)]
Check for
Updates

Automatic Detection of Fake Key Attacks in Secure Messaging

Tarun Kumar Yadav
Brigham Young University

tarun141@byu.edu
Daniel Zappala
Brigham Young University
zappala@cs.byu.edu
ABSTRACT

Popular instant messaging applications such as WhatsApp and Sig-
nal provide end-to-end encryption for billions of users. They rely
on a centralized, application-specific server to distribute public keys
and relay encrypted messages between the users. Therefore, they
prevent passive attacks but are vulnerable to some active attacks.
A malicious or hacked server can distribute fake keys to users to
perform man-in-the-middle or impersonation attacks. While typ-
ical secure messaging applications provide a manual method for
users to detect these attacks, this burdens users, and studies show
it is ineffective in practice. This paper presents KTACA, a com-
pletely automated approach for key verification that is oblivious to
users and easy to deploy. We motivate KTACA by designing two
approaches to automatic key verification. One approach uses client
auditing (KTCA) and the second uses anonymous key monitoring
(AKM). Both have relatively inferior security properties, leading to
KTACA, which combines these approaches to provide the best of
both worlds. We provide a security analysis of each defense, identi-
fying which attacks they can automatically detect. We implement
the active attacks to demonstrate they are possible, and we also
create a prototype implementation of all the defenses to measure
their performance and confirm their feasibility. Finally, we discuss
the strengths and weaknesses of each defense, the overhead on
clients and service providers, and deployment considerations.

CCS CONCEPTS

« Security and privacy — Key management.

KEYWORDS
Secure messaging; MITM attacks; Signal; authentication

ACM Reference Format:

Tarun Kumar Yadav, Devashish Gosain, Amir Herzberg, Daniel Zappala,
and Kent Seamons. 2022. Automatic Detection of Fake Key Attacks in Secure
Messaging. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security (CCS °22), November 7-11, 2022, Los Angeles,
CA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3548606.3560588

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9450-5/22/11...$15.00
https://doi.org/10.1145/3548606.3560588

Devashish Gosain
Max Planck Institute for Informatics
dgosain@mpi-inf.mpg.de

3019

Amir Herzberg
University of Connecticut
amir.herzberg@gmail.com

Kent Seamons
Brigham Young University
seamons@cs.byu.edu

1 INTRODUCTION

Secure messaging applications provide billions of users with end-
to-end encryption to ensure message privacy. A long list of ap-
plications provides this service, including WhatsApp, iMessage,
Facebook Messenger, Skype, Signal, Threema, Wire, Wickr, Viber,
and Riot. The application’s underlying encryption protocols vary,
though many use the Signal protocol or some derivation.

All the secure messaging applications listed above use a central-
ized server to exchange public keys and relay messages among users.
The end-to-end encryption (E2EE) protocols assume the honest-
but-curious model. When Alice wishes to communicate with Bob,
she requests Bob’s key from the server (and vice-versa). A malicious
or compromised server can launch a man-in-the-middle (MITM)
attack against Alice and Bob by providing them with fake keys. The
server then has access to the plaintext as it decrypts and re-encrypts
each message that it relays between them.

To help counter these attacks, most of these applications (iMes-
sage and Skype excepted) provide users a method to verify each
others’ public keys (or derived keys). This verification is typically
done by manually comparing a key fingerprint or scanning a QR
code of the fingerprint. Most applications do not prompt the users
to do this at the start of a conversation but display a prompt if
the keys change. Prior studies [9, 15, 22] have found that users
are generally oblivious to the need to verify public keys and are
unlikely to authenticate, leaving them vulnerable to an attack.

While proof of fake key attacks on secure messaging platforms
is hard to obtain, the vulnerability exists and may be exploited.
Experience indicates that exploitation is only a matter of time. One
example of surveillance of a secure messaging app occurred in 2018
when Dutch law enforcement eavesdropped on criminals using
the IronChat application [19]. Outside of secure messaging, attacks
have likewise led to MITM eavesdropping. In 2011, the Iranian
government was suspected of obtaining a fraudulent public key
certificate to eavesdrop on 300,000 Iranians [10] accessing Gmail.
Further, the Kazakhstan government recently began using a fake
root CA to perform a MITM attack against HTTPS connections to
websites including Facebook, Twitter, and Google [13]. It is also
well-known that nations engage in surveillance and would like
to crack secure messaging applications. For example, revelations
from leaked documents by Edward Snowden indicate significant
capabilities in the United States regarding surveillance of electronic
communication.

Currently, the only way to detect fake key attacks is to rely on
users to perform key verification manually whenever they start a

An extended version of this paper is available at https://arxiv.org/abs/2210.09940

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

conversation with a contact and any time a contact updates their
key. Legitimate public key updates occur only when contacts re-
install the messenger application. Thus, convincing users to always
verify keys would almost universally confirm that a key update is
legitimate. However, such repeated confirmations might cause user
fatigue and a penchant to ignore key update warning messages.
Our work aims to relieve users of this burden entirely.

In this paper, we design and evaluate three novel approaches to
detect fake key attacks automatically : (1) Key Transparency with
Client Auditors (KTCA, Section 5), (1) Anonymous Key Monitoring
(AKM, Section 6) and (3) Key Transparency with Anonymous Client
Auditors (KTACA, Section 7). These approaches leverage two ideas:
client auditing and anonymity. We first explore how to use these
ideas on their own to solve the problem, designing one defense that
uses each idea (KTCA and AKM). We then combine the ideas into
a third design that overcomes some of the limitations of the first
two approaches (KTACA). The detection is probabilistic—detection
is not immediate, but as time passes, it becomes improbable for the
attacker to avoid detection. For all three defenses our design goals
include (1) avoiding reliance on third-parties for auditing, (2) using
existing infrastructure where possible for simpler deployability, and
(3) leaving existing secure messaging protocols largely unchanged,
with only small extensions.

The first idea we build on, client auditing, is based on key trans-
parency (e.g., CONIKS [11]), an auditing approach similar to Certifi-
cate Transparency [14]. With key transparency, a service provider
maintains a write-only log of public keys for each client device.
Auditors detect when a provider equivocates by advertising dif-
ferent logs to different users. Typically, auditors are assumed to
be well-connected servers, either run by third parties or service
providers that collaboratively audit each other. We explore client
auditing, which uses secure messaging clients as auditors rather
than having dedicated third-party servers or service providers per-
form this function. Client auditing is necessary because there is
no evidence that third parties would be willing to perform this
function, nor that secure messaging providers would work together
to audit each other.

The second idea we build on, anonymity, enables a device to ac-
cess a service without revealing its identity to the server. Anonymity
is helpful because current secure messaging providers know the
identity of clients when they request public keys; the provider dis-
tributes public keys for each user to bootstrap secure connections.
We explore anonymous key monitoring to make it difficult for the
server to deliver fake keys to specific users while avoiding detec-
tion. We are not interested in anonymous communication among
clients because users of secure messaging systems typically want to
communicate openly with people they know. Instead, we explore a
more limited notion of anonymity, which requires hiding the device
identity from a service provider.

We combine these ideas into a third design (KTACA) that uses
anonymous client auditing. With the first client auditing approach,
clients must exchange auditing information because the service
provider, knowing the identity of the clients, could otherwise equiv-
ocate by sending different information to each client. Anonymous
client auditing allows each client to avoid the overhead of exchang-
ing auditing information. Since the service provider can’t identify

Tarun Kumar Yadav, Devashish Gosain, Amir Herzberg, Daniel Zappala, & Kent Seamons

3020

the clients, it can’t equivocate without a high probability of being

caught. Thus repeated queries are sufficient to detect equivocation.

Our contributions include:

(1) A detailed description of fake key attacks and an implementa-
tion demonstrating the feasibility of the attacks.

(2) The design of three automated fake key defenses, one that uses
client auditing (KTCA), a second that uses anonymous key mon-
itoring (AKM), and a third that uses anonymous client auditing
(KTACA), along with their advantages and limitations. These
defenses are oblivious to users, freeing them of the responsibil-
ity to protect themselves against key attacks through manual
key verification.

(3) A formal security analysis of the defenses that explains which
attacks they can detect.

(4) An analysis of an implementation of the defenses to explore
their performance and feasibility.

(5) A comparison of the defenses and a discussion of their trade-offs,
as well as implications for this line of research.

(6) A taxonomy of MITM and impersonation attacks (see Fig 1).
Our analysis shows that key transparency detects some imper-
sonation attacks without proof of the attack. This limitation
has not been discussed previously.

Service providers have an incentive to deploy automatic detec-
tion to protect their users since the primary goal of their service is
to provide private communication. Detecting attacks also protects
the service provider’s reputation. Likewise, automatic detection is
a strong deterrent for attackers attempting an attack and for ser-
vice providers acting maliciously (e.g., responding to a government
subpoena). Finally, the defenses increase usability since the effort
to manually verify a key can be limited to many fewer situations.

2 BACKGROUND AND RELATED WORK

We first provide background on secure messaging applications and
then discuss related work that seeks to help users verify public keys
when using secure messaging applications.

2.1 Secure Messaging Applications

Secure messaging applications use many different protocols to pro-
vide end-to-end encryption. One family of applications is based on
the Signal protocol [5, 16], hereafter referred to as Signal. These
include the Signal app, WhatsApp [25], Facebook Messenger [7],
Skype [12], and Riot!, all of which directly use the Signal protocol,
as well as Wire [26], and Viber [24], which use their own implemen-
tation but follow the same concepts. Another family of applications
(e.g., iMessage, Threema, and Wickr) uses a proprietary protocol
that bootstraps encryption by exchanging public keys using a cen-
tral server, similar to the initialization used by the Signal protocol.

Our work applies to all of these systems since they all use a
central server to exchange public keys and route messages between
users. Our focus is on ensuring that the public keys exchanged
through the central server are verified as authentic, rather than
fake keys substituted by an attacker. Most of these apps (except
iMessage and Skype) use some manual system to verify keys, and

!Riot uses Olm, an implementation of the Signal Double Ratchet algorithm,
for one-to-one encrypted communication (https://gitlab.matrix.org/matrix-
org/olm/blob/master/docs/olm.md).

Automatic Detection of Fake Key Attacks in Secure Messaging

all could use an automated system such as those we describe. Our
work may also apply to Telegram, which uses a proprietary pro-
tocol based on Diffie-Hellman, with messages exchanged through
a central server. Telegram also includes a method to authenticate
the exchanged Diffie-Hellman parameters, which would likewise
benefit from automation.

Chase et al. [3] use anonymous authentication to authorize
changes to an encrypted membership list stored on a messaging
server. Two of our defenses (Section 6 and Section 7) require anony-
mous queries to hide the identity of the requestor, which is different
from anonymous authentication.

2.2 Verifying Keys

Secure messaging applications often contain a method for users
to verify each others’ public keys, such as scanning a QR code
from each others’ phones if they are co-located or reading their
key fingerprints over a voice call. This process has been called
an authentication ceremony, and typical messenger designs only
prompt users to perform it when their public keys change.

Prior research shows that users do not understand the need
for the authentication ceremony and find it difficult to perform.
Schroder et al. [15] demonstrated that most Signal users failed to
correctly verify their conversation partner’s key due to usability
issues and an incomplete mental model. Herzberg and Liebowitz [9]
conducted a laboratory user study that provided high-level informa-
tion about the risks of secure communication. Only 13% of the users
could complete the authentication ceremony successfully. Similarly,
Vaziripour et al. [22] conducted a laboratory study where pairs
of participants received high-level instructions to make sure they
were communicating with the person they intended. Only 14% of
the participants completed the ceremony. These studies indicate
that users don’t understand the risk of a MITM attack when using
secure messaging applications, do not understand that the authen-
tication ceremony helps them thwart an attack, and have difficulty
finding and completing the authentication ceremony.

Several researchers have recently designed and evaluated im-
provements to the authentication ceremony interface. Vaziripour
et al. [23] modified the Signal application UI to encourage users
to perform the authentication ceremony and made the ceremony
easier to find and use. They reported that 90% of the participants
could find and complete the ceremony using the redesigned version
of Signal. Even with these improvements, it is still a burden and
unrealistic to expect users to perform the ceremony all the time.
Wau et al. [27] instead redesigned the Signal application Ul based on
risk communication principles that help the user decide whether
to perform the authentication ceremony, taking into account risk
likelihood and severity, response efficacy, and cost. This approach
showed improvements in user understanding of the ceremony and
the ability of users to make decisions based on their judgment of
these factors.

Our work seeks to automatically verify public keys, relieving the
burden of an authentication ceremony on users by distinguishing
between legitimate key changes and attacks. One approach in this
direction uses social media accounts to provide additional channels
for verifying keys. Keybase is a key directory that links a user’s so-
cial media accounts to their encryption keys to increase confidence

3021

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

that a received public key belongs to the right person. Vaziripour
et al. [21] semi-automated the authentication process in the Signal
application using social media accounts, similar to Keybase. They
found that automating the authentication ceremony and distribut-
ing trust with additional service providers is promising. However,
users were skeptical of using social media accounts due to a lack
of trust, and thus recommended that more trustworthy third-party
actors are needed for this role. We also note that using social media
accounts requires users to have these accounts. In some cases, so-
cial media companies could collude with the messaging application
(such as Facebook owning WhatsApp). Moreover, this approach
puts the onus on the user to manually verify that the social media
account owner is the person they are trying to authenticate.

A candidate for automating the ceremony is Key Transparency
(KT). CONIKS [11] (and [2] that builds on it) describes a KT system
designed for secure messaging that partly inspired Google’s Key
Transparency project?. The CONIKS architecture has each secure
messaging provider maintain a public ledger of their user’s keys,
and providers audit each other to detect equivocation. It is assumed
that clients can communicate with each other independently from
their provider, enabling them to contact the auditors out-of-band
and to alert other parties if any equivocation is detected. Today’s
secure messaging providers have not implemented ledgers or au-
diting, nor do they inter-operate in the way CONIKS envisions. We
propose a defense KTCA using KT wherein the clients act as audi-
tors instead of the service providers. KT is analogous to Certificate
Transparency (CT) [14], an approach for detecting fake certificates.
In both CONIKS and KTCA, clients audit their service provider to
verify their key is in the transparency log. However, they differ in
how they audit the server for equivocation—detecting when the
server advertises a different log to different clients. CONIKS as-
sumes multiple non-colluding providers publish each others’ STRs,
and clients download STRs from multiple providers and compare
them for equivocation. KTCA does not require multiple providers
since we believe it is infeasible given the current lack of cooper-
ation (and lack of incentives for cooperation) among messaging
providers. KTCA shows that single-provider detection of equivoca-
tion is feasible, and our analysis shows its limitations. Also, KTCA
is customized for messaging apps, such as not needing a proof-of-
absence as CONIKS provides, leading to some differences in the
Merkle Tree design.

Unger et al. [18] produced a systemization of knowledge (SoK) for
secure messaging and considered security, usability, and adoption
properties. They evaluate many trust establishment approaches,
including centralized key directory systems like Signal. They evalu-
ated whether approaches could prevent or detect operator (i.e., ser-
vice provider) MITM attacks and noted the key directories are
vulnerable to attack. Their evaluation included the addition of au-
ditable logs like CONIKS to a key directory to detect attacks. Our
work builds on their evaluation in several ways. First, we provide
an in-depth discussion on how to adopt CONIKS to a single oper-
ator. We also provide two additional approaches to detect attacks
automatically. Their SoK focuses entirely on manual approaches to
comparing fingerprints.

ZRefer https://github.com/google/keytransparency

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

3 SYSTEM MODEL

There are two entities involved in the messaging system, (1) client
messaging applications on users’ devices, and (2) the server. Clients
can communicate with each other (1) via messages in the secure
messaging application that are encrypted and routed through the
server, and (2) via messages that are sent directly between the
clients without being routed through the server (via some out-of-
band communication channel). Whenever the secure messaging
app is installed on the client, a public key is generated and published
on the server. A new key can be associated with a phone number
whenever the app is re-installed on the same device or another
device due to a device upgrade, lost device, etc. A client can become
disconnected from the system when it loses network access.

The server relays application-related messages between the
clients and distributes public keys. We refer to messages between
clients that flow through the server as in-band, and messages be-
tween clients that flow directly without going through the server as
out-of-band. The server knows the sender and recipients’ identity
(phone number, public key, IP address) for all communications that
it relays between clients. The server also knows the contact list for
each client.

We assume perfectly synchronized clocks and bounded delays
for all communication. Time is divided into regular intervals or
epochs, such as an hour or a day.

4 ADVERSARY MODEL

The adversary A controls the server, giving it control over public
key distribution and access to all encrypted messages plus meta-
data that flow through the server. Also, the adversary is an active
global attacker that can launch a MITM attack against any insecure
Internet communication globally to read, modify, inject, and block
messages.

The adversary has no control over a user’s client application.
Because the cryptographic keys are generated at the client, and
public keys are stored on the server for distribution to other users,
the adversary has access only to public keys. We exclude a compro-
mised client from our threat model because attacks on the client can
be mitigated through an open-source client app that the provider
does not control, which helps prevent the attack. Also, an attack on
the client app can be detected by auditing since many researchers
have access to the app and can inspect it.

The adversary does not attack the human user, so social engi-
neering attacks are outside the scope of the paper.

4.1 Adversary type and goals

The adversary could be (1) law enforcement or an oppressive regime
coercing the server to conduct an attack, or (2) hackers compro-
mising the server to conduct an attack. The adversary’s goal is
to compromise message confidentiality and integrity. The adver-
sary may be interested in compromising communication between a
specific pair of users (Alice and Bob), or in compromising commu-
nication between one user (Alice) and all of the users with whom
Alice communicates (Alice’s contacts).

Tarun Kumar Yadav, Devashish Gosain, Amir Herzberg, Daniel Zappala, & Kent Seamons

3022

4.2 Description of Attacks

A generates fake public/private key pairs and distributes the fake
public keys, instead of the original users’ public keys, to conduct
attacks on some conversations. Throughout the paper, we refer
to this as a fake key attack, referring to a fake long-term public
key of a user. Once A has successfully distributed a fake key, it
can generate any ephemeral symmetric keys needed to have read
and write access to all messages in a conversation. If A is able to
complete a fake key attack, there are two specific attacks it can
launch in existing systems that do not employ our defenses:

Man In The Middle Attack (MITM). ‘A can launch a MITM attack
against Alice and Bob by impersonating Alice to Bob and simulta-
neously impersonating Bob to Alice. A can read, modify, and inject
messages into the conversation.

To conduct this attack on a new connection, A first generates
two fake public keys. When Alice attempts to create a secure con-
nection with Bob by retrieving Bob’s public key, A suppresses Bob’s
key and presents one of the fake keys (as Bob’s key) to Alice. When
Alice sends the first message to Bob containing her public key, A
replaces Alice’s key with the other fake key. The same pattern oc-
curs for Bob if he initiates the conversation with Alice. A can also
launch a MITM attack against clients with existing connections by
sending fake key updates to both Alice and Bob.

Impersonation Attack. A launches an impersonation attack against
Alice by either impersonating as Alice to her contact or imperson-
ating a contact to Alice. To impersonate as Alice, A provides a fake
key for Alice to her contact. To impersonate to Alice, A provides
a fake key for her contact to Alice. As an impersonator, A can be
either the initiator or the respondent of a conversation. Alice is
oblivious to the impersonation attack and is unable to communicate
with her contact.

This attack applies to both new and existing secure connections.
For new connections, A distributes a fake key as the conversation
begins. For existing connections, A sends out a fake key update.
The details depend on whether A is impersonating to Alice or as
Alice, and whether A is the initiator or respondent in the initial
communication.

The impersonation and MITM attacks just described illustrate a
pair-targeted attack where A attacks a single pair of participants
(Alice and Bob) as shown in Fig. 1 parts (a) and (c). A variation of
these attacks is a client-targeted attack where A launches the attack
on Alice and some or all of her contacts as shown in Fig. 1 parts (b)
and (d).

Roadmap. The rest of the paper is organized as follows: We
present three defenses—KTCA, AKM, and KTACA—in Sections 5, 6,
and 7, respectively. KTCA has stronger assumptions than AKM,
but it has better security properties than AKM. We design KTACA
to combine the strengths of KTCA and AKM. Table 1 compares
how these defenses perform against attacks described in Section 4.2.
Section 8 presents short-lived attack monitoring, which is used in
all of our main defenses to detect an adversary that launches a fake
key attack and quickly restores the correct key to avoid detection.
We present a security analysis of the defenses in their respective
sections and a performance analysis in Section 9.

Automatic Detection of Fake Key Attacks in Secure Messaging

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Table 1: Comparison of Defenses showing who detects/prevents each attack

Attack KTCA

AKM KTACA

All clients w/ PoM

All victim clients All victim clients w/ PoM

Client-targeted MITM

All clients w/ PoM (equivocation)
All victim clients (non-equivocation)

All victim clients w/ PoM (equivocation)

All victim clients All victim clients (non-equivocation)

\
Pair-targeted MITM ‘

Pair-targeted impersonation All clients w/ PoM

All victim clients victim client w/ PoM*

Client-targeted impersonation

All clients w/ PoM (equivocation)
victim client (non-equivocation) *

All victim clients w/ PoM (equivocation)

victim client” victim client (non-equivocation)®

* = The victim client whose fake key is distributed detects the attack.

0
D—Ef’—u
0

(a) pair-targeted MITM

(b) client-targeted MITM

0
R,
N

(c) pair-targeted
impersonation

0

(d) client-targeted
impersonation

Figure 1: Four types of fake key attacks. Each diagram rep-
resents Alice (left), her contacts (right), and an adversary
(center). The green lines represent secure connections; the
red lines represent compromised connections. Note that in
each situation, there may be other pairs of clients communi-
cating securely that are not shown.

5 KEY TRANSPARENCY WITH CLIENT
AUDITORS (KTCA)

Our first approach to defending against fake key attacks is an adap-
tation of key transparency that relies on secure messaging clients
to audit the server instead of the usual approach of relying on mul-
tiple service providers to audit each other (e.g., CONIKS and Google
Key Transparency). We believe client auditors are more realistic to
deploy since providers do not currently cooperate, and there is no
other non-colluding auditing infrastructure available.

Key transparency leverages a transparency log of public keys
to detect when A advertises a fake public key for a client. It also
detects if A attempts to avoid detection by equivocating, i.e., ad-
vertising different logs to different clients. The secure messaging
clients perform the monitoring. Some clients can be offline during
some epochs; therefore, different clients will be available to monitor
keys and check for equivocation in every epoch.

3023

T = The victim client who receives a fake key detects the attack.

5.1 Definitions and Assumptions

We say that two entities have a §-connection in a given epoch if
every message sent by one directly to the other is received with
maximal delay 8. We say a client is benign if it has the correct KTCA
implementation.

In every epoch e, let G, be a graph whose nodes are the benign
clients and whose edges are pairs of benign nodes that are contacts
of each other. Because the contacts are connected through the server,
they have a delay of 2 - §. Notably, the server has ¢ connections
with all clients in Ge.

Due to clients going offline/online during epochs, the graphs
Ge and Gey41 likely will not have the same set of nodes. KTCA
assumes at least one overlapping benign client across two con-
secutive epochs. Having at least N/2 benign clients online every
epoch, where N is the total number of benign clients, guarantees
an overlap of at least one client across two consecutive epochs.
Currently, messaging applications such as WhatsApp have 70% of
clients active every day [1].

We also assume 2 - (diam(Gg) +1) - § < len(e), where diam(Ge)
is the maximum number of edges for a shortest path between any
two clients in Ge. This assumption accounts for the time it takes
for a client to retrieve information from the server and share it
with all of the other clients in the network. If any client sends a
message to its contacts, who then repeatedly relay the message to
their contacts, the message will reach all clients in G, in one epoch.
This assumption is reasonable because most delays on the Internet
are short—rarely over 200 ms.

5.2 Design

The server maintains a Merkle binary prefix tree of all the reg-
istered client’s public keys, inspired by CONIKS [11]. Each node
corresponds to a unique prefix i. Each branch of the tree appends a
0 (left child) or a 1 (right child) to the parent’s prefix.

A privacy goal for a Merkle tree is that an attacker cannot use
the Merkle tree data that proves user i owns key k to determine
whether another user j exists in the tree.

There are three node types in the tree created using a collision-
resistant hash function® H(). Leaf nodes are defined as:

hleaf = H(kleaf||iclient| [¢]|H (client, public_keycjient))

3In the exposition, we use a keyless hash H for simplicity, which suffices under the
Random Oracle Model. For security in the standard model, the protocol should be
interpreted as using a keyed hash function hy, where k is a public random string.

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

where ki, is a leaf-specific nonce, icjjen; is the index for a client,
¢ is the depth of the leaf node in the tree, and client is a unique
identifier (i.e., phone number) for the user.

For a leaf node, index i;j;en; is @ hash of the client’s identifier.

icliens = H(client)
Interior nodes are defined using their two children as:

hinterior = H(kinteri0r| |hchild.0| |hchild.1 I | linterior | |f)

where kinterior is an interior-specific nonce, ijnserior is the prefix
for the interior node, ¢ is the depth of the interior node in the tree.

The kleaf and kinterior nonces ensure that the input strings
to the hash function for leaf and interior nodes differ, and the
outputs can only match if there is a collision. Some leaf nodes do
not correspond to a registered client and are simply random values.

To optimize space in the tree, the leaf node corresponding to a
registered client could be placed at a depth ¢ where the first ¢ bits
of izjjens are a unique prefix in the tree. This optimization allows
an offline attacker to infer other potential clients nearby in the
tree. CONIKS incorporated a verifiable unpredictable function in its
design to eliminate this privacy leak. The function can be verified
with the public key but only computed using the private key. This
prevents an offline attacker from guessing possible usernames and
inferring that they might be present in nearby nodes.

Rather than adopt this method from CONIKS, we use a different
design that sacrifices some storage for reduced computation. To pre-
vent the above privacy leak, we represent empty leaves as random
values to be indistinguishable from non-empty leaves. This design
choice means we cannot support proof of absence like CONIKS.
Proof of absence is not necessary for secure messaging apps be-
cause the messaging server is responsible for maintaining the tree,
and every registered client must have a key in the tree. We also
place each node for a client at a depth corresponding to the first
£+ bits of izjjens, Where ¢ is the first ¢ bits of index icjjep, that are
a unique prefix in the tree, and r is chosen randomly (uniformly)
between 1 and ¢ by the server. The extra overhead is at most twice
the number of hashes to a node in the tree. The design ensures that
a sibling leaf for a non-empty leaf is always either an interior node
or a random-valued leaf node. An attacker cannot reliably infer
whether another client with the same prefix exists in the tree.

At regular intervals (epochs), the server generates a Signed Tree
Root (STR) by signing the root of the Merkle tree, along with other
metadata, such as a hash of the previous epoch’s STR and epoch
number.

A Merkle tree provides an efficient method for clients to verify
that their key is included in the current tree without obtaining a
full copy of the tree. The server provides a client with the current
STR along with a Proof of Inclusion (Pol) for their key. The Pol
contains the leaf node corresponding to the client’s key and the
hash of each sibling sub-tree along the path from the leaf node to
the root of the Merkle tree. Given a tree with N nodes, there are
log(N) — 1 interior nodes along the path from the leaf to the root of
the tree. To verify the Pol, the client begins at the leaf, hashes the
hash of the leaf along with the hash of the leaf of the sibling node
to produce the value of the parent node. The process of computing
the value of the parent node using the current contents of a node
and the hash of its sibling node provided in the Pol continues until

Tarun Kumar Yadav, Devashish Gosain, Amir Herzberg, Daniel Zappala, & Kent Seamons

3024

the root of the tree. The computed value for the root of the tree is
verified using the most recent STR.

5.2.1 Client auditors. The defense adds new auditing messages
that are exchanged between the clients to detect fake key attacks.
These messages are in addition to the normal messages between
clients that flow through the server and use all of the same security
mechanisms. These messages represent the edges of graph G,.
The following describes the key monitoring and server auditing
performed by all clients. All clients perform the following: (1) mon-
itor their own key, (2) monitor the keys for all their contacts, (3)
audit the server to detect equivocation, and (4) perform short-lived
attack monitoring as needed.
(1) To monitor their own key, clients request an STR and Proof of
Inclusion (Pol) for their key from the server at the beginning
of each epoch. Clients verify (a) that the server is publishing a
linear history of STRs by confirming the previous STR’s hash is
in the current STR, (b) that the STR’s signature is valid, and (c)
that their public key is in the tree using Pol. If a client does not
receive an STR or Pol within 2 - § time after the beginning of
an epoch, or the STR is invalid, it considers this an attack, and
the client disconnects from the server. If a client disconnects
from the graph G, then it requests STRs and Pols for all missed
epochs when it comes online and re-joins the graph. Then it
verifies the validity of all STRs and Pols.
(2) A client monitors the keys of its contacts on each new key
lookup or key update. The server gives client j the key for
client i that is included in STR, and its corresponding Pol, which
client j can use to verify the key is in the current tree. If client
i updates the key after STR, is generated, then the server also
sends client j the updated key, which is not included in STR,
but will be included in STRe41.
Clients audit the server using in-band auditing messages for
equivocation by sending STR, to their contacts during each
epoch, immediately upon receiving it. If a client detects two
conflicting, signed STRs during an epoch, this constitutes a
Proof of Misbehavior (PoM). Clients detecting or receiving a
PoM immediately relay the PoM to their contacts so that all
clients in the network quickly obtain the PoM. Clients that do
not receive STR, from the server during a given epoch instead
relay the first STR they receive from their contacts.
On every key update a client receives, it performs short-lived
attack monitoring (§8) to detect attacks where A quickly re-
stores a correct key. Short-lived attack monitoring detects the
attack where A provides a fake key in epoch e and restores the
key before epoch e + 1, so the fake key never appears in the
subsequent STR.

@3

~

(4)

5.3 Analysis

If A does not equivocate, then every client in the graph receives
the same STR during every epoch. Each client can verify their key
is in the STR using the Pol.

If A equivocates, then at least one pair of clients has conflicting
STRs. Namely, at least one edge in the connected graph hasa 2 - §
connection between two clients that receive different STRs. The
clients on each edge with different STRs will detect the equivocation
and forward the PoM to their contacts.

Automatic Detection of Fake Key Attacks in Secure Messaging

The detection of conflicting STRs by a client proves that at least
one fake key exists in the system. However, the client cannot de-
termine which keys are fake, only that the server has equivocated.
The owner of a key is the only one that can confirm their correct
key is present in an STR. Other clients can confirm that the key
exists in the STR, but they cannot confirm it is the correct key.

In all cases (a)-(d) in Fig. 1, if A attacks by equivocating and
gives different STRs to clients connected to the compromised edges,
the attack is detected with a PoM by all clients that are connected to
graph G, and exchange their STRs. It should be noted that A could
attack an edge e by partitioning the graph G into subgraphs by
either (1) disconnecting multiple edges or (2) executing MITM on
multiple edges in the same epoch in a way that the clients of edge
e come in different subgraphs G; and Gs. In this case, attacks on
edges within the subgraphs G; and G; are detected with PoM, but
attacks on edges connecting the two subgraphs cannot be detected
quickly. To prevent this attack’s detection, A has to permanently
disconnect these connections or execute a MITM for all connections
between any two clients across these subgraphs.

Suppose two clients from different subgraphs form a secure con-
nection that connects graph G. In that case, the attack is eventually
detected with a PoM, which is a strong deterrent for A execut-
ing this attack. If A does not partition the graph, the attacks are
detected within one epoch as described in Theorem 5.2.

To illustrate the graph partitioning attack, consider the case
where A conducts a client-targeted MITM attack. A creates a fake
key for Bob and delivers it to all of Bob’s contacts. To avoid detection
during auditing, A sends Bob an STR generated with his key, but
all other clients receive a second STR generated with the fake key.
To avoid detection, A also modifies all of Bob’s outgoing auditing
messages (since it is acting as a MITM), and replaces the first STR
with the second STR, which matches the STR that all the other
clients have. For the incoming STRs, A replaces the second STR.
In this case, A conducts a successful MITM even though Bob and
his contacts verify that their conversations are secure. As noted
above, A must continue this attack indefinitely to avoid detection
and expand it to include any new clients that contact Bob.

In client-targeted attacks on Bob, A could hand out fake keys
and not equivocate. For a client-targeted MITM attack, all the victim
clients detect the attack. For a client-targeted impersonation attack,
only Bob detects the attack. However, the impersonation attack can
continue since there is no way to notify Bob’s contacts that they are
under attack automatically. Bob has to notify his contacts manually
to make them aware of the attack because A isolates Bob from
communicating with anyone via the network. There is no PoM in
either case. If A refuses to hand out an STR, a client detects the
attack without any PoM.

LEMMA 5.1. Pol-Lemma: For any epoch e, it is not feasible for A to
generate an STR and two Pols that prove the inclusion of two different
public keys in the STR for the same client.

ProorF. There are two methods for A to distribute an STR with
two Pols where one proves a client owns public_key,jjen; and the
other proves the client owns public_keyfgge-

3025

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Method 1: The Pols map the conflicting public keys to the same
leaf node in the Merkle tree.

hleaf = H(kleainclient' [¢]|H (client, public_keycjient))
= H(kleaf”iclient [1€] |H(Client5publiC_keyfake))

If public_keyfqre and public_key,jjen, are different, then the out-
puts of the inner collision-resistant hash function must differ. Thus,
the inputs to the outer hash function H differ, and the outputs can
only be equivalent if a collision occurs.

Method 2: The first Pol maps the real public key to a leaf hjeqf
at depth ¢ in the Merkle tree. The second Pol maps the fake public
key to a fake leaf hfgkejeqr that equals an hinerior node at depth
¢’ on the path to client where ¢’ is less than ¢. If they are equal,
then the fake key validates as a leaf node in the Merkle tree.

hinterior = H(kinterior”hchild.0||hchild.l ||iinterior||f’)
hfakeleaf = H(kleaf||iclient| |¢’||H client, PubliC_keyfake))

The inputs to the hash function H differ since, by definition, the
input strings begin with a different nonce kinterior and kleaf- The
outputs can only be equivalent if a collision occurs.

Both methods depend on a collision for H. Therefore, if it is
feasible for A to come up with an STR and two valid Pols, corre-
sponding to two different public keys for the same client, then this
implies that it is feasible to find collisions in H, contradicting the
assumption that H is a collision-resistant hash function.

O

The following theorem considers that clients can go offline dur-
ing epochs and update their keys anytime during an epoch. From
our definition, G, is a graph whose nodes are the benign clients
and whose edges are pairs of benign nodes that are contacts of each
other.

THEOREM 5.2. Let j be a benign client connected in epochs e and
e’ where e < e’, and i be a benign client connected in epochs e* and
e” wheree* < e < e”, and let t, denote the time that epoch e begins.
Let e, = max(e’, e”). Assume that j receives i’s key from the server
at time t’ within the epoch e. Then one of the following holds:

(1) Client i detects that the server is corrupt, at or before ty» +2 - 6.

(2) All clients in Ge,, detect that the server is corrupt, with PoM,
at or beforete, +2 - (diam(Ge,, + 1)) - 6.

(3) Client j detects that the server is corrupt at or before te +2 - 6.

(4) Client j receives i’s public key during epoch e.

Proor. In KTCA, we allow clients to update their keys any time
during the epoch, and the updated keys are included in the Merkle
tree in the next epoch. So, the detection process following a key
update starts at the beginning of the next epoch following the
update.

The first case describes when A tries to create a fake key for a
client without equivocation. If client i in G,» does not receive STRs
with Pols for epochs e* + 1 to e” for its own key within 2 - § time
or receives any invalid Pol for a corresponding STRs, then client i
considers it an attack. Client i detects this corrupt behavior at or
before t,» + 2 - 5.

The second case describes equivocation detection. From our
assumption, each epoch has more than N /2 clients online, ensuring
that there is an overlap of at least one client in G, and G,». Note

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

that e’ and e” can be in any order, and it is beneficial for A to
always equivocate at the later epoch. Let e, = max(e’, e”) and ¢,
be either client i or j who is online in epoch e,. To equivocate, in
epoch ey, A gives a different STR to the overlapping clients than it
gives to client cp.

If client ¢, receives a different STR than the overlapping clients,
then one or more clients in the graph receive STR;, and one or
more clients in the graph receive STR;. As the graph G, consists
of 2 - 5-connections between clients, there must exist at least one
edge connecting two clients where one client receives STR;, and
the other client receives STR,. Once these two clients exchange the
STRs, a PoM exists. Then the PoM is forwarded to all clients in G,
and is later forwarded to other clients as they connect.

The maximum time that is incurred for detection by all clients is
the case when the two farthest clients (the ones that are diam(Ge,,)
apart) receive the conflicting STRs and all the intermediate clients
have not received an STR from A. The detection time is computed
as follows. At the beginning of an epoch, within 2 - § time, client
x receives STRy, client y (diam(Ge,,) apart from x) receives STRy
and all the intermediate clients do not receive STRs. Clients x and y
send their STRs to their neighbors and in turn they also forward the
STRs to their neighbors. Within diam(Ge,,) - § time the node which
is diam(Gse,,)/2 apart from both x and y receives both the STRs
and generates the PoM. Eventually, in diam(Ge,,) - § time this PoM
is propagated within the whole G,,, network and all the clients in
Ge,, become aware of the equivocation including x and y. Thus, to
detect equivocation the maximum time is 2 - § + diam(G,,) - 6 +
diam(Ge,,) - 6, which is 2 - (diam(G,) + 1) - §. The equivocation is
detected at or before t, +2 - (diam(Ge,, + 1)) - 6.

Third, from the KTCA design, if any client j asks for client i’s
key, client j must receive the key of i and Pol within 2 - § time.
However, as described in the first paragraph of the proof, A can
say that it will include the updated key in the next epoch. So, if a
client does not receive a Pol or it is invalid for epoch e’, client j
considers it an attack and detects it at or before ter + 2 - 6.

If the other cases do not hold, then client i receives a valid STR
with Pol for its own key, and all clients receive the same STRs in
epoch e”. Pol-Lemma in KT ensures that if a valid Pol is in the STR
that is consistent with the STR i has, it is consistent with the key
that client i published in the tree. O

THEOREM 5.3. No false Proof of Misbehavior is ever created. If the
server is never corrupt, no benign client will ever falsely detect that
the server is corrupt.

Proor. By definition, a PoM occurs when a client receives two
different STRs for an epoch. This equivocation cannot happen un-
less the server creates two different Merkle trees and signs two
conflicting STRs. In a secure signature scheme, only the signing
key owner can generate a valid signature on an STR. Also, a benign
server always sends the STR and Pol on time. O

6 ANONYMOUS KEY MONITORING (AKM)

The KTCA defense relies on clients to audit the server instead of
trusting third-party auditors. However, it is vulnerable to graph
partitioning attacks. We explore anonymous key monitoring to
overcome this limitation.

Tarun Kumar Yadav, Devashish Gosain, Amir Herzberg, Daniel Zappala, & Kent Seamons

3026

Currently, secure messaging servers know the identity of the
clients during public key distribution, which lends itself to being
vulnerable to fake key attacks. This section explores AKM, a defense
that leverages anonymous key requests from clients as they monitor
keys to defend against fake key attacks.

Unlike KTCA, AKM successfully verifies keys even if A parti-
tions the graph G and keeps it partitioned forever. Also, the graph’s
connectivity does not affect the detection time of key verification
in AKM.

6.1 Assumptions

The attacker controls a server S and is also an eavesdropper on the
communication entering and leaving the anonymous network. We
assume an anonymous network with a (weak) anonymity property:
when n senders simultaneously send a short, fixed-length message
to S through the anonymous network, the attacker can link the
sender’s identity s; to a received message m; with a probability
at most 1/n + €(x), where « is the security parameter, and € is a
negligible function of k.

We assume a maximum delay of § when a client and the server
communicate directly and a maximum delay of A > § when they
communicate through the anonymous network. The duration of
an epoch is much larger than A.

Since AKM requires small, infrequent anonymous monitoring
messages, it is possible to use strong-anonymous networks such as
(1) mixnets (e.g., Nym [6]) and (2) Vuvuzela [20]. The properties of
AKM also make it feasible to rely on the weak anonymity guarantees
from a system like Tor [17]. The weak anonymity guarantees suffice
for AKM because:

e Our messages are short, fixed-sized, and do not require high
quality of service (such as low latency or a high-speed con-
nection). Therefore, we can choose the proxies in a circuit uni-
formly from the list of available proxies (provided by the direc-
tory servers); this contrasts with the standard Tor client that
chooses proxies in the circuit according to stability, latency, and
available bandwidth.

e AKM has a client monitor their key over Tor once per epoch, a
single request and response. The client constructs a new circuit
each epoch to mitigate the risk of A always controlling the
entry and exit proxies and correlating the client’s traffic.
Finally, we introduce a randomized jitter by introducing a short
randomized bounded delay before sending each request and
randomizing the number of TOR proxies that participate in each
circuit as described in [8].

6.2 Design

The server distributes public keys to clients directly. The server
also supports an Anonymous Key Request (AKR) for key monitoring.
An AKR is an unauthenticated public key request sent through an
anonymous network to retrieve a key from the server. The server
signs the public key in both responses (directly and through AKR).
An AKR prevents leakage of the client’s identity to the server by
(1) not sending the client’s identity or identifiable metadata in
the request at the application layer, and (2) using a third-party
anonymization service with a random delay for IP-layer anonymity

Automatic Detection of Fake Key Attacks in Secure Messaging

of key requests. AKR allows clients to retrieve their own keys or
other clients’ keys anonymously.

Adding support for an AKR should be a modest change to ex-
isting servers. If a service does not support AKRs, two potential
workarounds are for all clients to use the same generic identifier or
to use a random identifier when making an AKR. We verified the
feasibility of the first idea on a Signal server in the lab by retrieving
keys anonymously using the same generic credential submitted by
multiple clients in parallel TLS sessions.

To prevent a timing attack by A, all clients make their AKR
requests at the beginning of an epoch. Since A controls the timing
of each response, it could reply sequentially with sufficient delay
to deanonymize the clients as a global passive adversary. How-
ever, since A must commit to the response before returning it, the
deanonymization occurs too late to help A avoid detection.

To detect fake key attacks, all clients regularly perform two types
of anonymous key monitoring plus short-lived attack monitoring.

(1) At the beginning of every epoch, Alice monitors her key
using an AKR to ensure the server consistently distributes
her key.

(2) When Bob creates a new connection or receives a key update
for a contact in epoch i, he monitors the contact’s key using
an AKR at the beginning of each epoch from epoch i + 1 to
i + m, where m is the number of monitoring requests.

(3) Similar to KTCA, attacks where A quickly restores a cor-
rect key can be prevented by performing short-lived attack
monitoring (§8).

At the beginning of an epoch, suppose Alice was to monitor her
key and her contacts’ keys in one bulk AKR. The server may be
able to deanonymize her by comparing her request to a list of her
new contacts and existing contacts that recently updated their key.
To avoid this kind of deanonymization, Alice must create a fresh
AKR that requests only one key for each key she monitors.

6.3 Analysis

Suppose A performs a fake key attack on Alice by giving a fake
key update to some of her contacts. To avoid detection, A must
reply to any AKR from those contacts with the same fake key.
Simultaneously, A must present the real key to Alice, who monitors
her key during each epoch.

For example, suppose Bob receives a key update for Alice con-
taining a fake key. Bob then sends an AKR for Alice’s key for the
following m epochs. To avoid detection, A must return the same
fake key for Alice to Bob during each epoch. Simultaneously, since
Alice is sending an anonymous query for her key during each in-
terval, A must return Alice’s correct key to her. The victim client,
who is given a fake key in epoch e, detects the attack at or before
te+m with probability 1 — (1/2)™, where m is the number of epochs
the victim client monitors the contact’s key following a key update.
Theorem 6.1 presents a detailed security analysis that considers
clients going offline and A giving a fake key update for a client to
multiple contacts.

If a client i does not receive a response for its AKR within 2 - A,
where A is the maximum delay in the anonymous network between
a client and the server, the client assumes the server is avoiding
detection and considers it an attack.

3027

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Even though a client can detect an attack, AKM provides no PoM.
AKM detects all four attacks presented in Fig. 1. If A hands out fake
keys and continues to answer all monitoring requests, the attack is
detected because it is improbable for A to deliver the correct key
and the fake key in response to anonymous requests in a way that
avoids detection. The attack is detected if A fails to respond to an
anonymous request or blocks any request.

In a client-targeted impersonation attack, A can hand out a fake
key for Bob and then answer all monitoring requests for Bob’s key
with the fake key. In this case, Bob is the only client that detects
the attack. However, the impersonation attack can continue since
there is no way to notify Bob’s contacts that they are under attack
automatically. Bob has to notify his contacts manually to make them
aware of the attack because A isolates Bob from communicating
with anyone via the network.

Theorem 6.1 assumes that A gives i’s fake key to (1) all new
client connections and (2) some existing clients whom A wants
to attack in epoch e. This is a reasonable assumption since epochs
are short (e.g., an hour), and usually, there will be one or no new
connections. The assumption means that all monitoring requests
not from i expect the fake key, and only one request is for the real
key.

THEOREM 6.1. Let t, denote the time that epoch e begins. Assume
c clients receive a fake key for client i, during epoch e. Additionally,
assume that the server cannot distinguish users with a probability
significantly larger than 1/m (see Sect. 6.1 for a rationale). Then client
i detects that the server is corrupt at or before tem with probability
1—-(1/(c+1))™, where m is the number of epochs that the c contacts
monitor the client’s key following a key update. If either client i or any
of the ¢ clients disconnect during m epochs, then the probability of
detection is 1 — f_nl max(1/(contacts; + 1), owner;), where contacts;
is the number olféontacts online where (contacts; < c¢), and owner;
is a 1 or 0 depending on whether the owner is offline or online.

Proor. When A presents a fake key for Alice to ¢ of its contacts
in an epoch and continues the attack for at least m epochs, 1) the ¢
contacts monitor Alice’s key for m epochs, and 2) Alice monitors its
key. All of these requests are indistinguishable from each other. To
avoid fake key detection, A has to deliver the correct key to Alice
in every epoch and the fake key to its ¢ contacts. A knows it will
receive c + 1 requests, and only 1 of them should return the real key,
and c should return the fake key. So A has c+1 choices for plausible
ways to distribute the keys, and only one of them is correct. During
each epoch, the probability of making the right choice is (1/(c+1)).
So as the ¢ clients monitor Alice’s key for m epochs, the probability
of A making the right choice to avoid detection is (1/(c + 1))™.

If Alice disconnects for any of those m monitoring epochs, A
can distribute fake keys without detection during those epochs.
Suppose at every epoch i during the monitoring interval we have
contacts; contacts online where (contacts; < c¢),and owner;jisalor
0 depending on whether the owner is offline or online. If the owner
is offline and A knows this, A can hand out fake keys reliably with
probability 1. The probability of avoiding detection is the product
of the probability during each epoch. So the detection probability

m
is: 1 — [] max(1/(contacts; + 1), owner;).
i=1

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

If the attack is short-lived (less than m epochs), and A restores
the original key, the attack is detected immediately using the short-
lived attack monitoring basic defense (described in §8). O

As the number of epochs increases, the probability of A avoid-
ing detection (false negative) is negligible. Once the probability
is negligible, Alice’s contacts stop monitoring Alice’s recent key
change to avoid unnecessary bandwidth.

7 KEY TRANSPARENCY WITH ANONYMOUS
CLIENT AUDITORS (KTACA)

While AKM defends against graph partitioning attacks, it does not
provide a PoM and takes longer to detect an attack than KTCA.
Thus, we next explore combining key transparency and anonymity
to achieve the best of both approaches.

KTACA relies on a key transparency log maintained by the
server, with clients auditing the server anonymously. Clients audit
for equivocation by requesting STRs anonymously from the server
instead of exchanging them with their contacts as in KTCA. Since
the server does not know which client is requesting an STR, it
makes it difficult for A to equivocate and avoid detection.

7.1 Design

The server supports an Anonymous STR Request (ASR) for STR
monitoring. An ASR is an unauthenticated STR request sent through
an anonymous network to retrieve the STR for an epoch from the
server. Similar to AKR, ASR prevents leakage of the client’s identity
to the server. The server maintains a Merkle tree containing the
public key of all registered clients, as in KTCA (§5).

(1) At the beginning of every epoch, all clients retrieve an STR
and Proof of Inclusion (PoI) for their key from the server. If
a client is offline for some epochs, it retrieves the STRs and
corresponding Pol for missed epochs. Clients verify (a) the
server is publishing a linear history of STRs by confirming
the previous STR’s hash is in the current STR, (b) the STR’s
signature is valid, and (c) that their public key is in the tree
using Pol. If a client does not receive an STR or Pol within
2 - A time after the beginning of an epoch, or the STR is
invalid, it is considered an attack, and the client disconnects
from the server.

(2) At the beginning of every epoch, all clients use an ASR to
anonymously retrieve an STR from the server. This STR
should match the STR retrieved directly from the server in
step 1. Otherwise, the client has conflicting STRs and detects
an attack with a Proof of Misbehavior. Since all clients in
the system request the STR anonymously, to equivocate the
server has to correctly identify one STR request from millions
of anonymous STR requests.

(3) For each new key lookup or key update, the client receives
a Proof of Inclusion (Pol) for verifying the key is in the tree.

(4) Similar to KTCA and AKM, attacks where A quickly restores
a correct key can be prevented by performing short-lived
attack monitoring (§8).

In KTCA, clients audit for equivocation by comparing STRs
among all of their contacts. With anonymous client auditing, clients
leverage anonymity to ensure the server consistently delivers a

Tarun Kumar Yadav, Devashish Gosain, Amir Herzberg, Daniel Zappala, & Kent Seamons

3028

linear history of STRs. Retrieving STRs through the anonymous
network removes (1) the dependency on the assumption of a §-
connected network, (2) the computation and network bandwidth
for clients to exchange STRs to monitor for equivocation, and (3)
the need to trust all the other clients in the network to participate
in the monitoring process.

7.2 Analysis

KTACA defends against the attacks presented in Fig. 1. For each
attack, if A equivocates, the attack is detected within one epoch.
The owner of the key and their contacts that receive a fake key
obtain a PoM. Detection occurs because it is improbable for A
to deliver different STRs to only the victim clients in response
to anonymous STR requests when all the clients in the system
retrieve STRs anonymously in every epoch. Unlike KTCA, there
is no mechanism to distribute the PoM to all the other clients in
Ge. However, the mechanism used in KTCA to forward the PoM to
other clients can be easily added to KTACA. Note that the PoM will
only be shared in the connected graph G, of which victim clients
are part.

In client-targeted attacks, A could hand out fake keys and not
equivocate. For a client-targeted MITM attack, all the victim clients
detect the attack. For a client-targeted impersonation attack, only
the victim client that owns the fake key detects the attack. However,
the impersonation attack can continue since there is no way to
automatically notify the victim’s contacts that they are under attack.
The victim has to notify their contacts manually because A isolates
the victim from communicating with anyone via the network. There
is no PoM in either case.

If A refuses to hand out an STR, a client detects the attack
without any PoM.

THEOREM 7.1. Let j be a benign client that is online at epochs e
and e’ wheree < e, and i be a benign client that is online at epochs
e* and e” wheree* < e < e”, and let t, denote the time that epoch e
begins. Assume that client j requests i’s key from the server at time
t’ within the epoch e. Then one of the following holds:

(1) Client i detects that the server is corrupt, at or before to» +2 - A.

(2) Client j detects that the server is corrupt, with PoM, at or before
ter + 2 - A with probability 1 — (1/N), where N is the total
number of clients.

(3) Client j detects that the server is corrupt at or before ter +2 - A.

(4) Client j receives i’s correct public key during epoch e.

Proor. In KTACA, we allow clients to update their keys anytime
during an epoch and include their updated keys in the Merkle tree
in the next epoch. So, the detection process following a key update
starts at the beginning of the next epoch following the update.

First, (a) if client i does not receive a valid STR with a Pol for its
key within 2 - § time, then the client considers it an attack, and the
attack is detected within 2 - § time after epoch e” begins. Also, (b)
if client i does not receive an STR from the server in response to
its ASR within 2 - A time, then client i considers it an attack and is
detected within 2 - A time after epoch e” begins.

When a client comes online, from our design, it retrieves all
missing STRs and corresponding Pols for their key. In this case i
retrieves all STRs and Pols for epochs e* + 1 to e” and verify Pols

Automatic Detection of Fake Key Attacks in Secure Messaging

in corresponding STRs. Also, i verifies the linear history of STRs. If
either of these verification fails or i received conflicting STRs for
epoch e”, while retrieving directly and anonymously, i detects the
attack. Since A > §, client i detects the attack at or before > +2- A.

Second, each client receives a valid STR with a Pol for its key
directly from the server and also receives an STR anonymously
through ASR. If the STRs do not match, the server has equivocated,
and the attack is detected.

Assume j receives a fake key for i from the server in epoch e
along with a STR and corresponding Pol. Thus, to avoid detection,
the server has to return the same STR when j requests an STR
through an ASR. Client j sends ASR in e+1, if it is online or when it
comes online (e”). If there are N registered clients, the probability of
returning the fake STR to the j in response to an ASR is 1/N. If the
STRs do not match, an attack is detected, and j has two conflicting
STRs for a PoM at or before t.s+2-A. The victim client, who receives
a fake key, detects the equivocation with a probability 1 — (1/N).

Third, from the KTACA design, if client j requests the key for
client i, client j must receive the key and Pol within 2 - A time.
However, as described in the first paragraph of the proof, the server
can say that it will include the updated key in the next epoch. So, if
a client does not receive Pol or it is invalid for epoch e’, the client
considers it an attack at detects it at or before t,s + A.

If the other cases do not hold, then client i receives a valid STR
with Pol for its own key, and all clients receive the same STRs.
Pol-Lemma in KT ensures that if a valid Pol is in the STR that is
consistent with the STR i has, it is consistent with the key that
client i published in the tree. O

8 SHORT-LIVED ATTACK MONITORING

All three defenses must handle the case where A updates the key
for client j after beginning an epoch e and restores the correct
key before epoch e + 1. Short-lived attack monitoring detects an
adversary that launches a fake key attack and quickly restores the
correct key to avoid detection. This attack can also be prevented in
KTCA and KTACA by allowing at most one key change per client
per epoch to ensure that any new key will be in STR,1. Allowing
at most one key change per client per epoch is reasonable because
clients rarely change their keys.

We assume that the secure messaging app does not re-use keys
between app re-installs, and the server does not allow clients to
re-use the same key pair. Current messaging apps like Signal and
WhatsApp do not re-use keys. Also, this aligns with best practices
to generate a new key pair instead of re-using previous key pairs.

When a client requests a key for a client, the server response
contains the key pair, the current epoch number, and the response’s
signature. To detect a rapid fake-key attack, each client maintains
a key update history for its contacts, then checks for duplicates. For
example, when Alice gets a key update request for Bob, if the new
key exists in Bob’s history, Alice detects a rapid fake-key attack.

LEmMA 8.1. If A restores the correct key for a contact after giving
a fake key previously, the attack is detected instantly with PoM by
the victim who receives the fake key.

Proor. Assume Alice has Bob’s public key Kj. A sends a fake
key update message (regarding Bob) to Alice with fake key Ky as

3029

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Bob’s new public key and impersonates Bob to Alice. Next, Alice
verifies Bob’s new key update in Bob’s key update history but does
not find an instance of K s therefore, Alice considers it a legitimate
update and adds K to Bob’s key update history. Later, A terminates
the attack by sending a key update message restoring Bob’s correct
key Kj to Alice. Once again, Alice verifies Bob’s new key update in
Bob’s key update history and finds an instance of K; already in the
file. Therefore, Alice detects the rapid fake-key attack with a PoM
(duplicate signed keys for two different epochs.) O

9 PROOF-OF-CONCEPT AND PERFORMANCE

We built a Signal infrastructure in the lab to demonstrate the fea-
sibility of all of the fake key attacks from Fig. 1. We also built
proof-of-concept prototypes to demonstrate the effectiveness of
the KTCA, AKM and KTACA defenses. Each of these defenses were
able to detect all of the attacks.

We evaluate our design implementations with the following
parameters based on the assumptions made by CONIKS [11]:

e An IM application supporting N = 232

e Epochs occur roughly once per hour.
o Up to 1% of the users change or add keys per day, i.e, n =

key updates per epoch.
e A 128-bit cryptographic security level (SHA-256, 512 bit EC-

Schnorr signatures).
o Clients have an average of 100 connections.

users.

221

Table 2 reports data related to the performance of each defense,
including (1) the verification delay for defenses that detect attacks,
(2) the client-side memory requirements, and (3) an estimate of the
total network traffic generated per client for each defense.

9.1 Client-side Memory Requirements

KTCA and KTACA store the previous STR at the client, requiring
104 bytes (64 for the signature, 32 for the root, and 8 for a timestamp).
AKM stores nothing.

9.2 Client-side Network Traffic

Monitoring cost. In KTCA, a client monitors its own key binding
in the tree every epoch. It requires downloading an STR and Pol of
their key. The STR contains the root of the tree and the signature
(64 bytes). The Pol is of size log, (N) +1 (i.e., the depth of the Merkel
tree). However as all the hashes in the PoI do not change every
epoch and if n key update happens every epoch (n < N), then the
expected number of changes in the hashes in a given Pol path is
log,(n). So, a client downloads in total 64 +log,(n) - 32 = 736 bytes.

Clients exchange STRs with all their contacts every epoch. A
client does not send an STR to a contact if the client received the
same STR from that contact. Therefore a client in total sends and
receives STRs from 100 contacts, which totals to 100 - 64 = 6.4 KB.
Thus, the total network data used for monitoring is 6.4 + 0.736 =
7.136 KB per epoch.

In AKM, a client retrieves keys from the server using the Tor
circuit. There is no straightforward approach to find data usage for
the Tor circuit theoretically. So, we implemented an Android app
that 1) creates a Tor circuit and 2) retrieves a key bundle from our
implementation of the Signal server. We used the packet capture

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Tarun Kumar Yadav, Devashish Gosain, Amir Herzberg, Daniel Zappala, & Kent Seamons

Table 2: Performance analysis

Resources
Defense Detection time Client side memory Network Traffic (per client)
(per epoch) ‘ (per new connection or key update)
KTCA | <2 epochs (1 epoch + 2 (diam(G)+1) - J) 104B 7.136KB 1.056KB
AKM <m epochs (= 10% epochs) 0 32KB 320KB
KTACA <1 epoch +A 104B 33.96KB 1.056KB

+ = detects with 0.999 probability

Android app and analyzed a packet trace in Wireshark. One key
retrieval using the Tor circuit uses ~ 32 KB of data (15 KB sent +
17 KB received). For monitoring in AKM, a client retrieves its key
every epoch anonymously, requiring ~ 32 KB of data.

In KTACA, clients monitor their key, which requires download-
ing 64 + log,(n) - 32 = 736 bytes every epoch. Furthermore, the
client audits the STR by retrieving the STR anonymously, which
requires ~ 32 KB. The total size of the network data per epoch is
33.952 KB (1.216 KB + 736 bytes + 32 KB).

New contact lookup and verification cost. In KTCA, when a client
communicates with a new contact, it retrieves the Pol for that
contact, which contains log,(N) + 1 hashes. A new key lookup
requires downloading 32 - (log,(N) + 1) = 1.056 KB.

In AKM, a client does not download/upload anything for a new
key lookup. However, the client needs to monitor a new key lookup
for some epochs. In AKM detection mode, after a client starts a
new communication, it monitors a new connection’s key until it
has confidence that the key she received is correct. Assuming that
a client wants to detect an attack with a probability of 0.999, the
contact’s key monitoring is needed for ten epochs. Thus, monitoring
every new contact requires ~ 32 KB for an epoch. If the client
monitors a new contact for ten epochs, the total size of the network
data for new contact monitoring is 320 KB (32 KB - 10).

In KTACA, similar to KTCA, a client downloads a Pol for a new
contact containing log, (N) + 1 hashes. A new key lookup requires
downloading 32 - (log,(N) + 1) = 1.056 KB.

Performance cost example. Assume an epoch’s duration is one
day, a client communicates with five new contacts every month,
and one of their existing contacts updates their key each month.
If the client uses KTCA, the network overhead is 220.416 KB per
month ((30 - 7.136) + (5 - 1.056) + 1.056 KB), and the client side
memory is 104 B. If the client uses AKM, the network overhead
is 2.88 MB per month ((30 - 32) + (5 - 320) + 320 KB). If the client
uses KTACA, the network overhead is 1.025 MB per month ((30 -
33.96)+(5-1.056) +1.056 KB). As mentioned in Table 2, KTCA, AKM
and KTACA detect the attacks within 2, 10 and 1 day respectively,
where A <<< 1 day.

10 COMPARISON AND DISCUSSION

Table 1 compares how the three defenses detect the MITM and
impersonation attacks in Fig. 1. For all pair-targeted attacks, (a) and
(c), A must equivocate for the attack to succeed. KTCA and KTACA
detect the equivocation and generate a Proof of Misbehavior (PoM).
For client-targeted attacks, (b) and (d), if A equivocates, KTCA and

3030

KTACA detect the equivocation and generate a Proof of Misbehav-
ior (PoM). If A does not equivocate, then KTCA and KTACA detect
the specific key that is fake but provide no PoM. AKM detects the
specific key that is fake for all of the attacks but provides no PoM.

For the client-targeted impersonation attack in AKM and KT-
CA/KTACA (non-equivocation), only the targeted client detects
the attack. The client must manually alert its contacts of the attack.
Future work could extend the design to notify the other victim
clients through out-of-band channels automatically.

In KTCA, all clients receive a PoM when A equivocates, but in
KTACA, only the victim clients receive a PoM. Future work could
explore forwarding the PoM over out-of-band channels to notify
additional clients of the attack.

Since some attacks are detectable without any PoM, a dishonest
user could falsely accuse a server of a fake key attack. Likewise, an
adversary can respond to an accusation by accusing the client of
making a false report. There is no way for a third party to determine
which claim is correct.

Key monitoring: (1) Clients monitor their keys during each
epoch. In KTCA and KTACA, clients retrieve an STR and Pol from
the server. In AKM, clients retrieve their key via the anonymous
network. (2) Clients also monitor their contacts’ keys for both
new connections and key updates. In KTCA and KTACA, clients
receive an STR and Pol from the server. In AKM, clients retrieve
their contacts key for m epochs via the anonymous network. (3)
In KTCA and KTACA, clients audit the server for equivocation
during each epoch. In KTCA, the clients compare STRs with all
their contacts to confirm that everyone receives the same STR. In
KTACA, clients retrieve an STR anonymously and verify that the
server maintains a linear history of STRs.

Server network load: The defenses differ in the new demands
placed on the server. Assuming N total clients, the server load
is as follows. For KTCA, the server handles N self-monitoring
requests each epoch. The server maintains a key transparency log
and includes an STR and Pol in the response for each key lookup. For
AKM, the server handles N anonymous self-monitoring requests
for each epoch. After each key update for a client’s contact, the
server handles monitoring requests for that contact’s key for m
epochs. For KTACA, the server handles N self-monitoring requests
per epoch, similar to KTCA and N anonymous STR monitoring
requests per epoch. The server maintains a key transparency log
and includes an STR and Pol in the response for each key lookup.

Deployment: Most of the defenses require changes to existing
servers. For KTCA, the server needs to support a key transparency

Automatic Detection of Fake Key Attacks in Secure Messaging

log and distribute STRs and Pols to clients that make a key moni-
toring request for their key or a contact’s key. For AKM, the server
needs to support anonymous key requests, or the clients need to use
random identifiers. In addition, clients need to use an anonymous
communication network when making requests. With KTACA the
server needs to create and maintain a key transparency log and
support anonymous STR requests (e.g., with Tor). Anonymous STR
retrieval is only done once per epoch per client to retrieve 800 bytes
(736 bytes for key monitoring + 64 bytes STR). KTACA can spread
out the anonymous requests over the epoch duration to reduce the
load on TOR if there are many clients in the system.

Deployment can be incremental. For KTCA, the adopting clients
need to form a connected graph to receive protection. For AKM
and KTACA, any two clients in contact with each other can opt-in
to the defense to detect fake key attacks on their connection.

Group chat: For group chat, messaging applications use two
different methods: (1) Treat each group message as a direct message
to the receivers (Signal app), or (2) When sending a message to a
group for the first time, generate a Sender Key and distribute it to
each group member’s device using the pairwise encrypted sessions
(WhatsApp). In both cases, the group chat will be secure if a client
can verify the identity public key of the groups’ contacts and have
a secure pairwise connection with each group member.

Private information retrieval In AKM, clients create a distinct,
single-key AKR for each key they monitor to prevent deanonymiza-
tion through analyzing bulk requests (see final paragraph, Sec-
tion 6.2). An alternate design to prevent deanonymization while
allowing bulk requests (multiple key requests in one AKR) is to use
private information retrieval (PIR) [4]. PIR allows a user to retrieve
an item from a server in possession of a database without revealing
which item is retrieved. Creating an AKR using PIR allows clients to
send bulk requests in one AKR without compromising anonymity.
PIR hides which key(s) are requested, and bulk queries are not visi-
ble for the server to deanonymize the requester. We did not include
PIR in our design because of its high overhead. However, PIR can
be used in the future if it becomes more efficient than creating a
new AKR for each key request.

Managing the signing key across multiple servers for KTCA
and KTACA For scalability, popular messaging applications use
load balancing to distribute high-volume traffic across multiple
servers. For KTCA and KTACA, the servers must maintain a consis-
tent copy of the STR across all the servers to prevent a false positive
for an equivocation attack. Since the system generates an STR only
once per epoch, one approach is to dedicate one secure server to
store the private key, sign the STR every epoch, and distribute the
signed STR to all the servers. DKIM requires mail servers to sign
individual messages, which is much more effort than signing an
STR once per epoch, so we feel this is feasible for current systems.
Even though clients will detect a fake key attack if the private key
is compromised, the potential harm to the provider’s reputation
motivates the provider to secure their private key.

In KTCA and KTACA, the server has to ensure authentication
between the client and server to prevent MitM from flooding the
clients with fake STRs to harm the server’s reputation. Currently,
messaging applications use certificate pinning to hardcode a list of
keys for authorized servers.

3031

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

Notifications: Even with automated detection, a significant
usability issue arises regarding what to do once an attack is detected.
Some potential future work directions include:

(1) Some defenses detect a fake key attack with a proof of misbehav-
ior but do not indicate the specific victims of the attack. What
could be done? Perhaps all/some users should be notified, but
it is an open problem about how to notify effectively. Another
option is not to notify individual users but relay the proof to
security experts or privacy advocates. If an attack were ever
detected, it would make front-page headlines in the press that a
major service provider had equivocated. It could result in a loss
of reputation. Users could rely on expert advice given outside
the app on how to respond.
Some defenses detect an attack on specific users without gener-
ating a proof to convince others. How to notify the victim and
what to recommend is another open problem. One might mimic
what the current apps do when the manual key ceremony fails
and compare this to other alternatives. Also, users could be
encouraged not to share sensitive information with a contact.
Organizations using secure messaging (e.g., political campaigns,
news organizations) might prefer to alert security admins in-
stead of users when an attack is detected.
(4) Provide UI indicators that a connection is secure after moni-
toring a contact for sufficient time instead of educating users
about fake key attacks.

@

3

~

Recommendation: We believe KTACA provides the best combi-
nation of features of all three defenses. It has the strongest security
properties, provides a PoM where possible, and has a low detection
delay. One hurdle to deployment is that KTACA requires an anony-
mous network, and some countries block Tor, but these countries
are likely to also block secure messaging apps. KTCA does not
rely on an anonymous network, but is vulnerable to a graph parti-
tioning attack. Where deployment costs are a concern, AKM may
be preferred because it only requires changing clients to support
anonymous requests. However, AKM does not provide PoM and
imposes significantly higher detection delay.

11 CONCLUSION

We designed three automated key verification defenses to detect
fake key attacks in secure messaging applications. The defenses
enable fake key attacks to be automatically detected, which relieves
users from manually comparing key fingerprints to detect attacks.
Since prior studies show that most users do not manually verify
connections, these defenses can fill this void. In addition, the de-
fenses may deter A from launching fake key attacks. However,
vulnerable users can still perform manual key verification if they
do not trust the automated system or want increased assurance.

ACKNOWLEDGMENTS

We thank the reviewers and our shepherd, Lucjan Hanzlik, for their
helpful feedback on the final version of the paper. This work was
partially supported by the National Science Foundation under Grant
No. CNS-1816929 and by the Comcast Corporation. The opinions
expressed in the paper are those of the researchers and not of their
universities or funding sources.

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

REFERENCES

[1] Julija A. [n.d.]. WhatsApp Statistics: Revenue, Usage, and History. https://

[2

—

[10]

[11]

[12
[13]

[14

fortunly.com/statistics/whatsapp-statistics/.

Melissa Chase, Apoorvaa Deshpande, Esha Ghosh, and Harjasleen Malvai. 2019.
SEEMless: Secure End-to-End Encrypted Messaging with less Trust. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. ACM.

Melissa Chase, Trevor Perrin, and Greg Zaverucha. 2020. The signal private group
system and anonymous credentials supporting efficient verifiable encryption. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 1445-1459.

Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private
information retrieval. In Proceedings of IEEE 36th Annual Foundations of Computer
Science. IEEE, 41-50.

Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Dou-
glas Stebila. 2017. A formal security analysis of the Signal messaging protocol.
In European Symposium on Security and Privacy (EuroS&P). IEEE.

Claudia Diaz, Harry Halpin, and Aggelos Kiayias. 2021. The Nym Network: The
Next Generation of Privacy Infrastructure. White Paper, version 1.0.

Facebook. 2016. Messenger Secret Conversations Technical white paper.

Yossi Gilad and Amir Herzberg. 2018. Plug-and-Play IP Security. Computer
Security—ESORICS 2013 (2018), 255.

Amir Herzberg and Hemi Leibowitz. 2016. Can Johnny Finally Encrypt? Evaluat-
ing E2E-Encryption in Popular IM Applications. In Workshop on Socio-Technical
Aspects in Security and Trust (STAST).

Gregg Keizer. 2011. Hackers spied on 300,000 Iranians using fake Google cer-
tificate. http://www.computerworld.com/article/2510951/cybercrime-hacking/
hackers-spied-on-300-000-iranians-using-fake- google- certificate.html.
Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Felten, and
Michael J Freedman. 2015. CONIKS: Bringing Key Transparency to End Users. In
USENIX Security Symposium.

Microsoft. 2018. Skype Private Conversation Technical white paper.

Ram Sundara Raman, Leonid Evdokimov, Eric Wurstrow,] Alex Halderman, and
Roya Ensafi. 2020. Investigating Large Scale HTTPS Interception in Kazakhstan.
In Proceedings of the ACM Internet Measurement Conference. 125-132.

Quirin Scheitle, Oliver Gasser, Theodor Nolte, Johanna Amann, Lexi Brent, Georg
Carle, Ralph Holz, Thomas C Schmidt, and Matthias Wihlisch. 2018. The rise

Tarun Kumar Yadav, Devashish Gosain, Amir Herzberg, Daniel Zappala, & Kent Seamons

3032

[15

[20

[21]

[22]

of certificate transparency and its implications on the internet ecosystem. In
Proceedings of the Internet Measurement Conference 2018. ACM.

Svenja Schroder, Markus Huber, David Wind, and Christoph Rottermanner. 2016.
When SIGNAL hits the Fan: On the Usability and Security of State-of-the-Art
Secure Mobile Messaging. In First European Workshop on Usable Security (Eu-
roUSEC).

Open Whisper Systems. [n.d.]. Signal Protocol. https://signal.org/docs/.

Tor. [n.d.]. Tor project. https://www.torproject.org/.

Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, Ian Gold-
berg, and Matthew Smith. 2015. SoK: secure messaging. In 2015 IEEE Symposium
on Security and Privacy. IEEE, 232-249.

Lisa Vaas. 2018. 258,000 encrypted IronChat phone messages cracked by po-
lice. https://nakedsecurity.sophos.com/2018/11/09/258000-encrypted-ironchat-
phone-messages-cracked-by-police/.

Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. 2015.
Vuvuzela: Scalable private messaging resistant to traffic analysis. In Proceedings
of the 25th Symposium on Operating Systems Principles. 137-152.

Elham Vaziripour, Devon Howard, Jake Tyler, Mark O’Neill, Justin Wu, Kent
Seamons, and Daniel Zappala. 2019. I Don’t Even Have to Bother Them!: Using
Social Media to Automate the Authentication Ceremony in Secure Messaging. In
Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI).
ACM.

Elham Vaziripour, Justin Wu, Mark O’Neill, Ray Clinton, Jordan Whitehead, Scott
Heidbrink, Kent Seamons, and Daniel Zappala. 2017. Is that you, Alice? A Usability
Study of the Authentication Ceremony of Secure Messaging Applications. In
Symposium on Usable Privacy and Security (SOUPS).

Elham Vaziripour, Justin Wu, Mark O’Neill, Daniel Metro, Josh Cockrell, Timothy
Moffett, Jordan Whitehead, Nick Bonner, Kent Seamons, and Daniel Zappala. 2018.
Action needed! Helping users find and complete the authentication ceremony in
Signal. In Symposium on Usable Privacy and Security (SOUPS).

Rakuten Viber. [n.d.]. Viber Encryption Overview.

WhatsApp. 2017. WhatsApp Encryption Overview Technical white paper.
Wire. 2018. Wire Security White Paper.

Justin Wu, C. Gattrell, Devon Howard, J. Tyler, Elham Vaziripour, Kent Seamons,
and Daniel Zappala. 2019. “Something isn’t secure, but I'm not sure how that
translates into a problem”: Promoting autonomy by designing for understanding
in Signal. In Symposium on Usable Privacy and Security (SOUPS).

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Secure Messaging Applications
	2.2 Verifying Keys

	3 System model
	4 Adversary Model
	4.1 Adversary type and goals
	4.2 Description of Attacks

	5 Key Transparency with Client Auditors (KTCA)
	5.1 Definitions and Assumptions
	5.2 Design
	5.3 Analysis

	6 Anonymous Key Monitoring (AKM)
	6.1 Assumptions
	6.2 Design
	6.3 Analysis

	7 Key Transparency with Anonymous Client Auditors (KTACA)
	7.1 Design
	7.2 Analysis

	8 Short-lived attack monitoring
	9 Proof-of-Concept and Performance
	9.1 Client-side Memory Requirements
	9.2 Client-side Network Traffic

	10 Comparison and Discussion
	11 Conclusion
	Acknowledgments
	References

