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ABSTRACT
Di!ractive optical neural networks (DONNs) have attracted lots of
attention as they bring signi"cant advantages in terms of power
e#ciency, parallelism, and computational speed compared with
conventional deep neural networks (DNNs), which have intrinsic
limitations when implemented on digital platforms. However, in-
versely mapping algorithm-trained physical model parameters onto
real-world optical devices with discrete values is a non-trivial task
as existing optical devices have non-uni"ed discrete levels and non-
monotonic properties. This work proposes a novel device-to-system
hardware-software codesign framework, which enables e#cient
physics-aware training of DONNs w.r.t arbitrary experimental mea-
sured optical devices across layers. Speci"cally, Gumbel-Softmax is
employed to enable di!erentiable discrete mapping from real-world
device parameters into the forward function of DONNs, where the
physical parameters in DONNs can be trained by simplyminimizing
the loss function of the ML task. The results have demonstrated that
our proposed framework o!ers signi"cant advantages over conven-
tional quantization-based methods, especially with low-precision
optical devices. Finally, the proposed algorithm is fully veri"ed with
physical experimental optical systems in low-precision settings.
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1 INTRODUCTION
During the past half-decade, there has been signi"cant growth
in machine learning with deep neural networks (DNNs). DNNs
improve productivity in many domains such as large-scale com-
puter vision, natural language processing, and data mining tasks
[24, 34, 37]. However, conventional DNNs implemented on digital
platforms have intrinsic limitations in computation and memory
requirements [1, 20, 35]. Moreover, when it deals with computation-
intense tasks, its energy cost will be a great concern. To overcome
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limitations in resources and "nd an energy-saving computation
method, people have turned their eyes to optics [11–14, 25, 26, 28, 43,
44]. Speci"cally, the free-space di!ractive optical neural networks
(DONNs), which is based on light di!raction, featuring millions of
neurons in each layer interconnected with neurons in neighboring
layers, show its great potential in improving e#ciency in comput-
ing with neural networks [28]. More importantly, Chen et al. [4], Li
et al. [26], Li and Yu [27], Lin et al. [28], Rahman et al. [33], Shen
et al. [36] demonstrated that di!ractive models controlled by phys-
ical parameters are di!erentiable, such that the parameters can be
optimized with conventional automatic di!erentiation engines.

However, when the DONN system is deployed on physical hard-
ware, it shows signi"cant accuracy degradation compared to the
numerical physics emulation [28, 44], e.g., the accuracy degradation
is claimed as 30% in [44]. To narrow the algorithm-hardware miscor-
relation gaps between di!erentiable numerical physics models and
physical systems, hardware-software codesign training algorithms
are needed to deal with the practical response of optical devices.
For example, the recon"gurability of DONNs is implemented us-
ing spatial light modulators (SLMs), which have a discrete and
non-monotonic complex-valued modulation of propagating optical
"elds as a function of applied voltages with "nite-precision [44].

Therefore, despite the di!raction propagation in the DONN sys-
tem is di!erentiable, directly adding discrete mapping from device
to DONN systems will break the gradient chain in backpropagation.
Moreover, in optical hardware systems, di!ractive layers imple-
mented with analog optical devices can behave di!erently due
to di!erent optical con"gurations or device responses, i.e., non-
uniformity exists across the compute units (devices), while the
DONNmodel is trained and optimized on digital platforms with uni-
form and stable number represented computation. Thus, to narrow
the gap between numerical emulation and practical deployment,
while training a multi-layer DONNs system, there is a great need to
develop a $exible training framework that can optimize the DONNs
parameters w.r.t various optical devices from layer to layer. While
quantization techniques are applicable to discrete mapping from
the device level to DONNs system, there are several critical limita-
tions due to the fact that optical devices used in DONNs are analog,
non-monotonic, and non-uni"ed. Speci"cally, the trainable param-
eters in DONN systems are not only limited to discrete mappings
with irregular and analog device responses but more importantly
limited to the constraints in physics. For example, the phase for
the light wave is a periodic function with 2! as the period. Thus,
the trainable parameters w.r.t the phase modulation devices in the
DONN system should be restricted within [0, 2!] and aware of the
2! period during the training process [17, 28, 44].

This work studies an e#cient and $exible codesign framework
that enables physics-aware di!erentiable discrete mappings from
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