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Consider two independent Erdős–Rényi G(N, 1/2) graphs. We 
show that with probability tending to 1 as N → ∞, the largest 
induced isomorphic subgraph has size either �xN − εN � or 
�xN +εN �, where xN = 4 log

2
N −2 log

2
log

2
N −2 log

2
(4/e) +

1 and εN = (4 log
2

N)−1/2. Using similar techniques, we 
also show that if Γ1 and Γ2 are independent G(n, 1/2) and 
G(N, 1/2) random graphs, then Γ2 contains an isomorphic 
copy of Γ1 as an induced subgraph with high probability if 
n ≤ �yN − εN � and does not contain an isomorphic copy 
of Γ1 as an induced subgraph with high probability if n >
�yN + εN �, where yN = 2 log

2
N + 1 and εN is as above.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

This paper has two motivations. First, in giving expository talks about the Rado 

graph, we asked: “Let Γ1 and Γ2 be independent G(N, 1/2). What’s the chance they 

are isomorphic? Small? How small? Less than N !2−(N

2
). So, when N = 100, less than 

10−1300. Now suppose N = ∞ (a G(∞, 1/2) graph is called a Rado graph). The chance 
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Table 1

Results from simulating one instance of G(N, 1/2).

N 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

�xN − εN � 14 15 15 15 15 15 15 15 16 16 16 16 16 16 16
�xN + εN � 15 15 15 15 15 16 16 16 16 16 16 16 16 17 17
LN 14 14 14 14 15 15 15 15 15 15 15 15 16 16 16

that Γ1
∼= Γ2 is one!” To help think about this seeming discontinuity, we asked, for finite 

N , how large is the largest induced isomorphic subgraph of Γ1 and Γ2.

Theorem 1.1. Let Γ1 and Γ2 be independent G(N, 1/2) graphs. Let LN be the size of the 

largest induced isomorphic subgraph. Then, with probability tending to one as N → ∞, 

LN is either �xN −εN � or �xN +εN �, where xN = 4 log2 N −2 log2 log2 N −2 log2(4/e) +1

and εN = (4 log2 N)−1/2.

To interpret the above result, note that εN ≤ 1/2 when N ≥ 2. This implies that 

�xN − εN � and �xN + εN � are either the same integer, or differ exactly by one. Thus, 

LN is either concentrated at one point, or at two consecutive points, depending on N . 

The latter case can happen only when xN is close to an integer (specifically, within less 

than εN of an integer).

Incidentally, our proof does not rule out the possibility that LN is asymptotically 

concentrated on one point, and not two. Proving or disproving this would require a 

more delicate analysis of certain remainder terms than what we currently have (see the 

remark at the end of Section 2). Concentration on two points, although rare, is not 

unprecedented. For a classical example, see [5, Theorem 5.1].

Simulations run by Ciaran McCreesh and James Trimble using the McSplit algo-

rithm [14] (personal communication) indicate that the asymptotics of Theorem 1.1 kick 

in for N as small as 31 (with a sample of size 1). For N = 31, we have xN
.
= 15.08

and εN
.
= 0.23, and in the simulation, LN turned out to be 14. (Theorem 1.1 says that 

with high probability, LN ∈ {14, 15}.) And the results continue to match the prediction 

of Theorem 1.1 (sometimes off by one) all the way up to N = 45, when the task starts 

approaching computational limits (see Table 1).

Theorem 1.1 is proved in Section 2, which gives some background. The argument 

requires some work beyond the usual second moment method.

Our second motivation for the problems studied here came from asking experts (we 

were sure that Theorem 1.1 was in the literature). Svante Janson had just been asked 

the second question in the abstract (the one on subgraph isomorphism, described below) 

by Don Knuth. Subgraph isomorphism is a basic question in constraint satisfaction. 

Developers of programs had used G(n, 1/2), G(N, 1/2) as the center of extensive tests 

comparing algorithms. They had observed a sharp transition: When n = 15, N = 150, 

the chance of finding an induced copy of Γ1 in Γ2 is close to 1. When n = 16, N = 150, the 

chance is close to zero. Our theorem predicts this. To state a sharp result, let P (n, N) be 

the probability that a random G(N, 1/2) graph contains an induced copy of a random 
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G(n, 1/2) graph. The following theorem shows that P (n, N) drops from 1 to 0 in a 

window of size ≤ 2.

Theorem 1.2. With above notation, as N → ∞, P (�yN − εN �, N) → 1 and P (�yN +

εN � + 1, N) → 0, where yN = 2 log2 N + 1 and εN = (4 log2 N)−1/2.

For example, when N = 150, yN
.
= 15.46 and εN

.
= 0.19. So the theorem says we 

expect P (15, 150) 
.
= 1 and P (16, 150) 

.
= 0, matching explicit computation [15].

Incidentally, Theorem 1.2 is related to the classic problem of figuring out the size of 

the smallest graph that contains all graphs on n vertices as induced subgraphs. After 

many years of partial progress, this problem was recently settled by Noga Alon [1], who 

showed that the minimum N is (1 +o(1))2(n−1)/2. The key step in Alon’s proof is to show 

that if 
(

N
n

)
2−(n

2
) = λ, then the probability that G(N, 1/2) contains all graphs of size n

as induced subgraphs is (1 − e−λ)2 + o(1) uniformly in n as N → ∞. Without checking 

all the details, it seems to us that Alon’s result shows that the quantity P̃ (n, N) :=

P (G(N, 1/2) contains all graphs of size n) drops from 1 to 0 in a window of size 2. This 

window is slightly to the left of our window, at 2 log2 N − 2 log2 log2 N + 2 log2(e/2) + 1. 

The reason is that the main contributor to P̃ (n, N) is the probability that G(N, 1/2)

contains a copy of Kn (the complete graph of size n), which is the ‘hardest’ subgraph to 

contain. In particular, it is harder to contain Kn than it is to contain a copy of G(n, 1/2), 

which is why Alon’s window is shifted by O(log log N) to the left.

The fact that the size of the largest clique is concentrated at the above point is known 

from old work of Matula [12,13] and Bollobás and Erdős [3]. Several other graph invari-

ants have concentrated distributions but others can be proved to be ‘non-concentrated’ 

at a finite number of points. For a survey and fascinating work on the chromatic number, 

see [8].

Theorem 1.2 is proved in Section 3, which begins with a literature review on subgraph 

isomorphism. The final section has remarks and open problems.
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2. Isomorphic graphs

Because two G(∞, 1/2) graphs are isomorphic with probability 1, a random R from 

G(∞, 1/2) has come to be called the random graph. Non-random models for R abound: 

Let the vertex set be {0, 1, 2, . . .} and put an undirected edge from i to j if i < j and the 

ith binary digit of j is a 1 (labeling the rightmost digit as the zeroth digit). So i = 0 is 

connected to all odd j, i = 1 is connected to j ≡ 2 or 3 (mod 4) and also to 0, and so on. 

The amazing properties of R are beautifully exposited (and proved) in Peter Cameron’s 

lovely article [4].

Logicians have developed facts about R (and higher cardinality versions). After all, a 

graph is just a symmetric relation. Some of this is used in Diaconis and Malliaris [6] to 

show that various algebraic problems are intractable because an associated commuting 

graph contains R as an induced subgraph.

The discontinuity between finite and infinite N is jarring. Aren’t infinite limits sup-

posed to shed light on large finite N? Exploring this led to Theorem 1.1.

A related question is pick an Erdős–Rényi graph and asks for the largest k such that 

it contains two disjoint isomorphic induced subgraphs with k vertices. A combinatorial 

application of this problem is studied in [10]. Similar questions can be asked for other 

combinatorial objects (largest disjoint isomorphic subtrees in a tree, largest disjoint order 

isomorphic pair of sub-permutations in a permutation — see [7] for applications of such 

problems).

In the remainder of this section, we prove Theorem 1.1. Although we use log base 2 in 

the statement of the theorem, we will work with log base e throughout the proof, which 

will be denoted by log, as usual. The proofs of both Theorems 1.1 and 1.2 make use of 

the following technical result. Take any 1 ≤ m ≤ n. Let Γ be a G(n, 1/2) random graph. 

Let X(i, j) be the indicator that {i, j} is an edge in Γ. Let

φ(m, n) :=
∑

π∈Sn

P (X(i, j) = X(π(i), π(j)) for all 1 ≤ i < j ≤ m), (2.1)

where the right side is interpreted as n! if m = 0 or m = 1.

Proposition 2.1. There are positive universal constants K1 and K2 such that for all n ≥ 1

and 2n/3 ≤ m ≤ n,

φ(m, n) ≤ K1eK2(n−m) log(n−m),

where 0 log 0 is interpreted as 0.

The proof of this proposition requires two lemmas.

Lemma 2.2. Let π ∈ Sn. Let A ⊆ {1, . . . , n} be a set such that π(i) �= i for each i ∈ A. 

Then there exists B ⊆ A, such that |B| ≥ |A|/3, and π(i) /∈ B for each i ∈ B.
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Proof. Let C = (c1, . . . , ck) be a cycle in π. In the following, we will sometimes treat C

as the set {c1, . . . , ck}. First, suppose that k is even. Let A1 := A ∩{c1, c3, . . . , ck−1} and 

A2 := A ∩ {c2, c4, . . . , ck}. Let A′ be the larger of these two sets. Then |A′| ≥ 1
2 |A ∩ C|

and π(i) ∈ C \ A′ for each i ∈ A′. Next, suppose that k is odd. If k = 1, then A does 

not intersect C because A contains no fixed point of π. In this case, let A′ := ∅. If k ≥ 3

(and odd), let A1 := A ∩ {c1, c3, . . . , ck−2} and A2 := A ∩ {c2, c4, . . . , ck−1}. Let A′ be 

the larger of these two sets. Then again we have that π(i) ∈ C \ A′ for each i ∈ A′, and

|A′| ≥
1

2
|A ∩ {c1, . . . , ck−1}|. (2.2)

Now, if C ⊆ A, then by the above inequality and the fact that k ≥ 3, we get

|A′| ≥
k − 1

2
≥

k

3
=

1

3
|A ∩ C|.

On the other hand, if there is some element of C that is not in A, then we may as-

sume without loss of generality that ck /∈ A, because the cycle C can be alternatively 

represented as (cl, cl+1, . . . , ck, c1, c2 . . . , cl−1) for any l. Thus, in this case, (2.2) gives

|A′| ≥
1

2
|A ∩ C|.

To summarize, given any cycle C, we have constructed a set A′ ⊆ A ∩ C, such that 

|A′| ≥ 1
3 |A ∩ C|, and π(i) ∈ C \ A′ for each i ∈ A′. Let B be the union of A′ over all 

cycles C. It is easy to see that this B satisfies the two required properties. �

Lemma 2.3. Take any π ∈ Sn. Let k := |{i ≤ m : π(i) = i}|. Then

P (X(i, j) = X(π(i), π(j)) for all 1 ≤ i < j ≤ m) ≤ C1e−C2(m−k)m,

where C1 and C2 are positive universal constants.

Proof. Let F := {i ≤ m : π(i) = i} and A := {i ≤ m : π(i) �= i}, so that |F | = k and 

|A| = m − k. By Lemma 2.2, there exists B ⊆ A such that |B| ≥ 1
3 |A| = 1

3 (m − k), and 

π(i) /∈ B for all i ∈ B. Moreover, since π(π(i)) �= π(i) for i ∈ B (because otherwise, 

π(i) = i ∈ B), we conclude that π(i) /∈ F . By independence of edges, this gives

P (X(i, j) = X(π(i), π(j)) for all 1 ≤ i < j ≤ m)

≤ P (X(i, j) = X(π(i), π(j)) for all i ∈ B, j ∈ F )

= P (X(i, j) = X(π(i), j) for all i ∈ B, j ∈ F )

= 2−|B||F | ≤ 2− 1
3

(m−k)k.

On the other hand, since π(B) ∩ B = ∅, we have
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P (X(i, j) = X(π(i), π(j)) for all 1 ≤ i < j ≤ m)

≤ P (X(i, j) = X(π(i), π(j)) for all i, j ∈ B, i < j)

= 2−(|B|
2

) ≤ 2− 1
36

(m−k)2+ 1
4 ,

where the last inequality holds because |B| ≥ 1
3 (m − k) and 

(
a
2

)
≥ 1

4 (a2 − 1) for any 

nonnegative integer a. The proof is now completed by combining the two bounds (e.g., 

by taking a suitable weighted geometric mean). �

Proof of Proposition 2.1. Throughout this proof, C1, C2, . . . will denote positive uni-

versal constants. Two of these, C1 and C2, are already fixed from Lemma 2.3. For 

k = 0, . . . , m, let Tk be the set of all π ∈ Sn such that |{i ≤ m : π(i) = i}| = k. 

Then by Lemma 2.3,

φ(m, n) =

m∑

k=0

∑

π∈Tk

P (X(i, j) = X(π(i), π(j)) for all 1 ≤ i < j ≤ m)

≤ C1

m∑

k=0

|Tk|e−C2(m−k)m. (2.3)

Now, to choose an element of Tk, we can first choose the locations of the k fixed points 

of π in {1, . . . , m}, and then choose the remaining part of π. The first task can be done 

in 
(

m
k

)
ways, and having done the first task, the second task can be done in ≤ (n − k)!

ways. Thus,

|Tk| ≤

(
m

k

)
(n − k)!.

We will now use the above to get an upper bound for kth term in (2.3). First, suppose 

that 2m −n ≤ k ≤ m (noting that 2m −n ≥ 0, since m ≥ 2n/3). Then n −k ≤ 2(n −m), 

and hence

|Tk|e−C2(m−k)m ≤

(
m

k

)
(n − k)!e−C2(m−k)m

≤

(
m

k

)
(2(n − m))2(n−m)e−C2(m−k)m,

interpreting 00 = 1 if n = m. This gives

∑

2m−n≤k≤m

|Tk|e−C2(m−k)m

≤
∑

2n−m≤k≤m

(
m

k

)
(2(n − m))2(n−m)e−C2(m−k)m



150 S. Chatterjee, P. Diaconis / J. Combin. Theory Ser. B 160 (2023) 144–162

≤ (2(n − m))2(n−m)
m∑

k=0

(
m

m − k

)
e−C2(m−k)m

= (2(n − m))2(n−m)(1 + e−C2m)m ≤ C3eC4(n−m) log(n−m). (2.4)

Next, suppose that 0 ≤ k < 2m − n. Then n − k < 2(m − k), which gives

|Tk|e−C2(m−k)m ≤

(
m

k

)
(n − k)!e−C2(m−k)m

≤

(
m

k

)
(2(m − k))2(m−k)e−C2(m−k)m

≤

(
m

k

)
eC5(m−k) log m−C2(m−k)m.

This shows that there is a sufficiently large number n0, such that if n ≥ n0 (which implies 

that m ≥ 2n0/3), and 0 ≤ k < 2m − n, then we have

|Tk|e−C2(m−k)m ≤

(
m

k

)
e−C6(m−k)m.

Therefore,

∑

0≤k<2m−n

|Tk|e−C2(m−k)m ≤
∑

0≤k<2m−n

(
m

m − k

)
e−C6(m−k)m

≤ (1 + e−C6m)m ≤ C7. (2.5)

Combining (2.3), (2.4), and (2.5), we get the desired upper bound for sufficiently large 

n. We then get it for all n by just increasing the value of K1. �

We now start towards our proof of Theorem 1.1. Take any N , and let a = 4/ log 2, 

b = −2/ log 2 and c := 1
2a(1 − log a). An easy verification shows that

a log N + b log log N + c

= 4 log2 N − 2 log2 log2 N − 2 log2(4/e) = xN − 1. (2.6)

Choose any integer n so that |xN − n| ≤ 2, and write n as

n = a log N + b log log N + d,

so that

c + 1 − d = xN − n. (2.7)
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Let X(i, j) and Y (i, j) be the indicators that {i, j} is an edge in Γ1 and Γ2, respectively. 

Let A be the set of all ordered n-tuples of distinct numbers from {1, . . . , N}. For A, B ∈

A, we will write A � B if X(ai, aj) = Y (bi, bj) for all 1 ≤ i < j ≤ n. Let

W := |{A, B ∈ A : A � B}|.

Note that LN ≥ n if and only if W > 0. We will prove an upper bound on P (W > 0)

using the first moment method, and a lower bound using the second moment method. 

In the following, we adopt the convention that for any function f , O(f(N)) denotes any 

quantity whose absolute value is bounded above by a constant times f(N), where the 

constant has no dependence on N .

Lemma 2.4. Let all notation be as above. Then

P (W > 0) ≤ e2(c+1−d) log N+O((log log N)2).

Proof. First, note that

E(W ) = |A|22−(n

2
) ≤ N2n2−(n

2
).

Next, note that if A � B, then Aπ � Bπ for any π ∈ Sn, where Aπ and Bπ denote 

the lists (aπ(1), . . . aπ(n)) and (bπ(1), . . . , bπ(n)), respectively. Thus, W > 0 if and only if 

W ≥ n!. This gives

P (W > 0) = P (W ≥ n!) ≤
E(W )

n!
≤ N2n2−(n

2
)n−(n+ 1

2
)en+O(1).

Plugging in the value of n, we get

P (W > 0) ≤ exp

(
2(a log N + b log log N + d) log N

−
1

2
(a log N + b log log N + d)(a log N + b log log N + d − 1) log 2

−

(
a log N + b log log N + d +

1

2

)
log(a log N + b log log N + d)

+ a log N + b log log N + d + O(1)

)
.

The third line in the above display is a little bit more complicated than the rest. To 

simplify, let us use log(1 + x) = x + O(x2), which gives

(
a log N + b log log N + d +

1

2

)
log(a log N + b log log N + d)
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=

(
a log N + b log log N + d +

1

2

)(
log(a log N) + log

(
1 +

b log log N + d

a log N

))

=

(
a log N + b log log N + d +

1

2

)
(log log N + log a) + b log log N + O(1).

Plugging this into the previous display, let us compute the coefficients of various terms. 

First, note that the coefficient of (log N)2 is

2a −
a2 log 2

2
,

which is zero since a = 4/ log 2. Next, the coefficient of (log N) log log N is

2b − ab log 2 − a,

which, again, is zero since a = 4/ log 2 and b = −2/ log 2. The next highest term is log N , 

whose coefficient is

2d −
a

2
(2d − 1) log 2 − a log a + a = 2 − a log a + a − 2d

= 2 + 2c − 2d,

since a = 4/ log 2 and c = 1
2a(1 − log a). All other terms are of order (log log N)2 or 

smaller. This completes the proof. �

Next, we get a lower bound for P (W > 0) using the second moment method. For that, 

we need an upper bound on E(W 2). Let A0 be the set of all pairs (A, B) ∈ A2 such that 

A ∩ B = ∅ (considering A and B as sets rather than n-tuples). For each 1 ≤ m ≤ n, 

each 1 ≤ i1 < · · · < im ≤ n, and each m-tuple of distinct j1, . . . , jm ∈ {1, . . . , n}, let 

Ai1,...,im;j1,...,jm
be the set of all (A, B) ∈ A2 such that ai1

= bj1
, . . . , aim

= bjm
, and 

ai �= bj for all i /∈ {i1, . . . , im} and j /∈ {j1, . . . , jm}. Note that these sets are disjoint, 

and their union, together with A0, equals A. For A, B, C, D ∈ A, let

P (A, B, C, D) := P (A � B, C � D).

Then note that

E(W 2) =
∑

A,B,C,D∈A

P (A, B, C, D)

=
∑

(B,D)∈A0

∑

A,C∈A

P (A, B, C, D)

+

n∑

m=1

∑

1≤i1<···<im≤n

∑

1≤j1,...,jm≤n
distinct

∑

(B,D)∈Ai1,...,im;j1,...,jm

∑

A,C∈A

P (A, B, C, D).



S. Chatterjee, P. Diaconis / J. Combin. Theory Ser. B 160 (2023) 144–162 153

Let P ′ denote the conditional probability given Γ1. If (B, D) ∈ A0, then

P
′(A � B, C � D) = 2−2(n

2
),

and thus, the unconditional probability is also the same. Next, for (B, D) ∈

Ai1,...,im;j1,...,jm
, independence of edges implies that

P
′(A � B, C � D)

= P
′(X(ai, aj) = Y (bi, bj) and X(ci, cj) = Y (di, dj) for all 1 ≤ i < j ≤ n)

= 2−2
(
(n

2
)−(m

2
)
)
P

′(X(aip
, aiq

) = Y (bip
, biq

) and X(cjp
, cjq

) = Y (djp
, djq

)

for all 1 ≤ p < q ≤ m)

= 2−2
(
(n

2
)−(m

2
)
)
P

′(Y (bip
, biq

) = X(aip
, aiq

) = X(cjp
, cjq

)

for all 1 ≤ p < q ≤ m)

= 2−2(n

2
)+(m

2
)
I{X(aip ,aiq )=X(cjp ,cjq ) for all 1≤p<q≤m},

where IE denotes the indicator of an event E, and in going from the third to the fourth 

line we used the fact that bip
= djp

for each p. Thus,

P (A, B, C, D) = 2−2(n

2
)+(m

2
)
P (X(aip

, aiq
) = X(cjp

, cjq
)

for all 1 ≤ p < q ≤ m).

Let p(ai1
, . . . , aim

; cj1
, . . . , cjm

) denote the probability on the right. Combining the above 

observations, we get

E(W 2) = |A0||A|22−2(n

2
)

+
n∑

m=1

∑

1≤i1<···<im≤n

∑

1≤j1,...,jm≤n
distinct

∑

A,C∈A

|Ai1,...,im;j1,...,jm
|2−2(n

2
)+(m

2
)

· p(ai1
, . . . , aim

; cj1
, . . . , cjm

).

Note that

|A0| ≤ N2n, |A| ≤ Nn, |Ai1,...,im;j1,...,jm
| ≤ N2n−m.

Now, given m, i1, . . . , im, j1, . . . , jm and A, note that by symmetry,

∑

C∈A

p(ai1
, . . . , aim

; cj1
, . . . , cjm

)

=
∑

C∈A

p(1, . . . , m; cj1
, . . . , cjm

)
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= (N − m)n−m

∑

1≤e1,...,em≤N
distinct

p(1, . . . , m; e1, . . . , em),

where we used the standard notation (x)y = x(x − 1) · · · (x − y + 1). Let ξ(m, N) denote 

the last sum. Then, using the above information in the expression for E(W 2) displayed 

above, we get

E(W 2) ≤ N4n2−2(n

2
)
(

1 +
n∑

m=1

N−2m2(m

2
)
(

n

m

)
(n)mξ(m, N)

)
. (2.8)

Our goal now is to get an upper bound for ξ(m, N). Take any 1 ≤ m ≤ n, and any distinct 

1 ≤ e1, . . . , em ≤ N . Let l := |{e1, . . . , em} ∩{1, . . . , m}| and let 1 ≤ p1 < · · · < pl ≤ m be 

the indices such that epi
∈ {1, . . . , m} for each i. Let P̃ denote the conditional probability 

given (X(i, j))1≤i<j≤m. Then

P̃ (X(p, q) = X(ep, eq) for all 1 ≤ p < q ≤ m)

= 2−(m

2
)+(l

2
)
I{X(pr,ps)=X(epr ,eps ) for all 1≤r<s≤l}.

In the sum defining ξ(m, N), e1, . . . , em can be chosen as follows. First, we choose l

between 0 and m. Then, given l, we choose 1 ≤ p1 < · · · < pl ≤ m. Given p1, . . . , pl, 

we choose distinct numbers ep1
, . . . , epl

∈ {1, . . . , m}. Finally, we choose the rest of 

the ei’s from outside {1, . . . , m} so that they are distinct. Breaking up the sum in this 

manner (and rewriting f1 = ep1
, . . . , fl = epl

, and using symmetry to replace pi by i for 

i = 1, . . . , l), we get

ξ(m, N) ≤
m∑

l=0

2−(m

2
)+(l

2
)Nm−l

(
m

l

)( ∑

1≤f1,...,fl≤m
distinct

p(1, . . . , l; f1, . . . , fl)

)
.

By Proposition 2.1, the inner sum is bounded by K1eK2(m−l) log(m−l) if l ≥ 2m/3. If 

l < 2m/3, it is trivially bounded by ml. Combining, we get that the sum is bounded 

by C1eC2 min{l,m−l} log m for some universal constants C1 and C2, which is bounded by 

C1eC2 min{l,n−l} log n since n ≥ m. The same bound holds for 
(

m
l

)
. Plugging these into 

the above display, and then using the resulting bound on ξ(m, N) in (2.8), we get

E(W 2) ≤ N4n2−2(n

2
)
(

1 +

n∑

l=0

n∑

m=max{1,l}

N−m−l2(l

2
)
(

n

m

)
(n)m

· C1eC2 min{l,n−l} log n

)
.

In the following, we will use C1, C2, . . . to denote arbitrary universal constants, whose 

values may change from line to line. Throughout, we will implicitly assume that N is 
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large enough (depending only on our choice of d′), wherever required. For the innermost 

sum above, consider three cases. First, take l = 0. Then the sum over m is bounded by

n∑

m=1

N−mn2mC1 ≤ C2n2N−1.

Next, take 1 ≤ l ≤ 2n/3. Then the sum over m is bounded by

n∑

m=l

N−m−ln2m2(l

2
)C1eC2l log n ≤ C3n2lN−2l2(l

2
)eC2l log n ≤ C4e−C5l log N ,

where the last inequality was obtained using

N−2l2(l

2
) ≤ e−2l log N 2ln/3 ≤ e−2l log N 2(5l/3) log2 N ,

which holds because l ≤ 2n/3, and n ≤ 5 log2 N when N is large enough. Next, using 

that n ≥ 7
2 log2 N for N large enough, we have that for any l ≥ 2n/3,

N−2(l+1)2(l+1

2
)

N−2l2(l

2
)

= N−22l ≥ N−22(7/3) log2 N = N1/3,

which implies, by backward induction on l, that

N−2l2(l

2
) ≤ N−(n−l)/3N−2n2(n

2
).

Thus, for l ≥ 2n/3, the sum over m is bounded by

n∑

m=l

N−m−l2(l

2
)
(

n

l

)
n!C1eC2(n−l) log n ≤ C3n!N−2l2(l

2
)eC4(n−l) log n

≤ C5n!N−2n2(n

2
)e−C6(n−l) log N ,

where, in the second inequality, we used the previous display and the fact that log N �

log n when N is large enough. Now, from the proof of Lemma 2.4, we have that

n!N−2n2(n

2
) = e−2(c+1−d) log N+O((log log N)2).

Combining all of the above (and trivially bounding e−C6(n−l) log N ≤ 1), we get

E(W 2) ≤ N4n2−2(n

2
)(1 + e−2(c+1−d) log N+O((log log N)2)).

On the other hand,
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E(W ) = ((N)n)22−(n

2
) ≥ N2n2−(n

2
)
(

1 −
n

N

)2n

≥ N2n2−(n

2
)
(

1 −
2n2

N

)
.

Thus, by the second moment inequality,

P (W > 0) ≥
(E(W ))2

E(W 2)

≥
(1 − 2n2/N)2

1 + e−2(c+1−d) log N+O((log log N)2)
.

Let εN := (4 log2 N)−1/2, as in the statement of Theorem 1.1. By Lemma 2.4, P (W >

0) → 0 if c +1 −d < −εN , and by the above lower bound, P (W > 0) → 1 if c +1 −d > εN . 

But by (2.7), c + 1 − d = xN − n. Since εN ∈ (0, 1/2], this proves Theorem 1.1.

Remark 2.5. To prove or disprove that LN concentrates on one point instead of two, 

one needs to carefully analyze and refine the O((log log N)2) error term in the above 

analysis and replace it by some explicit term plus o(1) error, so that when xN is within 

O((log N)−1) of some integer n, one can show that P (W > 0) is close to neither 1 or 0.

3. Subgraph isomorphism

Deciding if a graph Γ1 appears as an induced subgraph of Γ2 is a basic problem in 

the world of image analysis (does this person appear in this crowd scene?), chemistry, 

and database query. The problem is NP complete but modern constraint satisfaction 

algorithms can handle Γ1 with hundreds of nodes and Γ2 with thousands. A comprehen-

sive review of programs and applications is in [15]. The forthcoming book by Knuth [9]

features subgraph isomorphism as a basic problem of constraint satisfaction.

Comparing algorithms requires a suite of test problems. The authors of [15] noted 

that most tests were done on ‘easy cases’ where Γ2 is fixed and Γ1 is chosen by choosing 

a random set of n vertices of Γ2 and taking that induced subgraph (so, Γ1 appears in 

Γ2). They noticed that taking Γ1, Γ2 from independent copies of G(n, p), G(N, q) led to 

different recommendations and conclusions.

As part of their extensive tests they fixed N = 150 and discovered the phase transition 

discussed in the introduction. Their results are much richer when p and q are varied — 

we only treat p = q = 1/2. We believe the techniques introduced in this paper will allow 

similar limit theorems (at least for p, q away from {0, 1}).

As mentioned earlier in the introduction, a closely related recent paper is that of 

Alon [1], which shows that if 
(

N
n

)
2−(n

2
) = λ, then with probability (1 − e−λ)2 + o(1), 

G(N, 1/2) contains every graph on n vertices as an induced subgraph. Theorem 1.2 is 

also related to the classical result about the concentration of the size of the largest clique 

in G(N, 1/2), due to Matula [12,13] and Bollobás and Erdős [3].
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Take any 1 ≤ n ≤ N . Let Γ1 and Γ2 be independent G(n, 1/2) and G(N, 1/2) random 

graphs. In the remainder of this section, we prove Theorem 1.2. The proof is similar 

to that of Theorem 1.1 (in particular, we use Proposition 2.1), although a bit simpler 

because the expected number of copies of Γ1 in Γ2 has a simpler expression that the 

expected number of isomorphic pairs of induced subgraphs in two independent random 

graphs (which has an extra n! in the denominator, leading to the log log N correction).

Let X(i, j) be the indicator that {i, j} is an edge in Γ1, and Y (i, j) be the indicator 

that {i, j} is an edge in Γ2. Let A be the set of all ordered n-tuples of distinct numbers 

from {1, . . . , N}, as in the previous section. We will write A � Γ1 if Y (ai, aj) = X(i, j)

for all 1 ≤ i < j ≤ n. Let

W := |{A ∈ A : A � Γ1}|.

Note that Γ2 contains a copy of Γ1 as an induced subgraph if and only if W > 0.

Lemma 3.1. Suppose that n = a log N + b for a = 2/ log 2 and some b ∈ R. Then

P (W > 0) ≤ N1−b2−b(b−1)/2.

Proof. Note that

E(W ) = |A|2−(n

2
) ≤ Nn2−(n

2
).

Plugging in n = a log N + b, this gives

E(W ) ≤ exp

(
(a log N + b) log N −

1

2
(a log N + b)(a log N + b − 1) log 2

)

= N1−b2−b(b−1)/2.

By Markov’s inequality, P (W > 0) = P (W ≥ 1) ≤ E(W ). This completes the proof. �

For each (A, B) ∈ A2, let

P (A, B) := P (A � Γ1, B � Γ1).

Let A0 and Ai1,...,im;j1,...,jm
be as in the previous section. Then

E(W 2) =
∑

A,B∈A

P (A, B)

=
∑

(A,B)∈A0

P (A, B)

+

n∑

m=1

∑

1≤i1<···<im≤n

∑

1≤j1,...,jm≤n
distinct

∑

(A,B)∈Ai1,...,im;j1,...,jm

P (A, B). (3.1)
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We will now use the above expression to establish an upper bound for E(W 2).

Lemma 3.2. We have

E(W 2) ≤ N2n2−2(n

2
)
(

1 +

n∑

m=1

∑

1≤j1,...,jm≤n
distinct

(
n

m

)
N−m2(m

2
)p(j1, . . . , jm)

)
,

where

p(j1, . . . , jm) := P (X(p, q) = X(jp, jq) for all 1 ≤ p < q ≤ m).

Proof. Let P ′ denote the conditional probability given Γ1. If (A, B) ∈ A0, then

P
′(A � Γ1, B � Γ1) = 2−2(n

2
),

and thus, the unconditional probability is also the same. Next, for (A, B) ∈

Ai1,...,im;j1,...,jm
, we have

P
′(A � Γ1, B � Γ1)

= P
′(Y (ai, aj) = Y (bi, bj) = X(i, j) for all 1 ≤ i < j ≤ n)

= 2−2
(
(n

2
)−(m

2
)
)
P

′(Y (aip
, aiq

) = X(ip, iq) = X(jp, jq) for all 1 ≤ p < q ≤ m)

= 2−2(n

2
)+(m

2
)
I{X(ip,iq)=X(jp,jq) for all 1≤p<q≤m},

where IE denotes the indicator of an event E. Thus,

P (A, B) = 2−2(n

2
)+(m

2
)
P (X(ip, iq) = X(jp, jq) for all 1 ≤ p < q ≤ m).

Combining the above observations, we get

E(W 2)

= |A0|2−2(n

2
) +

n∑

m=1

∑

i1<···<im

∑

j1,...,jm

distinct

|Ai1,...,im;j1,...,jm
|2−2(n

2
)+(m

2
)

· P (X(ip, iq) = X(jp, jq) for all 1 ≤ p < q ≤ m).

Note that

|A0| ≤ N2n, |Ai1,...,im;j1,...,jm
| ≤ N2n−m.

Plugging these bounds into the previous display and using symmetry, we get the desired 

result. �
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Henceforth, let us assume that

n = a log N + b for a =
2

log 2
and some b ∈ [−1, 1]. (3.2)

Lemma 3.3. Assume (3.2), and suppose that m = αn for some α ∈ [0, 1]. Then

−m log N +

(
m

2

)
log 2 ≤ −α(1 − α)n log N − α(1 − αb) log N + log 2.

Proof. Note that

− m log N +

(
m

2

)
log 2

= −αa(log N)2 − αb log N +
(αa log N + αb)(αa log N + αb − 1)

2
log 2

= −α(1 − α)a(log N)2 + α((2α − 1)b − 1) log N +
αb(αb − 1)

2
log 2

≤ −α(1 − α)(a log N + b) log N − α(1 − αb) log N + log 2,

where in the last inequality we used αb(αb − 1) ≤ 2, which holds because b ∈ [−1, 1] and 

α ∈ [0, 1]. �

Lemma 3.4. There are positive universal constants C1, C2 and N0, such that if N ≥ N0, 

and (3.2) holds, then

E(W 2) ≤ N2n2−2(n

2
)(1 + C1N−C2(1−b)).

Proof. In this proof, C1, C2, . . . will denote arbitrary positive universal constants. Let 

p(j1, . . . , jm) be as in Lemma 3.2. First, note that

∑

j1,...,jm

distinct

p(j1, . . . , jm) =
φ(m, n)

(n − m)!
,

where φ(m, n) is the quantity defined in (2.1). Therefore, by Proposition 2.1,

∑

2n/3≤m≤n

∑

j1,...,jm

distinct

(
n

m

)
N−m2(m

2
)p(j1, . . . , jm)

≤ C1

∑

2n/3≤m≤n

N−m2(m

2
)eC2(n−m) log n.

For m ≥ 2n/3, Lemma 3.3 gives (using (1 − α)n = n − m and αb ≤ (5b + 1)/6 for all 

α ∈ [2/3, 1] and b ∈ [−1, 1])
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−m log N +

(
m

2

)
log 2 ≤ −α(n − m) log N −

5α

6
(1 − b) log N + log 2

≤ −
2

3
(n − m) log N −

5

9
(1 − b) log N + log 2.

Thus, for N ≥ N0, where N0 is a sufficiently large universal constant, we have

∑

2n/3≤m≤n

N−m2(m

2
)eC2(n−m) log n

≤
∑

2n/3≤m≤n

2e−C3(n−m) log N N−5(1−b)/9 ≤ C4N−5(1−b)/9.

If 1 ≤ m < 2n/3, then Lemma 3.3 gives (using αn = m and α(1 − αb) ≥ 0)

−m log N +

(
m

2

)
log 2 ≤ −(1 − α)m log N + log 2

≤ −
1

3
m log N + log 2.

Thus, using the trivial bound p(j1, . . . , jm) ≤ 1 and the assumption (3.2), we get

∑

1≤m<2n/3

∑

j1,...,jm

distinct

(
n

m

)
N−m2(m

2
)p(j1, . . . , jm)

≤
∑

1≤m<2n/3

2N−m/3n2m ≤ 2N−C5 ,

provided that N ≥ N0 for some sufficiently large universal constant N0. Combining all 

of the above, and applying Lemma 3.2, we get the required upper bound. �

Lemma 3.5. There are positive universal constants N0, C1 and C2 such that the following 

is true. If N ≥ N0 and (3.2) holds, then

P (W ≥ 1) ≥ 1 − C1N−C2(1−b).

Proof. Note that

E(W ) = (N)n2−(n

2
) ≥ Nn2−(n

2
)
(

1 −
n

N

)n

≥ Nn2−(n

2
)
(

1 −
n2

N

)
.

Combining this with the upper bound on E(W 2) from Lemma 3.4, and the second 

moment inequality, we get the desired result. �
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Proof of Theorem 1.2. Note that �yN + εN � + 1 ≥ 2 log2 N + 1 + εN . Therefore, by 

Lemma 3.1, P (�yN + εN � + 1, N) → 0 as N → ∞. Similarly, note that �yN − εN � ≤

2 log2 N + 1 − εN . By Lemma 3.5, this shows that P (�yN − εN �, N) → 1 as N → ∞. �

4. Remarks and problems

Theorem 1.1 does not capture the way the induced isomorphic subgraph varies from 

N to N +1. If Γ1 and Γ2 are grown by adding fresh vertices one at a time, it may well be 

that that largest isomorphic subgraph varies quite a bit (eventually becoming disjoint 

from earlier champions?). This makes the connection with the limiting R more tenuous 

and seems worth further study.

It seems natural to ask similar questions for other graph limit models [11]. In particu-

lar, all G(∞, p) graphs are isomorphic to the Rado graph, for any p ∈ (0, 1). This makes 

understanding the largest isomorphic induced subgraph of two independent G(N, p)

graphs more interesting.

There are a variety of notions of Γ1 being contained in Γ2. Just isomorphic as a 

subgraph (without the ‘induced’ constraint)? As labeled graphs? The classic paper [2]

relates such problems to the problem of finding maximal cliques.

We have focused on the yes/no question. There are further counting questions — how 

many copies of a pick from G(n, p) appear in G(N, q) and how is this number distributed? 

(See forthcoming work of Surya, Warnke and Zhu for a solution of this problem.)

Finally, Knuth’s treatment [9] treats subgraph isomorphism as a special case of con-

straint satisfaction problems, and similar questions can be asked.

Data availability

No data was used for the research described in the article.
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