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Abstract. It is shown that when d > 3, the growing random surface generated by the (d + 1)-dimensional directed polymer model at
sufficiently high temperature, after being smoothed by taking microscopic local averages, converges to a solution of the deterministic
KPZ equation in a suitable scaling limit.

Résumé. On montre que quand d > 3, la surface aléatoire croissante engendrée par le modele de polymere dirigé (d + 1)-dimensionnel
a une température suffisamment haute, apres avoir été lissée en prenant des moyennes locales microscopiques, converge vers une
solution de I’équation de KPZ déterministe dans une limite d’échelle appropriée.
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1. The directed polymer model

Take any d > 1. Let B be a positive real number, let & = (§ +);cz., xeze be a collection of i.i.d. random variables and

let g : Z¢ — R be a function. The (d + 1)-dimensional directed polymer model at inverse temperature A, in the random
environment &, and initial condition g, defines a growing random surface f : Zs>¢ X 74 — R as follows. For any ¢ and
x, let Q(t, x) be the set of all nearest-neighbor paths in 74 of length ¢ that end at x. A typical element g € Q(z, x) is a
(t + 1)-tuple (g0, g1, - . ., q;) of elements of Z¢, where ¢; = x, and |g; —g; 11| = 1 for each i, where | - | denotes Euclidean
norm. Let (0, x) = g(x) for each x € 74, and fort € Z~oand x € 74, let

1 t
(1.1) f(r,x>=Elog[ > exp(ﬂg(qonﬂz{si,qiﬂ.

qeQ(t,x) i=1

The directed polymer model has a long and storied history in probability and statistical physics. For recent surveys of this
vast literature, see [1,9]. The model is supposed to converge to a scaling limit given by the Kardar—Parisi—-Zhang (KPZ)
equation [16]. Formally, the KPZ equation is given by

A .
(1.2) athszh—i—EWhlz—i-x/BW,

where h(t, x) is the height of a continuum random surface at time ¢ and location x, W is a random field known as space-
time white noise, and v, A, and D are nonnegative real-valued parameters. In dimension one, the meaning of the KPZ
equation, as well as the convergence of the directed polymer model to a KPZ limit, are now well-understood — see [6] for
a brief survey.

For d > 3, it has been shown recently in [18] that when 8 is sufficiently small, the discrete surface defined by (1.1)
converges to a Gaussian field upon suitable centering and scaling. A similar result was proved for d = 2, when 8 decays
as t — oo like (logr)~'/2, in the earlier paper [2]. These Gaussian fields are the same as the ones coming from recent
attempts at constructing solutions to the KPZ equation in d > 2 in the so-called Edwards—Wilkinson regime [3,8,10-14,
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19,20]. In this regime, the gradient-squared term of the KPZ equation (1.2) does not appear (that is, A = 0), which reduces
the KPZ equation to the stochastic heat equation (SHE) with additive noise.

This paper proposes a different notion of KPZ convergence for directed polymers in d > 3 and sufficiently small g,
where the limit is the deterministic KPZ equation

A
(1.3) 8,h:vAh+§|Vh|2,

which is just (1.2) with D = 0. The coefficients v and A are determined by 8 and d. The limit is obtained by smoothing
the discrete surface (1.1) by locally averaging it over balls of small but growing radius. This notion of convergence to
KPZ, by local smoothing of a discrete random surface, seems to be a new idea that has not appeared in the prior literature.
One can say that this is convergence to KPZ ‘on average’, or just ‘weak convergence’. It would be interesting to see if
there are other models of surface growth that exhibit similar behavior (for example, those discussed in [7]).

2. Results

Fix d > 3, as before. Let § = (& x);e7., xeze be a field of i.i.d. random variables, which we will refer to as the ‘noise

variables’. Let g : R — R be a Lipschitz function. For each ¢ > 0, define g : Z¢ — R as g.(x) := g(ex). Let f, be the
growing random surface generated by the directed polymer model with initial data f; (0, -) = g-(-). Let £ denote the set
of all probability measures on R that are push-forwards of the standard Gaussian measure under some Lipschitz map. We
assume that the law of the noise variables belongs to the class £. Then, in particular, & , has a finite moment generating
function m(B) := E(eﬂ5'~X). Define

Let pg be the probability that a simple symmetric random walk started at the origin in Z¢ returns to the origin at least once.
Since d > 3, pg < 1. Inparticular, £ (0) = 1 < 1/pg4. Let By be the supremum of all nonnegative 8 such that u(8) < 1/pq4.
It is easy to see that j is a continuous function, which implies that By > 0. The range (0, o) is known as the “L? regime”
of sufficiently high temperatures. For a justification of this nomenclature, as well as the importance of this regime and its
various occurrences in the literature, see [18].

To state the main result about the scaling limit of f,, we first need to identify a constant related to the model, whose
existence at high temperature is established by the following proposition.

Proposition 2.1. When B € (0, Bo), the following limit exists and is finite:

t
n(B) :Z,EI&E[IOg{— exp(,B Zgi*‘Ii)}]'
q€Q(t,0) i=1

1
(2dm(B))’ 2

The quantity n(8) is the ‘second order term’ in the asymptotic expression for the log partition function at high tem-
perature as t — 00, the first order term being 7 log(2dm(8)). It turns out that a multiple of this second order term has to
be subtracted off when renormalizing the surface to obtain the deterministic KPZ limit below. It is not immediately clear
if n(B) admits an explicit calculation.

For x € Z¢ and r > 0, let B(x, r) denote the set of all y € Z¢ such that |x — y| <r. Let {rs}¢-0 be any collection of
positive real numbers tending to infinity as ¢ — 0, such that . = o(¢~!). For r € R, let [¢] denote the greatest integer < ¢.

For x = (x1,...,xq) € R4, let [x] denote the vector ([x1l, ..., [xq]). For t e R, x € R4, and ¢ > 0, define the rescaled
values
2.1 te 1= [efzt], Xe 1= [sflx].

Define the smoothed, rescaled and renormalized surface f~ OF R>o x R — R as

N 1 te n(B)
2.2 (&) ,X) = —— e (te, y) — —log(2d -
(2.2) 7@, x) lB(x&rg)'ye%mf(r »-3 og(2dm(B)) 5

The following theorem is the main result of this paper.
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Theorem 2.2. Let all notations and conditions be as above, with d > 3. Suppose that B € (0, Bo). Let h be the Cole—Hopf
solution of the deterministic KPZ equation (1.3) with v =1/2d, A = B/d, and initial condition g. This is defined as

1
ht,x)= E log]E[exp(ﬂg(\/t/dZ +x))],

where Z is a d-dimensional standard Gaussian random vector. Then for any t > 0 and x € R?, the random variable
f(g)(t, X) converges in L? to h(t,x) ase— 0.

Theorem 2.2 proves convergence of f ©) (¢, x) to the deterministic KPZ limit A (z, x) for each fixed (¢, x). This dis-
tinguishes it from much of the recent literature, which deal with convergence towards Edwards—Wilkinson limits on
average — that is, after integrating the field against some test function [3,12—14,18]. From this perspective, the pointwise
statement of Theorem 2.2 has some resemblance to the results of [10] and [11] which give pointwise laws of large num-
bers and central limit theorems for the difference between a solution of the KPZ equation with given initial data and a
stationary solution of the KPZ equation.

The main idea behind the proof of Theorem 2.2 is the following. We show that f. (¢, y) splits as the sum of a ran-
dom quantity that has no dependence on the initial condition g, and an almost deterministic (i.e., highly concentrated)
quantity that approximately equals A (#, x) with high probability. The random part, moreover, is a function only of noise
variables located very close to (., y), so that averaging the random parts over y € B(x,, r¢) results in an approximately
deterministic value that has no dependence on g. The renormalization term in (2.2) is this deterministic value.

One can also consider the rescaled and renormalized surface without smoothing, defined as

)
o

It is a simple consequence of Theorem 2.2 that f¢) converges to & in the a certain weak sense as & — 0.

FOU ) = falte.xe) — ’Eflog(zdmw)) -

Corollary 2.3. Tuke any continuous function ¢ : RY — R with compact support. Then for any t > 0, as € — 0, the
random variable f f(g) (t,x)¢(x)dx converges in L? to fh(t, xX)p(x)dx.

Results analogous to Corollary 2.3 have been proved for a model of continuous directed polymers in [12,20]. The
weak limit in that model turns out to be the heat equation rather than the deterministic KPZ equation, because limit is
obtained for the partition function rather than the log partition function. It is probable that the weak limit of the log
partition function in the continuous model is also deterministic KPZ. It would be interesting to see if some analogue
of Theorem 2.2 can be proved in the continuous setting. A natural open problem is to extend the above results to the
entire high temperature regime (0, 8.), where S, is the smallest critical inverse temperature of the model (see [1] for the
precise definition; it is known that S, > fo). It is possible that Theorem 2.2 and Corollary 2.3 are valid for all g € (0, B.),
especially in view of [1, Theorem 1.1], which shows that the endpoint distribution of the polymer is not localized when
B < B.. It is possible that delocalization of the endpoint is sufficient for the proof of Theorem 2.2 instead of the stronger
condition B8 < fy. This possibility is bolstered by the fact that a result similar to Corollary 2.3 for the partition function
(instead of the log partition function) in the entire high temperature regime in a related continuous model has recently
been established in [12].

Another interesting direction is to extend Theorem 2.2 to dimension two. It is unclear what the appropriate analogue
of Theorem 2.2 would be in d = 2.

Investigating the behavior of second order fluctuations is a natural question. For example, in Theorem 2.2, one can
ask if for some explicit y > 0, e ¥ (f®) (¢, x) — h(t, x)) converges in law to a non-degenerate limiting distribution as
& — 0. It is unclear whether this might hold for fixed (¢, x), or after averaging against a smooth test function. A similar
question can be asked in the context of Corollary 2.3, about the rescaled difference ¢ 77 f (F @, x) — h(t, x))p(x) dx.
For this, the results of [12,13,18,20] indicate that the exponent y could be (d — 2)/2, because these papers show that
g~d=2)/2 f (f O, x) —E(f®(t, x)))$(x) dx has a non-degenerate limiting distribution in a number of related settings.

Finally, as pointed out by one of the referees (and in analogy with the results of [12,20]), it is likely that in Theorem 2.2
and Corollary 2.3, if one takes a suitable weak limit of the partition function instead of the log partition function, one
would obtain the deterministic heat equation instead of the deterministic KPZ equation. It would be interesting to see if
this is true, under a similar local averaging framework.

The rest of the paper is devoted to the proofs of the above results. Many technical ideas in the proofs are similar to
ideas from various recent papers, such as [2,3,18]. The main new idea is the formulation of the scaling limit, presented
above, that leads to the deterministic KPZ limit.
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3. Concentration inequalities

We will use a technique from the classical theory of concentration of measure to control the lower tail probabilities of the
partition functions of the polymer model. This technique was first used in [4]. For a recent application, see [3]. A complete
account is given below for the reader’s convenience.

First, we need the following classical result, known as the Gaussian concentration inequality (see [5, Appendix A]).

Theorem 3.1 (Gaussian concentration inequality). Let X be an n-dimensional standard Gaussian random vector and
let f:R" — R be a Lipschitz function with Lipschitz constant L. Then for any t > 0,

P(|f(X) —E(f(X0))| = 1) <2¢7 /2L,
Let £(K) be the set of all probability measures on R that are obtained as push-forwards of the standard Gaussian
measure under a Lipschitz map with Lipschitz constant < K. Let £,,(K) denote the set of the product measures on R”

whose marginal distributions are all in £(K). We will say that a random vector is in class £, (K) if its law is in £, (K).
The following result is an easy corollary of the Gaussian concentration inequality.

Corollary 3.2. Let X be an n-dimensional random vector in class L,(K) and let f : R" — R be a Lipschitz function
with Lipschitz constant L. Then for any t > 0,

(| £(X) — E(f(X))| = 1) < 272K,

Proof. If X = (Xy,..., X,,), we can write X; = g;(Y;) where Y1, ..., Y, are i.i.d. standard Gaussian random variables
and g1, ..., g, are Lipschitz functions with Lipschitz constant K. Then f(X), as a function of ¥ = (Y1, ..., Y}), has
Lipschitz constant < L K. The claimed inequality now follows from the Gaussian concentration inequality. ([

A corollary of the above corollary is the following result, which is a standard idea from concentration of measure [17].

Corollary 3.3. Let X be an n-dimensional random vector in class L,(K). Let A be a closed subset of R". Let D :=
inf{||X —x|| :x € A} and p :=P(X € A). Then for any t > 0,

P(D > K/21og(2/p) +1) <27 /*K".
Proof. It is not hard to see that D is a Lipschitz function of X with Lipschitz constant 1. Therefore by Corollary 3.2,
G.1) P(|D — E(D)| > 1) < 2712k,
Since A is a closed set, the above inequality implies that
p=PXecA)=P(D=0)
<P(|D - E(D)| = E(D)) < 2e~EP2K7,

which gives

E(D) < K/210g2/p).

Thus, again appealing to (3.1), we get the desired result. (]
Using Corollary 3.3, we obtain the following variant of [17, Proposition 1.6].

Proposition 3.4. Let X be an n-dimensional random vector in class L,,(K). Let f :R" — R be a continuously differen-
tiable convex function. Take any a € R and b > 0, and let p :=P(f(X) > a, |V f(X)| <b). Then for any t > 0,

P(f(X) <a— Kby2log2/p) — ) <2e"/20°K?,
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Proof. By convexity,

O = f)=VfQy) - (y—x)
for any x, y € R". Thus, if f(y) >a and |V f(y)| < b, we have that for any x,

fx)=a—blx —y|.

Let A be the set of all y such that f(y) > a and |V f(y)| < b. Since f is continuously differentiable, A is a closed set.
Let p:=P(X € A) and let D be the distance of X from A. Then by the above inequality,

f(X)>a—bD.
Thus, for any ¢ > 0,
P(f(X) <a— Kby/2log(2/p) —t) <P(a —bD < a— Kby/210g(2/p) — 1)
=P(D > K+/2log(2/p) +1/b).

The claimed result now follows by Corollary 3.3. ]

4. Random walk estimates

In this section, C, Cq, C», ... will denote positive constants depending only on d, whose values may change from line to
line. (Here d is the dimension fixed in Section 2. Recall that d > 3.) If a constant depends on some additional parameter
0, we will denote it by C(9).

Let {S,}x>0 be a simple symmetric random walk on 74, starting at the origin. We will now collect several estimates
for this walk that will be useful later. First, recall the well-known fact that for each n,

c
A.1) xs:Z% P(Sy =)<~

(The simplest way to show this is by Fourier transforms. For example, see [6, Lemma 18.3].) On the other hand, it is
a simple consequence of Hoeffding’s inequality [15] for sums of independent and uniformly bounded random variables
that for any x and n,

4.2) P(S, =x) < Cre~C2lP/n,
Another easy consequence of Hoeffding’s inequality that we will use later is that for any # > 0 and n > 0,
(4.3) E(e?151) < €120,

By Chebychev’s inequality,

EIS,[> 3
P(|S,| <2 >1— /1 -
(ISul=2vim) = 1= = =2
Thus, for any 6 > 0 and any #,
3 —20./n
(4.4) E(e™51) > ¢70VP(|S, | < 2/n) > = ;

Combining (4.1) and (4.2), and letting ng := a2 + |x |)2/ log(2 + |x|) for a sufficiently small number a, we get

P(S,, = x for some n) < C| Z e—CalxPin 4, Z a2

n<ng n>no

2 —(d—
< Cinge™ G /m0 4 ¢y @-212

4.5) < Cy(log(2+ 1x1)) 2 (2 + Ix])* 7.
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Recall that pg is the probability that S, returns to the origin at least once. Let {S,},>0 be another d-dimensional simple
symmetric random walks started at the origin, independent of {S,},>0. It is easy to see that {S, — S} },>0 is a Markov
chain with the same law as the Markov chain {S2,},>0. Since a simple symmetric random walk can return to its starting
point only at even times, this shows that if

(4.6) Np:=|{0<k=<n:S =5}

, Neo := [{k = 0: S, = S5;}|,
then we have
4.7) P(Noo =k) = p57' (1 = pa)

for each k > 1. In particular, E(e*V~) is finite if 0 < a < log(1/p4).

Next, suppose that the two random walks are started from two different locations x and y. Let N, and N33’ be the
analogues of N, and N« in this situation. Let 7% be the smallest n such that S, = S),. If there is no such n, let ¥ = oco.
Let

(4.8) K(x,y):= ]P’(rx’y < oo)

Note that by (4.5), and the fact that {S,, — S, },>0 behaves like {2, },>0 started at x — y, we get
k(x,y) =P(S, =0 for some n)

(4.9) < Ci(log(2+ Ix — yI)) P2+ 1x — yI)* 7.

If %Y = 0o, then N33* =0 and N; ¥ = 0 for all n. On the other hand, if 7"+ is finite, the strong Markov property of
{Sn — S/ }u=0 implies that N, has the same law as N, and N5;’ has the same law as No. Thus, by (4.5), we get that for
any function f : Z>o — [0, 0o) with f(0) =0,

(4.10) E(f(Nx")) =E(f (Noo) )k (x, ).
We will use the above facts on several occasions. We will also use the following lemma.

Lemma 4.1. Let {S,},>0 and {S) }u>0 be independent simple symmetric random walks on 74 starting at the origin. Take
any a > 0. Then for all n,

E[k (S0, 5,)"] < C1(@)(logn) > @p~d=212,
where o' = min{w, d/(d — 2)}.

Proof. Since « is uniformly bounded by 1, we have « (x, y)* <k (x, y)“/ for all x, y. So let us assume without loss of
generality that @ < d/(d — 2). By the facts that x(x, y) <1 and «(x, y) =« (0, x — y) for all x, y, and that §,, — S,Q has
the same law as S>,, we get

E[k(S0.8) T D «(0.2P(S2 =2) +P(|So| = v/nlogn).
z:|z|<+/nlogn

By Hoeffding’s inequality,
P(|San| = v/nlogn) < 2¢~Cloen?”,
On the other hand, by (4.1), P(S,, = z) < Cn~4/? for all z. Therefore, by (4.9),

> k(0.9P(Sn =2)

zlzl<y/nlogn
§C1(a)(10gn)02(a)n—d/2 Z (1+|Z|)(2—d)oc
z:|z|<4/nlogn
< Ci(a)(logn)©2@p=d/2 Z Fd=1(1 4 )@=
0<r<./nlogn

< Ci(@)(logm) @ @p =22
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(The assumption that o < d/(d — 2) was used in the last step.) The proof is now completed by combining the three
displays above. (|

5. Discrete approximation of the Cole—Hopf solution

In this section, C, Cq, C», ... will denote positive constants whose values may depend only on d, 8 and g. The values
may change from line to line.

Let h be the Cole—Hopf solution to the deterministic KPZ equation, defined in the statement of Theorem 2.2. For a
proof that this is indeed a solution, see [6]. We will need to work with a discrete approximation of 4, defined as follows.
For any ¢ > 0, define G, : Z>¢ x 74 as

G&‘(l, .x) = E(eﬁge(51+x))’

where, as in Section 4, {S,},>0 denotes a simple symmetric random walk in Zd, started at the origin. Note that the
definition of G, depends on B and g, but we are suppressing that for notational simplicity. The following lemmas about
G, will be useful.

Lemma 5.1. As e — 0, B~ 1og G (t;, x¢) — h(t, x) for any (t,x) € Rs¢ x RY.
Proof. Note that
Gelte, xs) = E(Eﬁgs(&g +X£)) — ]E(e,Bg(esS,S +sx5)).

By the multivariate central limit theorem, we know that as ¢ — 0, #, v 25,‘E converges in distribution to d 127 where

Z is a d-dimensional standard Gaussian random vector. Also, as ¢ — 0, ex, — x and stgl SN J/t. Thus, as ¢ — 0,
€Sy, + ex converges in distribution to 1/t /d Z + x. Consequently, eP8(ESie+exe) converges in distribution to ef8(V1/dZ+x)

Next, note that by the Lipschitz property of g, the inequality (4.3), and the facts that |x,| < C| + Ca|x| and &%z, <
Cy + Cot,

E(e2ﬂga(5tg +Xa)) < C]E(eCQE(ls’S I-HXaD)

< C1C2Etetelxe)) < 0o Cali+IxD),

From this uniform boundedness of the second moment of ¢f8(€Si+%) and the distributional convergence proved in the
previous paragraph, it is now easy to see that as ¢ — 0,

G (e, x;) = E(eP8ESe o)) E(eﬂg(«/t/_dZer)),
which completes the proof of the lemma. (]
Lemma 5.2. Foranyt, x and y,

|Gt x) — Ge(t, )| < Crelx — yleCoEleliten,
Proof. By the Lipschitz property of g,

}GS(Z’ x) - GE(ts )’)| = E|€ﬁg£(st+x) — eﬁgs(sr+y)|
S CEI)C - yIE(eﬂgf(Sf"‘x) + eﬁgs(S;-i-y))

<Cielx — y|6C28(IXI+I>’DE(8C28|&|)_
By (4.3), this completes the proof. (|
Lemma 5.3. Forany s, t and x,

2 2
‘Gs(s,x) - Gg(t,x)| < Cie|t —s|/PCrlelxIHems+emn)
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Proof. Note that by the Lipschitz property of g,

|G (s, x) — Ge(t, x)|

< E}eﬁge(&ﬂ) — eﬂgE(St+x)|
< BE[|ge(Ss +x) — o (S; + x) | (P8 S 4 oPee(5it0))]

< CeE[|S, — St|(eﬂgg(ss+x) i eﬁgg(s,ﬂ))}

Now applying the Cauchy—Schwarz inequality, the fact that E[(S; — S;)?] = |t — s|, and the same technique as in the
proof of Lemma 5.2 to obtain upper bounds on the expected values of the exponential terms, we get the desired result. [

Lemma 5.4. We have
Cle—czé‘(\xl-i-«/f) < Gelt,x) < C3€C4(8‘x|+52t).
Proof. By the Lipschitz property of g,

E(e~C1=C26USi1+11D) < G, (¢, x) < E(eCr+Coe(Sil+an)

The proof is now easily completed by invoking (4.3) and (4.4). (]

6. Concentration of the height function

Let o be the law of the noise variables. In this section, C, C1, C», ... will denote positive constants depending only on d,
B, o and g, whose values may change from line to line. If a constant depends on some additional parameter 8, we will
denote it by C(0).

Fix some ¢ > 0. Recall the function u(8) = m(28)/m(B)?, where m is the moment generating function of the noise
variables. Note that () > 1 for any 8. Take any ¢ € Z> and x € 74 . For q € Q(t, x), let

_ oP(BY i)

Y, (t,x): )

7 m(B)!
and let

1
(6.1) Y(t, x) = o > Yyt x).
qeQ(t,x)
Also, define
- Be(q0)
Zo(t, x) == 2y Z Py, (1, x).

qeQ(t,x)

Finally, let F(¢,x) :=1logY (z,x) and F¢(t, x) :=log Z.(¢, x). In this section we will prove two lemmas that will show
that F and F; have fluctuations of order 1, with exponentially decaying tails. These technical results will be used later in
the proof.

Lemma 6.1. If ju(8) < 1/pg, then for any 6 > 0, E(e &)y < C ().

Proof. Note that E(Y,(f,x)) =1 for any ¢, x and g, and so E(Y (¢, x)) = 1. Next, note that for any ¢, x and y, and any
q€Q(t,x)and r € Q(t, y),

| —
E(Y,(t, )Y, (1,y)) = B HE(eﬁ@,,q,- i)
i=1

(6.2) = (gl
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where g N r denotes the set of i such that g; = r;. Thus,

1

E(Y(t,x)z) = Q2d)2

Yo E(Y 0¥ y)

q.reQ(t,x)

1
=2 Z (gl

q,reQ(t,x)
=E(u™),

where N; is defined as in (4.6). By (4.7), the assumption that . (8) < 1/p4, and the observation that . (8) > 1, this shows
that

(6.3) E(Y(t,%)°) <E(u(B)"~) <C.
Also, as noted above, E(Y (z, x)) = 1. Thus, by (6.3) and the Paley—Zygmund second moment inequality,
(6.4) P(Y(r,x)>1/2)>=C >0.

Next, note that forany 1 <s <tandy e 74,

F(z,x) 1
yX) = oo ——
aés,y Y(I, x) aSs,y

Y(t, x)

1 a
= t q(t’x)
Y(1,x)2d) qezg(m 05,

P 2
__ B Y, (@, x).
Y(¢ 2d)! !
(t,x)(2d) q€Q(t,x),q(s)=y

Let VF denote the gradient of F, considering F as a function of (§s,y)| <<, yez¢- The above calculation shows that

2
}VF(I,X)|2=W Z Z Z Y, @, x)Y,(, x)

1<s<t ye7d q,reQ(t,x),
q(s)=r(s)=y

132
= Yo 0" Z lg N7|Y,(t, x)Yr (2, X).
’ q,reQ(t,x)

Thus, by (6.2), the assumption that w(8) < 1/pg4, and the fact that u(8) > 1, we get
E|VY(t,x)|* =E|Y ¢, ) VF (1, x)|’
=B E(Nipn(B)"") < B’E(Noort(B)™>) < C.
Combining this with (6.4), we see that there are constants a € R and b > 0, depending only on d, 8 and o, such that
P(F(t,x)>a,|VF(t,x)| <b)
>P(F(t,x) >a) —P(F(t,x) > a,

VF(t,x)| > b)
= IP’(F(t, x) > a) - ]P’(Y(t, x) > é%,

VY (t,x)| > bY(t,x))
>P(F(t,x) > a) — P(|VY(t,x)| > be")
>C>0.

It is a standard fact, easily verifiable by computing second derivatives, that F (¢, x) is a convex function of the noise
variables. Thus, by Proposition 3.4 and the above inequality, we have

6.5) P(F(t,x) < —C) —u) < 2™,
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This shows that for any 6 > 0,

e OFEx) > v) dv

oreoy _ [
E(e 77> :/ P
(e re) = [T
oo
< / P(F(t,x) < =0~ 'logv) dv < C(6).
0
This completes the proof of the lemma. ]

Lemma 6.2. If u(B8) < 1/pg4, then for any € € (0, 1) and 0 > 0,
E(e™" ) <y (elx| + o7 +6%),
where ¥ : (0, 00) — (0, 00) is an increasing continuous function that depends only on 8,d, o, g and 6.

Proof. The proof is similar to the proof of Lemma 6.1, with minor adjustments. Throughout, we will denote by ¥, ¥, ...
increasing, positive, continuous functions of ¢|x| + e/t + &2, which depend only on 8, d, o, g, and 6.

First, note that by the Lipschitz property of g, we have [g.(x) — g:(¥)| < Ce|x — y| for all x,y, and |g,(x)| <
C1 + Cye|x]| for all x. Thus,

1
E(Zs(t, x)z) = i Z eﬂgs(CIoHﬂgs(ro)]E(yq (t, x)Y,(t, y))
q.reQ(t,x)

Z eczs(lqo—XIHro—XI)M(ﬁ)lqﬂrl
q.,reQ(t,x)

(6.6) — CleC2€|x|E(eC3e(|S,|+\S,’|)M(ﬂ)N,)’

Cleczelx\
<
- (2d)2’

where {S,},>0 and {S}},>0 are independent simple symmetric random walks started at the origin in 74, and N; is the
number of times they intersect up to time ¢. Since u(8) < 1/p4, we can choose y > 1, depending only on 8, o, and d,
such that u(B)Y < 1/p4. Let y’ :=2y/(y — 1), so that 2/y’ 4+ 1/y = 1. Applying Holder’s inequality, and the displays
(4.3) and (4.7), we get

]E(eczs(\sr\-&-lsﬂ)u(ﬁ)Nt)
< [E(6C3sy/|S,|)]l/V/ [E(ec3sy’|s;|)]l/y’[E(M(ﬂ)yN,)]l/y
< CueC5e7t,
Plugging this into (6.6), we get
(6.7) E(Zs(t,x)*) < ¥y.

On the other hand, since (Y, (7, x)) = 1 and g.(qo) — g¢(x) = —Celgo — x| for any g € Q(z, x), we have

1
E(zg(t,x))z(Zd)t Z eP8:(q0)

qeQ(t,x)
(6.8) > Cle—Czb“lxlE(e—CwISzl).
Using (4.4) in (6.8) gives the lower bound
(6.9) E(Z(t, x)) = 1/vn.

Using (6.7) and (6.9) and the Paley—Zygmund second moment inequality, we get

(6.10) P(Ze(t, x) = 1/93) = 1/94.
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Like in the proof of Lemma 6.1, we get

,32

2 p—
|VZ.(t,x)|" = e

Z eﬁ(gs(%)-i-gs(i’o))m Nr|Y,(t, x)Y, (1, x),
q,reQ(t,x)

which, using (6.2), gives
E|VZS (t, x) |2 _ ’BZE(eﬂ(gs(S,+x)+ga(S,’+x))NIM(IB)M).
Now proceeding as in the proof of (6.7) above, we get
6.11) E|VZ(t, x)|* < ¥s.
Therefore, as in the proof of Lemma 6.1, we have that for any a € R and b > 0,

P(Fu(1, %) > a,

VF,(t,x)| <)
>P(Z(t,x) > e*) = P(|VZe(t, x)| > be?)
Vs

b2e2a :

Thus, choosing a = —log¥3 and b = /2453, and using (6.10) and (6.11) we get

>P(Ze(t,x) = ") —

P(Fu(1, %) > a,

VF:(t,%)] <b) = 1/2ya.

Again, by computing second derivatives, it is easy to verify that F. (¢, x) is a convex function of the noise variables. By
Proposition 3.4, this shows that for all # > 0,

P(Fo(t,x) < =6 — 1) < 2e~1 107,

As in the proof of Lemma 6.1, this implies that E(e %)) < 5. This completes the proof of the lemma. ]

7. The main argument

This section contains the main body of the proof of Theorem 2.2. We will continue using the notations introduced in
the previous sections. For the reader’s convenience, the section is divided into small subsections. Choose two integers
1 <s < t. These integers will be fixed throughout this section. We will also fix x € RY ¢ e (0, 1), and B > 0 such that
u(B) <1/pa.

In this section, C, C1, C,, ... will denote positive constants whose values may depend only on 8, d, o, g, and the sum
elx|+&(t — ) + &+/7 + &2t. Furthermore, we will require that the dependence on the last item is increasing and continuous
in nature. The reason is that we will later send ¢ to 0, varying s, t and x such that this quantity remains bounded. If a
constant depends on some additional parameter 6, we will denote it by C(6).

7.1. The renormalized partition function

Let Q(s, t, x) be the set of all nearest-neighbor paths ¢ = (¢, gs+1, - - -, q:) With ¢, = x. For g € Q(s, t, x), let

t .
Yq (s, t,x):= exp(’BmX(:/;;sirsl ‘i:l,q,-) ’

and define

1

Y(s,t,x):= Q)= Z Y (5,1, x).
qeQ(s,t,x)

Let D(s, t, x) be the set of possible values of g for ¢ € Q(s, t, x). For each y € D(s, t, x), let Q(s, t, x, y) for the set of

q € Q(s, t, x) with g; = y, and define

1
Y(s,t,x,y) = ) Z Y (s,1,x).
qeQ(s,t,x,y)
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Define
Y(s,t,x,y)
’ t’ ’ =
{(s,t,x,y) Y.t
Note that ¢ (s, £, x, -) is a probability mass function on D(s, t, x). Next, define
Z.(t,
We(s, t,x) = M
Y(s,t,x)

785

We will refer to W, (s, ¢, x) as the renormalized partition function (as opposed to Z. (¢, x), which is the unrenormalized
partition function). Our goal in this section is to show that this random variable is approximately equal to the deterministic
quantity G (s, x) with high probability. The first step is the following lemma, which shows that W, (s, ¢, x) is a weighted

average of Z.(s,y) over y € D(s, t, x).

Lemma 7.1. We have

Wels,t,) = D (s,1,%,Y)Ze(s, ).

yeD(s,t,x)

Proof. Note that any ¢ = (qo, - .., q;) € Q(t, x) can be broken into two parts (gs, ..., q:) € Q(s,t, x) and (qo, . . .

(s, gs). Thus,

I exp(BY i &ig)
2.0 = 5o T e mZ(::g)tl g
qeQ(t,x)
_ 1 Z Z e’ggg(ro)exp(ﬂz:f:s+lEl’s%‘)eXp(ﬂZf:lgi,ri)
2d)! m(B) S m(B)*
qeQ(s,t,x) reQ(s,qs)
1 exp(ﬂzt.: &ig)
“as X T g e
qeQ(s,t,x)
= D Y(,0X,0)Z(s, ),
yeD(s,t,x)

Dividing both sides by Y (s, ¢, x) gives the desired identity.

7.2. Expectation of the renormalized partition function

,Qs) €

Let F be the o-algebra generated by the random variables {§, y :s+1<u <t,y e Z4}). Let E/, P, Var’ and Cov’ denote
conditional expectation, conditional probability, conditional variance and conditional covariance given . The following

lemma shows that E'(W (s, ¢, x)) is a weighted average of G.(s, y) over y € D(s, t, x).

Lemma 7.2. We have
B (We(s,t,x)) =Y ¢(s,1,x,5)Ge(s, ).

yeD(s,t,x)
Proof. Since ¢(s,t, x, y) is F-measurable and Z, (s, y) is independent of F for any y, we have

B (Wels.t.x)) = > ¢(s.t.x, )E(Ze(s, )

yeD(s,t,x)
1
= Z é“(s,t,x,y)((zd)s Z eﬂgs(qo))
yeD(s,t,x) 4€Q(s.)

To complete the proof, just note that the term inside the bracket on the right side is nothing but G, (s, y).

O

As a corollary of the above lemma and Lemma 5.2, we obtain the following result, which shows that ' (W, (s, ¢, x))

is close to G4 (s, x) if t —s =o0(1/¢).
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Corollary 7.3. We have
|E'(We(s, 1,x)) — Ge(s, x)| < Ce(t —5)

Proof. Since ¢ (s, t, x, -) is a probability mass function on D(s, ¢, x), we have

B/ (We(s,1,0) = Ge(s. 1) =| Y ¢(s,1,x,9)(Ge(s,y) — Gels, x))

yeD(s,t,x)

< Y L1,x,0)[Gels, y) = Gels, 1))

yeD(s,t,x)

To complete the proof, apply Lemma 5.2 to bound |G.(s, y) — G¢(s, x)| and use the fact that |[x — y| <t —s for y €
D(s,t,x). O

7.3. Variance of the renormalized partition function

We will now show that the renormalized partition function has small conditional variance if ¢ is small. The first step is to
get a bound for covariances.

Lemma 7.4. Foranyy,y € D(s,t,x),
COV(ZS(Sa y)» ZS(S’ y/)) S CIK(}” y/)cz'

Proof. By the Lipschitz property of g and the fact that |y — x| <t — s for any y € D(s,t,x), we have that for any
¥,y €D(s,t,x),

Cov(Ze(s.y), Ze(5.Y'))

1
= W Z eﬁ(gg(qo)+gg(ro)) COV(Yq(S, ), Y, (S, y/))
qe€Q(s,y),reQ(s,y’)
< (2%2 3 eCasllao=yHir=y'D (, (gylar! _ 1)
- )

qeQ(t,y),reQ(t,y")

— (SIS D (u(p)N 1)),

where {S,},>0 and {S,},>0 denote independent simple symmetric random walks started from y and y’, and N , is the
number of times they intersect up to time ¢. Since u(B) < 1/pg, we can choose y > 1, depending only on 8, o, and d,
such that u(B8)Y < 1/pg. Let y' :=2y/(y — 1), so that 2/y’ 4+ 1/y = 1. Applying Holder’s inequality, (4.3), and (4.10),
we get

E(eC 1SS (L gy 1))
< []E(eCZV/EISt—y\)]l/)’/[E(ecz)/’s\S{—y/\)]l/V/[E|M(ﬂ)N,“‘”y, _ 1|y]1/)’
< G[E(u®B)")]" k(y.v) "7,

where N is the number of intersections of two independent simple symmetric random walks in Z¢, started at the origin.
Applying (4.7) completes the proof. (|

The next lemma gives an upper bound for the Var'(W.(s, 7, x)), obtained using the bound on covariances from
Lemma 7.4.

Lemma 7.5. We have

Var' (Ws(s, 1, x)) < Cy Z cGs,t,x, ¢ (s, 1, %,y )i (v, y’)cz.
y,Y' €D(s,t,x)
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Proof. Since ¢(s,t, x, y) is F-measurable for each y, and {Z, (s, y)}yezd is independent of F, we have
Var'(We (s, 1, x))

= Z C(s,t,x, )¢ (5.1, x,Y") Cov(Ze (s, y), Ze (s, y')).

y,y'€D(s,t,x)

The proof is now completed by invoking Lemma 7.4. ]
Next, we use the above lemma, and Lemma 4.1, to obtain a bound on the expected value of Var’' (W, (s, 1, x)).

Lemma 7.6. We have

E[Var' (W (s, t,x))] < C1(t — s)" 2.

Proof. Let C; be as in the statement of Lemma 7.5. First, suppose that in a particular realization of the noise field, we
have Y (s,#,x) > (t —s)~%, where « > 0 is a constant that we will choose later. Then we have

S ot (st y ey )

¥,y €D(s,t,x)

<(t—9* Z Y(s,t,x,y)Y(s,t,x,y’)K(y,y’)Cz.
y,y'€D(s,t,x)

Now observe that

]E( Z Y(s,t,x,y)Y(s,t,x,y’)x(y,y’)Q)

v,y €D(s,t,x)
1 C
= )X ) Yo E(¥Gstx Yy (st )iy, )
v,y €D(s,t,x) qeQ(s,1,x,y),
q'€Q(s.1,x,y")
1 / c
T (2d)X= > > BT (y,y)
y,y'€D(s,t,x) geQ(s,1,x,y),
q'€Q(s,1,x,y")
1 / c
_ lgNg’| nC2
_W Z (B K(stqs) .
q.9'€Q(s,1,x)

The expression in the last line equals

(1B (Sis S/_,) )

where {S,},>0 and {S),},>0 are independent simple symmetric random walks started at the origin in 74, and N,_ is the
number of times they intersect up to time ¢. Since u(B) < 1/p4, we can choose § > 1, depending only on 8, o, and d,
such that 11(8)% < 1/pg. Let 8’ :=8/(8 — 1), so that 1/8' + 1/8 = 1. Applying Holder’s inequality, we get

B (o) (Sr-s 57-5) ) = [E (a8 )] P [B (e (S, 5-) )]
< [E(u(8™)] " [Ble(Si—s. 57-) )]
Applying (4.7) and Lemma 4.1 to the right side gives
E(1(B)N=kc(Si—s. §_;) ) < C3t — ).
Combining all of the above observations, and using Lemma 7.5, we get that

E[Var’(Wg(s, t,x)); Y(s,t,x)>(t — s)_“] < Cs(t —s)~Cot2e,
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On the other hand, since « is uniformly bounded by 1, and ¢ (s, #, x, -) is a probability mass function, Lemma 7.5 implies
that Var’ (W, (s, t, x)) < C7. Combining this with the above bound, we get

]E[Var'(Wg(s, t, x))] < Cs(t —s)Cot2e 4 C7IP(Y(S, tx)<(t— s)_“).
Now note that Y (s, #, x) has the same distribution as Y (¢ — s, x). Therefore by Lemma 6.1,
]P’(Y(s, tx)<(t— s)_“) = P(e_F(’_S’X) > (t—5)%)
<(t— s)_“E(e_F(t_‘Y’x))
<Cg(t—s)"".
Plugging this bound into the preceding display, and choosing « = Cg/4, we get the desired bound. ]

7.4. Concentration of the renormalized height function

The goal of this subsection is to show that the random variable log W, (s, t, x), which we call the renormalized height of
our random surface at (¢, x), is close to the deterministic quantity log G (s, x) in L? distance, if | <t —s < &~ L. The
proof has several steps. The first step is the following, which shows that W, (s, ¢, x) is close to G (s, x) in L? distance.

Lemma 7.7. We have
E[(We(s, 1, x) — Ge(s,0))°] < C1 (2t — )> + (1 — )™ ).
Proof. Simply observe that
E[(We(s, 1, x) — Ge(s, x))]
— B[Var' (We(s, 1, x)] + E[(E'(We (s, 1, ) — Ge (s, x))°],
and apply Lemma 7.6 and Corollary 7.3 to bound the two terms on the right. O

Next, we show that log W, (s, t, x) is close to log G, (s, x) in L'/2 distance.

Lemma 7.8. We have
E[log We (s, 1, x) — log G (s, x)| /> < C1 (Ve —s) + (1 —$)™2).
Proof. First, note that
172
[log We(s, 2, x) —log G (s, x)|
< [Wes,1,) = G5, )| /2 (We s, £, )72 + G5, x)71/?).
By Lemma 6.2, the observation that Y (s, #, x) has the same law as Y (¢ — s, x), and the bound (6.3), we get

Y (s, t,x))

—1y _
e =S

1/2 <C.

<[E(Y( —s,0)]"*[E(Zc(1,)72)]
Also, by Lemma 5.4, G (s, x)_l/2 < C, and by Lemma 7.7,
E|We(s,t,x) — Ge(s,x))| < Ci(e(t —s5) + (t —5)"2).

It is now easy to complete the proof by combining all of the above information and applying the Cauchy—Schwarz
inequality. |

We want to improve Lemma 7.8 to an L2 bound. For that, we need the following moment bound.
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Lemma 7.9. Foranya > 1,
Ellog We(s, 1, x)|" < C().
Proof. First, note that since ¥ (s, 7, x) has the same distribution as ¥ (f — s, x),
Ellog W, (s, £, x)|" < C (@) (E[log Zs (t, )|* + E|log ¥ (s, £, x)|*)
=C()(E|F:(t, )| + E|F(t —5,x)|%).
Now, by Lemma 6.1,
E|F(t —s,x)|" < C@)E(e!F~9)
< C)(E( )+ E(e~FI750))
< C@)(E(Y(t —s,x)) + C).
But, as already observed in the proof of Lemma 6.1, E(Y (¢ — s, x)) = 1. Thus,
E|F(t —s,x)|" < C(a).
Similarly, by Lemma 6.2,
E|F.(t, x)|* < C(a)E(e!F+-9)
< C(a)(E(e"9) + E(e~F (1))
< C(@)(E(Z:(t,x)) +C).

By (4.3) and the Lipschitz property of g,

1
E(Zg (t, X)) = (2d)t Z eﬂgs(qo)
qeQ(1,x)

< CleczalﬂE(eCz&ISrl) < Cy.
Combining the above observations, the proof is complete. (]
We are now ready to prove the main result of this subsection, which is the following.

Lemma 7.10. We have
E[(log We (s, £, x) —log G (s, x))°] < C1 (et — ) "* + (¢ = 5)7).

Proof. For a nonnegative random variable X, note that by the Cauchy—Schwarz inequality,

E(X?) =E(X'*X7%) < \[E(X1/2)E(X7/2).

Applying this to the random variable |log W, (s, t, x) —log G (s, x)|, and using Lemma 7.8, Lemma 7.9, and Lemma 5.4,
we get the desired result. (]

7.5. Concentration of local averages

Let 1 <r <&~ ! be a real number. Let B (x, r) be the set of all points in 74 that are within Euclidean distance r from x.
Define

1
7.1 Xi=—-" F.(t,y).
(7.1) B ‘Z £(t,y)
yeB(x,r)
Let o :=1log G¢(t,x) + E(log Y (t — 5, 0)). The following result shows that X is close to « in L2 distance if | €1 —s5 <
r<e .
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Lemma 7.11. Let r, X and o be as above. Then

E[(X —)2] < Cir =t —5)? + C1 (et — 5))

+C1(t — )" 4 C16%(t —5) + C16°r%.
Proof. Note that paths in Q(s, ¢, x) and Q(s,t,y) do not intersect if |x — y| > ¢t — 5. Thus, Y(s,#,x) and Y (s, 1, y)

are independent random variables if |[x — y| > ¢t — s. On the other hand, from the proof of Lemma 7.9, we know that
EllogY (s, 1, x)|*> < C. Combining these two observations, we get that

1
VM(m Z logY(s,t,y))

yeB(x,r)
1
~ 1B, )2 Z Cov(logY (s, t,y),logY (s,1,y"))
o v,y €B(x,r)
1
= W Z Cov(log Y(s,t,y),log Y(s, t y’))

v,y €B(x,r),|ly—y|<t—s
<cr @ —s)¢.
Define

y :=E(logY(t —s,0)) + > logGels. y).

[B(x,r)] yeBar)

Recall that F,(¢,y) =logY (s, t,y) + log W (s, t, y). Since Y (s, t, x) has the same distribution as Y (¢ — s, x), we have
E(logY(s,t,y)) =E(logY(t —s,0)) for all y. Thus,

1
27 _ _
]E[(X ) ] _E|:(|B(x, Il E (log We(s,t,y) —log G.(s, y))

YEB(x,r)

1 2
tBanl 2 (IOgY(S’W)—E(logY(s,t,y)))>}

yeB(x,r)

1 2
52E[(m Z (logWs(s,t,y)—logGs(s,y))>:|

YEB(x,r)

1
+ 2Var<m > log¥(s.t, y)).

YEB(x,r)

By Lemma 7.10,

1 2
E[(m 2 (logws(“"“y)—IOgGe(S’y)))}

yeB(x,r)
1

< gy 2 EllogWets ) ~logGets, »)’]

yeB(x,r)
o4 N0
§C1((8(t s)) + (@ —s) )
Next, note that

lo — y| < [log G (s, x) —log Ge(t, x)|
1

+ |B(x,r)| Y [logGels, y) —log Ge(s, )|

yeB(x,r)
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By Lemma 5.3 and Lemma 5.4, we have
llog G (s, x) —log G (1, x)|
< |Ge(5,%) = Get, )| (Ge(s, )1 4+ G (1, 0)7")
<Cet —s.
Similarly, by Lemma 5.2 and Lemma 5.4, we have that for any y € B(x, r),
|10g Gy(s,y) —logGg(s, x) |

< |Ges.y) = Gels, 0)|(Ge (5, )7 + Ge(s,0)7")

<Ce¢lx —y| < Cer.

Combining all of the above observations, we get the desired bound. ([

8. Proof of Proposition 2.1

Proposition 2.1 can be proved by a martingale argument, but we already have all the ingredients to give a proof that yields
a rate of convergence. The following proposition is a better version of Proposition 2.1.

Proposition 8.1. Take any > 0 such that w(B) < 1/pg. Let Y (t, x) be defined as in equation (6.1). For each positive
integer t, let n(B,t) :=E(logY(¢,0)). Then n(B) :=lim,_, o, n(B, t) exists and is finite. Moreover, for any t,

[n(B.1) —n(B)| < C1t7<,

where C| and C, are positive constants that depend only on 8, d and o .

Proof. Take any 1 <u <, and let s :=¢ — u. Take any ¢ € (0, 1). We will use Lemma 7.10 with g = 0. When g =0, we
have G (¢, x) = 1 for any ¢, ¢ and x. Also, we have Z. (¢, x) = Y (¢, x). Thus, Lemma 7.10 gives

[n(B.1) —n(B,uw)| = |E(log Y (t,0)) —E(log Y (t — s, 0))]
= |E(log Y (t,0)) — E(log Y (s,,0))|
<EllogY(,0) —log Y (s, ,0)|

< JE[(log Y (1,0) —Tog ¥ (5, ,0))’]
<Ci((ett—9)"P+ 1 —5)"),

where C| and C, are positive constants that depend only on 8, d, o, and the sum &|x| 4+ &(t — s) + &+/1 + &2t. Moreover
the dependence on the sum is increasing and continuous. But the left side does not depend on ¢. So we can take ¢ — 0
and get the bound |n(B,1) — n(B,u)| < C3u~%4, where C3 and Cy4 depend only on 8, d, and o. This suffices to prove
both claims of the lemma. O

9. Proof of Theorem 2.2

Since the logarithm of any moment generating function is convex,

m' ) d
mp) %logm(ﬁ)
is an increasing function of . Thus,
d m'(2B) m/(ﬁ))
—1 =2 - 0
ap EHP) <mam mp))~
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This shows that p is a non-decreasing function, which implies that u(8) < 1/p4 for all B € (0, Bp). Thus, all the lemmas
proved in the preceding sections are applicable when 8 € (0, Bo). _

Take any (7, x) € Rog x R?. Let #, and x; be defined as in equation (2.1) and let f©) be defined as in equation (2.2).
Let {r:}c~0 be any collection of positive real numbers such that 1 < r, K el as e — 0. Define s, := 1, — [/7¢]. Define
F; as in Section 6, so that for any y € 74,

O.1) Fe(te, y) = Bfe(te, y) — 1 10g(2dm(B)).
In analogy with (7.1), let

1
Xei=m—m—— F.(te, y),
© T 1B 1) 2 Feltey)

YEB(xe,re)

so that, by (9.1),

9.2) FOux)=p""X: =B~ 'n(p).
Similarly, let op :=log G¢(t, x¢) + E(log Y (t; — s, 0)). Now observe that, as ¢ — 0,
elxg| +e(te —se) + &/1: + &2, remains uniformly bounded above,

r;d(ta _Sa)d — 0,

g(ty —s5¢) = 0,

te — s¢ — 00, and
ere — 0.

Using all of the above observations, and the bound from Lemma 7.11, we get that X, — o, — 0 in L% as ¢ — 0. But by
Lemma 5.1 and Proposition 8.1,

sli_r)r(l)oc‘s = Bh(t,x)+n(B).

Therefore, by (9.2), £ (¢, x) — h(t,x) in L? as ¢ — 0.
10. Proof of Corollary 2.3
In this proof, C, C1, C3, ... will denote positive constants that may depend only on 8, d, o, and g, whose values may

change from line to line. As in the proof of Theorem 2.2, choose {r,}¢~o such that, as ¢ — 0, 1 < r, < &~ !. Define )
as in (2.2). By the Cauchy—Schwarz inequality, for any 7 > 0,

2
E[(/ f<8>(z,x)¢(x)dx—/h(r,x)qb(x)dx) }

5/]E[(f(g)(t,x)—h(t,x))2]|¢(x)|dx/|¢(x)|dx.

By Theorem 2.2, E[(f(e)(t, x) — h(t,x))*] = O for any x as ¢ — 0. Moreover, by the bound from Lemma 7.11, we see
that this convergence is uniform over any compact set. Since ¢ has compact support and is bounded, this proves that as
e —0,

/f(s)(t’x)qb(x)dxii /h(t,x)¢(x)dx.

Thus, it suffices to show that

(10.1) f(f@)(t, x) = FO 1, x))p(x) dx 2o,
To prove this, first note that
e 3 1
FOwx) - @@, x)= Bl Yo (felte,y) = felte, xe))

YEB(xg,r¢)
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Recall that x, = [¢~'x]. Thus, by the change of variable z = x + ¢y,
/fs(ts, Xe + y)¢(x)dx = / fe(te, [e7'x] + y) ¢ (x) dx
= / felte, [e7 2= y] + )¢z — ey) dz.
Since y € 74, [e7 1z — yl= [e71z] — y. Thus,

/fa(tevxs+Y)¢(x)dxZ/fs(te,xe)(f)(x_g)’)dx-

Recall the function F; defined in Section 6. The above calculations show that

f (fO,x) = fO, x))p(x)dx

1
:B(T Z /fs(tg,Xg)(¢(x)—¢(x—gy))dx
1B, )l yeB(0,rs)
1
ZW Z /IB_IF8("8:X£)(¢(X)—d)(x—sy))dx,
1BO.7l | 3G

where the last identity holds because f; (., x;) and 8 “LF.(t,, x,) differ by a constant. Thus,

N 2
JE[( f (f@u,x) - O, x))¢(x)dx> }

L
[B(O, re)l yeBOw)

Let R be so large that ¢ (x) =0 when |x| > R — 1. For each § > 0, let

w(®) :=sup{|p(y) — @) : |y —z| <5}

Z (fE(tEa Xe +y) — fe(te, xs))~

2
Z E[(/ﬂ]Fs(ts’xe)(gb(x)_¢(x_8)7))dx> ]
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If ¢ is so small that er, < 1, then for any y € B(0, r¢), |[x — €y| > |x| — 1. Therefore, by the Cauchy—Schwarz inequality,

2
E[(/ﬁ_lFs(ts,xs)(qb(X) —p(x — sy>)dx> ]

2
=E[</|I Rﬂ_lFs(ta,xs)(MX)—¢(x—8y))dX) }

<CR(ery) E[Fg(tg,xa)2] dx.
[x|<R

From the proof of Lemma 7.9, it is easy to see that E[ F,(fs, x;)>] < C uniformly over |x| < R. Plugging this into the

above, we get

2
E[(f(f@)(t,x) - f(g)(t,x))(j)(x)dx) } <CR¥w(er,).

By the uniform continuity of ¢, the right side tends to zero as ¢ — 0. This proves equation (10.1), and hence completes

the proof of the corollary.
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