
Passwords and Cryptwords
The Final Limits on Lengths

Michael Clark
Brigham Young University

Provo, UT, USA
clark.michael.c@gmail.com

Kent Seamons
Brigham Young University

Provo, UT, USA
seamons@cs.byu.edu

ABSTRACT

Computers get faster every year; brains don’t. Passwords and other

memorized credentials have unique usability advantages over to-

kens and biometrics, so we desire to design secure systems that

maintain lengths that users can memorize. Some passwords are

subject primarily to online attacks, and are simple to defend with

rate limits and lockouts. Others, used to generate encryption keys,

must be secure against offline attacks. We coin the term łcrypt-

wordž to distinguish these from passwords subject primarily to

online attacks.

Authentication passwords do not need to get longer as computers

get faster, if protected by rate limits and lockouts. Using password

key derivation functions (pwKDFs) Ð a class of preexisting crypto-

graphic algorithms Ð we show that cryptwords can also remain the

same length and maintain their security strength despite advances

in computation. We achieve this by regularly updating the pwKDF

parameters and regenerating the derived key from the cryptword.

In cases where it is not possible to meaningfully regenerate the

derived key, such as archival data or public verifiers, cryptword

lengths should be chosen to last the lifetime of the data.

We provide simple equations that end users and system admin-

istrators can use to determine minimal assigned password and

cryptword lengths based on personal threat models. We also show

how to use the capabilities of cloud computing providers to esti-

mate attacker costs. These same equations give a timeframe for

cryptword and secret rotation once the encrypted data leaks. Be-

cause these equations do not rely on the current date or current

hardware capabilities, they show that if regularly used, password

and cryptword lengths can remain constant despite improvements

in hardware.

CCS CONCEPTS

· Security and privacy→Authentication;Usability in security

and privacy; Key management.

KEYWORDS

passwords, cryptwords, authentication

ACM Reference Format:

Michael Clark and Kent Seamons. 2022. Passwords and Cryptwords: The

Final Limits on Lengths. In New Security Paradigms Workshop (NSPW ’22),

NSPW ’22, October 24ś27, 2022, North Conway, NH, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in New Security
Paradigms Workshop (NSPW ’22), October 24ś27, 2022, North Conway, NH, USA, https:
//doi.org/10.1145/3584318.3584324.

October 24ś27, 2022, North Conway, NH, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3584318.3584324

1 INTRODUCTION

There are two kinds of passwords Ð those that secure against online

attacks and are suitable for authentication, and those that secure

against offline attacks and are suitable for encrypting data [29]. For

this second kind we coin the term cryptword (see Section 6.2) to

distinguish them from passwords that enable you to authenticate

to another party (łpassž). Figure 1 highlights some key differences

in purpose, attack types, and sufficient entropy between authenti-

cation password and cryptwords.

Passwords

Authentication

Passwords
Cryptwords

Authentication

Passwords

Cryptwords

Purpose Authentication Encryption

Attacks Online Offline

Entropy 13ś47 bits Typically > 48 bits

Figure 1: Two Kinds of Passwords

Users often pick their own passwords via an internal process.

An assigned password is any password the user accepts which they

did not choose. A software system or organization may assign a

password to a user or a user may generate a random password

and accept it. While there are examples of non-random assigned

passwords (i.e., some cases of password sharing in an organiza-

tion), our focus is on the security properties of randomly generated

passwords. As such, in this paper we treat assigned passwords as

synonymous with randomly generated passwords.

To provide security guarantees, both authentication passwords

and cryptwords should be generated randomly with equal proba-

bility from a pool of possible passwords. When they are, the best

chance of a successful guess is the inverse of the number of pos-

sible passwords. The Shannon entropy of a randomly generated

password measures the guessability, and throughout this paper we

will refer to bits (of Shannon entropy) as a measure of security.

When we use the term łpasswordž in this paper, we also refer

more generally to passphrases, PINs, and similar keyboard-entered

łsomething you knowž tokens. We don’t address user-chosen pass-

words, which follow a Zipf’s law distribution [64].

NSPW ’22, October 24ś27, 2022, North Conway, NH, USA Michael Clark and Kent Seamons

A cryptword is any password that is used to generate a crypto-

graphic key. Cryptwords should1 be randomly generated as dis-

cussed in the preceding paragraph. People use cryptwords in at

least the following settings:

• Data at rest

ś Full disk encryption

ś File encryption, like password managers, zip files, or SSH

keys stored on disk

• Data in use: Shared verifier

ś Cryptocurrency łBrain Walletžs, which generate all wallet

encryption keys from a user-entered secret

ś Stateless Password Managers (see Section 6.7)

• Data in motion: Communicating cryptographic keys2

ś Wi-Fi passwords, specifically WPA-PSK and WPA2-PSK3

In effect, cryptwords turn łsomething you havež (an encryp-

tion key) into łsomething you knowž (the cryptword). Cryptwords

enable key portability with nothing to carry, and as an alternate

means of secure key management potentially remove the need for

a Hardware Security Module (HSM).

Attackers commonly use computers to generate numerous pass-

word guesses and to check if those guesses are correct. For an online

attack, an attacker must check their guess by communicating it to

another party. Defenders who receive these guesses can use rate

limiting and lockouts to guard against online attacks [36].

In an offline attack, the attacker’s computer can check the pass-

word without communicating with any other party. Offline attacks

are typically used against password databases where the passwords

have been replaced by password verifiers (see Section 2.2.1). When

attacking cryptwords, the attacker (1) generates guesses, (2) con-

verts these into trial encryption keys, and (3) attempts decrypt-

ing secret information serving as a verifier. Successful decryption

means the cryptword guess was correct. A difference from attack-

ing password verifiers is that the encrypted data serves as a verifier

instead. These are known ciphertext attacks, since the attacker only

has access to the encrypted data.

1.1 The Problem

Computers get faster every year; brains don’t. In order to resist on-

line and offline attacks, passwords and cryptwords must get longer.

As a result, usability decreases while security remains constant.

Eventually, minimum password lengths will inevitably grow be-

yond the point the average person is wiling to tolerate. When this

happens, the notion of passwords and comparable łsomething you

knowž authentication will expire.

Computers used defensively are the solution. Defending comput-

ers can proactively perform extra mandatory work when creating

the password hash or encrypting using a cryptword. Absent crypt-

analytic attacks, attacker computers will have to perform the same

amount of work. It is known [53] that, if the password hash is

regularly updated until it is leaked, the attacker has no inherent

1łThis word . . . mean[s] that there may exist valid reasons in particular circumstances
to ignore a particular item, but the full implications must be understood and carefully
weighed before choosing a different course.ž [20]
2We recommend using Password Authenticated Key Exchange (PAKE) instead of
communicating a key between humans using cryptwords.
3Superseded by WPA3-SAE, which uses PAKE

advantage over the defender; security remains constant for a given

security/usability tradeoff.

Our criteria for usable randomly generated passwords are the

following. They should:

• be kept short, to ease entering, memorization, and verbal

and written communication

• be easy to enter on anticipated devices

• not require frequent changes, to ease memorization

• resist guessing attacks, up to a level of security users are

comfortable with

Our research agenda addresses the following issues:

(1) How can the lengths of authentication passwords and

cryptwords remain constant despite computational ad-

vances? If authentication passwords and cryptwords must

get longer, they will eventually exceed usable lengths, and

memorability research will expire. Conversely, practical up-

per limits support research, such as shown by Florêncio

et al. [29]. Upper limits for offline attack resistance should

similarly benefit the research community and end users. As

łsomething you knowž tokens have unique advantages [18,

58], it is important to preserve their usability in encryption.

(2) Do cryptwords need to be treated differently than au-

thentication passwords? If so, how and why? If crypt-

words are different from authentication passwords, it is im-

portant to know how to treat them differently, and possibly

use a different term to refer to them. Presently cryptwords

are simply called passwords, conflating security properties

of both. In general cryptwords must be significantly longer

than authentication passwords, but the same defenses ap-

ply. We find distinctive uses of cryptwords in protocols and

to protect data at rest, though these may not be presented

clearly to end users. Because protocols provide attackers

with cryptword verifiers, these must be treated differently.

(3) How often do cryptwords need to change, and why?

Where it is possible to perform key rotation, cryptwords may

be sized to the key rotation window and kept strong indefi-

nitely. In cases where a verifier leaks, the cryptword itself

must be rotated, and any secrets protected by the cryptword

should be changed as well if possible.

(4) How can we determine appropriate lengths for authen-

tication passwords and cryptwords? We provide simple

equations to calculate required randompassword bit strength

based on personalized tradeoffs between security and usabil-

ity. We also provide some general use suggested lengths for

authentication passwords and cryptwords. Where it is not

possible to re-encrypt or replace sensitive information, crypt-

word sizes must be chosen based on prior work regarding

encryption key lengths [40].

We don’t address attacks such as phishing, credential stuffing,

observation attacks, client or server compromise, rubber-hose crypt-

analysis, or attacks specific to non-password łsomething you knowž

authentication. Password managers are a solution to the credential

stuffing problem and can sometimes help with phishing.

If the suggestions in this paper are adopted, we expect to see

simpler password advice for users, focused around online and cre-

dential stuffing attacks, leaving offline attacks to cryptwords. Users

Passwords and Cryptwords NSPW ’22, October 24ś27, 2022, North Conway, NH, USA

will be able to memorize a single strong cryptword to protect their

password manager, and keep that cryptword until their password

manager database leaks. If these suggestions are not adopted, crypt-

words will continue to get longer as shown in Figure 2, until they

are no longer feasible for human use. For example, the creator of

Diceware [55] judged a 5 word diceware passphrase to be adequate

in 1995, since 2014 recommends a 6 word diceware passphrase to

attain the same level of security [54].

1990 2000 2010 2020 2030 2040 2050
0

1

2

3

4

5

6

7

8

9

10

1982

Year

W
o
rd
s

Diceware Words

Figure 2: Minimum diceware cryptword lengths derived from

Lenstra and Verhuel’s [40] equations

1.2 Why Random Passwords?

We accept Kerckhoffs’s principle that łthe enemy knows the sys-

temž. An attacker’s best strategy against random selection is parallel

randomized enumeration [24], finding a random password on aver-

age after enumerating half the search space. Any departure from

random generation gives the attacker an advantage Ð they can

start enumerating from passwords with a higher chance of being

generated.

For small pool sizes such as 4-digit PINs (104 possibilities) or

other scenarios where user-chosen passwords predominate, an av-

erage attacker’s best strategy may remain a Zipf’s law distribution.

In these cases it would be suitable to add a blocklist to the random

password generator [45]. In this manner we defend against two

kinds of attackers; one where we know their system, and the other

where they know ours. While this slightly reduces security against

an attacker which knows our system by reducing the password

space, it may substantially increase security against a Zipf’s law

attacker.

2 BACKGROUND AND RELATED WORK

There has been extensive research on usable passwords. We high-

light here a few which are particularly pertinent.

Provos and Mazières anticipated this work in 1999 in their semi-

nal paper on bcrypt [53]. Similarly, Bonneau has suggested [16, 18]

that by using a pwKDF, passwords can have constant protection

against attacks at a constant real-world cost. Finally, Polášek gives

an equation [52] to model attacker costs on random passwords

protected by Argon2.

2.1 Motivation

2.1.1 Usability. Shay et al. found random passwords of comparable

strength in various forms to be roughly equally memorable [60].

However, random passphrases took longer to enter and resulted in

more typos than random passwords of equivalent strength.

Greene et al. found random passwords with multiple character

classes harder to type on mobile phones [31]. The paper suggests

adapting password requirements to the device used. An alternative

may be to use strong random passwords with a minimal length and

number of character classes for all devices.

2.1.2 Random Password Memorability. Schneier suggests gener-

ating secure passwords, then writing them down and carrying

them with you in your wallet until memorized [59]. This provides

a łsomething you havež recovery method for the łsomething you

knowž token, and provides for it the same physical protections

given to payment cards, which are also łsomething you havež to-

kens. This recovery process naturally strengthens memorability,

and the łsomething you havež recovery token may be safely dis-

posed of once the random password is learned.

Brumen found [22] that when preventing within-subjects par-

ticipants from writing down their random passwords, one week

later only 4 out of 40 remembered a 63-bit random Psychopass

password, and none remembered their 50-bit random password or

48-bit random passphrase, after 3 attempts. Each participant was

given all three random passwords, and retyped the password and

passphrase for 2 minutes each, and the Psychopass password for 5

minutes.

Leonhard and Venkatakrishnan compare [41] Diceware (38.8

bits), alphanumeric (35.7 bits), and pronounceable (30.8 bits) ran-

dom passwords in a between subjects study. Two weeks later, 2 of 7

Diceware participants and of 1 of 6 of both alphanumeric and pro-

nounceable password participants recalled their random password

successfully.

Yan et al. [67] found that users assigned an 8 character password

of letters and numbers (⪅ 48 bits) found it harder to remember

than user-chosen passwords, and carried a password reminder for

a mean of 4.8 weeks. The paper also reports that many still carried

the written random password 4 months later when surveyed.

However, three recent research papers have shown [18, 27, 34]

that participants can successfully memorize 56-bit random pass-

words. Each paper focused on helping the user memorize the ran-

dom password, instead of comparing different representations. Fu-

ture research may build on these findings, showing more efficient

memory techniques, or different representations using similar tech-

niques with useful properties and similar or superior memorability.

Notably, users can memorize long random secrets. One author

has used Schneier’s technique [59] to memorize a variety of 5 to 8

word Diceware passphrases.

NSPW ’22, October 24ś27, 2022, North Conway, NH, USA Michael Clark and Kent Seamons

2.2 Methods

2.2.1 Password Key Derivation Functions. A Key Derivation Func-

tion (KDF) converts a secret input into one or more cryptographic

keys. Though inadequate for passwords, a simple KDF is to hash the

input with SHA256 and truncate the output to the desired length.

A secure hashing algorithm has the effect of distributing the true

entropy of the passphrase throughout the bits of the hash. How-

ever, should the true entropy of the passphrase exceed that of the

truncated hash, it is simpler for an attacker to guess the generated

hash. To illustrate, a hash truncated to a single bit would require

an attacker to guess only two values, instead of guessing the hash

input.

Password KeyDerivation Functions (pwKDFs) have an adjustable

amount of effort to compute the key from the password. This work

is balanced between the needs of user-serving devices processing

many login requests, and the increased cost to an attacker to test

password guesses. All pwKDFs also require a saltÐa random value

long enough to make precomputation attacks infeasible, stored

alongside the derived key. The extra effort per guess multiplies

an attacker’s costs, meaning the attacker has to perform the same

amount of computation as though guessing an input from a larger

pool. This is sometimes referred to as łkey stretchingž. Popular

pwKDFs include argon2, scrypt, bcrypt, and pbkdf2.

In 2015, argon2 [13] won the Password Hashing Competition [7].

argon2 allows an adjustable work factor which includes access to

substantial amounts of RAM, multiple cores, as well as computation

effort. This RAM requirement is intended to make custom hardware

for guessing passwords no cheaper than buying server time. argon2

also has a mode resistant against side channel attacks.

Though there are current attacks against various argon2 algo-

rithms [5], these do not amount to the algorithm being broken. A

fivefold attacker speedup can be mitigated by adding an extra 2.3

bits to the minimum size of a generated password.

2.2.2 Password Guess Resistance. There are two major classes of

passwords as shown by Florêncio, Herley, and van Oorschot Ð those

that can defend against online attacks and those that can defend

against offline attacks [29]. Their work is a key source of inspiration

for our research. While user chosen passwords have a Zipf’s law

distribution [64], our focus is on keyspace guess resistance for

random cryptwords.

Wheeler provides zxcvbn [65, 66], a system which estimates:

• 100 guesses per hour for a throttled online attack

• 10 guesses per second for an unthrottled online attack

• 10k (104) guesses per second for an offline attack against a

pwKDF encoded password

• 10B (1010) guesses per second for an offline attack against a

fast hashing function

However, these numbers are not peer reviewed and may be

optimistic [25]; they might underestimate an attacker’s capabilities.

2.2.3 Computational Limits. It is possible to establish a minimal

length for cryptwords based on fundamental limits of computation,

but this produces relatively high limits, on the order of 256 bits.

Although such cryptwords will be strong indefinitely, they are long

enough to make them infeasible to remember, communicate, and

enter. For example, such a cryptword may be represented as 20

words from the Diceware [55] wordlist.

A simple approach is to use practical limits on computation im-

posed by physics [43]. A kilogram of perfect computation material

filling a volume of one liter can compute roughly 5.4 × 1050 logi-

cal operations per second. The planet Earth has a mass of around

5.9 × 1024 kg [63]. If we assume a password can be tested with

64 logical operations (a single round of MD5, for example), and

a user wishes their cryptword to be unbreakable until an aver-

age of 100 years of computation on such a device, the cryptword

would need to be generated randomly with equal probability from

log2

(

5.4×1050×5.9×1024×2×100×365.2425×24×3600
64

)

≈ 277.4 bits.

Using the diceware system, such a random passphrase would

consist of 22 words, such as łembargo flint canon requisite pointed

bargraph unicycle likely unsaved jasmine selective chloride unfair

unsorted graduate pedicure buddhist squishier nail skirmish gan-

grene deflectorž. An alphanumeric random password would consist

of 47 characters, such as:

dqEDJkJjXYFoXYRQRR9dDjvXHnrUqRjmiqXgipK2yh974RU

2.2.4 Cryptography Key Lengths. We can apply lessons from mini-

mal encryption key strength estimation to the cryptwords used to

produce those keys. Cryptwords, like the cryptography keys they

generate, are independently and identically distributed.

Giry maintains a site [30] which lists related work, and calculates

encryption key strength based on the related work.

Blaze et al. show [15] in 1996 that every year we should add 2
3

of a bit to key strength. In 2001 Lenstra and Verheul gave a better

bound [40], adding 23
30 bits every year. This is the most recent paper

which estimates key lengths as years pass: subsequent related works

justify their recommendations by citing this paper.

These estimates are partially derived from Moore’s Law (Lenstra

and Verheul also add budget inflation), and it appears to be slowing

down [39]. Our paper sidesteps Moore’s law entirely by offloading

estimating the future to the user of our algorithm; ideally needing

only to estimate at most a few years into the future at a time.

3 AUTHENTICATION PASSWORDS

Passwords used to authenticate are subject to both online and of-

fline attacks, as covered in Section 1. Passwords intending to defend

against offline attacks must be much stronger, and hence less us-

able [29].

3.1 Online Attack Resistance

Password authentication involves two parties Ð the authenticating

party that presents their token, and the relying party that com-

pares the token against expected values. Because there are two

parties, the relying party can rate limit authentication attempts

or lockout accounts. Both reduce opportunities for an attacker to

guess authentication credentials, and are completely independent

of technology advances, as they are determined by policy. In such

cases it is trivial to determine minimal random password entropy

for a given acceptable risk level, such as in the case of bank card

PINs.

Many of the topwebsites do not protect accounts via rate limiting

or lockouts [44]. It is reasonable to model these parties as less

Passwords and Cryptwords NSPW ’22, October 24ś27, 2022, North Conway, NH, USA

concerned or aware about security more generally, and characterize

them as negligent systems. Attackers may conduct guessing attacks

against negligent systems bounded only by computational resources

and the speed of the communications channel between the attacker

and the negligent system. However, as long as the negligent system

uses a method of comparing the credential which has a fixed cost

despite hardware increases, there is an effective rate limit.

If we model the daily odds of detecting an attack of from 10ś

1000 guesses per second are constant and not less than 1
100 per

day, an attack will be detected with 1 −
(

1 − 1
100

)365.2425
≈ 97.5%

probability after 1 year. Some ways an administrator may detect

an attack include user reports of sluggishness, occasional sporadic

checking of log files, and noting unusual traffic or CPU activity

levels in management dashboards. Given the odds of detection are

constant, even if an attacker slows down 100×, they will be detected

with equal probability, and would take 100 years to guess the same

number of passwords. At 1000 guesses per second, a login server

would need to spend a substantial amount of computation time

running the pwKDF for attacker guesses; we assume that above

1000 guesses the login server will either be so noticeably hobbled

that the odds of detection increase, or it is simply unable to process

more requests due to the effective rate limits of the pwKDF.

We can estimate adequate bit strength for random authentication

passwords with just two parameters. We’ll let 𝑎 represent the total

number of guesses we will allow the attacker, and 𝑟 denote the

acceptable risk of a successful guess. 𝑏 represents the minimum

size of the pool in bits from which the random password must be

generated to provide at least the desired security level.

𝑏 = log2

(𝑎

𝑟

)

(1)

At 1000 guesses per second, an attacker can guess up to 𝑎 =

365.2425 × 24 × 3600 × 1000 ≈ 31,556,952,000 passwords in a year.

To have a similar risk factor as common 4-digit bank card PINs of

𝑟 = 3
104

= 0.0003, online guess resistant passwords even at negligent

systems should never need be longer than log2

(

31,556,952,000
0.0003

)

≈

46.6 bits of entropy. This is higher than other numbers in the litera-

ture [29, 65, 66], which use 106 ≈ 19.9 bits [29].

Table 1 provides some varied examples of random authentication

passwords at different strengths. It is important to note that secu-

rity properties of random passwords are related to the underlying

entropy, and not to the character classes represented or the length

of the random password.

Endholm’s law [23] predicts bandwidth and data rate doubling

every 18 months, as with Moore’s law. Despite this, if defenders

use a pwKDF tuned to their modern hardware, the system remains

a constant bottleneck for attacks, and the load on the system from

attacker guessing should eventually provoke investigation. Ideally,

administrators will use at least rate limiting to protect user accounts,

allowing their users to use shorter random passwords to achieve

the same level of security.

3.2 Offline Attacks

Offline attacks against authentication passwords require an attacker

to have privileged access to the authentication verifier database.

As this database should be well protected, it is possible that an

attacker with this access may have access to read passwords in

plaintext as they enter the system (solvable via aPAKEs such as

OPAQUE [38]), or to inject JavaScript into an authentication web-

page with the same trusted privileges as the site itself to intercept

passwords as they are entered (not solvable by aPAKEs at the same

privilege level). Additionally, not all passwords are stored securely

by all systems, and the authentication verifier database may store

passwords in clear text or with reversible encryption. We discuss

threat models for offline attacks against authentication passwords

further in Section 6.1.

Because passwords are subject to various attacks which can re-

veal them other than offline guessing, offline guessing resistance is

a secondary consideration. If a defender believes they can detect a

password database breach within 𝑘 days from a passive attacker, it

would be nice if the passwords are stored securely and are strong

enough to resist guessing attacks for at least 𝑘 +𝑤 days, where𝑤

is the time allocated for notified users to change their passwords.

Passwords at rest should be protected by a pwKDF, tuned to intro-

duce a reasonable load on the authentication server(s). We provide

equations in Section 4.3 for estimating minimal strengths to defend

against offline attacks. These can also be used to estimate time and

resources to crack random authentication passwords at rest.

Additionally, for an attacker to benefit from an attack, there

will be some evidence of the attack [9]. This evidence can protect

a body of users in aggregate, even if the defender optimistically

overestimates 𝑘 , as easier targets in the population serve to de-

tect attacks. We discuss the likelihood of these attacks more in

Section 6.1, finding password-related losses unlikely, as only un-

common threat models need the password in addition to whatever

they could access when acquiring the password verifier.

3.3 Authentication Passwords Conclusions

Online attacks are subject to policy, so authentication passwords

do not need to get longer each year. Authentication passwords are

also subject to offline attacks, but the pwKDF parameters can and

should be tuned to maintain constant strength despite hardware

advances [53].

The information in this section is not new, but we discuss it

in the context of cryptwords to frame our contribution, and to

demonstrate that like cryptwords, authentication passwords need

not get longer.

4 CRYPTWORDS

Cryptwords are passwords used to generate encryption keys; to

encrypt. They should be randomly generated (see Section 1), and

we analyze only randomly generated cryptwords in this section.

Encryption is fundamentally a different environment than au-

thentication. Once an attacker has access to the encrypted informa-

tion, they cannot be rate limited or locked out. Encryption can be

used to protect secrets in a public environment, or the encrypted

information can be kept private. Recovery requires proactively stor-

ing copies of the encryption key in other locations; these should

also be kept safe. As proxies for encryption keys, cryptwords are

subject to the same properties.

We focus on cases where the encrypted information is kept pri-

vate. This includes disk encryption and file encryption where the

NSPW ’22, October 24ś27, 2022, North Conway, NH, USA Michael Clark and Kent Seamons

Table 1: Various example random authentication passwords, bit strengths, and generation rules

Random Password Bits Notes

0154 13.3 4 digits, for a bank card with 3 guess lockout

}x* 19.7 3 chars from all 95 printable ASCII

vg9u 19.8 4 lowercase alphanumeric, without any of łl1IO0ž, very close to [29]

454537 19.9 6 digit PIN, the exact entropy from [29]

glad bamboo 22.0 2 words from BIP-39 [49]

kfqaa 23.5 5 lowercase letters, easy to enter on mobile devices [31]

ceremony geranium 25.9 2 diceware words [55]

>v9K 26.3 4 chars from all 95 printable ASCII

kiwi credit library 33.0 3 words from BIP-39 [49]

839hxfm 34.7 7 lowercase alphanumeric without łl1IO0ž

kJs59i 35.7 6 upper and lowercase alphanumeric

dyaaufct 37.6 8 lowercase letters, easy to enter on mobile devices [31]

sculpture blurb unchanged 38.8 3 diceware words [55]

g8MeJ8bD 47.6 8 upper and lowercase alphanumeric

files are kept on the computer or shared only with trusted com-

puters, which keep the encrypted files in sync. Software examples

include offline password managers, and SSH keys stored on disk.

We characterize these as data-at-rest encryption.

Encryption is also useful to protect and authenticate in protocols.

In these cases, a verifier is inherently available as part of normal

operations. Cryptwords can also be used in these cases to produce

encryption keys, such as with Wi-Fi passwords (WPA-PSK and

WPA2-PSK), and cryptocurrency Brain Wallets.

Online password managers may have the database password

double as an account password, and only send the database to users

with a valid password. This provides effectively the same level of

security as an offline password manager if the provider’s servers

are all no less trusted than user’s computers.

4.1 Constant Security Despite Evolving Threats

In cases where the encrypted data 𝐸 containing secrets 𝑆 is kept

private, such that an attacker cannot read it and all copies can be

updated, we can update our security level by updating the pwKDF

parameters 𝑃𝑛𝑒𝑤 and generating a new encryption key 𝐾𝑛𝑒𝑤 when

the user enters their cryptword 𝐶 . We use the old pwKDF parame-

ters 𝑃𝑜𝑙𝑑 to generate the old encryption key𝐾𝑜𝑙𝑑 , decrypt the secrets

𝑆 with 𝐾𝑜𝑙𝑑 , and then encrypt them freshly with the new key 𝐾𝑛𝑒𝑤 .

Note that 𝐾𝑛𝑒𝑤 = 𝑝𝑤𝐾𝐷𝐹 (𝐾𝑛𝑒𝑤 ,𝐶) and 𝐾𝑜𝑙𝑑 = 𝑝𝑤𝐾𝐷𝐹 (𝐾𝑜𝑙𝑑 ,𝐶).

One simple optimization is to avoid re-encrypting all of 𝑆 , which

can be slow in the case of full disk encryption or other large secrets,

by generating a data encryption key𝐷𝐸𝐾 strong enough to itself be

unguessable, use 𝐷𝐸𝐾 to encrypt 𝑆 , and then encrypt 𝐷𝐸𝐾 with 𝐾 .

When pwKDF parameters are updated to 𝑃𝑛𝑒𝑤 , only the𝐷𝐸𝐾 needs

to be decrypted with 𝐾𝑜𝑙𝑑 and re-encrypted with 𝐾𝑛𝑒𝑤 instead of

re-encrypting all of 𝑆 . This makes updating pwKDF parameters 𝑃 a

constant speed operation, regardless of the size of 𝑆 .

Cryptwords can be held at a constant length despite hardware

improvements by regularly updating the pwKDF parameters 𝑃𝑛𝑒𝑤
and re-encrypting using𝐾𝑛𝑒𝑤 until such time as the encrypted data

𝐸 leaks to an attacker. The pwKDF algorithm can be replaced in

like manner.

1990 2000 2010 2020 2030 2040 2050
0

1

2

3

4

5

6

7

8

9

10

1982

Year

W
o
rd
s

Without Entropy Stretching

Entropy Stretching

Figure 3: Diceware words with and without entropy stretch-

ing

If it is not possible to keep the encrypted data 𝐸 from attackers,

the pwKDF parameters 𝑃 cannot be updated to derive a new encryp-

tion key 𝐾𝑛𝑒𝑤 to encrypt the secrets 𝑆 . In cases where 𝐸 cannot be

kept private, the user should generate a cryptword𝐶 strong enough

to protect the secrets 𝑆 for as long as they need to be protected.

In cases where 𝑆 itself can be replaced, such as an SSH key or a

cryptocurrency wallet address, 𝐶 can be sized to the replacement

window. However, when generating a new secret 𝑆2, the user will

also need to generate a new cryptword 𝐶2, as the encrypted data

𝐸1 can typically be used as a verifier to guess 𝐶1.

Figure 3 shows the impact of entropy stretching on diceware

passphrases, and Figure 4 shows how cryptwords can be held at

constant length despite replacing an encryption key of increasing

strength. Notably, Figure 4 shows that the key strength minus the

extra work is the cryptword length.

Passwords and Cryptwords NSPW ’22, October 24ś27, 2022, North Conway, NH, USA

1990 2000 2010 2020 2030 2040 2050
0

20

40

60

80

100

120

1982

Key
Stre

ngth

Extr
a W

ork

Cryptword Strength

Year

B
it
St
re
n
g
th

Key Strength Extra Work

Cryptword Strength

Figure 4: Using extra work, cryptwords can have constant

length despite computational advances

4.2 Parameters

Kerckhoffs’s principle states that the attacker knows the system;

generating cryptwords from any distribution other than random

gives the attacker an advantage. With a random distribution, no

attacker guessing strategy can exceed parallel enumeration to en-

compass the whole set, or random guessing to reach some p-value

for success if they cannot afford to enumerate the whole set. See

Section 1.2 for a discussion of Zipf’s law attackers.

4.2.1 Defensive. We model our defensive terms as follows. 𝑡 is the

upper bound users are willing to tolerate for pwKDF processing

time, in seconds. 𝑡 is used directly to derive the pwKDF parameters

on the oldest supported hardware. 𝑟 is the acceptable risk that an

attacker will correctly guess a random password. For randomly

generated 4 digit bank card PINs with a lockout after 3 failed at-

tempts, this is 3
104

= 0.0003. 𝑏 is the minimal number of bits (log2
of the number of possible cryptwords) required to achieve the de-

sired performance. While this is useful as an output parameter

when generating random passwords, it can also be used as an input

when estimating costs or time for an attacker once a verifier for a

generated cryptword has leaked.

4.2.2 Attacker Advantage. We assume the attacker has some form

of computational advantage over the defender. This is natural if the

defender needs to run the pwKDF on a slower processor, such as an

older smartphone or an embedded system, or if the attacker man-

ages to acquire a verifier produced on then-modern hardware at

some point in the past. We call this parameter 𝑔 to represent the gap

in performance the attacker has over the defender, per equivalent

computing unit. This parameter allows us to ignore the current year

in all our equations, as we offload the task of forecasting environ-

ment changes to the user of our equations. It is based on the pwKDF

parameter update frequency, which itself is based on how often

older hardware is to be phased out of support (𝑡 values exceeding

acceptable values). Due to the wide variability of environments in

which this system may be deployed, and the relative advantage of

predicting the future only 2ś3 years in advance, we offload this

to the defender. We discuss more in depth how to estimate this

parameter in Section 5.3.

4.2.3 Attacker Capabilities. We provide two equations to estimate

the attacker’s capabilities. The first is a more traditional łattacker

capabilitiesž equation. It assumes the attacker has a supercomputer

or computing cluster with given capabilities and is willing to devote

it to cracking cryptwords for some given duration. 𝑑 is the upper

limit of the number of days the attacker is expected to be willing to

dedicate their hardware to cryptword guessing. 𝑝 is the parallelism

advantage of the attacker’s hardware over the defender’s. If the

defender is using 4 core parallelism in their pwKDF and expect

the attacker to dedicate 8000 cores to attacking, the attacker has a

parallelism advantage of 8000
4 = 2000. Note that the relative speed

of each core is not considered here; the parameter 𝑔 represents how

much better the attacker’s computers are. In short, 𝑝 is an estimate

of the extra resources the attacker will bring to bear.

4.2.4 Attack Cost. Our second equation is somewhat novel. In 2001,

Lenstra and Verheul [40] use a barebones 450 MHz PC to estimate

attacker costs, recognizing that this may not fully capture the reali-

ties of economies of scale or dedicated hardware. AWS launched

cloud computing services in 2006, Microsoft launched Azure in

2010, and Google launched Compute Engine in 2012. Infrastructure-

as-a-service (IaaS) providers are in a competitive market, and so

prices may reasonably be assumed to somewhat closely reflect the

true costs of running a similar amount of computational capacity,

including some profit margin. In some cases cloud computing costs

may be lower than in-house costs after factoring in both capital and

operating expenses, due to the provider’s economies of scale. Even

in the case of a large entity fully funding a dedicated computing

farm for cryptword guessing, their true costs are likely to be within

an order of magnitude of the cloud computing costs.

So, we estimate an attacker’s cost to break a cryptword with

our second equation. 𝑚 represents the upper limit of money an

attacker will be willing to spend. This should be expressed in the

preferred currency of the largest cloud computing platforms, as

services are likely to be cheaper without an implicit exchange

fee. 𝑐 is the cheapest hourly cost for equivalent cloud computing

hardware, after factoring in bulk discounts, long reservations, more

capable computers, etc. We use the hourly cost as this is commonly

provided by current large providers; as all times are converted to

seconds to cancel out the 𝑡 term, it should be simple to adapt the

equations to other durations.

Parameter Summary.

• 𝑏 is the bitspace from which the cryptword must be gener-

ated

• 𝑟 denotes risk Ð the final chance an attacker will guess

correctly

• 𝑡 is the upper tolerable compute time in seconds to encode

the password on the slowest supported user’s machine, in

seconds

• 𝑔 is the performance improvement of attacker computation

over the slowest supported user device

• 𝑝 is the number of cores the attacker will dedicate

NSPW ’22, October 24ś27, 2022, North Conway, NH, USA Michael Clark and Kent Seamons

• 𝑑 is how many days the attacker dedicates their hardware to

the cryptword. We convert this to seconds via the constant

86400, a simplified approximation of one day.

• 𝑐 is the hourly cost for equivalent hardware. We convert this

to seconds via the constant 3600.

• 𝑚 is the amount of money an attacker may spend attacking

4.3 Equations

Both equations rely on 𝑟 , 𝑡 , and 𝑔, the latter two chosen by the

developer. 𝑔 is based on the maximum age of supported hardware,

Moore’s law, and the chosen pwKDF algorithm. 𝑡 is based on user

patience for security, keeping in mind that users may feel safer with

a processing time on the order of 1 second [57]. 𝑟 determines how

much of the cryptword space an attacker can enumerate within the

provided constraints.

This first equation computes the required guessing space in bits

based on how many parallel guesses an attacker will make over a

given duration, and represents a traditional risk equation. It should

be used to estimate guessing space against an attacker with some

given capability and persistence.

𝑏 = log2

(𝑔

𝑟𝑡
× 𝑝 × 𝑑 × 86400

)

(2)

This second equation computes the required guessing space

based on the cost an attacker might be willing to pay.

𝑏 = log2

(𝑔

𝑟𝑡
×
𝑚

𝑐
× 3600

)

(3)

Both equations can be solved for other variables: 𝑑 for the safe

duration for a given parallel computation capability and𝑚 for the

cost to an attacker are particularly interesting.

𝑑 =

2𝑏𝑟𝑡

𝑔
×

1

86400𝑝
(4)

𝑚 =

2𝑏𝑟𝑡

𝑔
×

𝑐

3600
(5)

4.4 Limitations

The key cannot be regenerated until the user re-enters their pass-

word; thus, the encrypted information must be occasionally ac-

cessed. Infrequent use files will not have keys generated with up-

dated pwKDF parameters, and could be weaker than intended as a

result. Additionally, if not all copies can be updated Ð for example, a

zip file shared with coworkers who have copies on their individual

workstations Ð older copies will similarly not have updated pwKDF

parameters applied.

We leave to the system administrator or developer to choose a

correct value for the update window, and provide a correct scaling

factor 𝑔. If the scaling factor is underestimated, security will not

meet expectations, while if overestimated, the minimum cryptword

length may be less memorable. To help mitigate this we provide a

detailed example of estimating 𝑔 in Section 5.3.

If the cryptword is regularly entered and the pwKDF parame-

ters regularly updated, everything works as expected, and a single

constant length cryptword can be used until a verifier leaks. If the

encrypted information or a verifier is leaked or used publicly, the

same equations can show how long until the information leaks. If

the encrypted secret itself can be rotated, such SSH keys, Brain

Wallets (by transferring funds to a new wallet), or Wi-Fi PSKs, pass-

wordmanager passwords, etc., there is a known safe window during

which they can be used, based on estimates of 𝑔. If the secret cannot

be rotated or must be posted publicly, the secret must be protected

with a cryptword or encryption key of sufficient strength [40] to

last the duration of the life of the secret.

Our system could incentivize attackers to gather and store ver-

ifiers for later attack when attacker hardware improves, giving

the attacker an advantage beyond 𝑔. However, this is likely not an

effective use of attacker resources. First, for cases where a verifier

is public or easy to gather, we recommend choosing 𝑔 to last the

expected lifetime of the secret, as above. In cases where a verifier is

not easy to obtain, such as a password manager stored only on user-

controlled devices or in well-protected cloud services, we expect

the attacker will almost always have easier ways to benefit from

the attack. As mentioned in Section 3.2, we expect an attacker who

acquires a verifier usually has more effective ways to gain value

from the requisite access Ð for example, by installing a keylogger

on the computer to directly acquire the cryptword. This allows addi-

tional opportunities to detect the attack and change cryptwords and

protected secrets before any harm comes as a result of an attacker

guessing the cryptword.

5 USING THE EQUATIONS

It is useful to show how these equationswould apply in practice, and

how to estimate some key parameters. Figure 5 shows the developer

workflow, Figure 6 how a user would generate a cryptword for a

specific application, and Figure 7 how a user would use a cryptword

and a password manager for safe remote password authentication.

5.1 Estimating𝑚

It makes sense to set the value of𝑚, theminimum cost to an attacker,

higher than the upper financial value of the thing being protected.

Even if the value of something is purely financial, humans are loss

averse. The cost of losing future options is higher than the cost of

not gaining future options.

Most things have value beyond the mere financial. Loss of time,

reputation, and memory are all important to factor in. Further, if

the secrets protected could impersonate the defender, the cost of

possible scams to others should be considered, even if not repre-

sented directly as monetary losses to the defender or the defender’s

reputation.

A useful indicator that a defender has chosen a sufficient value for

𝑚 is if the defender says, łif an attacker is willing to pay𝑚. . .more

power to themž. Essentially declaring that the cost to the attacker is

far enough beyond the cost to the defender of failing to protect their

secrets that the defender is resigned to a loss given the unequal

value.

5.2 Estimating 𝑝

In Equation (2), 𝑝 represents the parallelism advantage the attacker

holds over the defender. As it is common for the defender to use a

single device, an attacker dedicating 100 devices, or a device with

100 processors, would have a parallelism advantage of 𝑝 = 100. For

𝑝 we ignore differences in the effectiveness of the hardware such

Passwords and Cryptwords NSPW ’22, October 24ś27, 2022, North Conway, NH, USA

Developer/Sysadmin

Choose 𝑔, 𝑡
Tune pwKDF to run for

𝑡 on oldest hardware
Design Phase Implementation

Regular deprecation

Figure 5: Developers choose 𝑔 and 𝑡 once, then regularly update pwKDF parameters

User

Threat model: 𝑟 and

either 𝑚 or 𝑝,𝑑

System

Bit Strength Generate CryptwordChoose

𝑔, 𝑡

Memorize and use

Figure 6: Users generate their cryptword based on their threat model

User

Phone

Laptop

Desktop

Password

Manager

Password

Database

Website

Website

Website

Authenticate:

Password,

Token, or

Biometric

Cryptword

Cryptword

Cryptword

Auth PW

Auth PW

Auth PW

Figure 7: Typical user authentication flow using cryptwords and authentication passwords

as the relative number of cores: this is factored into 𝑔, discussed

in Section 5.3. One way to determine a generous estimate of 𝑝

is to consider the available power at some of the world’s largest

data centers as a potential upper-bound on what an attacker could

reasonably harness.

The Switch Tahoe datacenter is one of the largest in the world,

supporting a power draw of 850 Megawatts, at up to 55 kW per

server cabinet [61]. Guessing passwords using modern pwKDFs

is computationally bounded Ð thus, we can use the power draw

as an estimate of parallelism. 803,608 is a reasonable upper bound

estimate of the number of high power draw 1U servers the Switch

Tahoe datacenter can support [1].

The US NSA is a large intelligence agency, and may serve as an

example of a nation-state level attacker. The NSA recently built

a datacenter in Utah with a reported power draw of 65 MW [8],

more than 13 times smaller than the Switch Tahoe datacenter. Due

to economies of scale, it seems unlikely an attacker could build a

distributed server farm with more capability than the Switch Tahoe

datacenter. Due to high costs and the number of involved workers,

it seems unlikely that a nation-state actor could build a comparable

datacenter without public awareness [32].

5.3 Estimating 𝑔

A correct understanding of 𝑔, the gap between the slowest sup-

ported hardware, and the attacker’s hardware, is essential to the

accurate usage of these equations. Predicting the future is hard,

and grows harder the farther out one needs to predict. Additionally,

which devices to support and for how long is an administrative

decision which varies between different organizations. As a result,

we leave determining 𝑔 to the reader, based on their individual

circumstances.

Some key things to consider when deciding 𝑔:

(1) How long will hardware be supported for? The pwKDF

parameters are derived from the value of 𝑡 and the slowest

supported hardware, and are fixed until hardware is dep-

recated or the accepted value of 𝑡 changes. To add support

at the same 𝑡 for slower hardware outside the current sup-

ported set, cryptwords would need to be updated to hold

more entropy within themselves, to maintain the same lev-

els of security to account for the loss in protection from the

key stretching. This would run strictly contrary to the us-

ability goal of not changing the cryptwords, so the pwKDF

parameters must only be allowed to increase.

For organizations with largely homogeneous systems and

frequent hardware update, such as in server farms, depre-

cation might be updated annually. For deployment scenar-

ios with mostly heterogeneous systems and individualized

ownership, deprecation of supported devices might happen

much less often. In those cases, deprecated devices may still

continue to receive support, but would continue to suffer

NSPW ’22, October 24ś27, 2022, North Conway, NH, USA Michael Clark and Kent Seamons

decreasing performance as the entropy stretching protects

them from stronger attacker hardware.

There is no harm in determining minimum pwKDF parame-

ters and allowing stronger ones on faster end user devices

(perhaps locally generated from 𝑡), so long as those devices

continue to check that they meet or exceed the minimum

pwKDF parameters, and update their parameters when the

minimums exceed their current settings.

(2) How often will hardware deprecation be reviewed? We

recommend at a minimum an annual review of hardware

support decisions and security levels, including tracking

predictions of attacker capabilities.

(3) How often will updated pwKDF parameters be shipped

to end user devices? Once pwKDF parameters have been

updated, theymust reach the user. Not all software is updated

regularly. Developers need to have a sense of how often

their users receive updates to estimate an update window.

Automatic updates and update notifications help.

(4) How often will users enter their cryptwords to decrypt,

allowing updates to those parameters to take effect?

Even after software updates ship with new pwKDFminimum

parameters, the software cannot rotate keys until the user

re-enters their cryptword. For some systems such as daily

use password managers this may be several times per week.

In general, the longer between cryptword entries, the more

difficult it will be to maintain in memory, so this should

typically be somewhat frequent. If necessary, the user may

also be prompted to re-enter their cryptword as part of the

update process.

The above factors determine a window of time, which the crypt-

word must endure. If any of these are not possible to determine

(for example, hardware will never be deprecated ever, even after

20 years), cryptwords should instead be generated based on the

maximum expected valuable lifetime of the secret to protect.

As an example, when designing a new mobile password manager

one might decide to support hardware which is currently 5 years

old and to keep support for all hardware for up to 9 years, giving

a 14-year technology advantage to the attacker. Decisions would

be reviewed annually, at which point any technology older than

9 years may be deprecated, upgrading the attacker’s advantage to

15 years. Updates would be deployed via an app store and users

frequently enter primary passwords (the cryptword), so perhaps

2ś3 months may be added as a safety buffer.

Once we have a window, we need to predict what the attacker

will be capable of in the future. For the example above, we currently

only need to predict 10 years into the future, and as we deprecate

hardware, will only need to predict future hardware up until the

next deprecation window (a much easier task). Lenstra and Verheul

suggest [40] adding 23
30 bits of strength each year to an attacker’s

capabilities, though this may differ by changing base assumptions

in their equations (for example, Moore’s law may be slowing, or

budgets may be accelerating).

A simple algorithm follows:

(1) To estimate the gap, assume the attacker has access to the

current fastest, nicest, most parallel hardware most special-

ized to cracking the chosen pwKDF, and will use all known

attacks.

(2) Estimate the difference between the attacker hardware and

the slowest supported hardware.

(3) Multiply for any known cryptanalytic attacker advantages.

(4) Multiply by 2
23
30 or a personalized conversion factor for each

year into the future the guess must reach.

For the example mobile password manager, using the search

term ł2017 smartphone popularž, we find an article listing the top

20 by sales [50] which seems adequately reliable. After manually

comparing each, we find the slowest is a quad-core 1.4 GHz Cortex-

A53 on the Nokia 3 [33] with 2 GB of RAM. We will use the most

recent version of Argon2 (not worrying at present about library

support), which is designed to eliminate the advantage of custom

hardware. The current fastest server CPU (in terms of threads ×

clock rate) is the EPYC 7773X, operating 128 threads at up to 3.675

GHz. This processor may be able to compute up to 84 times faster

than our Nokia 3. The current best attack against Argon2i-B gives

a 2× speedup at 256 MB of RAM with 3 passes over memory [5]. As

we’re predicting 10 years into the future, we set𝑔 = 84×2×2
23
30 ×10 ≈

34,135.5.

If not using a memory-hard pwKDF such as Argon2 or a suc-

cessor, the attacker can use application-specific integrated circuits

(ASIC) to perform computations possibly many times faster or more

parallel than a commodity processor. In such cases the defender

should factor this into 𝑔, and possibly 𝑝 or 𝑐 as appropriate.

The future is difficult to predict. We might make a breakthrough

in quantum computing in the next 5 years which updates 𝑔 to a

much larger number. Cryptanalytic advances may render Argon2

much weaker than previously supposed. Regardless, 𝑔 can be up-

dated, the equations recalculated, if necessary cryptwords or secrets

regenerated, and security maintained.

5.4 Updating pwKDF Parameters

As shown in Figure 5 and discussed in Sections 4.1 and 5.3, de-

velopers must regularly update the pwKDF parameters to provide

constant security from fixed-length cryptwords. The pwKDF pa-

rameters are chosen so the pwKDF runs in 𝑡 seconds on the slowest

supported hardware. As hardware is deprecated, it is essential that

the pwKDF parameters are increased so that 𝑔 remains constant.

Hardware deprecation may not be delayed but deprecated hard-

ware may still be used, with the caveat that it will no longer run

the pwKDF in only 𝑡 seconds. This will eventually result in an

unacceptable user experience on deprecated hardware.

The recommended method [14] to choose Argon2 parameters

requires access to reference hardware. Developers would therefore

tune their algorithm for the new slowest supported hardware during

each deprecation cycle, choosing parameters which mitigate known

attacks.

5.5 Worked Examples

We use 𝑟 = 3
104

to match accepted payment card PIN guessing risk.

We set 𝑡 = 0.8 to provide a noticeable delay to users, as it both

increases security and gives users a visceral sense that encryption is

Passwords and Cryptwords NSPW ’22, October 24ś27, 2022, North Conway, NH, USA

taking place [57]. Although 𝑡 is not used for logging in to a system,

it should be kept similarly short, as waiting for decryption is not

a user’s primary task. Additionally, each time it is doubled only

saves a single bit from a random password. 𝑡 has some natural

minimum value > 0, though the duration of a single round of md5

decreases as hardware performance improves. In practice, values of

𝑡 < 0.1 are likely to all be perceived equivalently to users, though

large companies with frequent logins may be motivated to decrease

it further to reduce the load on their login servers for password

hashing.

We set 𝑔 = 34,136, following the conservative estimates in Sec-

tion 5.3.

The mean net worth of US citizens in 2019 peaks in the 65ś74

age group, at roughly USD $1,215,920 [3]. To factor in replacement

costs and losses (see Section 5.1), we round𝑚 up to USD $10,000,000.

We estimate that this should be above the replacement cost of the

average person’s current net worth.

We set 𝑐 = 0.2179, based on the current price for an AWS

c6g.16xlarge compute instance after applying a 90% discount for

Spot Instance use [4].

We set 𝑑 = 1826 as an outlier; it seems unreasonable that any

agency would be willing to dedicate a single piece of expensive

cracking hardware or large datacenter to guessing a single crypt-

word for a longer duration. This may exceed a practical upper limit,

but it should be at least equal to an upper limit.

We set 𝑝 = 803,608, assuming the entire capacity of a large

server farm is used to attack our passwords; see Section 5.2 for

more details. The differences between phone parallelism and server

parallelism are accounted for in 𝑔.

Summary of chosen values:

• 𝑟 = 3
104

• 𝑡 = 0.8

• 𝑔 = 34,136

• 𝑚 = 107 = $10,000,000

• 𝑐 = 0.2179

• 𝑑 = 5 × 365.24 = 1826.2

• 𝑝 = 803,608

𝑔
𝑟𝑡 = 142,233,333.3; equation (2) shows 𝑏 = log2 (142,233,333.3 ×

803,608 × 1826.2 × 86400) ≈ 73.9 and equation (3) shows 𝑏 =

log2 (142,233,333.3 × 10,000,000
0.2179 × 3600) ≈ 64.3. Under the above

generous assumptions, cryptwords of these lengths should be strong

indefinitely if pwKDF parameters are updated regularly and used

to regenerate encryption keys.

56-bit cryptwords are popular in the literature [18, 27, 34]. If

we relax 𝑔 to 105, keeping other parameters unchanged, we find

that 56-bit cryptwords can also be secure indefinitely against the

same financial threat, using equation (3). This would roughly cor-

respond to using argon2 with a 3-year attack window (including

hardware support, updates, and deprecation reviews) supporting

current desktop processors. One could instead reduce the risk or

threat model as in Section 6.3.

Some example cryptwords at these values:

• łgully hunger wistful reminder/ž (56 bits, diceware [55] +

random symbol)

• łTN2nssteT53ž (64 bits, alphanumeric minus ł1lI0Ož)

• łspecks revenge smuggler dramatic quadrantž (65 bits, dice-

ware [55])

• łtmaw qvak whsu tgrmž (75 bits, 26 lowercase, chunked in

blocks of 4, easy to enter on a mobile device [31])

• ł&DU7yg)}dq29ž (78 bits, 12 printable ASCII characters)

5.6 Money to Days

As Equations (2) and (3) both estimate the same parameter, it is pos-

sible to set them equal to each other and solve for other parameters

of interest, such as a lower bound on how long a money-bounded

attacker would take to exhaust their budget.

𝑑 =

𝑚

𝑐 × 24 × 𝑝
(6)

Using the conservative estimates from Sections 5.1, 5.2, and 5.3,

an attacker with a budget of 𝑚 = $10,000,000 and a parallelism

advantage from renting an entire massive datacenter of 𝑝 = 803,608

at a cost of 𝑐 = $0.2179 per guessing-hour would require 𝑑 ≈ 2.38

days to exhaust their budget.

6 DISCUSSION

6.1 Offline Attacks Against Authentication

Passwords

Using a cryptword to authenticate does not protect from credential

stuffing attacks, as credentials may be compromised via phishing,

server compromise, or leaking insecurely stored verifiers from any

relying party. Password managers, including stateless password

managers (see Section 6.7) are a simple and effective solution to

credential stuffing, and some significantly help with phishing.

If a user uses a unique password for each site, the offline attack

resistance of their password only protects against an attacker which

(a) can only access the password verifier instead of the password,

and (b) requires the password to conduct their attack. Attackers

may (1) only have access to stored password verifiers, (2) only have

read access to account data and desire write access, or (3) desire to

continue or conduct an attack after they have lost access to account

data. Of note, all of these attackers would need to conduct their

attack before the user changes their password, which will ideally

follow shortly after administrators become aware of the breach.

This limits the window during which an attacker can guess verifiers,

as in Section 3.2.

Although these attacks are theoretically possible, they do not

appear to be used in any substantial volume [32]. As the risk is

therefore relatively small, the burden on users should be equally

small [35]. Cryptwords for authentication do not appear to justify

the usability costs even for infrequent scenarios where they must

be entered manually, such as from a portable device. As a result,

we concern ourselves principally with online attack resistance for

authentication passwords.

6.2 On The Choice of Neologisms

In two-party authentication contexts, passwords can be protected

using rate limiting and lockout schemes. As these passwords are

inherently shared, their security also depends on the security of

the party with which they are shared. Passwords used to generate

encryption keys are subject to offline attacks, which are faster and

NSPW ’22, October 24ś27, 2022, North Conway, NH, USA Michael Clark and Kent Seamons

cannot be slowed or prevented once an attacker has a verifier. These

are not inherently shared, and must be stronger due to an attacker’s

relative advantage. Because they face different attacks and threat

models, they should not be conflated. Using different words to refer

to these will help system administrators and users be aware that

each needs to protect against different threats.

Current language to refer specifically to passwords used to en-

crypt includes łprimary passwordž (replacing the deprecated term

łmaster passwordž) and łstrong passwordž. łPrimary passwordž is

specific to passwordmanagers, and doesn’t adapt as well to contexts

like zip file encryption and Wi-Fi PSK. łStrong passwordž has the

disadvantage of not inherently introducing a new concept: as it is a

noun phrase, łstrongž is weakly connected and could be interpreted

as implying the same thing, just stronger. łSeedž is used to refer

to a source of randomness which provides the initial state for a

random number generator to produce the same output, and it is

not wrong to apply the term to a password used to generate an

encryption key.

An ideal neologism would (1) share some inherent parallelism

with the term łpasswordž to support analogical reasoning, (2) be

pithy (terse and memorable), (3) and be both precise and accurate

in meaning. łCryptwordž shares the second half of łpasswordž, and

can be described as ła password used to encryptž, supporting such

analogical reasoning. Though pithy, it inherits the same misuse

of łwordž from łpasswordž, where far more than words are repre-

sented (PINs, word sequences, non-word alphanumeric strings, etc.).

łCryptseedž as a neologism has the advantage of being pithy, pre-

cise, and accurate, but lacks inherent parallelism with łpasswordž.

Both alternatives are short and can replace the word łpasswordž

in many UI designs with minimal changes, as their lengths are

very similar. We have chosen the term łcryptwordž, as we value

supporting analogical reasoning.

6.3 Bit Contribution

Because log2 (𝑥 × 𝑦) = log2 (𝑥) + log2 (𝑦), it is easy to compare

how many bits each parameter in the equation adds to the final

bit strength. We analyze this using the parameter values from Sec-

tion 5.5.

𝑟 = 3
104

adds 11.7 bits to 𝑏, which could drop to as low as 1 bit

at 𝑟 = 0.5. For contrast, Diceware provides 12.9 bits of entropy

per word added; this choice of 𝑟 therefore requires one more word

than that of someone willing to accept the same odds as a coin

toss. 𝑡 = 0.8 increases 𝑏 by 0.3, and at human-relevant speeds has

a fairly minimal impact on 𝑏, from −3.3 at 10 seconds to 3.3 at
1
10 th of a second. As large values of 𝑡 can have a significant impact

on the usability of the system without much security benefit, we

recommend 𝑡 ≤ 1. 𝑔 = 34,136 adds 15 bits. Like 𝑡 , this is chosen

by the developer and reflects the tension between two different

usability factors in the security domain Ð shorter cryptwords vs

longer device support windows. Finally, our threat models add 37.3

bits for money and 46.8 bits for the 5-year datacenter attack.

Notably, more than half of 𝑏 comes from user-chosen parameters:

the acceptable risk and the threat model.

6.4 End User Load

Random passwords are less memorable than unconstrained user

chosen passwords, but are more secure [67]. Assigned cryptwords

can be memorable [18, 27, 34], though perhaps not without a focus

on memory training [22, 41]. Non-computerized password stores,

such as paper in a wallet, can reduce human memory burdens by

converting a cryptword into a łsomething you havež token until

memorized [59].

Using a desktop, smartphone, or online password manager, it is

easy to generate and store random passwords; these can be gener-

ated to be easy to enter [31] and remember for contexts precluding

access to the password manager, such as logging into a computer

or unlocking a mobile device. By using an encrypted password

manager, users should only need to remember a single cryptword

and a small handful of authentication passwords to access devices

to access the password manager (possibly none if using biometric

authentication for device access). If a user must have multiple pass-

word managers, we suggest storing easily-entered cryptwords for

these password managers in a single portable primary password

manager.

We model users as being willing and able to memorize between

5 and 7 distinct passwords with none or few strong against offline

attacks, based on prior work [28]. A cryptword could be considered

equivalent to 4ś5 of these passwords, leaving sufficient remaining

capacity to store an additional authentication password or two

for accessing devices storing the password manager. Biometrics

can further reduce the cognitive load, and secure non-computer

password storage can reduce the cognitive load to only the effort

to locate, read, and enter the few authentication passwords and the

cryptword stored on the paper.

It is difficult to quantify the cost of using random passwords and

cryptwords, especially when combined with password managers,

and given the substantial variety of types of generated passwords

(see Table 1 for some examples).

6.5 User Freedom

Users are not homogenous, and sometimes have goals and values

which run counter to paternalistic security measures [26]. A com-

mon and simple example is how character class restrictions on

websites can impede or make it more difficult to use user-generated

random passwords, such as from a password manager.

With authentication passwords, there are two parties involved:

the user, and the system they authenticate to. As an involved party,

the system can reasonably require some controls on authentication

methods to prevent misuse of resources by unauthorized parties.

However, these controls should be reasonable and respect user

autonomy.

Users should be allowed to select their own passwords. Although

assigned random passwords have a known security strength, users

may generate random passwords via other means which have equal

or higher security. Preventing users from generating their own

passwords can decrease a user’s security. However, it would be

helpful to generate a fresh random password at the site’s security

level as a suggested password nudge for users [68]. Authentica-

tion password maximum lengths should generally [62] be tuned to

protect from denial of service attacks. 4096 bytes is a reasonable

Passwords and Cryptwords NSPW ’22, October 24ś27, 2022, North Conway, NH, USA

upper limit [11]. Similarly, systems should support password input

of at least all 95 printable ASCII characters. Unicode is desirable,

but should be tested for common problems [19]. Finally, password

resets [24] should only be required in response to suspected server

compromise.

Cryptwords have only one party involved: the user. Systems

which use cryptwords should not have maximum or minimum

lengths; the user should be permitted to use an empty string if it

meets their security needs. Unmasking [37] (letting the user unhide

their password during entry) is especially helpful for cryptwords as

these are long and thus subject to increased typos [60]. Cryptword

generators should allow users to control as many of the parameters

in the equations as can be reasonably usable to the target popula-

tion. In some cases, this may be as simple as a monetary value slider,

with other values fixed. Systems should give the user enough infor-

mation to decide what level of security they need. As an example,

if a protocol publishes a verifier publicly, users will need to know

to rotate their cryptwords and protected data after an expiration

period of their choice (see Section 4.4). Additionally, users need

to be aware that they are inputting a cryptword; using the label

łcryptwordž instead of łpasswordž may help (see Section 6.2).

6.6 Lockouts and Rate Limiting

Lockouts and rate limiting can be used to conduct a denial of service

(DoS) attack against a system or an individual account [42]. For

usability, lockout limits should be higher than three failures [21, 48,

56].

Against a relatively unconstrained attacker, resetting passwords

on account unlock provides little advantage to the defender [24]

over simply unlocking the account. In brief, if an attacker is given 𝑎

guesses against a random password of 𝑏 bits, their odds of success

before the account is locked are 𝑎
2𝑏
. If the password is later reset

to the same level of security, the attacker has another chance with

odds 𝑎
2𝑏
. If an account may be unlocked and the password reset to

the same security level 𝑛 times, the aggregate risk of an attacker

guessing the random password is 1 −
(

1 − 𝑎
2𝑏

)𝑛
. With a 4-digit

PIN and a 3-strikes lockout policy, an attacker’s odds are 0.03%.

However, if we allow the attacker to continue guessing after PIN

reset up to a maximum of 10 lockouts, their cumulative odds raise

to ≈ 0.3%. It is simple and conservative to model this as allowing

𝑎 ×𝑛 = 30 attempts against a single random PIN. So, if the user can

unlock their account, the total attacks across all times the account

may be unlocked should be factored into the attacker’s capabilities

such as in Equation 1.

Should an account be locked, it is reasonable to still provide

access with additional security guarantees. These could include

adding a CAPTCHA (increasing attacker costs though not pre-

venting automation [6]), requiring a second authentication factor,

increasing the minimum strength of a new random password out

of reach for a reasonably unbounded attacker, or switching to an

alternate authentication system which may be more secure but less

usable. These may be used with a Risk-Based Authentication (RBA)

system which adds enhanced protections for suspicious access.

6.7 Stateless Password Managers

Stateless password managers such as Spectre [12] allow a user to

regenerate any password from just their primary password and a

system, usually software. These have essentially the same advan-

tages of passwords [17] except possible reliance on a computer:

since passwords are typically entered on computing devices, this

disadvantage would appear to have minimal impact. However, there

are some security considerations which are not immediately obvi-

ous.

Any leaked password can serve as a verifier for the primary pass-

word, which is a cryptword used to generate all other passwords.

While the primary password can be protected by a strong pwKDF,

any updates to the parameters of the pwKDF require updating all

generated passwords across all sites. As there is no list of sites,

this may require supporting past pwKDF parameters in the UI,

complicating usability. Additionally, if the primary password is not

changed, a leaked password generated with previous parameters

can still compromise the primary password.

While these problems can be solved with a password generation

key itself encrypted via the primary password, the system would

no longer be stateless, losing a unique advantage over other pass-

word managers. Without modification, these can be used securely

by choosing for the primary password a cryptword which can re-

sist attacks indefinitely, just as other cases where a protocol posts

protected information publicly which cannot be rotated.

The łpasswortkartež [2, 46] (łpassword cardž) is another kind

of stateless password manager. These require something to be car-

ried but do not require a computer; the algorithm is performed

by the user. If these are generated from a seeded random number

generator [51], the same security considerations apply.

6.8 Quantum Computers

Bennett et al. proved [10] that a quantum computer can at best

half the key space for brute force key searching. This means that if

quantum computers are a legitimate threat model, 𝑏 should be dou-

bled. Additionally, any quantum attack speedup against a chosen

pwKDF should be factored into 𝑔 like any other attack, as discussed

in Section 5.3.

7 CONCLUSIONS AND FUTUREWORK

We present two significant paradigm shifts. The first, that crypt-

word and random authentication password lengths can stop in-

creasing Ð forever. Instead of requiring ever longer passwords, we

can generate passwords and rehash them when users enter them

to maintain a security value above some minimum threshold. The

second, that passwords and cryptwords are subject to very different

attack scenarios, and should be clearly distinguished in user inter-

faces. Ultimately, we feel łcryptwordž should become a household

term.

We have provided reasonable upper limits for authentication

password lengths and proposed some reasonable cryptword lengths.

We expect this to influence future authentication papers, inform-

ing the lengths they target and the kinds of usage scenarios they

envision.

NSPW ’22, October 24ś27, 2022, North Conway, NH, USA Michael Clark and Kent Seamons

FutureWork. There are many interesting areas of research to pursue

in the future.

How well does the term łcryptwordž resonate with end users?

Will it change behavior after a brief explanation, or will users

interpret it as just a stronger password?

How often are cryptwords entered? There is work related to

authentication event frequency, but as cryptwords are not used to

authenticate, there is no comparable work for cryptword use. This

would inform the vulnerability window when choosing a suitable

value of 𝑔.

We expect that with a fixed target to hit, researchers will iden-

tify memorability issues surrounding these longer łsomething you

knowž tokens, including innovating entry mechanisms beyond the

keyboard, or memory beyond recall. We expect this to contribute

greatly to the usability of both encryption and authentication in

the future.

Future researchmight investigate how best to encode cryptwords

for memorability. Shay et al. show [60] that for shorter random pass-

words where letters and words both fit within Miller’s 7± 2 chunks

for working memory [47], random passphrases and passwords are

equally memorable. Do these results hold for cryptwords, which

are longer, or does the reduced chunking from a larger dictionary

aid memorability?

We need to better understand user’s threat models to determine

if a single secure generated cryptword for a password manager

is an acceptable security tradeoff. Users may be more willing to

accept cryptwords if they reduce the overall authentication burden,

as the password manager can handle other authentication tasks.

Would users feel more comfortable if they can pick a cryptword

from a selection of options, and the security level adjusted to sub-

tract a corresponding number of bits (e.g., 3 bits if selecting from

eight alternatives)?

There is also the issue of educating system administrators and se-

curity software developers. How can this radical notion reach them,

so new systems are designed more usably, and current systems

updated to become more usable?

Would redundancy in cryptwords aid recovery? Passwords can

be recovered via alternate authentication; cryptwords may be re-

covered by writing them down and storing them somewhere secure.

However, with forward error correcting codes in the bits of the

cryptword, it may be possible to nudge users to re-train on the

cryptword, or be more flexible in how it is entered without reduc-

ing security.

Cryptwords and authentication passwords should be randomly

generated to provide guaranteed security, but because users have

differing needs we recommend allowing users the freedom to gener-

ate these outside of system control (see Section 6.5). This means at

least some will choose to forego alternate means of secure random

generation, and use user-chosen passwords as cryptwords. These

will naturally fall into a Zipf’s law distribution. Can our equations

and analysis be meaningfully adapted to analyze guessability of

Zipf’s law distributions? Can user-chosen cryptwords be strong

enough to resist offline attacks under the same threat models?

Finally, future attacks will require new defenses. Quantum com-

puters are one such advancement. A post quantum pwKDF will

enable our results to remain relevant even as quantum computing

becomes more available.

ACKNOWLEDGMENTS

The authors thank the NSPW attendees for their helpful feedback.

We especially would like to recognize our shepherds, Elizabeth

Stobert and David Balenson, who have significantly helped this

paper to communicate clearly.

This work was partially supported by the National Science Foun-

dation under Grant No. CNS-1816929 (https://nsf.gov/awardsearch/

showAward?AWD_ID=1816929). Any opinions, findings, and con-

clusions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES
[1] Rack Solutions Inc. 2020. How many servers does a data center have? Rack

Solutions Inc. Retrieved 2022-05-17 from https://www.racksolutions.com/news/
blog/how-many-servers-does-a-data-center-have/

[2] 2020. Passwortkarten: Konzepte und Generatoren. Retrieved 2022-05-30 from https:
//www.e-passwordcard.com/de/passwortkarten-konzepte-und-generatoren/

[3] The Federal Reserve 2021. Survey of Consumer Finances, 1989 - 2019. The Federal
Reserve. Retrieved 2022-05-17 from https://www.federalreserve.gov/econres/scf/
dataviz/scf/table/#series:Net_Worth;demographic:agecl;units:mean;population:
all;range:1989,2019

[4] Amazon Web Services, Inc. 2022. Amazon EC2 Spot - Save up-to 90% on On-
Demand Prices. Amazon Web Services, Inc. Retrieved 2022-05-17 from https:
//aws.amazon.com/ec2/spot/

[5] Joël Alwen and Jeremiah Blocki. 2017. Towards practical attacks on argon2i
and balloon hashing. In 2017 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 142ś157.

[6] anti-captcha.com n.d. Anti Captcha: Captcha Solving Service. Bypass reCAPTCHA,
FunCaptcha Arkose Labs, image captcha, GeeTest, HCaptcha. Retrieved 2022-07-26
from https://anti-captcha.com/

[7] Jean-Philippe Aumasson. 2019. Password Hashing Competition. Retrieved 2021-
10-04 from https://www.password-hashing.net/

[8] James Bamford. 2012. The NSA is building the country’s biggest spy center
(watch what you say). Wired, March 15 (2012).

[9] Ken ZatykoDr John Bay. 2011. The Digital Forensics Cyber Exchange Principle.
(2011).

[10] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. 1997.
Strengths and weaknesses of quantum computing. SIAM journal on Computing
26, 5 (1997), 1510ś1523.

[11] James Bennett. 2013. Issue: denial-of-service via large passwords | Security releases
issued. Retrieved 2022-08-15 from https://www.djangoproject.com/weblog/2013/
sep/15/security/#s-issue-denial-of-service-via-large-passwords

[12] Maarten Bilemont. 2011. Spectre: Passwords, Privacy-first. Retrieved 2022-05-18
from https://spectre.app/

[13] A. Biryukov, D. Dinu, D. Khovratovich, , and S. Josefsson. 2021. Argon2 Memory-
Hard Function for Password Hashing and Proof-of-Work Applications. RFC 9106.
RFC Editor. https://www.rfc-editor.org/rfc/rfc9106

[14] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. 2017. Argon2: the
memory-hard function for password hashing and other applications. (24
Mar 2017). Retrieved 2022-11-21 from https://github.com/P-H-C/phc-winner-
argon2/blob/master/argon2-specs.pdf.

[15] Matt Blaze, Whitfield Diffie, Ronald L Rivest, Bruce Schneier, and Tsutomu Shi-
momura. 1996. Minimal key lengths for symmetric ciphers to provide adequate
commercial security. A Report by an Ad Hoc Group of Cryptographers and Com-
puter Scientists. Technical Report. INFORMATION ASSURANCE TECHNOLOGY
ANALYSIS CENTER FALLS CHURCH VA.

[16] Joseph Bonneau. 2013. Moore’s Law won’t kill passwords. Retrieved 2022-03-30
from https://www.lightbluetouchpaper.org/2013/01/17/moores-law-wont-kill-
passwords/

[17] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. 2012.
The quest to replace passwords: A framework for comparative evaluation of web
authentication schemes. In 2012 IEEE Symposium on Security and Privacy. IEEE,
553ś567.

[18] Joseph Bonneau and Stuart Schechter. 2014. Towards reliable storage of 56-bit
secrets in human memory. In 23rd {USENIX} Security Symposium ({USENIX}
Security 14). 607ś623.

[19] Joseph Bonneau and Rubin Xu. 2012. Of contraseñas, ,סיסמאות! and 密码ś
Character encoding issues for web passwords. InWeb 2.0 Security & Privacy (San
Francisco, CA, USA). https://www.jbonneau.com/doc/BX12-W2SP-passwords_
character_encoding.pdf

Passwords and Cryptwords NSPW ’22, October 24ś27, 2022, North Conway, NH, USA

[20] S. Bradner. 1997. Key words for use in RFCs to Indicate Requirement Levels. RFC
2119. RFC Editor. https://www.rfc-editor.org/rfc/rfc2119

[21] Sacha Brostoff and M Angela Sasse. 2003. łTen strikes and you’re outž: Increasing
the number of login attempts can improve password usability. (2003).

[22] Boštjan Brumen. 2020. System-Assigned Passwords: The Disadvantages of the
Strict Password Management Policies. Informatica 31, 3 (2020), 459ś479.

[23] Steven Cherry. 2004. Edholm’s law of bandwidth. IEEE spectrum 41, 7 (2004),
58ś60.

[24] Sonia Chiasson and Paul C Van Oorschot. 2015. Quantifying the security ad-
vantage of password expiration policies. Designs, Codes and Cryptography 77, 2
(2015), 401ś408.

[25] Michael Clark. 2019. Fast hash threat model might be optimistic. Retrieved
2022-05-04 from https://github.com/dropbox/zxcvbn/issues/272

[26] Steve Dodier-Lazaro, Ruba Abu-Salma, Ingolf Becker, and M Angela Sasse.
2017. From paternalistic to user-centred security: Putting users first with value-
sensitive design. In CHI 2017 Workshop on Values in Computing. Values In Com-
puting.

[27] Jayesh Doolani, Matthew Wright, Rajesh Setty, and SM Taiabul Haque. 2021.
LociMotion: Towards Learning a Strong Authentication Secret in a Single Session.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1ś13.

[28] Dinei Florêncio and Cormac Herley. 2007. A large-scale study of web password
habits. In Proceedings of the 16th international conference on World Wide Web.
657ś666.

[29] Dinei Florêncio, Cormac Herley, and Paul C Van Oorschot. 2014. An adminis-
trator’s guide to internet password research. In 28th Large Installation System
Administration Conference (LISA14). 44ś61.

[30] Damien Giry. 2020. Cryptographic Key Length Recommendation. Retrieved
2021-10-04 from https://www.keylength.com/

[31] Kristen K Greene, Melissa A Gallagher, Brian C Stanton, and Paul Y Lee. 2014. I
can’t type that! P@$$w0rd entry on mobile devices. In International Conference
on Human Aspects of Information Security, Privacy, and Trust. Springer, 160ś171.

[32] David Robert Grimes. 2016. On the viability of conspiratorial beliefs. PloS one 11,
1 (2016), e0147905.

[33] gsmarena.com n.d. Nokia 3. Retrieved 2022-05-11 from https://www.gsmarena.
com/nokia_3-8572.php

[34] SM Taiabul Haque, Mahdi Nasrullah Al-Ameen, Matthew Wright, and Shannon
Scielzo. 2017. Learning system-assigned passwords (up to 56 bits) in a single
registration session with the methods of cognitive psychology. In Proceedings
of the Network and Distributed System Security Symposium (NDSS 2017), USEC,
Vol. 17.

[35] Cormac Herley. 2009. So long, and no thanks for the externalities: the rational
rejection of security advice by users. In Proceedings of the 2009 workshop on New
security paradigms workshop. 133ś144.

[36] Cormac Herley and Paul Van Oorschot. 2011. A research agenda acknowledging
the persistence of passwords. IEEE Security & privacy 10, 1 (2011), 28ś36.

[37] Jack Holmes. 2014. Password Masking. Retrieved 2022-05-16 from http:
//passwordmasking.com/

[38] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. 2018. OPAQUE: an asymmetric
PAKE protocol secure against pre-computation attacks. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
456ś486.

[39] Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul, ButlerW
Lampson, Daniel Sanchez, and Tao B Schardl. 2020. There’s plenty of room at
the Top: What will drive computer performance after Moore’s law? Science 368,
6495 (2020), eaam9744.

[40] Arjen K Lenstra and Eric R Verheul. 2001. Selecting cryptographic key sizes.
Journal of cryptology 14, 4 (2001), 255ś293.

[41] Michael D Leonhard and VN Venkatakrishnan. 2007. A comparative study of
three random password generators. In 2007 IEEE International Conference on
Electro/Information Technology. IEEE, 227ś232.

[42] Yu Liu, Matthew R Squires, Curtis R Taylor, Robert JWalls, and Craig A Shue. 2019.
Account Lockouts: Characterizing and Preventing Account Denial-of-Service
Attacks. In International Conference on Security and Privacy in Communication
Systems. Springer, 26ś46.

[43] Seth Lloyd. 2000. Ultimate physical limits to computation. Nature 406, 6799
(2000), 1047ś1054.

[44] Bo Lu, Xiaokuan Zhang, Ziman Ling, Yinqian Zhang, and Zhiqiang Lin. 2018. A
measurement study of authentication rate-limiting mechanisms of modern web-
sites. In Proceedings of the 34th Annual Computer Security Applications Conference.
89ś100.

[45] PhilippMarkert, Daniel V Bailey, Maximilian Golla, Markus Dürmuth, and Adam J
Aviv. 2020. This PIN can be easily guessed: Analyzing the security of smartphone
unlock PINs. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 286ś303.

[46] Peter Mayer, Alexandra Kunz, and Melanie Volkamer. 2017. Analysis of the
Security and Memorability of the Password Card. (Dec 2017).

[47] George A Miller. 1956. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. Psychological review 63, 2

(1956), 81.
[48] Gilbert Notoatmodjo and Clark Thomborson. 2009. Passwords and perceptions. In

Proceedings of the Seventh Australasian Conference on Information Security-Volume
98. Citeseer, 71ś78.

[49] Marek Palatinus, Pavol Rusnak, Aaron Voisine, and Sean Bowe. 2013. Mnemonic
code for generating deterministic keys. Retrieved 2021-06-01 from https://github.
com/bitcoin/bips/blob/master/bip-0039.mediawiki

[50] Paul. 2017. The Top 20 most popular phones of 2017. Retrieved 2022-05-11
from https://www.gsmarena.com/the_20_most_popular_phones_of_2017-news-
28892.php

[51] pepsoft.org n.d. Your PasswordCard - Algorithm. Retrieved 2022-05-30 from
https://www.passwordcard.org/algorithm.html

[52] Bc Vojtěch Polášek. 2019. Argon2 security margin for disk encryption passwords.
(2019).

[53] Niels Provos and David Mazières. 1999. A Future-Adaptable Password Scheme..
In USENIX Annual Technical Conference, FREENIX Track, Vol. 1999. 81ś91.

[54] Arnold Reinhold. 2014. Time to add a word. Retrieved 2022-03-30 from https:
//diceware.blogspot.com/2014/03/time-to-add-word.html

[55] A G Reinhold. 2022. The Diceware Passphrase Home Page. Retrieved 2022-03-11
from https://theworld.com/~reinhold/diceware.html

[56] Karen Renaud, Rosanne English, Thomas Wynne, and Florian Weber. 2014. You
Have Three Tries Before Lockout. Why Three?.. In HAISA. 101ś111.

[57] Scott Ruoti, Jeff Andersen, Travis Hendershot, Daniel Zappala, and Kent Seamons.
2016. Private Webmail 2.0: Simple and easy-to-use secure email. In Proceedings of
the 29th Annual Symposium on User Interface Software and Technology. 461ś472.

[58] Sarah Scheffler and Mayank Varia. 2021. Protecting Cryptography Against
Compelled {Self-Incrimination}. In 30th USENIX Security Symposium (USENIX
Security 21). 591ś608.

[59] Bruce Schneier. 1999. Key Length and Security - Crypto-gram: October 15, 1999
- Schneier on Security. Retrieved 2021-10-04 from https://www.schneier.com/
crypto-gram/archives/1999/1015.html#KeyLengthandSecurity

[60] Richard Shay, Patrick Gage Kelley, Saranga Komanduri, Michelle L Mazurek,
Blase Ur, Timothy Vidas, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor.
2012. Correct horse battery staple: Exploring the usability of system-assigned
passphrases. In Proceedings of the eighth symposium on usable privacy and security.
1ś20.

[61] switch.com. n.d. Switch TAHOE RENO Colocation Data Center Campus. Retrieved
2022-07-18 from https://www.switch.com/tahoe-reno-campus/

[62] OWASP CheatSheets Series Team. 2021. Implement Proper Password Strength
Controls - Authentication - OWASP Cheat Sheet Series. Retrieved 2022-08-
15 from https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_
Sheet.html#implement-proper-password-strength-controls

[63] The Astronomical Almanac Online! 2021. 2021 Selected Astronomical Constants.
Retrieved 2022-03-11 from http://asa.hmnao.com/static/files/2021/Astronomical_
Constants_2021.pdf

[64] Ding Wang, Haibo Cheng, Ping Wang, Xinyi Huang, and Gaopeng Jian. 2017.
Zipf’s law in passwords. IEEE Transactions on Information Forensics and Security
12, 11 (2017), 2776ś2791.

[65] Daniel Lowe Wheeler. 2016. dropbox/zxcvbn: Low-Budget Password Strength
Estimation. https://github.com/dropbox/zxcvbn

[66] Daniel Lowe Wheeler. 2016. zxcvbn: Low-budget password strength estimation.
In 25th {USENIX} Security Symposium ({USENIX} Security 16). 157ś173.

[67] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair Grant. 2004. Password
memorability and security: Empirical results. IEEE Security & privacy 2, 5 (2004),
25ś31.

[68] Samira Zibaei, Dinah Rinoa Malapaya, Benjamin Mercier, Amirali Salehi-Abari,
and Julie Thorpe. 2022. Do Password Managers Nudge Secure (Random) Pass-
words?. In Eighteenth Symposium on Usable Privacy and Security (SOUPS 2022).
581ś597.

	Abstract
	1 Introduction
	1.1 The Problem
	1.2 Why Random Passwords?

	2 Background and Related Work
	2.1 Motivation
	2.2 Methods

	3 Authentication Passwords
	3.1 Online Attack Resistance
	3.2 Offline Attacks
	3.3 Authentication Passwords Conclusions

	4 Cryptwords
	4.1 Constant Security Despite Evolving Threats
	4.2 Parameters
	4.3 Equations
	4.4 Limitations

	5 Using The Equations
	5.1 Estimating m
	5.2 Estimating p
	5.3 Estimating g
	5.4 Updating pwKDF Parameters
	5.5 Worked Examples
	5.6 Money to Days

	6 Discussion
	6.1 Offline Attacks Against Authentication Passwords
	6.2 On The Choice of Neologisms
	6.3 Bit Contribution
	6.4 End User Load
	6.5 User Freedom
	6.6 Lockouts and Rate Limiting
	6.7 Stateless Password Managers
	6.8 Quantum Computers

	7 Conclusions and Future Work
	Acknowledgments
	References

