
Received: 10 September 2022 Revised: 8 March 2023 Accepted: 11 April 2023

DOI: 10.1002/env.2805

RE S EARCH ART I C L E

Bayesian geostatistical modeling for
discrete-valued processes

Xiaotian Zheng1 Athanasios Kottas2 Bruno Sansó2

1School of Mathematics and Applied
Statistics, University of Wollongong,
Wollongong, New South Wales, Australia
2Department of Statistics, University of
California, Santa Cruz, California, USA

Correspondence
Xiaotian Zheng, School of Mathematics
and Applied Statistics, University of
Wollongong, Northfields Ave,
Wollongong, NSW, 2522, Australia.
Email: xzheng@uow.edu.au

Funding information
National Science Foundation,
Grant/Award Numbers: MMS 2050012,
DMS 2153277, SES 1950902

Abstract
We introduce a flexible and scalable class of Bayesian geostatistical models for
discrete data, based on nearest-neighbor mixture processes (NNMP), referred to
as discrete NNMP. To define the joint probability mass function (pmf) over a
set of spatial locations, we build from local mixtures of conditional pmfs using
a directed graphical model, with a directed acyclic graph that summarizes the
nearest neighbor structure. The approach supports direct, flexible modeling
for multivariate dependence through specification of general bivariate discrete
distributions that define the conditional pmfs. In particular, we develop a mod-
eling and inferential framework for copula-basedNNMPs that can attain flexible
dependence structures, motivating the use of bivariate copula families for spa-
tial processes. Moreover, the framework allows for construction of models given
a pre-specified family of marginal distributions that can vary in space, facilitat-
ing covariate inclusion. Compared to the traditional class of spatial generalized
linear mixed models, where spatial dependence is introduced through a trans-
formation of response means, our process-based modeling approach provides
both computational and inferential advantages. We illustrate the methodology
with synthetic data examples and an analysis of North American Breeding Bird
Survey data.
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1 INTRODUCTION

Discrete geostatistical data arise inmany areas, such as biology, ecology, and forestry. Such data sets consist of observations
{y(si)}ni=1 of random variables {Y (si)}ni=1, where si = (si1, si2) denotes a location in a continuous spatial domain  ⊂ R2.
Throughout the article, we assume that Y (si) is discrete, and takes values in N = {0, 1, 2, … }. As an example, consider
observations for counts of a species of interest, commonly used to estimate the species distribution over a geographical
domain.

To facilitate discussion in this section, we take yi ≡ y(si) for brevity. Discrete geostatistical modeling concerns the joint
probability mass function (pmf) p(y1, … , yn). The most common approach is the spatial generalized linear mixed model
(SGLMM; Diggle et al., 1998), under which the joint pmf can be expressed as
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p(y1, … , yn) =
∫

· · ·
∫

n∏

i=1
pi(yi | zi) p(z1, … , zn) dz1 · · · dzn,

where pi(yi | zi) corresponds to an exponential family distribution,with zi the spatial randomeffect in a linearmixedmodel
for the transformed mean of yi. The distribution for the random vector (z1, … , zn) is induced by a spatial process over,
typically a Gaussian process. The SGLMM provides a general modeling tool for geostatistical discrete data applications;
see, for instance, Wikle (2002), Recta et al. (2012), Berrett and Calder (2016), and Zhang and Cressie (2020).

However, SGLMMs have certain properties that may be undesirable. First, since the spatial random effects are incor-
porated into the transformed mean, SGLMMs model spatial structure on a function of the response means, not on the
observations directly. This is precisely the inferential focus in some cases, for example, when modeling the field of prob-
abilities underlying spatial binary data. Nevertheless, due to the non-linear transformation induced by the link function,
the model may impose a strong correlation between means over locations that are close, even though the corresponding
observations may not be strongly correlated. More generally, the SGLMMmay be limited when direct spatial modeling is
of interest. In addition, the SGLMM specification poses computational challenges. Unlike Gaussian geostatistical models,
the spatial random effects can not be marginalized out. Under simulation-based inference, estimating the spatial random
effects requires sampling a large number of highly correlated parameters within a Markov chain Monte Carlo (MCMC)
algorithm, which is likely to produce slow convergence, and a large memory footprint. Although efficient computa-
tional strategies have been explored in the literature (e.g., Christensen andWaagepetersen, 2002; Christensen et al., 2006;
Guan and Haran, 2018; Sengupta and Cressie, 2013; Sengupta et al., 2016; Zhang, 2002), the computational challenge is
unavoidable, especially for large spatial datasets.

An alternative to SGLMMs involves copula models which construct random fields given a pre-specified family of
marginal distributions, with spatial dependence introduced through the multivariate distribution underlying a copula C.
The joint cumulative distribution function (cdf) of the vector (y1, … , yn) is given by F(y1, … , yn) =C(F1(y1), … ,Fn(yn)),
where Fi is the cdf of yi. The joint pmf is obtained by taking 2n finite differences of C:

p(y1, … , yn) =
∑

i1=0,1
· · ·

∑

in=0,1
(−1)i1+···+in C(F1(y1 − i1), … ,Fn(yn − in)). (1)

Numerical computation of (1) requires 2n n-dimensional copula evaluations. Unless n is very small, the computation
is infeasible, necessitating approximate inference, for instance, through composite likelihoods (e.g., Bai et al., 2014;
Kazianka, 2013; Kazianka and Pilz, 2010). In practice, spatial copula modeling typically turns to a Gaussian copula that
provides simplicity in specifying spatial dependence (e.g., Han andDeOliveira, 2016;Madsen, 2009). The spatial Gaussian
copula model (SGCM) has joint pmf

p(y1, … , yn) =

Φ−1(F1(y1))

∫

Φ−1(F1(y1−1))

…

Φ−1(Fn(yn))

∫

Φ−1(Fn(yn−1))

N(z1, … , zn | 0,𝚺) dz1 · · · dzn, (2)

whereΦ is the cdf of the standard Gaussian distribution, and the covariance matrix 𝚺 corresponds to a Gaussian process
for the latent vector (z1, … , zn), with zi = Φ−1(Fi(yi)). The joint pmf in (2) is more amenable to computation, although
in general it still requires efficient approximations of a high-dimensional multivariate Gaussian integral (Han & De
Oliveira, 2019), limiting the applicability of this class of models.

This article introduces a new class of spatial models for discrete geostatistical processes, along with a Bayesian frame-
work for inference and prediction. This class is a discrete analogue of the nearest-neighbor mixture process (NNMP;
Zheng et al., 2023), and is referred to as discrete NNMP. In general, multivariate discrete distributions are not as tractable
as certain families of multivariate continuous distributions, in particular, the Gaussian family. This is the fundamental
difficulty of process-based modeling for discrete geostatistical data. Both the SGLMM and SGCM resort to specifying spa-
tial dependence through the latent vector (z1, … , zn). Our methodology overcomes this difficulty by representing the
joint pmf with respect to a fixed directed acyclic graph (DAG), that is,

p(y1, … , yn) = p(y1)
n∏

i=2
p(yi | yNe(i)),

where yi is associated with vertex i in the DAG, and yNe(i) corresponds to vertices j that have directed edges to i in the DAG,
interpreted as the spatial nearest-neighbors of yi. Factorization of the joint pmf according to a DAG implies conditional
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independence, taking advantage of the local relationship between spatial locations. Spatial dependence for (y1, … , yn)
is introduced with appropriate models for the conditional pmfs p(yi | yNe(i)). The discrete NNMP defines p(yi | yNe(i)) as
a mixture of conditional pmfs with spatially-dependent weights, such that each local conditional pmf depends on one
element of yNe(i). This reduces specification of a multivariate pmf p(y1, … , yn) to that of bivariate pmfs that define the
local conditional pmfs.

The primary goal of this article is the development of a copula-based modeling framework that provides generality to
construct NNMPs given a discrete family for the marginal pmfs. We note that the copula approach considered in Zheng
et al. (2023) does not apply to the discrete case. In fact, when the data are discrete, modeling and inference with general
copulas present challenges (Genest & Nešlehová, 2007). Extra development is typically required for flexible modeling
and efficient inference; see, for example, Panagiotelis et al. (2012), Smith and Khaled (2012), and Yang et al. (2020).
Here, we carefully investigate the approach of using copulas to specify the bivariate pmfs of the NNMP. The resulting
class of discrete copula NNMPs offers a new modeling tool for geostatistical discrete data. We show that the joint pmf
p(y1, … , yn) can be expressed using a collection of bivariate copulas and marginals, providing interpretability for model
construction using different families of copulas. Our approach allows for the use of general bivariate copula families,
which enhances model flexibility and enables the description of complex spatial dependencies. This feature compares
favorably with the SGLMM that relies on a Gaussian process for the latent vector (z1, … , zn), and with spatial copula
models that are generally restricted to elliptical copulas, such as the SGCM in (2).

Regression modeling for discrete data differs from that for continuous data; common approaches such as additive or
multiplicative models to include covariates are in general not available for discrete data. A further goal of this article is an
extension of the first-order strict stationarity result in Zheng et al. (2023). The extension is key for discrete NNMPs, provid-
ing a constructive approach to develop models with spatially varying marginal pmfs pi(yi). Hence, discrete NNMPs offer
direct, process-based modeling of spatial dependence, while at the same time, they allow for incorporation of continuous
or discrete covariates through the marginal distributions.

The discreteNNMPalso offers advantages regarding computation. Directmodeling of the spatial dependence bypasses
the need to work with a high-dimensional, correlated latent vector, which is unavoidable with SGLMMs. The structured
mixture formulation of theNNMP requires only 4nL bivariate copula function evaluations for the joint pmf, where L is the
number of mixture components. Since L ≪ n, the numerical evaluation grows linearly in n. This results in a substantially
lower computational cost, comparedwith the 2n n-dimensional copula evaluations in (1), andwith the 2n(n − 1) bivariate
copula evaluations using the composite likelihood approach. For efficient computation of discrete NNMPs for large data
sets, we use uniform random variables to transform discrete variables into continuous ones. The proposed approach
leverages the properties of wide families of copulas for continuous random vectors, and facilitates efficient estimation
and prediction. We show through a simulation study that, compared with the popular SGLMM method, this approach
yields reliable posterior inference at a much lower computational cost.

The article is organized as follows. In Section 2, we introduce NNMPs for discrete data, with copula-based discrete
NNMPs developed in Section 3. Section 4 presents the Bayesian model formulation for inference, validation, and predic-
tion, followed by illustration with synthetic and real datasets in Section 5. Finally, Section 6 concludes with a summary
and discussion.

2 NNMP MODELS FOR DISCRETE DATA

2.1 Modeling framework

Consider a univariate, discrete-valued spatial process Y (v) indexed by v ∈  ⊂ Rp, for p ≥ 1. Let  = (s1, … , sn) be a
reference set, where si ∈ , for i = 1, … ,n. We treat the set of locations in as vertices of a fixed DAG, where each vertex
si is associated with random variable Y (si). Equipped with the DAG, we can express the joint pmf p(y ) as

p(y

) = p(y(s1))

n∏

i=2
p(y(si) | yNe(si)), (3)

where y

= (y(s1), … , y(sn))⊤, and Ne(si) ⊂ {s1, … , si−1} is the set of vertices that have directed edges to si. The vector

yNe(si) consists of random variables associated with Ne(si). Typically, the elements of Ne(si) are selected according to a
specified distance function. In this article, the set Ne(si) contains the first iL elements in {s1, … , si−1} that are closest to si
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with respect to Euclidean distance, where iL = (i − 1) ∧ L. The elements in Ne(si) are ordered in ascending order, denoted
as Ne(si) = (s(i1), … , s(i,iL)).

For continuous-valued spatial processes, expression (3) has been explored for fast likelihood computation
(e.g., Katzfuss and Guinness, 2021; Vecchia, 1988), by viewing (3) as an approximation to the joint density of a Gaus-
sian process realization. Datta et al. (2016) posit a parent Gaussian process, extending (3) to a nearest-neighbor Gaussian
process by using the parent process to derive the conditionals in (3). Since the joint density under these models can be
regarded as a factorization according to a DAG, they are often referred to as DAG-based models that provide scalabil-
ity; see, for example, Peruzzi et al. (2022) and Jin et al. (2023) for some recent developments. Instead of treating the
right-hand-side of (3) as an approximation, Zheng et al. (2023) use it as a direct model for p(y


). Focusing on continuous

data, the NNMP of Zheng et al. (2023) defines the conditionals in (3) with a structured mixture, which provides a general
strategy to construct non-Gaussian spatial processes.

In this section, we extend the NNMP approach for discrete data. Before we proceed with details, we note that the
factorization in (3) requires an ordering on the locations as they are not naturally ordered. Hereafter, we adopt a random
ordering. For the data examples considered in Section 5, we found no discernible differences in model performance with
two different random orderings. In fact, when it comes to prediction at a location outside  , the effect of the ordering
disappears; nearest neighbors of such a location are a subset of y


, based on the model formulation given below.

Constructing a discrete NNMP involves two steps. The first step consists of defining the joint pmf p(y

) by modeling

the conditional pmf in (3) as

p(y(si) | yNe(si)) =
iL∑

l=1
wl(si) fsi,l(y(si) | y(s(il))), (4)

where wl(si) ≥ 0 for every si ∈  and for all l, and
∑iL

l=1wl(si) = 1.
There are two model elements in (4) that describe spatial variability: the mixture component pmfs fsi,l, and the

weights wl(si). We defer the specification of the pmfs fsi,l to the next section where the use of bivariate copulas is
introduced as a general strategy. The weights are defined as increments of a logit Gaussian cdf Gsi , that is, wl(si) =
Gsi(rsi,l) − Gsi(rsi,l−1), for l = 1, … , iL. Here, 0 = rsi,0 < rsi,1 < … < rsi,iL−1 < rsi,iL = 1 are random cutoff points such that
rsi,l − rsi,l−1 = k′(si, s(il))∕

∑iL
l=1k

′(si, s(il)), for some bounded kernel k′ ∶  × → [0, 1]. Convenient choices for k′ are
kernels that compute the correlation between two points. The underlying Gaussian distribution for Gsi has mean
𝜇(si) = 𝛾0 + 𝛾1si1 + 𝛾2si2, and variance 𝜅

2. This formulation allows for spatial dependence among the weights through
𝜇(si). Also, the random cutoff points can flexibly reflect the neighbor structure of si. We refer to Zheng et al. (2023) for
additional details of the model for the weights.

The second step completes the construction of a valid stochastic process over  by extending (4) to an arbitrary
finite set of locations outside  , denoted as  = (u1, … ,ur), where  ⊂  ⧵  . In particular, we define the pmf of y



conditional on y

as

p(y


| y

) =

r∏

i=1
p(y(ui) | yNe(ui)) =

r∏

i=1

L∑

l=1
wl(ui) fui,l(y(ui) | y(u(il))), (5)

where the weights and conditional pmfs are defined analogously to Equation (4), and the points (u(i1), … ,u(iL)) in Ne(ui)
are the first L locations in  that are closest to ui.

Given (4) and (5), a discrete-valued spatial process over is well defined. For any finite set ⊂  that is not a subset of
 , the joint pmf over  is obtained by marginalizing p(y


| y


)p(y


) over y

⧵ , where =  ⧵  . Practically, Equations
(4) and (5) serve different purposes. The reference set  is often reserved for observed data, so model estimation is based
on (4), while spatial prediction at new locations outside the reference set relies on (5). Henceforth, we use

p(y(v) | yNe(v)) =
L∑

l=1
wl(v) fv,l(y(v) | y(v(l))), (6)

to characterize discrete NNMPs, where v is a generic location in. The neighbor set Ne(v) contains the first L locations in
 that are closest to v.We place these locations in ascending order according to distance, denoted asNe(v) = (v(1), … , v(L)).

Finally, we note that the discrete NNMP involves selecting the neighborhood size L. Our prior model for the spatially
varyingweights supports the strategy of using an over-specifiedL that gives a large neighbor set, with important neighbors
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assigned large weights a posteriori. For specific data examples, a sensitivity analysis for L can be further carried out to
find an optimal L according to standard model comparison metrics or scoring rules. This is illustrated with the real data
application; see Section 5.3 and the Supporting Information.

2.2 Model construction with spatially varying marginals

The key ingredient in constructing discrete NNMPs lies in the specification of the mixture component conditional pmfs
fv,l. There aremany avenues to specify fv,l. As each conditional pmf corresponds to a bivariate randomvector, say (Uv,l,Vv,l),
our strategy is to model fv,l through its bivariate pmf, denoted as fUv,l,Vv,l . Let fUv,l and fVv,l be themarginal pmfs of (Uv,l,Vv,l),
such that fv,l ≡ fUv,l|Vv,l = fUv,l,Vv,l∕fVv,l . The benefits of this strategy are twofold. First, it simplifies the multivariate depen-
dence specification by focusing on the bivariate random vectors (Uv,l,Vv,l). The multivariate dependence will be induced
by bivariate distributions through the model’s mixture formulation. Second, the strategy allows for the construction of
models with a pre-specified family of marginal distributions, facilitating the study of local variability. For example, it is
common in discrete geostatistical data modeling to include covariates through the (transformed) mean of the marginal
distribution.

The second feature of this strategy relies on an extension of the first-order strict stationarity result from Zheng
et al. (2023). Based on that result, an NNMP has stationary marginal pmf fY if fUv,l = fVv,l = fY , for all v and all l. Here, we
generalize the result such that discrete NNMPs can be built from pre-specified spatially varying marginal pmfs gv, where
gv is the marginal pmf of Y (v). The generalization of the stationarity proposition applies to all NNMPs. For the interest of
this article, we summarize the result in the following proposition for discrete NNMPs.

Proposition 1. Consider a discrete NNMP model for spatial process {Y (v) ∶ v ∈ }, and a collection of
spatially varying pmfs {gv ∶ v ∈ }. If, for each v, the marginal pmfs of the mixture component bivariate dis-
tributions are such that fUv,l = gv and fVv,l = gv(l) , the discrete NNMP has marginal pmf gv for Y (v), for every
v ∈ .

A natural example for {gv ∶ v ∈ } is a family of distributions with (at least) one of its parameters indexed in space,
that is, gv(⋅) ≡ g(⋅ | 𝜃(v), 𝝃), in particular, through spatially varying covariates. Using a link function for 𝜃(v), we can
include such covariates that provide additional spatially referenced information. A more general example involves par-
titioning the domain into several regions, where in each region, gv is associated with a different family of marginal
distributions. A relevant application is estimation of the abundance of a species that shows overdispersion in most areas,
but underdispersion in areas where the species is less prevalent (Wu et al., 2015). Overall, Proposition 1 provides flexibility
for construction of discrete-valued spatial models with specific marginal pmfs.

We develop next a key component of the methodology, that is, discrete copula NNMP model construction and infer-
ence. Given a family of marginal pmfs gv, we create spatial copulas for random vectors (Uv,l,Vv,l). We begin with copulas
for a set of base random vectors (Ul,Vl), and extend them to be spatially dependent bymodeling the copula parameter that
controls the dependence structure as spatially varying. Together with Proposition 1, this strategy allows for construction
of discrete NNMPs with marginal pmfs in general families.

3 DISCRETE COPULA NNMP MODELS

3.1 Copula functions

A bivariate copula function C ∶ [0, 1]2 → [0, 1] is a distribution function whose marginals are uniform distributions on
[0, 1]. Following Sklar (1959), given a random vector (Z1,Z2) with joint probability distribution F and marginals F1 and
F2, there exists a copula function C such that F(z1, z2) = C(F1(z1),F2(z2)). If F1 and F2 are continuous, C is unique. In this
case, the copula density is c(z1, z2) = 𝜕C(F1(z1),F2(z2))∕(𝜕F1𝜕F2), and the joint density is f (z1, z2) = c(z1, z2)f1(z1)f2(z2),
where f1 and f2 are the densities of F1 and F2, respectively.

If both marginals are discrete, the copula C is only unique on the set Ran(F1) × Ran(F2), where Ran(Fj) consists of all
possible values of Fj, j = 1, 2 (Joe, 2014). Nevertheless, if C is a copula and F1 and F2 are discrete distribution functions,
then F(z1, z2) = C(F1(z1),F2(z2)) is a valid joint distribution; in practice, we select a parametric family for C (Panagiotelis
et al., 2012; Smith andKhaled, 2012; Song et al., 2009). Note that, in contrast with the continuous case, when themarginals
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are discrete, some popular dependence measures, such as Kendall’s 𝜏, will depend on the marginals (Denuit and Lam-
bert, 2005; Genest andNešlehová, 2007). Consequently, the Kendall’s 𝜏 of the randomvector (Z1,Z2)will not be equivalent
to the Kendall’s 𝜏 of the copula. Without loss of generality, hereafter, we assume the bivariate copula carries a single
parameter.

3.2 Copula NNMPs for discrete geostatistical data

Here, we introduce copula NNMPs with discrete marginals, with focus on using copulas to specify the bivariate distribu-
tions of the mixture components. Dropping the dependence on l for clarity, consider a random vector (U,V)with discrete
marginal distributions FU ,FV , and marginal pmfs fU , fV . Let au = FU(u − 1) and bu = FU(u). Analogous definitions of av
and bv apply for V . The joint pmf fU,V of (U,V) is obtained by finite differences,

fU,V (u, v) = C(bu, bv) − C(bu, av) − C(au, bv) + C(au, av). (7)

Let c(u, v) = fU,V (u, v)∕(fU(u)fV (v)), such that fU,V (u, v) = c(u, v)fU(u)fV (v), using a notation that is analogous to that of the
joint density when (U,V) is continuous. Therefore, the conditional pmf, fU|V (u | v) = c(u, v)fU(u).

To specify the distribution of base random vector (Ul,Vl), we use copula Cl with parameter 𝜂l. For a parsimonious
location-dependent model, we create spatially varying copulas Cv,l on (Uv,l,Vv,l) by extending 𝜂l to 𝜂l(v). In practice, we
associate 𝜂l(v) to a spatial kernel that depends on v ∈  through a link function. Using Proposition 1 with a family of
marginal pmfs gv, the joint pmf on (Uv,l,Vv,l) is fUv,l,Vv,l(u, v) = cv,l(u, v)fUv,l(u)fVv,l(v), where fUv,l = gv and fVv,l = gv(l) , and the
conditional pmf is fv,l(u | v) = cv,l(u, v)gv(u). Finally, the conditional pmf of the discrete copula NNMP model is given by

p(y(v) | yNe(v)) =
L∑

l=1
wl(v) cv,l(y(v), y(v(l))) gv(y(v)), (8)

where the marginal pmf for Y (v) is gv.
Recall that an NNMP model involves two sets of locations, the reference and nonreference sets. As done in practice,

we take the reference set  to correspond to the observed locations, and consider a generic finite set such that  ∩ =
∅. Then, the joint pmf p(y


) over set  =  ∪ describes the NNMP distribution over any finite set of locations that

includes the observed locations. In general, for a discrete NNMP, an explicit expression for p(y

) is not available, since

working with a bivariate discrete distribution and its conditional pmf is difficult. However, using copulas to specify the
bivariate mixture component yields a structured conditional pmf and allows for the study of the joint pmf. The following
proposition provides an explicit expression for p(y


) under a discrete copula NNMP. The proof of the proposition can be

found in the Supporting Information.

Proposition 2. Consider a discrete copula NNMP model for spatial process {Y (v) ∶ v ∈ }, with  =
{s1, … , sn} and  = {u1, … ,um}, where n ≥ 3, m ≥ 1, and  ∩ = ∅. Take  =  ∪ , and let y


=

(y(s1), … , y(sn), y(u1), … , y(um))⊤. Then the joint pmf of y is p(y ) = p(y


| y

) p(y


), where

p(y

) =

n∏

i=1
gsi(y(si))

nL∑

ln=1
…

2L∑

l2=1
wsn,ln … ws2,l2csn,ln … cs2,l2 ,

p(y


| y

) =

m∏

i=1
gui(y(ui))

L∑

̃lm=1

…
L∑

̃l1=1

wum,̃lm … wu1,̃l1cum,̃lm … cu1,̃l1 .

(9)

where wsi,li ≡ wli(si) and csi,li ≡ csi,li (y(si), y(s(i,li))), for li = 1, … , iL, i = 3, … ,n, and wui,̃li ≡ w̃li(ui) and cui,̃li ≡
cui,̃li(y(ui), y(u(i,̃li))), for

̃li = 1, … ,L, i = 1, … ,m.

We note that Proposition 2 also applies when y

is continuous. It indicates that, given the sequence of pmfs gv, the

joint pmf of y

is determined by the collection of bivariate copulas, motivating the use of different copula families to

construct discrete NNMPs. To balance flexibility and scalability, our strategy is to take all copulas Cl in one family with
the same link function for the copula parameters. Table 1 presents three examples with copula parameters modeled via
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ZHENG et al. 7 of 16

TABLE 1 Examples of spatial copulas Cv,l and corresponding link functions, k ∶  × → [0, 1].

Cv,l(z1, z2) Link function

Gaussian Φ2(Φ−1(z1), Φ−1(z2)) 𝜌l(v) = k(v, v(l))

Gumbel exp(−{(− log z1)𝜂l(v) + (− log z2)𝜂l(v)}1∕𝜂l(v)) 𝜂l(v) = (1 − k(v, v(l)))−1

Clayton (z−𝛿l(v)1 + z−𝛿l(v)2 − 1)−1∕𝛿l(v) 𝛿l(v) = 2k(v, v(l))∕(1 − k(v, v(l)))

Note: The bivariate cdf Φ2 corresponds to the standard bivariate Gaussian distribution with correlation 𝜌 ∈ (0, 1), and the cdf Φ corresponds to the standard
univariate Gaussian distribution.

a link function k ∶  × → [0, 1]. In particular, the Gumbel and Clayton copulas are asymmetric. They exhibit greater
dependence in the positive and negative tails, respectively. In the first simulation example, we demonstrate that when the
underlying spatial dependence is non-Gaussian, it may be appropriate to choose asymmetric copulas. We present next an
example of a discrete copula NNMP construction.

Example 1. Gaussian copula NNMP with negative binomial marginals. For the family of marginal pmfs
gv, consider the negative binomial distribution with mean 𝛼(v) and dispersion parameter r, denoted as
NB(𝛼(v), r). Therefore, gv(y) =

(
y+r−1
y

)
(p(v))r(1 − p(v))y, with p(v) = r∕(𝛼(v) + r). To include a vector of

covariates x(v), we take a log-link function for 𝛼(v) such that log(𝛼(v)) = x(v)⊤𝜷, where 𝜷 is a vector of regres-
sion parameters. We first specify Gaussian copulas Cl with correlation parameters 𝜌l for the base random
vectors (Ul,Vl). We then modify the correlation parameters 𝜌l using a correlation function k for all l such that
𝜌l(v) ∶= k(v, v(l)), creating a sequence of spatially varying copulasCv,l. The resultingmodel is given by (8) with
gv = NB(𝛼(v), r).

In summary, as shown in Example 1, the construction of a discrete copula NNMP requires specification of a family of
spatial copulas and that of marginal pmfs. More examples with different families of copulas and marginals are illustrated
in Section 5.

3.3 Inference for discrete copula NNMPs

Wedevelop a framework for discrete copulaNNMP inference, based on transforming the discrete randomvariables to con-
tinuous ones by adding auxiliary variables, using the continuous extension (CE) approach in Denuit and Lambert (2005).
Working with continuous marginals improves computational efficiency and stability: the likelihood requires only nL
bivariate copula density evaluations; and, computing the conditional pmf using the finite differences in (7) is bypassed,
thus avoiding numerical instability especially for copulas that are not analytically available, such as the Gaussian cop-
ula. Moreover, this framework makes more efficient the key task of spatial prediction over unobserved sites by avoiding
computation that involves inverting the conditional cdf based on (7).

We associate each Y (v) with a continuous random variable Y∗(v), such that Y∗(v) = Y (v) − O(v), where O(v) is a
continuous uniform random variable on (0, 1), independent of Y (v) and of O(v′), for v′ ≠ v. We refer to Y∗(v) as the
continued Y (v) by O(v). Let Qv and gv be the marginal cdf and pmf of Y (v), respectively. Then, the marginal cdf and
density of Y∗(v) are Q∗

v(y∗(v)) = Qv([y∗(v)]) + (y∗(v) − [y∗(v)])gv([y∗(v) + 1]), and g∗v(y∗(v)) = gv([y∗(v) + 1]), respectively,
where [x] denotes the integer part of x.

Based on marginal densities g∗v , we take spatial copulas C∗
v,l = Cv,l for continuous random vectors (U∗

v,l,V
∗
v,l), with

marginals fU∗
v,l
= g∗v and fV∗

v,l
= g∗v(l) , using copulas Cv,l from the original NNMP model. The joint density on (U∗

v,l,V
∗
v,l) is

fU∗
v,l,V

∗
v,l
(u, v) = c∗v,l(u, v)g

∗
v(u)g∗v(l) (v), and the conditional density is f

∗
v,l(u | v) = c∗v,l(u, v)g

∗
v(u), where c∗v,l is the copula density.

Denote by y∗Ne(v) the vector that contains the continued elements of yNe(v), and oNe(v) the vector of auxiliary variables for
elements of yNe(v). Then, the implied model on y∗(v) is

p(y∗(v) | D∗(v)) =
L∑

l=1
wl(v) c∗v,l(y

∗(v), y∗(v(l))) g∗v(y∗(v)), (10)

where y∗(v) = y(v) − o(v), andD∗(v) = {y∗Ne(v), o(v), oNe(v)}. Based on Proposition 1, model (10) has marginal density g
∗
v for

Y∗(v). To recover y(v), we first generate y∗(v) from the extended model, and then set y(v) = [y∗(v) + 1].
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8 of 16 ZHENG et al.

We note that our approach to continuous extension may appear to be similar to that for SGCMs (e.g., Hughes, 2015;
Madsen, 2009) in which the CE is used for the data marginals with a single multivariate copula. However, unlike the
SGCM, the discrete NNMP consists of many bivariate copulas. Each bivariate copula is associated with a mixture compo-
nent vector whose marginals are location-dependent. Thus, the result of Proposition 1 is key both for modeling purposes
as well as for inference for discrete copula NNMPs, using the CE approach.

Regarding the existing literature, statistical inference for spatial copula models based on the CE approach is
typically conducted by maximizing the expected likelihood with respect to the auxiliary variables. As discussed in
Hughes (2015), the expectation involves a potentially high-dimensional integral which requires Monte Carlo approxi-
mation; for particular models, the Monte Carlo sample size that determines the approximation error can also depend
on the spatial dependence among the data. We develop inferential methods under the Bayesian framework. The
Bayesian approach builds from the joint distribution of the data and auxiliary variables. This avoids the challenging
task of specifying the Monte Carlo sample size to obtain a good approximation to the expectation, required under
the maximum likelihood estimation approach. Moreover, posterior simulation based on (10) takes advantage of cop-
ula properties for continuous random variables, thus providing efficient computation for both model estimation and
prediction.

4 BAYESIAN IMPLEMENTATION

4.1 Hierarchical model formulation

Assume that y

= (y(s1), … , y(sn))⊤ is a realization of a discrete copula NNMP with spatially varying marginal pmfs

through spatially dependent covariates, gsi(y(si)) ≡ g(y(si) | 𝜷, 𝝃). Here, 𝜷 = (𝛽0, 𝛽1, … , 𝛽p)⊤, where 𝛽0 is an intercept and
(𝛽1, … , 𝛽p)⊤ is the regression parameter vector for covariates x(si), and 𝝃 collects all other parameters of gsi . The copula
parameter is modeled through a link function k with parameter(s) 𝝓.

We use the CE approach associating each y(si) with y∗(si), such that y∗(si) = y(si) − oi, where oi ≡ o(si) is uniformly
distributed on (0, 1), independent of y(si) and of oj, for j ≠ i. Moreover, denote by 𝜻 the parameter of the cutoff point kernel
for the mixture weights, defined in Section 2.1.

The formulation of the mixture weights allows us to augment the model with a sequence of auxiliary variables,
{ti ∶ i = 3, … ,n}, where ti is a Gaussian random variable with mean 𝜇(si) and variance 𝜅2. The augmented model for
the data can be expressed as

y(si) = y∗(si) + oi, oi
i.i.d.∼ Unif(0, 1), i = 1, … ,n,

y∗(s1) | 𝜷, 𝝃 ∼ g∗s1(y
∗(s1)), y∗(s2) | y∗(s1), 𝜷, 𝝃,𝝓 ∼ f ∗s2,1(y

∗(s2) | y∗(s1)),

y∗(si) | {y∗(s(il))}iLl=1, ti, 𝜷, 𝝃,𝝓, 𝜻
ind.∼

iL∑

l=1
f ∗si,l(y

∗(si) | y∗(s(il))) 1(r∗si ,l−1,r
∗
si ,l

)(ti), i = 3, … ,n,

ti | 𝜸, 𝜅2
ind.∼ N(ti | 𝛾0 + 𝛾1si1 + 𝛾2si2, 𝜅2), i = 3, … ,n,

where f ∗si,l(y
∗(si) | y∗(s(il))) = c∗si,l(y

∗(si), y∗(s(il)))g∗si(y
∗(si)), and r∗si,l = log{rsi,l∕(1 − rsi,l)}, for l = 1, … , iL, and i = 3, … ,n.

The full Bayesian model is completed with prior specification for parameters 𝜷, 𝝃,𝝓, 𝜻 , 𝜸 = (𝛾0, 𝛾1, 𝛾2)⊤ and 𝜅

2. The
priors for 𝝃, 𝝓, and 𝜻 depend on the choices of the pmf gsi , the copula C

∗
si,l
, and the kernel k′, respectively. For parameters

𝜷, 𝜸, and 𝜅

2, we consider N(𝜷 | 𝜇𝜷 ,V𝜷), N(𝜸 | 𝜇𝜸 ,V𝜸), and IG(𝜅2 | u𝜅2 , v𝜅2) priors, where IG denotes the inverse gamma
distribution. We obtain the joint posterior distribution given by

p(𝜷, 𝝃,𝝓, 𝜻 , 𝜸, 𝜅2, {ti}ni=3, {oi}
n
i=1 | y ) ∝ N(𝜷 | 𝝁

𝛽

,V
𝛽
) × p(𝝃) × p(𝝓) × p(𝜻) × N(𝜸 | 𝝁𝜸 ,V𝜸)

× IG(𝜅2 | u
𝜅
2 , v

𝜅
2) × N(t | D𝜸, 𝜅2In−2)) ×

n∏

i=1
Unif(oi | 0, 1) × g∗s1(y(s1) − o1 | 𝜷, 𝝃)

× f ∗s2,1(y(s2) − o2 | y(s1) − o1, 𝜷, 𝝃,𝝓) ×
n∏

i=3

iL∑

l=1
f ∗si,l(y(si) − oi | y(s(il)) − o(il), 𝜷, 𝝃,𝝓)1(r∗si ,l−1,r

∗
si ,l

)(ti),
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ZHENG et al. 9 of 16

where p(𝜻), p(𝝓), and p(𝜻) are priors on 𝜻 , 𝝓, 𝜻 , respectively, o(il) ≡ o(s(il)), the vector t = (t3, … , tn)⊤, and the matrixD is
(n − 2) × 3 such that the ith row is (1, s2+i,1, s2+i,2).

4.2 Model estimation, validation, and prediction

We outline theMCMC sampler for parameters (𝜷, 𝝃,𝝓, 𝜻 , 𝜸, 𝜅2), and latent variables {ti}ni=3 and {oi}
n
i=1. We note that there

is a set of configuration variables {𝓁i}ni=3 in one-to-one correspondence with ti, that is, 𝓁i = l if and only if ti ∈ (r∗si,l−1, r
∗
si,l
),

for l = 1, … , iL.
The updates for parameters 𝜷, 𝝃, and 𝝓 require Metropolis steps, since they enter in copula densities c∗si,l. We use

a Metropolis step also for kernel k′ parameter 𝜻 , which is involved in the definition of the mixture weights. The pos-
terior full conditional distribution of 𝜸 is N(𝜸 | 𝝁∗

𝜸 ,V∗
𝜸), where V∗

𝜸 = (V−1
𝜸 + 𝜅

−2D⊤D)−1 and 𝝁∗
𝜸 = V∗

𝜸(V−1
𝜸 𝝁𝜸 + 𝜅

−2D⊤t).
An inverse gamma prior for 𝜅

2 yields conjugate posterior full conditional distribution IG(𝜅2 | u
𝜅
2 + (n − 2)∕2, v

𝜅
2 +∑n

i=3(ti − 𝜇(si))2∕2).
Regarding the updates for latent variables, the posterior full conditional distribution for each ti can be expressed

as
∑iL

l=1ql(si) TN(ti | 𝜇(si), 𝜅
2; r∗si,l−1 < ti ≤ r∗si,l), for i = 3, … ,n, where TN denotes the truncated normal distri-

bution over the indicated interval, and ql(si) ∝ wl(si) c∗si,l(y
∗(si), y∗(s(il))), for l = 1, … , iL. Hence, each ti can be

readily updated by sampling from the lth truncated normal with probability proportional to ql(si). For variables
oi, the posterior full conditional distribution of o1 is proportional to

∏
{j∶s(j,𝓁j)=s1}

c∗sj,𝓁j (y(sj) − oj, y(s1) − o1),
and that of oi, i ≥ 2, is proportional to c∗si,𝓁i(y(si) − oi, y(s(i,𝓁i)) − o(i,𝓁i))

∏
{j∶s(j,𝓁j)=si}

c∗sj,𝓁j (y(sj) − oj, y(si) − oi), where
𝓁2 = 1 and o(i,𝓁i) ≡ o(s(i,𝓁i)). We update each oi with an independent Metropolis step with a Unif(0, 1) proposal
distribution.

The likelihood of the continued model admits the form gs1(y
∗(s1))

∏n
i=2p(y∗(si) | D∗(si)). The product formulation

allows for model validation, using a generalization of the randomized quantile residuals proposed by Dunn and
Smyth (1996) for independent data. Specifically, we define the marginal quantile residual, r1 = Φ−1(Q∗

s1(y
∗(s1))), and the

ith conditional quantile residual, ri = Φ−1(F(y∗(si) | D∗(si))), i = 2, … ,n, where F is the conditional cdf of y∗(si). If the
model is correctly specified, the residuals ri, i = 1, … ,n, would be independent and identically distributed as a standard
Gaussian distribution.

Finally, we turn to posterior predictive inference at a new location v0. If v0 ∉  , for each posterior sample, we first
compute the cutoff points rv0,l, such that rv0,l − rv0,l−1 = k′(v0, v(0l))∕

∑L
l=1k′(v0, v(0l)), and the weights wl(v0) = Gv0(rv0,l) −

Gv0(rv0,l−1), for l = 1, … ,L. We then generate y∗(v0) based on (10), and set y(v0) = [y∗(v0) + 1]. If v0 ≡ si ∈  , we generate
y(v0) similarly, the difference being that we now use the posterior samples for the mixture weights obtained from the
MCMC algorithm.

5 DATA ILLUSTRATIONS

To illustrate the proposed methodology, we present two synthetic data examples and a real data analysis. The goal of the
first simulation experiment is to investigate the flexibility of discrete copula NNMPs, using different copula functions to
define the NNMP mixture components. In the second experiment, we demonstrate the inferential and computational
advantages of our approach for count data modeling, compared to SGLMMs. Implementation details for the models are
provided in the Supporting Information. Since our purpose is primarily demonstrative, we took L = 10 for the simulation
experiments. A comprehensive sensitivity analysis for L was conducted for the real data application of Section 5.3, with
details provided in the Supporting Information.

In both simulated data examples, we ran the MCMC algorithm for each copula NNMP model for 20,000 iterations,
discarding the first 4000 iterations, and collecting posterior samples every four iterations. The SGLMM models were
implemented using the spBayes package in R (Finley et al., 2007); we ran the algorithm for 40,000 iterations and collected
posterior samples every five iterations, with the first 20,000 as burn-in.

We compare models based on parameter estimates, root mean squared prediction error (RMSPE), 95% credible inter-
val width (95% CI width), 95% credible interval coverage rate (95% CI cover), continuous ranked probability score
(CRPS; Gneiting and Raftery, 2007), energy score (ES; Gneiting and Raftery, 2007), and variogram score of order one
(VS; Scheuerer and Hamill, 2015). The energy score is a multivariate extension of the CRPS, while the variogram score
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10 of 16 ZHENG et al.

examines pairwise differences of the components of the multivariate quantity. Both the ES and VS allow for comparison
of model predictive performance with respect to dependence structure.

5.1 First simulation experiment

We first generated sites over a regular grid of 120 × 120 resolution on a unit square domain, and then simulated data
from y(v) = F−1

Y (FZ(z(v))), where FY corresponds to the Poisson distribution with rate parameter 𝜆0 = 5, and z(v) is
the skew-Gaussian random field from Zhang and El-Shaarawi (2010) with stationary marginal distribution FZ. More
specifically, z(v) = 𝜎1 |𝜔1(v)| + 𝜎2 𝜔2(v), where both 𝜔1(v) and 𝜔2(v) are standard Gaussian processes with exponential
correlation function based on range parameter 0.1. The density of FZ is fZ(z) = 2 N(z | 0, 𝜎21 + 𝜎

2
2) Φ(𝜎1z∕(𝜎2

√
𝜎

2
1 + 𝜎

2
2)),

where 𝜎1 ∈ R controls the skewness, and 𝜎2 > 0 is a scale parameter. We took 𝜎2 = 1, and set 𝜎1 = 1, 3, 10 which
corresponds to different levels of skewness.

We considered three discrete copula NNMPs with stationary Poisson marginals, that is, gv = fY , for all v, where fY is
the Poisson pmf with rate 𝜆. The three models correspond to the copulas in Table 1, with the link function k given by an
exponential correlation function with range parameter denoted by 𝜙1, 𝜙2, and 𝜙3 for the Gaussian, Gumbel, and Clayton
copula models, respectively. We specified the cutoff point kernel through an exponential correlation function with range
parameter 𝜁1, 𝜁2, and 𝜁3 for the Gaussian, Gumbel, and Clayton copula models, respectively. The Bayesian models are
fully specified with an IG(3, 1) prior for the 𝜙 and 𝜁 parameters, and withN(𝜸 | (−1.5, 0, 0)⊤, 2I3) and IG(𝜅2 | 3, 1) priors.
Finally, the prior for the rate parameter 𝜆was taken as Ga(1, 1), where Ga(a, b) denotes the gamma distributionwithmean
a∕b. We simulated 1000 responses and used 800 of them to fit the three NNMP models. The remaining 200 observations
were used for model comparison.

Table 2 provides estimates for the rate parameter 𝜆 of the Poisson marginal distribution, and predictive performance
metrics. For all three cases for 𝜎1 = 1, 3, 10, the Gumbel model yields the more accurate estimates for 𝜆. In particular,
the Gumbel model’s 95% credible intervals include the true parameter value, whereas those of the Gaussian and Clayton
models failed to cover it when 𝜎1 = 1 and 𝜎1 = 10, respectively. Regarding predictive performance, the Gumbel model
outperforms to a smaller or larger extent the other two models across different scenarios. Predictive random fields under
the three models are provided in the Supporting Information. We found that prediction by the Clayton model was not
able to recover large values. Compared to the Gaussian model, the Gumbel model recovered large values slightly better.
Overall, this example demonstrates that, when the underlying spatial dependence is driven by non-Gaussian processes, it
is practically useful to consider copulas from asymmetric families, including use of appropriate model comparison tools.

5.2 Second simulation experiment

We generated data over a grid of sites with 120 × 120 resolution, uniformly on the square [0, 1] × [0, 1], using a
Poisson SGLMM with y(v) | 𝜂(v) ∼ Pois(𝜂(v)), and log(𝜂(v)) = 𝛽0 + v1𝛽1 + v2𝛽2 + z(v), where v = (v1, v2), and z(v) is a

TABLE 2 First simulation example: Posterior mean and 95% credible interval estimates for the rate parameter 𝜆 of the Poisson NNMP
marginal distribution, and scores for comparison of Gaussian, Gumbel, and Clayton copula NNMP models, under each of the three
simulation scenarios for 𝜎1.

𝝈1 = 1 𝝈1 = 3 𝝈1 = 10

𝝀 𝝀 𝝀

Gaussian 4.55 (4.16, 4.94) 4.71 (4.37, 5.07) 4.88 (4.55, 5.22)

Gumbel 4.78 (4.39, 5.21) 4.88 (4.56, 5.24) 4.94 (4.66, 5.23)

Clayton 5.33 (4.99, 5.68) 5.25 (4.96, 5.56) 5.36 (5.08, 5.65)

CRPS ES VS CRPS ES VS CRPS ES VS

Gaussian 0.69 12.77 94,855 0.85 15.54 124,893 0.93 16.98 138,592

Gumbel 0.69 12.58 92,278 0.85 15.32 120,932 0.92 16.71 134,774

Clayton 0.75 14.34 125,800 0.90 17.36 164,148 1.00 18.70 174,123
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ZHENG et al. 11 of 16

F I GURE 1 Second simulation example. Interpolated surfaces of the true model and posterior median estimates of the SGLMM-GP,
SGLMM-GPP, and NBNNMP models. (a) True y(v). (b) SGLMM-GP. (c) SGLMM-GPP. (d) NBNNMP.

zero-centeredGaussian process (GP)with variance parameter𝜎2 = 0.2 and an exponential correlation functionwith range
parameter 𝜙0 = 1∕12. We set the regression coefficients 𝜷 = (𝛽0, 𝛽1, 𝛽2)⊤ = (1.5, 1, 2)⊤, resulting in a random field with a
trend, as shown in Figure 1a.

We considered three models. The first is the negative binomial NNMP model (NBNNMP) with a Gaussian copula,
as discussed in Example 1. The second model (SGLMM-GP) is a Poisson SGLMM with a GP prior assigned to z(v).
For the last model (SGLMM-GPP), we considered a Poisson SGLMM with spatial random effects z(v) corresponding to
a Gaussian predictive process (GPP; Banerjee et al., 2008), with 10 × 10 knots placed on a grid over the domain. We
chose the number of knots such that the computing times for the SGLMM-GPP and NBNNMP models are similar. As
in the first simulation example, all models were fit to 800 observations and compared on the basis of 200 additional
observations.

The regression coefficients for all models were assigned mean-zero, dispersed normal priors. We worked with an
exponential correlation function for all models, used for 𝜌l(v) of the Gaussian copula in the NBNNMP model, and as the
correlation function for the GP and GPP in the SGLMMs. The range parameter was assigned an inverse gamma prior
IG(3, 1) for the NBNNMP model, and a uniform prior Unif(1∕30, 1∕3) for the other two models. The cutoff point kernel
of the NBNNMP was also specified an exponential correlation function, with an IG(3, 1) prior for the range parameter.
The variance parameter for the SGLMM models was assigned an inverse gamma prior IG(2, 1). For the logit Gaussian
distribution parameters 𝜸 and 𝜅2 of the NBNNMP, we used N((−1.5, 0, 0)⊤, 2I3) and IG(3, 1) priors, respectively. Finally,
we placed a Ga(1, 1) prior on the NBNNMP dispersion parameter r.
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TABLE 3 Second simulation example: Posterior mean and 95% credible interval estimates for the regression parameters, performance
metrics, and computing time, under the NBNNMP model and the two SGLMMmodels.

True NBNNMP SGLMM-GP SGLMM-GPP

𝛽0 1.5 1.61 (1.29, 1.97) 1.53 (1.22, 1.81) 1.41 (1.02, 1.73)

𝛽1 1 0.90 (0.51, 1.31) 0.70 (0.25, 1.15) 0.91 (0.43, 1.34)

𝛽2 2 1.94 (1.51, 2.32) 2.18 (1.91, 2.53) 2.25 (1.81, 2.84)

RMSPE - 9.06 8.88 10.00

95% CI cover - 0.98 0.97 0.78

95% CI width - 37.02 32.24 19.02

CRPS - 4.58 4.52 5.37

ES - 92.07 91.41 107.46

VS - 5,175,591 5,199,629 6,378,263

Time (min) - 11.18 935.02 11.68

Estimates of the regression parameters and performance metrics for out-of-sample prediction are provided in Table 3.
We observe that, overall, the NBNNMP model provided the more accurate estimation for 𝜷. Regarding predictive
performance, the NBNNMP model outperformed the SGLMM-GPP model by a large margin, and was comparable
to the SGLMM-GP model, which corresponds to the data generating process for this simulation experiment. More-
over, the last row of the table highlights the NBNNMP model’s huge gains in computing time compared to the
SGLMM-GP model.

Figure 1b–d plots the posterior median estimates of the random field for the three models. The SGLMM-GPP yields
an overly smooth estimate, whereas the SGLMM-GP and NBNNMP models provide similar estimates that approximate
well the true surface. Overall, this example illustrates the inferential and computational advantages of discrete copula
NNMPs for modeling count data.

5.3 North American Breeding Bird Survey data analysis

The primary source of information on population evolution for birds is count data surveys. Since 1966, the North Amer-
ican Breeding Bird Survey (BBS) has been conducted to monitor bird population change. There are over 4000 sampling
units in the survey, each with a 24.5-mile roadside route. Along each route, volunteer observers count the number of birds
by sight or sound, in a 3-min period at each of 50 stops (Pardieck et al., 2020). The BBS data are often used to determine
temporal or geographical patterns of relative abundance. Spatial maps of relative abundance are crucial for ecological
studies.

We are interested in the Northern Cardinal, a bird species that is prevalent in Eastern United States. Figure 2a
shows the number of birds observed in 2019, with the sizes of the circle radii proportional to the number of
birds at each sampling location. The dataset was extracted with the help of the R package bbsAssistant (Burnett
et al., 2019); it contains 1515 irregular sampling locations. From Figure 2a we observe that the counts tend to
increase as latitude decreases, and we thus take latitude as a covariate to account for the long range variability in the
population.

We considered the Gaussian copula NBNNMP model defined in Example 1, with spatially varying marginal
NB(exp(x(v)⊤𝜷), r), where 𝜷 = (𝛽0, 𝛽1)⊤. We used the same link functions and prior specifications as in Section 5.2. We
first examined model performance under different values of L. Overall, parameter estimates were quite robust. The esti-
mates of mixture weights suggested that the effective number of neighbors for each location was quite consistent for L
between 10 and 20. Also, there was no discernible differences for out-of-sample predictive performance. Therefore, we
took L = 20 as a reasonable upper bound. We also compared NBNNMP models with the three copulas listed in Table 1,
using the same link functions for copulas as in Section 5.1. The three models were evaluated based on their predictive
performance. Overall, the Gaussian copula outperformed the other two. Details of these analyses are provided in the
Supporting Information.
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ZHENG et al. 13 of 16

F I GURE 2 North American Breeding Bird Survey data analysis: (a) observed counts for 2019 BBS of Northern Cardinal, with circle
radius proportional to the observed counts; (b) median of the posterior predictive distribution for Northern Cardinal count; (c) 95% CI widths
of the posterior predictive distribution for Northern Cardinal count; (d) posterior mean of exp(x(v)⊤𝜷).

We proceeded to analyze the BBS data with the Gaussian copula NBNNMP model with L = 20. The posterior mean
and 95% credible interval estimates of the regression parameters 𝛽0 and 𝛽1 are 6.53 (5.61, 7.38) and −0.09 (−0.11,−0.06),
respectively, suggesting an increasing trend in the Northern Cardinal counts as the latitude decreases. The corre-
sponding estimates of the dispersion parameter r are 1.88 (1.55, 2.21), indicating that there is overdispersion over the
domain. Figure 2b,c show the posterior predictive median of the counts and the 95% posterior predictive credible
interval width, respectively. Figure 2b displays the domain’s spatial variability. The estimated uncertainty, as shown
in Figure 2c, is meaningful, as areas with high uncertainty correspond to those where the observed counts are quite
heterogeneous. Figure 2d provides a spatial map of the mean of the negative binomial marginals, which depicts a
North–South trend. Model checking results are shown in Figure 3, including a posterior summary of the Gaussian
quantile-quantile plot, and the histogram and spatial plot of the posterior means of the residuals. The results suggest good
model fit.

Finally, we compared the NBNNMP with the SGLMM-GP model (details are given in the Supporting Information).
The parameter estimates of 𝜷 were quite close under the two models. On the other hand, the NBNNMP model resulted
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F IGURE 3 North American Breeding Bird Survey data analysis. Randomized quantile residual analysis: (a) Dotted and dashed lines
correspond to the posterior mean and 95% interval bands, respectively; (b) solid and dashed lines are the standard Gaussian density and the
kernel density estimate of the posterior means of the residuals, respectively; (c) spatial plot of the posterior means of the residuals. (a)
Quantile-quantile plot. (b) Histogram.

in better out-of-sample predictive performance, and, notably, it was substantially more efficient to implement, with
computing time 110 times faster than that for the SGLMM-GP model.

6 DISCUSSION

We have introduced a new class of models for discrete geostatistical data, with particular focus on using different families
of bivariate copulas to build modeling and inference. Compared to traditional SGLMM methods, the proposed class of
models is scalable, and is able to accommodate complex dependence structures.

It is worth mentioning that the discrete copula NNMPs allow for the use of any family of bivariate copulas under a
simple model structure. This compares favorably to discrete vine copula models (Panagiotelis et al., 2012) where a mul-
tivariate pmf is decomposed into bivariate copulas under trees, which results in an approach that, in the spatial context,
would be muchmore complicated than the one proposed in this article. Furthermore, the computational burden for their
model likelihood evaluations grows quadratically in n.

This work considers the strategy of using a single copula family for all bivariate distributions. Exploring the alter-
native which builds from different copula families for the bivariate distributions remains an interesting question to
investigate. We can cast this as a model selection problem and develop algorithms to select models; see examples in
Panagiotelis et al. (2017) and Gruber and Czado (2018) in the context of regular vine copula models. Different cop-
ula families for bivariate distributions yield more flexibility for the model to capture complex dependence, albeit at
the cost of computational scalability. If the main purpose of the application is prediction, rather than model selec-
tion, one could explore calibrating the prediction using all candidate copula families. This could be done, for example,
with the pseudo Bayesian model averaging approach, where the weight for each model is estimated based on stacking
(Yao et al., 2018).

Regarding implementation, inference for discrete copula NNMPs is conducted based on the CE approach. This
approach may allow discrete copula NNMPs to make use of alternative algorithms for faster computation, which are cur-
rently being developed for continuous NNMP models. Moreover, with the CE approach, it is possible to develop a class
of NNMPs for a multivariate response that consists of both continuous and discrete components, while at the same time
retaining computational efficiency.

Finally, we remark on some general research directions. Discrete NNMPs provide direct spatial modeling of discrete
data. In fact, they can also be used for latent process modeling, for example, by introducing a latent process for the proba-
bility field for binary data or the intensity field for count data. This is similar to the commonuse of SGLMMs, the difference
being that discrete NNMPs assume conditionally dependent observations. For spatial classification problems (Berrett &
Calder, 2016), a comparison between the discrete NNMP and the SGLMM is of interest, in particular for recently pro-
posed SGLMMs that consider nearest-neighbor approaches for the latent process; see, for example, Saha et al. (2022). In
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this context, an interesting research direction is to explore different bivariate Bernoulli distributions (e.g., Dai et al., 2013)
to construct NNMPs, as an alternative to using copulas.
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