer matrix from 0 to x; since ¢ is fixed
in this argument, we suppress it from the notation. Starting with the formula (2.10), we
get
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x2

Aoy (00)" 5 A (1) — Ay (22)"j Au (2) = —i(z — Z0) / Ay ()" Asly) dy.

Z1

Multiplying by %7 (0, z0)* on the left and by 1™ (0, z) on the right gives
To
P (1,20) G0 (21, 2) — T (w2, 20) T (22, 2) = —i(2 — 50)/¢+(y720)*¢+(y7z) dy.
1

To obtain an expression analytic in both z and zjp, we note that by a direct verification
[19, Lemma 2.4], J9*(z, z) is an eigensolution at energy zg (with complex conjugation
applied componentwise). It is also square-integrable on [0, 00) so it is a Weyl solution at
energy Zg. Inserting

(2, Z0) = Tt (=, 20) (2.38)
we obtain
Y (e, %0) T TipT (a1, 2) — 97 (w2, 20) T Ty (22, 2)
T2
— iz = 7) [ 0¥ (0%) TV ) d.
1
Replacing Zy by zg and using Jj = —iJ, we finally get a bianalytic expression

(w1, 20) (-1 (21, 2) — ¥ (2, 20) T (—1)Y T (22, 2)

T2
=iz = 20) [ 61 (,20) TV (02) dy.
T
Due to the limit-point condition, the Wronskian ¥ (2, 20) T J+ (22, 2) decays as x5 —

00, so taking xo — oo and writing x7 = x gives (2.34).

(b) By using the reflection symmetry (2.38) again on (a) we obtain
V¥ (o z0) G0 (02) = i~ 70) [ 07 (e 20) 6" ) d
x

so in particular if ¢3 (z, 2) = 15 (2, 29) = 1 we obtain (2.35).

(c) For any zp # z we can expand the integral

+oo
[ 102 = vt )l ay
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into four terms and apply part (b) to each term to obtain

7oo|w+(y Z) _ w+(y ZO)HQ dy _ 1 - S+(:L’,Z)S+(:L’,Z) o 1— S+(x720)8+(x72)
’ ’ —i(z — %) —i(z — Zo)

1= sy (,2)s4(2, 20) n 1—s4(z,20)84(x, 20)
—i(Zo - 5) —i(Z() - Eo)
and taking zp — z, the right-hand side converges to 0.

(d) Dividing (a) by 3 (z, 20)¥5 (2, z), we obtain

i(z — 20)

1/’2 (z, ZO)%

/W Y, 20) T (y, 2) dy

54 (@, 20) - s4(2,2) =

Dividing by zo — z and taking the limit zy — z gives (2.37). O

We can now represent 9, w(z) as an average of the trace of the matrix-valued diagonal
Green functions:

Lemma 2.9. For a T-periodic Dirac operator, the derivative of the Johnson-Moser func-
tion 1is

dz, z e Cy. (2.39)

1 /T’(/J z,2) T Tyt (z, 2)
| W]

Proof. By a Cauchy formula and Fubini’s theorem, it is allowed to differentiate the
definition of the Johnson—Moser function inside the integral to obtain

ﬂIH

T
/171g0 )05+ (z,2)) dx.
0

To rewrite this, we essentially use an integration by parts. We start from an inspired
guess

;Y2 (,2) +oo
s (2,2)05,(2,2)  yron R de T2 T Ty, 2) dy

) ) v )T (@,2)

1
T @2)93 (52)

Writing W = o+ (x,2) T Jy~(z, 2) for the Wronskian of 1+ and v~, this simplifies to

1/’2$Z

h(z,z) = Wk (z.2)
2

/ Wt (9, 2) T T (y, 2) dy
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To differentiate this in z, we will use

" \YF (x,2) (¥3 (2,2))?

Using the eigenfunction equation and simplifying gives

o, (42:2) - POt (@, 2) T (,2) __p@W

V3 (w,2) (5 (x,2))? T (U5 (1,2))?

so the derivative of h is

 dy(a,2)

Ozh(x,z) = W@(w, 2

/ W) T Ty, ) dy o (. 2) T TV (@, 2)

(1/}2 x,z)
and computing ¥t (z,2) T JYT(z,2) = 20 (z, 2)v5 (z, 2), this simplifies to

Ui (3, 2) Yy (2, 2)
T .

Duh(z,2) = —ip(2)0.54 (2,2) — 2 (2.40)

The function h(z, z) is T-periodic because sy (x, z) are T-periodic, so its derivative has
zero integral on [0, T]. Thus, integrating d,h(x, z) from 0 to T gives

T T
i/ap x)0,84(z,2)d 2/1/) I7Z)d3:
0 0

SO
2 ot
5‘Zw(z) =1+ T / wl (xazl)/;fg (SL’,Z) d
0
Thus,
T
o1 207 (w, 2)95 (2, 2)
FeE =ity dz.
(z) =i+~ / (T (@, )05 (2, 2) — 95 (@, )b (,2))

Bringing i into the integral and combining terms gives (2.39). O

We now combine those two formulas leads to get a helpful formula for the density of
states.
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Lemma 2.10. For a T-periodic Dirac operator, the density of states measure is absolutely
continuous with respect to Lebesque measure. Inside spectral bands (i.e., for A such that
D(\) € (-2,2)), its Radon—Nikodym derivative is

T

dp 1 1

— N =— dz. 2.41

d)\( ) 7TT/1—|8+(JU,)\—|—10)|2 “ (241)
0

Proof. In the formula (2.39), cancelling 1; 5 from the fraction gives

and therefore

T
1 (1 s (2,2)s4 (2, 2)

Imw'(2) = = 5 da.

[1—s_(z,2)s4(x,2)]

On any spectral band, si(x, z) have continuous boundary values in D. From (2.33), by
Stieltjes inversion, we can recover p from w’. For (a,b) C{A € R: D(\, p) € (—2,2)},

2 T

a

b T
-0)12
p((a, b)) + p( :i// _(x,A\+10)s4 (z,)\+%0)| ded)
1—s_(z,\+1i0)s4(z,\+1i0)[?
0

Periodic operators are reflectionless, so for D(A) € (—2,2), s_(z, A+10) = sy (z, A +i0),
which simplifies the formula to the final result. O

Lemma 2.11. There is a constant c¢o > 0 with the following property. Suppose v € C(R)
is T-periodic with T > 0. Denote the associated discriminant by D and the density of
states by p. Inside spectral bands (i.e., for A such that D(X\) € (=2,2)), one has

dp o 2
> — .
d)\( > /||B,\ )||* d, (2.42)

where By(z) is the conjugacy defined by (2.24).

Proof. Since B)(x) is unique modulo left-multiplication by an element of K, its Hilbert—
Schmidt norm is independent of the choice of conjugacy. Since (2.25) furnishes an
example of a matrix that conjugates My (z) to a rotation (recall sy (z) = sy (x, A +10)),
we may explicitly compute the Hilbert—Schmidt norm of Bj(x)
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1+ |sq(z, A +i0)]?
B 2=9 ) 2.43
Since |s4| < 1, we get
1B@)3 < : (2.44)
T = [sp(a, A +i0)2 '

which gives the statement of the lemma upon applying Lemma 2.10 and recalling that
all matrix norms on 2 X 2 matrices are mutually equivalent. 0O

2.4. Gordon lemmas for Dirac operators

In the present subsection, we explain how to exclude eigenvalues for Dirac operators
with suitable repetitions in the potential ¢. The central idea dates back to Gordon [27]
and has been implemented in a wide variety of settings over the years; see [9,30,34-36]
for an incomplete list of examples.

The following lemma is well known. The proof is short, so we give it for the reader’s
convenience.

Lemma 2.12. For any M € SL(2,C) and any v € C?, one has

_ 1
max([|M ™ oll, | Moll, [M0]) = S o] (2.45)

1 1
max (|| Mwv||, ||M211||) > 3 min (1, W) o]l (2.46)

Proof. By the Cayley—Hamilton theorem, one has

M? = (Tt M)M — I (2.47)
M~ = (Tr M)I — M. (2.48)

Applying (2.47) when |Tr M| < 1 and (2.48) when |Tr M| > 1 proves (2.45), while (2.46)
follows directly from (2.47). O

Theorem 2.13 (3-Block Gordon Lemma). Let ¢ € L™°(R) be given. If there exist 0 <
qr — 00 such that

plrtq) =p(r) Y0<z <
then Ay, has empty point spectrum.

Proof. The given assumption implies A, (2qk, ¢, ¢) = A.(qx,0,0) = A.(0, —qx, ) for
any z. Lemma 2.12 implies that any eigensolution U at z must satisfy
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[l > ST (2.49)

for a sequence z € R with |zi| — co. By Gronwall’s inequality

x

1U@)]] = U (k)] exp —/(II‘M)II + |z[) dt

Tk

for © > xj, with a similar estimate for x < xx. In particular, since p € L*°(IR), there
exists § > 0 independent of k such that ||U(x)|| > ||U(0)||/3 for z in the d-neighborhood
of each xy, which implies U ¢ L?. O

An additional assumption on the traces allows one to prove a result that requires
fewer repetitions.

Theorem 2.14 (2-Block Gordon Lemma). Let ¢ € L*(R) be given. If there exist 0 <
qr — 00 such that

plx+aqr) = p(x) V0< o < g,
and if

sup |Tr A, (gx, 0, ¢)| < 0o (2.50)
k

then z is not an eigenvalue of A,.

Proof. This follows from the same proof as Theorem 2.13, but using the inequality (2.46)
instead of (2.45). O

Clearly, one can perturb around this and preserve the absence of eigenvalues.

Definition 2.15. We say that ¢ € L>°(R) is of Gordon type if there exist 0 < g — o0
such that

lim C% sup |p(z —qx) —¢(z)| = lim C* sup |p(z+q) —p(z) =0 (2.51)
k—o0 0<z<qp k— o0 0<z<qg

for every C' > 0.
Theorem 2.16. If ¢ € L>(R) is of Gordon type, then A, has empty point spectrum.
Proof. Fix k and let ¢} denote the gi-periodic function that agrees with ¢ on [0, gx).

Consider z and a nontrivial solution U of A, U = zU. By Lemma 2.12, we can choose
zy € {—qk, q, 2qx } such that
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~ 1
142 (zx, 0, 2) U (0)[] = 1T (O)]]- (2.52)
By variation of parameters,
T
Au(o1,0,9) = Ax(on,0,5) = [ Aslon, o 5)iflb(e) - B())A. (0,0, do
0

and by Gronwall’s inequality, || A, (zk, x, ¢r)|| < C**~% and ||A,(x,0,¢)|| < C* for some
C depending on z and ||¢]|co; ||Pkleo. Thus, by (2.51),

[ Az (2k,0,0) = Az(2, 0, 01) | S C% sup le(y) — or(y)]
y<ie

-0, (2.53)

where C' > 0 is a suitable constant and I}, = [0, zx] or [z, 0] according to whether xy, is
positive or negative. Putting together (2.52) and (2.53), we get the following for large k:

1U(z)ll = | Az (zk, 0, 0)U(O)]

= [| Az (zk, 0, 21)U(0) + (Az(zk,0,0) — Az(z, 0, 4))U(0) ||
1 ~

2 SIUO) = |42 (zx, 0, ) — Az (2, 0, 2) [IU (0)]
1

> — .

> LU

The conclusion follows from Gronwall’s inequality as before. O

Proposition 2.17. Recall that LP(RR, C) denotes the set of continuous uniformly limit-
periodic functions R — C. If G denotes the set of Gordon-type elements of LP(R, C),
then G is a dense G5 subset of LP(R, C).

Proof. Let P(IR,T’) denote the set of T-periodic elements of LP(R, C), and observe that
(oo}
=N U U Blen. (2.54)
N=1T>N ¢cP(R,T)

where B(p,r) denotes the open ball of radius r centered at ¢. Since G is clearly dense,
this shows that G is a dense G5. O
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3. Proofs of main results for Dirac operators
3.1. Proofs of main results

We now put the results from the previous section to work to prove Theorem 1.1 and
1.2. Given that limit-periodic operators are limits of periodic operators in the uniform
topology, the key to producing the desired limit-periodic operators with thin spectra is
a construction of periodic operators with thin spectra. Here is the crucial lemma.

Lemma 3.1. Suppose ¢ € C(R) is T-periodic. For all R,e > 0, there exist Ny =
No(p, R,e) € N and ¢y = ¢o(p, R,€) € N such that for every N € N for which N > Ny,
there in turn exists p € C(R) of period T = NT such that

lo =&l <€ (3.1)

and such that
Leb(o(Ag) N [~R, R]) < e 7. (3.2)

Before proving Lemma 3.1, let us see how it implies the main statements. Let us note
that these arguments deducing Theorems 1.1 and 1.2 from Lemma 3.1 are standard and
supplied for the reader’s convenience. The key remaining challenge to overcome lies in
the proof of Lemma 3.1.

Proof of Theorem 1.1. For ¢, R > 0, let M(e, R) C LP(IR, C) denote the set of ¢ such
that Leb(c(Ay,) N [—R, R]) < €. Since M(e, R) is dense by Lemma 3.1 and open by
Proposition 2.5, it follows that

M= () M(1/n,n) (3.3)

neN

is a dense G subset of LP(IR, C). For each ¢ € M, the spectrum has zero Lebesgue mea-
sure and hence empty interior. By general principles, the spectrum of A, does not have
isolated points whenever ¢ is limit-periodic [33] (Pastur works with ergodic Schrédinger
operators, but the proof applies in the case of ergodic Dirac operators with cosmetic
modifications).

Thus, o(A,,) is a zero-measure Cantor set for every ¢ € M.

Let G denote the set of ¢ € LP(RR, C) of Gordon type (cf. Definition 2.15). We know
that G is residual by Proposition 2.17, so we claim that the desired residual set is given
by M NG. Given ¢ € M NG, the spectral type of A, is purely singular since ¢ € M
implies the spectrum has zero Lebesgue measure (and hence cannot support absolutely
continuous measures). On the other hand, the spectral type is purely continuous by
Theorem 2.16. Since o(A,) is a zero-measure Cantor set for ¢ € M, the proofis done. O
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Next we discuss density of the set of ¢ € LP(IR, C) for which o(A,) has zero Hausdorff
dimension. Let us briefly recall how Hausdorff measures and dimension are defined; for
further details, see Falconer [21].

Given a set S C R and an a > 0, one defines the a-dimensional Hausdorff measure
of S by

he(S) = lélg)llnf zj: [I;|* : {I;} is a d-cover of S 5 , (3.4)

where {I;} is a d-cover of S if and only if |I;| < § for all j and S is contained in the
union of all I;. For each S C IR, there is a unique aq € [0, 1] with the property that

ho(S) = © 0<a<a
0 ap <

We denote ap = dimp(S) and refer to this value as the Hausdorff dimension of the
set S.

Let us also briefly recall some definitions related to box-counting dimension. For a
bounded set S C R and ¢ > 0, write N(S,¢) for the minimal number of intervals of
length e needed to cover S. The upper and lower box-counting dimensions of S are given
by

] ) log N(S,¢) . .. . log N(S,¢)
£(8) =1 — =1 f————"-. .
dim{ () 1n61¢soup log(1/e) dimg (S) im i log(1/2) (3.5)
When S is bounded, one has
dimp (S) < dimg (S) < dimg (). (3.6)

Proof of Theorem 1.2. Let ¢ € LP(R, C) and € > 0 be given. Since the periodic elements
are dense, we may assume without loss that ¢ is T-periodic for some T > 0.

Define ¢(®) = ¢ and g9 = £/2. Using Lemma 3.1 inductively we may construct for
n € N operator data o™ € LP(R, C) of period T, and &, > 0 such that

H‘p(n) - ‘P(n+1)‘|oo <ép, n=>0 (3'7)

where
. En—1 1 -T 1
0 < &, < min 5 §(n +1)7 ', ZLeb([—n,n] No(Aym)) ), n=>1 (3.8)

and such that
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Leb([—n,n] N O'(A%a(n)) < exp(—Tg/Q), n>1. (3.9)

By (3.7) and (3.8), we see that (™ — (> for some ¢(>) € LP(RR, C). Let us abbreviate
Ap =A,m and X, = o(Ay,) for 0 < n < co. By (3.8) and the choice of €g, one has

[ee] oo
o= <D en< Y 27" e =
n=0 n=0

From (3.8), we also see that

||90( ™ — <Z€n (m+1)~

which implies that A, satisfies the Gordon criterion and hence has purely continuous
spectrum.

As before, 0(As) lacks isolated points and cannot support absolutely continuous
measures if it has zero Lebesgue measure, so all that remains is to prove dimy(3s) = 0.

Fix n € N. Applying (3.8) and Proposition 2.5, for each k > n, the 2¢,-neighborhood
of [-n,n] N Xy covers [—n,n] N Xy and hence writing this covering as {I;}, one has a
covering of [—n,n] N X by intervals of length at most 2e~ )/ . By Theorem 2.6, this
covering consists of < T} intervals. This leads to

1/2

log N([-n,n] N X, &) log N (2o, 2e Tk 7)

dimg ([—n,n] N X4 ) = lim inf < limsu
sl ] ) =10 loge~! b log[2eT+"’]
. log T},
< lim sup
k—oo  VI1k
= 0,

which suffices to show dimg ([—n,n] N Xa) = 0 for each fixed n € N.
From

0 < dimu([—n,n] N LX) < dimg ([-n,n] N X)) =0,

we see that [—n,n] N Xy has zero Hausdorff dimension as well. Sending n — 00, Yo has
Hausdorff dimension zero, as desired. 0O

3.2. Proof of Lemma 3.1

Now let us work on Lemma 3.1. The first crucial ingredient is the following noncom-
mutation lemma. Although it is straightforward to state and prove, we want to highlight
this, as it is the key conceptual idea that made the analysis of the present work possible.
Recall that an element A € SU(1,1) is called elliptic if Tr A € (—2,2) and hyperbolic if
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TrA € R\ [-2,2]. An elliptic matrix A is characterized by having complex conjugate
eigenvalues A\ = e*? for some # € (0, 7) while hyperbolic matrices are characterized by
having eigenvalues Ao = A*!, where A € R\ [—1,1].

Lemma 3.2. Suppose A, B € SU(1,1) are elliptic and [A, B] # 0. Then the semigroup
generated by A and B contains a hyperbolic element of SU(1,1).

Proof. It is well-known that the closed subgroup of SU(1,1) generated by A and B
contains a hyperbolic element [38, Lemma 10.4.14].

Now, let A be elliptic with eigenvalues e*27 ¢ € [0,1/2]. If t = p/q is rational, then
one has A=! = A971. If ¢ is irrational, then choosing rationals py/qx — t one can check
that A%*~! — A~! so one can approximate A~! to arbitrary precision with positive
powers of A. In either case, the closed semigroup generated by two elliptic matrices is
the same as the closed subgroup they generate.

Since the closed semigroup generated by A, B contains a hyperbolic element and the
set of hyperbolic matrices is open, the semigroup generated by A, B contains a hyperbolic
element. 0O

By conjugating with a Cayley transform, one can immediately push this result to
SL(2,R). Though we do not need it for the present work, we record it here, since it may
be of independent interest.

Corollary 3.3. Suppose A, B € SL(2,R) are elliptic and [A, B] # 0. Then the semigroup
generated by A and B contains a hyperbolic element of SL(2,R).

Proof. Recall that A € SL(2,R) < WAW™* € SU(1,1), where

W= — L . [1 _.i} (3.10)

Thus, the result follows by applying Lemma 3.2 to WAW* and WBW*. 0O

In view of Lemma 3.2, it is helpful to know when matrices commute. For a set H C
SL(2,C), denote by Z(H) = {g € SL(2,C) : gh = hg Vh € H} its centralizer. For
T > 0, let Q(T,z) denote the set of all periodic Dirac transfer matrices over period T'
with energy z, that is,

Q(T,z) ={A.(T,p) : p € C(R) is T-periodic} . (3.11)
Lemma 3.4. For each T >0 and z € C, Z(Q(T, z)) = {£I}.

Proof. Let z € € and T > 0 be given, and consider ¢(z) = ¢ the constant function. The
corresponding transfer matrices are given by solving
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i 0 0 ¢
{0 i} O, A+ {E 0] A=zA (3.12)
leading to
9y A = [i.f .ic] A (3.13)
—ic iz
—_———
=:B(z,c)

which gives the transfer matrix A,(T,c) = eTB(*°). The matrix B(z, c) has eigenvectors

712
vy = [Zi z el } (3.14)
so any matrix D € Z(Q(T,z)) must have the same eigenvectors. By varying ¢, we see
that D has more than two linearly independent eigenvectors that are not multiples of
each other. Thus, D =+1. O

We will now combine this with analyticity. The transfer matrix A, (T, ¢) is a solution
of the initial value problem so it is an analytic function of ¢, % (see [28]): it can be
represented as a convergent power series

oo

AT, 0) = Pule, @)

n=0

where each P, is homogeneous of degree n in ¢, . It is therefore also a real analytic
function of Rey,Im ¢ € C([0,T],R) with values in the space of 2 x 2 matrices, viewed
as a real Banach space.

Lemma 3.5. For every T-periodic oo € C(R), A € R, and € > 0, there exists g € C(R)
of period T € TN such that $(0) = ©(0),

oo — @lles <&, (3.15)

and
A ¢ o(Ay). (3.16)

Proof. We begin by noting that it suffices to prove existence of ¢ satisfying all condi-
tions except ¢(0) = ¢(0); that condition can be added by a continuous perturbation in a
neighborhood of 0 which can furthermore be chosen to be an arbitrarily small perturba-
tion in L2([0, T]) norm. Since gap edges of the f—periodic operator are continuous with
respect to L2([0,7]) norm, this can be done without affecting the other conclusions.
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From here, the argument falls into three cases, according to the monodromy matrix
Mx(0) = AT o).

Case 1: Tr Mx (o) € R\ [—2, 2]. In this case, A ¢ 0(Ay,), S0 set @ = ¢g.

Case 2: Tr Mx(¢o0) € (—2,2). In this case My(¢o) # £I so, by Lemma 3.4, there
exists a T-periodic ¢1 € C(R) such that

[Mx (o), Mr(1)] # 0. (3.17)

This commutator is a real analytic function of ¢; € C([0,T]), viewed as a real Banach
space. Since the commutator is not identically zero, its zero set has empty interior by
the identity principle for real analytic functions [22, 3.1.24]. Moreover, elliptic elements
form an open set; thus, there exists p1 € C([0,T]) with |l¢o — ¥1lec < € such that
(3.17) holds and both M) (¢g) and My(¢1) are elliptic. As discussed at the beginning
of the proof, we can wiggle (; slightly to ensure ¢(0) = ¢1(0). By Lemma 3.2 the
semigroup generated by My (o) and My (¢1) contains a hyperbolic element, so we may
choose L € N, ky, ko, ...,k € N, and s1, 82,...,s € {0,1} so that the matrix

A= MA(SDSL)kLMA(LPSL71)kL71 T M)\(QDS1)]€1 (318)

is hyperbolic. The desired perturbation of ¢y is the corresponding concatenation of g
and ¢1. Define ¢ by

£—1 J4
o(x) = @5, ()  whenever TZ ki <z< TZ k;, (3.19)
j=1 j=1

and extend ¢ to a KT-periodic function, where K = ky +--- 4+ k.

Case 3: Tr M (o) = £2. The entries of M)(¢) and its trace are real analytic func-
tions of ¢. Since neither of the equalities Tr M) (¢) = %2 hold identically in ¢, the set
where it holds has empty interior, again by the identity principle for real analytic func-
tions. Thus, by an arbitrarily small perturbation of ¢y we reduce to Case 1 or Case 2. O

Now, all that remains is to prove the key lemma.

Proof of Lemma 3.1. Let ¢, R, and £ > 0 be given. By Lemma 3.5 and compactness, we

may find {¢;}7L, with period 7" € TN such that

Ur(s) 2 R B

<

and
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(of course, the periods may not be the same at first; however, since all periods are
multiples of T', one can clearly pass to the least common multiple of the finite collection).

Let L(\, ¢) refer to the Lyapunov exponent at energy A associated with the operator
A,. Since L(A, ) is a continuous function of A € R that is positive away from the
spectrum of A, the construction gives

K= |§I|1§I}z 1r£r§a§xmL()\,<pj) > 0. (3.20)

Consider N € N large, and choose N maximal with m(N + 1)T" < NT. Thus,

. NT NT
NT > — —2T" > ——, (3.21)
m 2m
where the second equality holds if IV is sufficiently large. Put T = NT and define a
T-periodic potential @ by concatenating a total of N+1 copies of each ¢; and filling in
the remainder with ¢’s. More precisely, let s; = (N +1)T", put

P(z) = {W(x) 1S TS S (3.22)

L)0(-73) Sm S x < f’

and extend to a f—periodic function. By construction, one can see that ¢ is continuous
and satisfies || — @]|oo < €.
By a repetition of the arguments of [1,11], one arrives at

Leb(o(As) N [~R, R]) < e™T (3.23)

for a suitable constant c.

For the reader’s convenience, let us supply the details. Recall that My(s) = Ax(s +
T, s, ) denotes the monodromy matrix starting at s € R and D(X) = Tr(My(s)) denotes
the discriminant. Let A € [—R, R] be given such that D(X) € (—2,2), and use (3.20) to
choose j with 1 < j < m such that L(\, ¢;) > k.

For s € R, define also

Xx(s) = Ax(s + NT',5,3).

Thus, X (s) transfers across a subinterval of length NT’ beginning at s. By T—periodicity
of ¢, the reader can readily check that

X (s) ' My (s 4+ NT") X x(s)

=Ax(s+ NT',5,3) " Ax(s + NT' + T, 5 + NT', $) Ax(s + NT', 5, %)
=Ax(s, s + NT', ?)Ax(s + NT' +T,s, ?)
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=Ax(s+T,s4+ NT' +T,2)Ax(s + NT' + T, s,%)
:A)\(S + f,S,QZ)
= M,(s) (3.24)

for any s.
For s € [s;,s; + T'], notice that @ coincides with ¢; on the interval [s,s + NT'], so
we have the following lower bound for every s € [s;,s; + T"]:

IXa(8)]| = [ Ax(s + NT", 5, )|
= [ Ax(s + T, 5,0)" |

> spr(Ax(s + ', 5,0,))"

— eL(A,w)NT'
> "N, (3.25)
Combining (3.25) with (3.21)
IXa(s)l| = 2T, Vs € s, + 1) (3.26)

where ¢; = k/(2m) > 0.

Since |D(M)| < 2, let us denote by Bj(s) the conjugacies from Theorem 2.6 such
that By(s)My(s)Bx(s)~! € K (where K denotes the diagonal elements of SU(1,1) as in
(2.24)). From (3.24), we see that M,(s) is conjugated to a rotation by both Bj(s) and
Bx(s 4+ NT’)X,(s). By uniqueness of conjugacies modulo diagonal rotations, we have

Bx(s + NT')Xx(s) = QBx(s) (3.27)
for some diagonal @ € SU(1, 1). This implies
max(|[Bx(s)Il, | Ba(s + NT')[) > 2T/, s € 55,5, + T]. (3.28)

According to Lemma 2.11, this gives

dp

7
a /|BA )12 ds > coT' T~ e ™.
0

Since the density of states measure gives weight 1/ T to each band of the spectrum, each
band in [—R, R] has measure at most

|B| < (1) teo T, (3.29)
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In view of Theorem 2.6, there are < T such bands, and hence we obtain
Leb(o(Ag) N [~R, R]) < (T') " "Te 7.

Choosing a constant 0 < ¢ < ¢; and N sufficiently large, we obtain (3.23) and hence the
lemma is proved. O

4. The CMV setting

To demonstrate the versatility of this approach, we show how it can be used to resolve
the corresponding issue for CMV matrices. Indeed, it is known that new ideas were
necessary to resolve the question of zero-measure Cantor spectrum for limit-periodic
CMV matrices. Compare the discussion on [24, pp. 5113-5114].

The main new technique here is to apply the noncommutation idea from the Dirac
operator setting to perturb spectra of CMV matrices and introduce spectral gaps in a
controlled fashion. As before, the construction of periodic sequences of a’s with thin
spectra is the crucial technical step. The overall program is similar (but technically
simpler in a few steps) for the CMV setting.

Recall that § denotes the hyperbolic metric on D and the induced uniform metric on
DZ as in Definition 1.3.

Lemma 4.1. For any g-periodic o € D% and € > 0, there exist ¢y = co(a,e) > 0 and
No = Ny(a,e) € N such that for any N > Ny, there exists & € LP(Z,D) of period
q = Nq such that

da,a) <e (4.1)
and
Leb(0(£5)) < e 0 (4.2)
As in the Dirac case, Lemma 4.1 yields the desired results.

Proof of Theorems 1.4 and 1.5. Theorems 1.4 and 1.5 follow from Lemma 4.1 in pre-
cisely the same manner that Theorems 1.1 and 1.2 followed from Lemma 3.1. The relevant
version of the Gordon lemma in the CMV case is given in [23]. In fact, the arguments are
very slightly simpler, since 9D is compact, so there is no need to work locally in energy
in this setting. O

The remainder of the section is concerned with the proof of Lemma 4.1, which is
similar to that of Lemma 3.1; we concentrate on the key steps. Let us introduce some
tools and characters. Given a € D and z € C, the Szegd matrix is given by
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A, 2) = —— [ZZ ‘f‘] . (4.3)

V1= laf?

For n,m € Z, we also define

Alan-1,2) - Alam,z) n>m
Az(n,m,a)z I n=m

[A.(m,n,a)]"! n<m.

Of course, the final line is not well-defined if z = 0, but this is not an issue since we will
only consider z € 9.

If a is g-periodic, the monodromy matriz is given by M, = M,(a) = 2=92A,(q,0, @)
and determines the spectrum via

0(€y) ={2z€0D: Tr(M,) € [-2,2]}
in that case. For this and other facts about periodic CMV matrices, we direct the reader
to Simon [38].
As we did with Dirac operators, we will use real-analyticity of the discriminant and
Szegd matrices as functions of Re a;, and Im «,,. The following identity principle supplies

the needed input. For more details about multivariate analytic functions, we direct the
reader to Gunning—Rossi [29], particularly Theorem 6 of Chapter 1.

Theorem 4.2. If a real-analytic function of n variables vanishes on an open subset of R™,
then it vanishes identically.

As a consequence of this, we can deduce the following helpful fact.

Proposition 4.3. Suppose o € D% is q-periodic, z € 0D, M,(a) # £1. For every € > 0,
there exists B of period q such that §(a, f) < € and

[M(a), M (B)] # 0. (4.4)
Proof. Suppose that for some g-periodic o € D% and some z € 9D, the function
D? 3 B+ [M.(a), M.(B)] € C**2 (4.5)

vanishes® on an open set in D?. Since the commutator in (4.5) is a real-analytic function
of the variables {Ref;,Im§; : 1 < j < g}, this implies that the commutator vanishes
for all 8 € DY. In particular, M, (a) and M, () are simultaneously diagonalizable for all

6 In a minor abuse of notation, we write 8 both for the element of D? and the obvious g-periodic extension
in D%,
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B € D4. By choosing 5 = (a,a,...,a) for some a € D, we see that this implies M, (a) =
el for a constant ¢, which in turn forces M,(«a) = +I (because M, («a) € SU(1,1)), as
desired. O

Lemma 4.4. Suppose &, is a g-periodic extended CMV matriz. For all € > 0 and all
z € OD, there exists N € N and an Ng-periodic 3 € D% such that §(a, ) < & and

z ¢ 0(&p)-
Proof. Let z € 9D and ¢ be given.
Case 1: Tr M, () € R\ [—2,2]. In this case, z ¢ 0(&,), s0 set § = a.

Case 2: Tr M, () € (—2,2). In this case M, («) # +I so, by Proposition 4.3, there
exists a g-periodic « such that

[M (), M. (7)] # 0, (4.6)

and d(a,y) < e. Taking € small enough, we may ensure that M,(v) also has trace
in (—2,2). By Lemma 3.2 the semigroup generated by M,(a) and M,(7y) contains a
hyperbolic element. We may choose L € N, ky,ko,...,k;, € N, and 01,092,...,01 €
{a, v} so that the matrix

M = M, (o) " M, (op_1)** " - M,(01)" (4.7)

is hyperbolic. The desired perturbation of « is the corresponding concatenation of o and
~. That is, define 3 by

—1 4
Bn=(00)n Y ki<n<> ki (4.8)
j=1 j=1

and extend S to a K¢-periodic function, where K = ky + --- + k..

Case 3: Tr M, (o) = £2. The entries of M,(«) and its trace are real-analytic func-
tions of {Rea;,Ima; : 1 < j < g}. Since the equality TrM,(a) = £2 does not hold
identically in «, the set where it holds has empty interior, again by the identity principle
for real analytic functions. Thus, by an arbitrarily small perturbation of ¢y we reduce
to Case 1 or Case 2. O

We now have all the pieces that are needed.
Proof of Lemma 4.1. The crucial observation is supplied by Lemma 4.4. With that

lemma in hand, the proof follows from precisely the same arguments used to prove
[24, Lemma 5.3]. O
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