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1. Introduction

This paper has two motivations. First, in giving expository talks about the Rado
graph, we asked: “Let T'y and I's be independent G(N,1/2). What’s the chance they
are isomorphic? Small? How small? Less than IV 19-(5). So, when N = 100, less than
107139 Now suppose N = co (a G(o00,1/2) graph is called a Rado graph). The chance
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Table 1
Results from simulating one instance of G(N,1/2).

N 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

lzn —en] 14 15 15 15 15 15 15 15 16 16 16 16 16 16 16
leny +en] 15 15 15 15 15 16 16 16 16 16 16 16 16 17 17
Ln 14 14 14 14 15 15 15 15 15 15 15 15 16 16 16

that 'y = T's is one!” To help think about this seeming discontinuity, we asked, for finite
N, how large is the largest induced isomorphic subgraph of I'; and I's.

Theorem 1.1. Let Iy and Ty be independent G(N,1/2) graphs. Let Ly be the size of the
largest induced isomorphic subgraph. Then, with probability tending to one as N — oo,
Ly is either |xy—en] or |[xn+en], where xn = 41logy N —2log, log, N—2log,(4/e)+1
and ey = (4logy N)~1/2,

To interpret the above result, note that ey < 1/2 when N > 2. This implies that
lxny —en] and |zn + en ] are either the same integer, or differ exactly by one. Thus,
Ly is either concentrated at one point, or at two consecutive points, depending on N.
The latter case can happen only when zy is close to an integer (specifically, within less
than ey of an integer).

Incidentally, our proof does not rule out the possibility that Ly is asymptotically
concentrated on one point, and not two. Proving or disproving this would require a
more delicate analysis of certain remainder terms than what we currently have (see the
remark at the end of Section 2). Concentration on two points, although rare, is not
unprecedented. For a classical example, see [5, Theorem 5.1].

Simulations run by Ciaran McCreesh and James Trimble using the McSplit algo-
rithm [14] (personal communication) indicate that the asymptotics of Theorem 1.1 kick
in for N as small as 31 (with a sample of size 1). For N = 31, we have zny = 15.08
and ey = 0.23, and in the simulation, Ly turned out to be 14. (Theorem 1.1 says that
with high probability, Ly € {14,15}.) And the results continue to match the prediction
of Theorem 1.1 (sometimes off by one) all the way up to N = 45, when the task starts
approaching computational limits (see Table 1).

Theorem 1.1 is proved in Section 2, which gives some background. The argument
requires some work beyond the usual second moment method.

Our second motivation for the problems studied here came from asking experts (we
were sure that Theorem 1.1 was in the literature). Svante Janson had just been asked
the second question in the abstract (the one on subgraph isomorphism, described below)
by Don Knuth. Subgraph isomorphism is a basic question in constraint satisfaction.
Developers of programs had used G(n,1/2), G(N,1/2) as the center of extensive tests
comparing algorithms. They had observed a sharp transition: When n = 15, N = 150,
the chance of finding an induced copy of I'y in I's is close to 1. When n = 16, N = 150, the
chance is close to zero. Our theorem predicts this. To state a sharp result, let P(n, N) be
the probability that a random G(N,1/2) graph contains an induced copy of a random
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G(n,1/2) graph. The following theorem shows that P(n,N) drops from 1 to 0 in a
window of size < 2.

Theorem 1.2. With above notation, as N — oo, P(lyn —en],N) — 1 and P(|lyny +
en] +1,N) = 0, where yy = 2logy N + 1 and e = (4logy N) /2.

For example, when N = 150, yy = 15.46 and €y = 0.19. So the theorem says we
expect P(15,150) =1 and P(16,150) = 0, matching explicit computation [15].

Incidentally, Theorem 1.2 is related to the classic problem of figuring out the size of
the smallest graph that contains all graphs on n vertices as induced subgraphs. After
many years of partial progress, this problem was recently settled by Noga Alon [1], who
showed that the minimum N is (140(1))2»~1/2. The key step in Alon’s proof is to show
that if (]X)Q’(g) = ), then the probability that G(N,1/2) contains all graphs of size n
as induced subgraphs is (1 —e~*)2 + o(1) uniformly in n as N — co. Without checking
all the details, it seems to us that Alon’s result shows that the quantity P(n,N) :=
P(G(N,1/2) contains all graphs of size n) drops from 1 to 0 in a window of size 2. This
window is slightly to the left of our window, at 2log, N — 2log, log, N + 21log,(e/2) + 1.
The reason is that the main contributor to P(n, N) is the probability that G(N,1/2)
contains a copy of K, (the complete graph of size n), which is the ‘hardest’ subgraph to
contain. In particular, it is harder to contain K, than it is to contain a copy of G(n,1/2),
which is why Alon’s window is shifted by O(loglog N) to the left.

The fact that the size of the largest clique is concentrated at the above point is known
from old work of Matula [12,13] and Bollobds and Erdds [3]. Several other graph invari-
ants have concentrated distributions but others can be proved to be ‘non-concentrated’
at a finite number of points. For a survey and fascinating work on the chromatic number,
see [8].

Theorem 1.2 is proved in Section 3, which begins with a literature review on subgraph
isomorphism. The final section has remarks and open problems.
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2. Isomorphic graphs

Because two G(00,1/2) graphs are isomorphic with probability 1, a random R from
G(00,1/2) has come to be called the random graph. Non-random models for R abound:
Let the vertex set be {0,1,2,...} and put an undirected edge from i to j if i < j and the
ith binary digit of j is a 1 (labeling the rightmost digit as the zeroth digit). So i = 0 is
connected to all odd j, i =1 is connected to j = 2 or 3 (mod 4) and also to 0, and so on.
The amazing properties of R are beautifully exposited (and proved) in Peter Cameron’s
lovely article [4].

Logicians have developed facts about R (and higher cardinality versions). After all, a
graph is just a symmetric relation. Some of this is used in Diaconis and Malliaris [6] to
show that various algebraic problems are intractable because an associated commuting
graph contains R as an induced subgraph.

The discontinuity between finite and infinite N is jarring. Aren’t infinite limits sup-
posed to shed light on large finite N7 Exploring this led to Theorem 1.1.

A related question is pick an Erdés—Rényi graph and asks for the largest k such that
it contains two disjoint isomorphic induced subgraphs with k vertices. A combinatorial
application of this problem is studied in [10]. Similar questions can be asked for other
combinatorial objects (largest disjoint isomorphic subtrees in a tree, largest disjoint order
isomorphic pair of sub-permutations in a permutation — see [7] for applications of such
problems).

In the remainder of this section, we prove Theorem 1.1. Although we use log base 2 in
the statement of the theorem, we will work with log base e throughout the proof, which
will be denoted by log, as usual. The proofs of both Theorems 1.1 and 1.2 make use of
the following technical result. Take any 1 < m < n. Let I" be a G(n, 1/2) random graph.
Let X(i,7) be the indicator that {7, j} is an edge in T'. Let

¢(m,n) == > P(X(i,j) = X(n(i),n(j)) for all 1 <i < j <m), (2.1)
TESy

where the right side is interpreted as n! if m =0 or m = 1.

Proposition 2.1. There are positive universal constants K1 and Ko such that for alln > 1
and 2n/3 <m < n,

¢(m, ’I’L) < Klng(n—m) log(n—m)7
where 0log 0 is interpreted as 0.
The proof of this proposition requires two lemmas.

Lemma 2.2. Let m € S,,. Let A C {1,...,n} be a set such that (i) # i for each i € A.
Then there exists B C A, such that |B| > |A|/3, and (i) ¢ B for each i € B.
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Proof. Let C = (c1,...,ci) be a cycle in 7. In the following, we will sometimes treat C'
as the set {¢1,..., ¢k }. First, suppose that k is even. Let A; := AN{ey,c3,...,ck—1} and
Ay := AN{ez,cq,...,c,}. Let A’ be the larger of these two sets. Then [A'| > 1[ANC)|
and 7(i) € C'\ A for each i € A’. Next, suppose that k is odd. If k = 1, then A does
not intersect C because A contains no fixed point of 7. In this case, let A’ := 0. If k£ > 3
(and odd), let Ay := AN{ci,c3,...,¢c6—2} and Ay := AN {ca,cq,...,cx_1}. Let A’ be
the larger of these two sets. Then again we have that 7(i) € C'\ A’ for each i € A’, and

1
|A/| Z §|Am{cla"'ack—1}|- (22)

Now, if C' C A, then by the above inequality and the fact that k > 3, we get

A > % L %|AOO|.

w

On the other hand, if there is some element of C that is not in A, then we may as-
sume without loss of generality that ¢, ¢ A, because the cycle C' can be alternatively
represented as (¢, ¢j41,--+,Ck,C1,C2 . ..,¢—1) for any I. Thus, in this case, (2.2) gives

4> ZlAnc)

To summarize, given any cycle C, we have constructed a set A’ € A N C, such that
|A’| > {{ANC|, and (i) € C\ A’ for each i € A’. Let B be the union of A’ over all
cycles C'. It is easy to see that this B satisfies the two required properties. 0O

Lemma 2.3. Take any m € Sy,. Let k := |{i <m:w(i) =i}|. Then
P(X(i,§) = X(n(i),n(5)) for all 1 <i < j <m) < Cre”C2lm=km
where C and Cy are positive universal constants.

Proof. Let F :={i <m :x(i) =i} and A := {i < m : 7(i) # i}, bothat\F\—kand
|A| =m — k. By Lemma 2.2, there exists B C A such that |B| > |A| = £(m — k), and
w(i) ¢ B for all i € B. Moreover, since (7 (i)) # (i) for i € B (because otherwise,
m(i) =1 € B), we conclude that 7 (i) ¢ F. By independence of edges, this gives

P(X(i,7) = X(mw(i),n(j)) forall 1 <i < j<m)
(X(i,7) = X(m(i),n(j)) for all i € B, j € F)
(X(4,j) = X(w(i),j) forall i € B, j € F)

_ o~ IBIIFl < 9= 4(m—h)k.

On the other hand, since 7(B) N B = 0, we have
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P(X(i,j) = X(n(i),n(j)) forall 1 <i < j<m)
<P(X(3,j) = X(n(i),n(j)) for all 4,j € B, i < j)

— 9= (1) < 9=ds(m—m?+1

where the last inequality holds because |B| > %(m — k) and (3) > 1(a* — 1) for any
nonnegative integer a. The proof is now completed by combining the two bounds (e.g.,

by taking a suitable weighted geometric mean). O

Proof of Proposition 2.1. Throughout this proof, C7,C5,... will denote positive uni-
versal constants. Two of these, C; and Cs, are already fixed from Lemma 2.3. For
k =0,...,m, let T be the set of all 7 € S,, such that |{i < m : n(i) = i}| = k.
Then by Lemma 2.3,

¢(m,n) =" Y P(X(i,j) = X(r(i), (j)) for all 1 <i < j < m)
k=0meTy
<Oy [Tyle=Cim=km, (2.3)
k=0

Now, to choose an element of T}, we can first choose the locations of the k fixed points
of win {1,...,m}, and then choose the remaining part of 7. The first task can be done
in (') ways, and having done the first task, the second task can be done in < (n — k)!
ways. Thus,

13l < () tn .

We will now use the above to get an upper bound for k' term in (2.3). First, suppose
that 2m —n < k < m (noting that 2m —n > 0, since m > 2n/3). Then n—k < 2(n—m),
and hence

[Ty |e=C2lm=kIm < <7:) (n — k)le~Ca(m=k)m

< (T]:) (2(n _ m))2(n—m)e—02(m—k)m’
interpreting 0° = 1 if n = m. This gives

> plecinon

2m—n<k<m

2n—m<k<m
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m

n—m m —Cy(m—k)m

< @ mprm 3o (| Yemosn
k=0

— (2(7’L _ m))2(n—m)<1 + e—Cgm)m < 03604(n—m) log(n—m)_ (2_4)

Next, suppose that 0 < k < 2m —n. Then n — k < 2(m — k), which gives

|Tk|e—02(m—k)m < <7]:‘) (n _ k)!e_CZ(m_k)m

IN

(::) (2(m _ k))Q(mfk)eng(mfk)m

IN

(m) oCs(m—k) log m—Cs(m—k)m
i .

This shows that there is a sufficiently large number ng, such that if n > ng (which implies
that m > 2ng/3), and 0 < k < 2m — n, then we have

|Tk|e—02(m—k)m < (C:‘) e—Cg,(m—k)m.

Therefore,

Z |Tk|6702(m7k)m < Z ( m k) eng(mfk)m
m —

0<k<2m—n 0<k<2m—n

< (1 4e Gmym < Oy, (2.5)

Combining (2.3), (2.4), and (2.5), we get the desired upper bound for sufficiently large
n. We then get it for all n by just increasing the value of K7. O

We now start towards our proof of Theorem 1.1. Take any N, and let a = 4/log 2,
b= —2/log?2 and ¢ := 3a(1 —loga). An easy verification shows that

alog N + bloglog N + ¢
=4log, N — 2log,logy, N — 2log,(4/e) = zny — 1. (2.6)

Choose any integer n so that |y — n| < 2, and write n as
n =alog N 4+ bloglog N + d,
so that

c+l—d=zny—n. (2.7)
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Let X (4,7) and Y (i, ) be the indicators that {i,j} is an edge in T'; and 'y, respectively.
Let A be the set of all ordered n-tuples of distinct numbers from {1,..., N}. For A, B €
A, we will write A ~ B if X (a;,a;) =Y (b;,b;) for all 1 <i < j <n. Let

W= |[{A,Be A: A~ B}|.

Note that Ly > n if and only if W > 0. We will prove an upper bound on P(W > 0)
using the first moment method, and a lower bound using the second moment method.
In the following, we adopt the convention that for any function f, O(f(N)) denotes any
quantity whose absolute value is bounded above by a constant times f(N), where the
constant has no dependence on N.

Lemma 2.4. Let all notation be as above. Then
P(W > O) < e2(c+1—d) logN+O((loglogN)2).
Proof. First, note that
E(W) = |A22~(3) < N2no-(3),
Next, note that if A ~ B, then A; ~ B, for any © € S,,, where A, and B, denote
the lists (a1, ... arm)) and (bray,...,brn)), respectively. Thus, W > 0 if and only if

W > nl. This gives

EW) N219—(3) )~ (n+ 1) jnt0(1)

P(W >0)=P(W >nl) < == <

Plugging in the value of n, we get

P(W >0) < exp(2(alogN+bloglogN+d) log N

N | =

(alog N + bloglog N + d)(alog N + bloglog N +d — 1) log 2
1

— (alogN+bloglogN+d+ 5) log(alog N + bloglog N + d)

+a10gN+bloglogN+d+O(1)>.

The third line in the above display is a little bit more complicated than the rest. To
simplify, let us use log(1 + z) = = + O(z?), which gives

1
<alogN+bloglogN+d+ 5) log(alog N + bloglog N + d)
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1 bloglog N +d
= (alog N +bloglog N +d+ - | ( log(alog N) + log 1+M
2 alog N

1
= <alogN+b10glogN+d+ 5)(loglogN+loga) + bloglog N + O(1).

Plugging this into the previous display, let us compute the coefficients of various terms.
First, note that the coefficient of (log N)? is

a?log 2
2 —
a 5

which is zero since a = 4/log 2. Next, the coefficient of (log N)loglog N is
2b —ablog?2 — a,

which, again, is zero since a = 4/log2 and b = —2/log 2. The next highest term is log IV,
whose coefficient is

2d—%(Qd—1)log2—aloga+a:2—aloga+a—2d

=24 2c— 2d,

since a = 4/log2 and ¢ = 1a(1 — loga). All other terms are of order (loglog N)? or
smaller. This completes the proof. O

Next, we get a lower bound for P(W > 0) using the second moment method. For that,
we need an upper bound on E(W?). Let Ay be the set of all pairs (4, B) € A? such that
AN B = ( (considering A and B as sets rather than n-tuples). For each 1 < m < n,
each 1 < iy < -+ < 4, < n, and each m-tuple of distinct ji,...,Jm € {1,...,n}, let
Airoimiiveinm be the set of all (A, B) € A? such that a;, = bj,,...,a;, = b, , and
a; #bj for all i ¢ {i1,...,9n} and j ¢ {j1,...,Jm}. Note that these sets are disjoint,
and their union, together with Ag, equals A. For A, B,C,D € A, let

P(A,B,C,D):=P(A~B,C~D).
Then note that

EW?) = Y P(A,B,C,D)

A,B,C,DeA
= Y. Y PABCD)
(B,D)eAy A,CEA

4 i 3 3 > > P(A,B,C,D).

m=11<i1 < <im<n 1<t 0m <N (B,D)EA, .. ipmiin,....5m ACEA
distinct

0
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Let P’ denote the conditional probability given I'y. If (B, D) € Ag, then
P'(A~ B, C~ D) =220,

and thus, the unconditional probability is also the same. Next, for (B,D) €
Ais o imijts....jm» independence of edges implies that
P'(A~ B, C ~ D)
=P’ (X(ai,aj) =Y (b;, bj) and X (¢;,¢;) =Y (d;,d;) for all 1 <i < j <n)
= 22O -GN (X (as,, a5,) = Y (b, bi,) and X (c;,,¢;,) = Y (d;,, dj,)
forall 1 <p<q<m)
= 22N (v (b, bs,) = X(ai,, a1,) = X(cj,c5,)
foralll <p<qg<m)

_ _2 n + m
=2 (2) <2)H{X(aip,aiq):X(ij,ch) for all 1<p<g<m}>

where [ denotes the indicator of an event E, and in going from the third to the fourth
line we used the fact that b;, = d;, for each p. Thus,

m

P(A,B,C,D) =22+ P(X (a4, as,) = X(cj,, ¢5,)
forall1<p<gq<m).

Let p(ai,, ..., ai,;¢Cj,---,cj, ) denote the probability on the right. Combining the above
observations, we get

E(W2) = | A||AP22-2()

n
+ > > > i

m=11<i1 < <ip<n 1<j1,....im <n A,CEA

9-2(3)+(7)

distinct
'p(ai17 s )ainz;cjl’ R ij,)'
Note that
2n n 2n—m
[ Aol S N?", JAI < N™, [Aiy ivigigm | < NPT
Now, given m, i1,...,4m, ji,---,Jm and A, note that by symmetry,
Z p(ai17" -aaim;cjl7"'7cjm)
CeA

= Zp(lﬁ"'7m;cjl""’cj7n)

CecA
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=(N—m)p_m Z p(l,...,m;e1, ..., em),

1<ey,...,em <N
distinct
where we used the standard notation (z), = z(x —1)--- (x —y +1). Let {(m, N) denote
the last sum. Then, using the above information in the expression for E(W?) displayed
above, we get

E(W?) < Ning—2(3) (1 + an N—2mo(%) (:L) (n)mg(m,N)>. (2.8)

Our goal now is to get an upper bound for {(m, N). Take any 1 < m < n, and any distinct
1<ey,...,em < N.Letl:=|{e1,...,en}N{l,...,m}andlet 1 <p; <--- <p <mbe
the indices such that e,, € {1,...,m} for each i. Let P denote the conditional probability
given (X(i7j))1gi<jgm. Then

P(X(p,q) = X(ep,eq) foralll <p < g<m)
(m 1
=2 (2)+(2)H{X(p,‘,ps)=X(epweps) for all 1<r<s<l}-
In the sum defining {(m, N), e1,...,e, can be chosen as follows. First, we choose [
between 0 and m. Then, given [, we choose 1 < p; < -+ < p; < m. Given p1,...,py,
we choose distinct numbers ey, ,...,ep, € {1,...,m}. Finally, we choose the rest of
the e;’s from outside {1,...,m} so that they are distinct. Breaking up the sum in this
manner (and rewriting f1 =ep,, ..., fi = ep,, and using symmetry to replace p; by 4 for
1=1,...,1), we get

g(m,N)giﬂé"F(é)le(T)( 3 p(l,...,l;fl,...,fl)).

1<fi,..,fism

distinct
By Proposition 2.1, the inner sum is bounded by K;ef2(m=0los(m=1 if | > 9y, /3 1If
I < 2m/3, it is trivially bounded by m!. Combining, we get that the sum is bounded
by CpeC2min{lm—itlogm for some universal constants C and Cs, which is bounded by
CeC2min{ln=t}tlogn gince n > m. The same bound holds for (T) Plugging these into

the above display, and then using the resulting bound on &(m, N) in (2.8), we get

n n
E(W?) < Nirg—2(3) (1 +3 3 Nmal) (”) ()
=0 m=max{1,l} m
. Clec2 min{l,n—1} log n) )

In the following, we will use C7,Cj5, ... to denote arbitrary universal constants, whose
values may change from line to line. Throughout, we will implicitly assume that N is
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large enough (depending only on our choice of d’), wherever required. For the innermost
sum above, consider three cases. First, take [ = 0. Then the sum over m is bounded by

Z N_mn2m01 S CQHQN_l.

m=1

Next, take 1 <1 < 2n/3. Then the sum over m is bounded by

n
1 1
Z mefln2m2(2)clecgllogn < 03n2lN7212(2)6C'2l10gn < Cye—Csllog N

m=l
where the last inequality was obtained using

N—212(;) < g~ 2logNoln/3 < ~2llog No(51/3)logs N

which holds because | < 2n/3, and n < 5log, N when N is large enough. Next, using
that n > %logZ N for N large enough, we have that for any [ > 2n/3,

N72(l+1)2(l§1)

— N722l > N722(7/3) log, N — ]\]1/37
N-22(3) -

which implies, by backward induction on [, that
3

N—2l2(é) < N—(n—l)/3N—2n2( )

Thus, for I > 2n/3, the sum over m is bounded by

>o Nl (?) nlCyeC2(D1oen < Gyl N~=2(3) Catn 1 logn
m=l
< C5?1!N72n2(721)6*06(”*l)logN’

where, in the second inequality, we used the previous display and the fact that log N >
logn when N is large enough. Now, from the proof of Lemma 2.4, we have that

n|N72n2(g) _ 672(c+17d) logN+O((loglogN)2)'
Combining all of the above (and trivially bounding e~Cs(*=D1e N < 1) we get
E(W?) < N4n272(721)(1 +672(c+17d)logN+O((loglogN)2)).

On the other hand,
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E(W) = ((N),)?2~() > n2n2-(3) (1 - ﬁ>2n

N
n 2n2
> N2no-() (1 = 22,

Thus, by the second moment inequality,

P(W >0)> 20

(1 —2n2%/N)?
~ 1+ e—2(ct1—d)log N+O((loglog N)2)

Let ey := (4log, N)~'/2 as in the statement of Theorem 1.1. By Lemma 2.4, P(W >
0) —» 0if c+1—d < —ep, and by the above lower bound, P(W > 0) — lifc+1—d > ep.
But by (2.7), c+1—d = xzx —n. Since ey € (0,1/2], this proves Theorem 1.1.

Remark 2.5. To prove or disprove that Ly concentrates on one point instead of two,
one needs to carefully analyze and refine the O((loglog N)?) error term in the above
analysis and replace it by some explicit term plus o(1) error, so that when zx is within
O((log N)~1) of some integer n, one can show that P(W > 0) is close to neither 1 or 0.

3. Subgraph isomorphism

Deciding if a graph I'; appears as an induced subgraph of I's is a basic problem in
the world of image analysis (does this person appear in this crowd scene?), chemistry,
and database query. The problem is NP complete but modern constraint satisfaction
algorithms can handle 'y with hundreds of nodes and I's with thousands. A comprehen-
sive review of programs and applications is in [15]. The forthcoming book by Knuth [9]
features subgraph isomorphism as a basic problem of constraint satisfaction.

Comparing algorithms requires a suite of test problems. The authors of [15] noted
that most tests were done on ‘easy cases’ where I's is fixed and I'; is chosen by choosing
a random set of n vertices of I'y and taking that induced subgraph (so, I'; appears in
I'3). They noticed that taking 'y, I'y from independent copies of G(n,p), G(N, q) led to
different recommendations and conclusions.

As part of their extensive tests they fixed N = 150 and discovered the phase transition
discussed in the introduction. Their results are much richer when p and ¢ are varied —
we only treat p = ¢ = 1/2. We believe the techniques introduced in this paper will allow
similar limit theorems (at least for p, ¢ away from {0,1}).

As mentioned earlier in the introduction, a closely related recent paper is that of
Alon [1], which shows that if (]Z)Q_(@ = ), then with probability (1 —e=*)2 + o(1),
G(N,1/2) contains every graph on n vertices as an induced subgraph. Theorem 1.2 is
also related to the classical result about the concentration of the size of the largest clique
in G(N, 1/2), due to Matula [12,13] and Bollobas and Erdés [3].
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Take any 1 < n < N. Let I'; and I'; be independent G(n,1/2) and G(N, 1/2) random
graphs. In the remainder of this section, we prove Theorem 1.2. The proof is similar
to that of Theorem 1.1 (in particular, we use Proposition 2.1), although a bit simpler
because the expected number of copies of I'; in I's has a simpler expression that the
expected number of isomorphic pairs of induced subgraphs in two independent random
graphs (which has an extra n! in the denominator, leading to the loglog N correction).

Let X (i,7) be the indicator that {i,j} is an edge in I'y, and Y (4, j) be the indicator
that {i,7} is an edge in T's. Let A be the set of all ordered n-tuples of distinct numbers
from {1,..., N}, as in the previous section. We will write A ~ I'y if Y (a;,a;) = X(4, )
forall 1 <7< j <n.Let

W:=[{Ac A: A~T}|.
Note that I'; contains a copy of I'; as an induced subgraph if and only if W > 0.
Lemma 3.1. Suppose that n = alog N + b for a = 2/log2 and some b € R. Then
P(W > 0) < N1~b2=b0-1/2,
Proof. Note that
E(W) = A2~ () < Nna-(),

Plugging in n = alog N + b, this gives

EW) < exp((alogN+ b)log N — %(alogN+b)(alogN+b— l)logQ)
— N1-bg—b(b—1)/2.
By Markov’s inequality, P(W > 0) = P(W > 1) < E(W). This completes the proof. O
For each (4, B) € A2, let
P(A,B):=P(A~T,y, B~Ty).
Let Ag and A;, . i,..i1,....j,», De as in the previous section. Then

E(W?) = Y  P(A B)

A,BEA

= > P(AB)

(A,B)e Ay

+3 3 > > P(A, B). (3.1)

m=11<i1 <+ <im <1 1<G1 o dm <n (A, B)EA;
distinct
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We will now use the above expression to establish an upper bound for E(W?).

Lemma 3.2. We have

n
E(1?) < N2ng—2(3) "IN,
w2 <nN22E) (143} o )N T2 () )
m=11<j1,...,jm<n
distinct

where
p(1s-- -5 dm) = P(X(p,q) = X (jp, Jg) forall 1 <p < g <m).

Proof. Let P’ denote the conditional probability given T'y. If (A, B) € Ay, then
P(A~T;, B~Ty) =2-203),

and thus, the unconditional probability is also the same. Next, for (A4,B) €
Ay imigisjims We have

]P)I(A ~ ].—‘17 B ~ Pl)

=P'(Y(ai,a;) =Y (bi,bj) = X(i,4) forall 1 <i < j < n)

= 2_2((3)_(?))P’(Y(aip,aiq) = X(ip,iq) = X(Jp, Jq) forall 1 <p <g<m)

= 2_2(;)—"—(?)H{X(ipviq):X(jpvjq) for all 1<p<g<m}>

where I denotes the indicator of an event E. Thus,

m

P(A, B) = 220+ P(X (i), i) = X (jp, 4) for all 1 < p < g < m).
Combining the above observations, we get

E(W?)

= [o|2726) 4 S D A i |2

m=11i1 < <lm J1,..-,Jm
distinct

P (X (ip,iq) = X(Jp, Jq) forall 1 <p < g <m).

-2(3)+(3)

Note that
[ Aol < N?", | Aiy i | < NP

Plugging these bounds into the previous display and using symmetry, we get the desired
result. O
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Henceforth, let us assume that

2
5 and some b€ [—1,1]. (3.2)

n=alogN +b for a=
log

Lemma 3.3. Assume (3.2), and suppose that m = an for some a € [0,1]. Then
—mlog N + <7;) log2 < —a(l — a)nlog N — a(1 — ab)log N + log 2.
Proof. Note that

—mlog N + (T;) log 2

aalog N 4+ ab)(aalog N + ab— 1)
2

= —aa(log N)? — ablog N + ( log 2

= —a(l-a)a(log N)* + o((2a — 1)b — 1) log N + W

< —a(l —a)(alog N +b)log N — a(1 — ab)log N + log 2,

log 2

where in the last inequality we used ab(ab—1) < 2, which holds because b € [—1, 1] and
a€l0,1]. O

Lemma 3.4. There are positive universal constants C1, Co and Ny, such that if N > Ny,
and (3.2) holds, then

E(W?) < N22~2(3)(1 4 ¢, N~C20-9)),

Proof. In this proof, C1,Cs, ... will denote arbitrary positive universal constants. Let
p(J1,- .., Jm) be as in Lemma 3.2. First, note that

Z. p(]l;,]m) = %7

J1
distinct

where ¢(m,n) is the quantity defined in (2.1). Therefore, by Proposition 2.1,

> ()N et

2n/3<m<n j1,--:Jm
distinct

<o Y Nmals)Oanmmyesn

2n/3<m<n

For m > 2n/3, Lemma 3.3 gives (using (1 — a)n = n —m and ab < (5b + 1)/6 for all
a€[2/3,1] and b € [-1,1])
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—mlog N + <ﬂ;) log2 < —a(n —m)log N — 5%(1 —b)log N + log2
2 5
< —g(n—m) log N — 5(1 —b)log N + log 2.

Thus, for N > Ny, where Ny is a sufficiently large universal constant, we have

Z N—m2(g”)602(n—m) logn

2n/3<m<n

< Z 2€—Cg(n—m) log NN—5(1—b)/9 < C4N_5(1_b)/9.

2n/3<m<n

If 1 <m < 2n/3, then Lemma 3.3 gives (using an = m and a(1 — ab) > 0)

—mlog N + (?) log2 < —(1 — a)mlog N + log?2
1
< *ngOgN*FlOg?.

Thus, using the trivial bound p(j1, ..., jm) < 1 and the assumption (3.2), we get

> % (D))

1<m<2n/3 ji,---:jm
distinct

< Z 2N7m/3n2m < 2N705’
1<m<2n/3

provided that N > Ny for some sufficiently large universal constant Ny. Combining all
of the above, and applying Lemma 3.2, we get the required upper bound. O

Lemma 3.5. There are positive universal constants Ny, C1 and Cy such that the following
is true. If N > Ny and (3.2) holds, then

P(W>1)>1—C N0,
Proof. Note that
E(W) = (N)nQ*(g) > No-(3) (1 _ ")

N
> N (3) (1 — %2)

Combining this with the upper bound on E(W?) from Lemma 3.4, and the second
moment inequality, we get the desired result. O
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Proof of Theorem 1.2. Note that |yn +en]| + 1 > 2logy N + 1 4 en. Therefore, by
Lemma 3.1, P(lyn +en] +1,N) — 0 as N — oo. Similarly, note that |yny —en| <
2logy N +1—ep. By Lemma 3.5, this shows that P(|yny —en|,N) = 1las N - co. O

4. Remarks and problems

Theorem 1.1 does not capture the way the induced isomorphic subgraph varies from
N to N+1.If I'y and I's are grown by adding fresh vertices one at a time, it may well be
that that largest isomorphic subgraph varies quite a bit (eventually becoming disjoint
from earlier champions?). This makes the connection with the limiting R more tenuous
and seems worth further study.

It seems natural to ask similar questions for other graph limit models [11]. In particu-
lar, all G(oo, p) graphs are isomorphic to the Rado graph, for any p € (0, 1). This makes
understanding the largest isomorphic induced subgraph of two independent G(N,p)
graphs more interesting.

There are a variety of notions of I'y being contained in I's. Just isomorphic as a
subgraph (without the ‘induced’ constraint)? As labeled graphs? The classic paper [2]
relates such problems to the problem of finding maximal cliques.

We have focused on the yes/no question. There are further counting questions — how
many copies of a pick from G(n, p) appear in G(N, ¢) and how is this number distributed?
(See forthcoming work of Surya, Warnke and Zhu for a solution of this problem.)

Finally, Knuth’s treatment [9] treats subgraph isomorphism as a special case of con-
straint satisfaction problems, and similar questions can be asked.

Data availability
No data was used for the research described in the article.
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