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Large-scale magnetic fields thread through the electrically conducting matter of the in­
terplanetary and interstellar medium, stellar interiors, and other astrophysical plasmas, 
producing anisotropic flows with regions of high-Reynolds-number turbulence. It is common 
to encounter turbulent flows structured by a magnetic field with a strength approximately equal 
to the root-mean-square magnetic fluctuations. In this work, direct numerical simulations of 
anisotropic magnetohydrodynamic (MHD) turbulence influenced by such a magnetic field 
are conducted for a series of cases that have identical resolution, and increasing grid sizes 
up to 20483. The result is a series of closely comparable simulations at Reynolds numbers 
ranging from 1,400 up to 21,000. We investigate the influence of the Reynolds number from 
the Lagrangian viewpoint by tracking fluid particles and calculating single-particle and two- 
particle statistics. The influence of Alfvenic fluctuations and the fundamental anisotropy on 
the MHD turbulence in these statistics is discussed. Single-particle diffusion curves exhibit 
mildly superdiffusive behaviors that differ in the direction aligned with the magnetic field 
and the direction perpendicular to it. Competing alignment processes affect the dispersion of 
particle pairs, in particular at the beginning of the inertial subrange of time scales. Scalings 
for relative dispersion, which become clearer in the inertial subrange for larger Reynolds 
number, can be observed that are steeper than indicated by the Richardson prediction.
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1. Introduction
Only relatively recently have Lagrangian statistics begun to be explored as a tool to 
understand properties of turbulence in the electrically conducting fluids that are described by 
magnetohydrodynamics (MHD) (Busse et al. 2007; Homann et al. 2007b; Busse & Muller 
2008; Busse et al. 2010; Eyink et al. 2013; Pratt et al. 2017, 2020a,b). In contrast, the study 
of neutral-fluid turbulence from a Lagrangian viewpoint has a long history (e.g. Taylor 1922; 
Richardson 1926), with established scaling laws due to Batchelor and Richardson that have 
been explored both theoretically and experimentally. In neutral fluids, comprehensive studies 
have examined how Lagrangian statistics related to dispersion are dependent on the Reynolds 
number of the flow (Yeung & Borgas 2004; Yeung et al. 2006; Sawford et al. 2008). In this 
work we explore these questions in the more physically complex system of fully nonlinear 
incompressible MHD turbulence.

Turbulent mixing is investigated through the diffusion and relative dispersion of fluid tracer 
particles. A full description of mixing in a plasma depends on the Reynolds number. Relative 
dispersion in neutral fluids quantifies the mixing of smoke and pollutants in the atmosphere, 
or of micro-plastics and debris in the oceans. In electrically conducting fluids, diffusion, 
dispersion, and the mixing processes they represent determine how fusion products from the 
core of a star are mixed into the star's outer-layers, thereby changing the course of stellar 
evolution. Relative dispersion also represents the spreading and mixing of plasma in the 
interstellar or interplanetary medium, and affects how energetic particles and cosmic rays are 
transported. In these contexts, Reynolds numbers are predicted that are many orders higher 
than can be achieved presently by direct numerical simulations (DNS) that fully resolve 
the turbulent motions. However, the features of diffusion and dispersion captured by fluid 
particles in DNS of MHD turbulence provide information relevant to turbulent mixing in 
these astrophysical applications (e.g. Zahn 1993; Heyer & Brunt 2004; Utomo et al. 2019). 
The details of how these statistics change as the Reynolds number increases allow us to make 
predictions for realistic mixing.

In astrophysical settings, the magnitude of the large-scale magnetic field is often moderate. 
Lor example, in the solar wind, ion foreshock, and magnetosheath, ranges have been reported 
such that the magnetic field is between one and 2.5 times the RMS fluctuations, i.e. 1 < 
Sq/Brms A 2.5 (see table 1 ofZimbardo etal. (2010)). In this work, we examine a system with 
a weak anisotropy caused by such a large-scale magnetic field, and select the situation where 
the magnetic field is equal to the average RMS magnetic field fluctuations, i.e. Brms ~ B,,.

This work is structured as follows. In Section 2 we describe in detail the simulations 
performed. In Section 3 we introduce a new resolution criterion for anisotropic MHD 
turbulence simulations, a necessity for producing a set of direct numerical simulations 
that can be closely compared. In Section 4 we present diffusion curves, a single-particle 
Lagrangian statistic. In Section 5 we present several statistics derived from pairs of tracer 
particles, focused on understanding the relative dispersion. In Section 6 we summarize our 
findings and draw broader conclusions from the statistics presented.

2

2. Simulations
We investigate the effect of the Reynolds number on statistically stationary, forced, homo­
geneous, incompressible magnetohydrodynamic turbulence in the presence of a moderate 
static magnetic field. This magnetic field has a constant value and direction throughout the 
simulation. Locally the magnetic field also experiences time-dependent fluctuations which 
possess zero mean. The strength of these fluctuations can be measured with respect to the 
strength of the imposed magnetic field. A global average of the magnetic field would return
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the value due to the imposed held, and therefore the term mean magnetic field best describes 
the type of held imposed. Such a magnetic held has alternatively been referred to an external 
magnetic held, or a guide held, although those terms are less specihc to the way that the held 
has been imposed.

In each direct numerical simulation, we solve the non-dimensional equations for rnagne- 
tohydr odynamic s:

x(vxm + )xB) = vV2m + /^, (2.1)

X (v X , (2.2)

B = 0 , V ■ v = 0 , (2.3)

dt

v
using a pseudospeetral method in a simulation volume with periodic boundary conditions. 
These equations include terms for the solenoidal velocity held v, vorticity a> = V x v, 
magnetic held B, and current / = V x B. Each of the quantities in eqs. (2.1) - (2.3) has been 
non-dimensionalized using relevant time and length scales, commonly referred to as Alfvenic 
units. Two dimensionless parameters, v and //. appear in the equations. They derive from the 
kinematic viscosity v and the magnetic diffusivity //. A fixed time-step and a low-storage 
third-order Runge-Kutta method (Williamson 1980) are used for the time-integration. The 
mean magnetic held is designated by Bo, and points purely in the positive c-direction. At 
any point in time it has a value close to unity with respect to the RMS of the magnetic held 
fluctuations; a long-time average produces B0 ~ BRMs- The Alfven ratio is approximately 
unity for all simulations discussed in this work; we calculate this ratio as rA = (Ev/Eb) from 
the kinetic energy per unit mass Ev = v2/2 and the energy per unit mass contained in the 
magnetic fluctuations Eb = B2Mg/2. In the Alfven ratio, the brackets indicate an average over 
time; this is the simulation time during which the dynamics of Lagrangian tracer particles 
are examined. The implications of an Alfven ratio of one are that our simulations include the 
full nonlinear interaction of velocity and magnetic helds that contribute with equal weight.

To maintain the turbulence in a statistically stationary steady state, the vorticity and 
magnetic helds are forced on the largest scales of the simulation volume using a deterministic 
forcing, applied in Fourier space, that also allows the largest scale motions of the system to 
evolve. Deterministic forcing has the advantage that no stochastic source of fluctuations is 
introduced on large scales. We call the deterministic forcing method that we use homogeneous 
forcing; it is distinct from forcing methods used in several earlier works on Lagrangian MHD 
turbulence (Busse et al. 2007; Homann et al. 2007b; Busse & Muller 2008; Busse et al. 
2010) but identical to the forcing method used in Pratt et al. (2020b). Homogeneous forcing 
establishes a constant injection of energy at large scales. In eqs. (2.1) and (2.2) forcing terms 
/"' and fb are introduced which are non-zero only for the wave-vector shells \ <\k\ < 2.5. 
The forcing terms are dehned

A*/)

d)(k, t) 
\co{k,t)\2 ’ 
B{k,t) 

|B(*,f)p '

(2.4)

(2.5)

Variables with hats are used to describe the forcing because it is applied in Fourier space. The 
constants y /■, and y f j, regulate the energy injection. These two forcing constants are set 
equal in our simulations, and are identical across all of the simulations presented in this work. 
By forcing both helds equally, we achieve approximate equipartition of kinetic and magnetic 
energy at all scales, and study the regime of MHD turbulence dehned by the full non-linear
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interaction of the velocity and magnetic fields. This is in contrast to studies that force only 
the velocity held, oriented toward understanding the dynamo (e.g. Brandenburg et al. 2018; 
McKay et al. 2017). In natural settings such as molecular clouds (Hennebelle & Falgarone 
2012; Heiles & Troland 2005), and the solar wind (Boldyrev et al. 2012; Muller & Grappin 
2005) kinetic and magnetic energies are commonly observed to be close to equipartition, so 
this choice is a physically realistic one.

To inhibit the emergence of states dominated by Elsasser (Elsasser 1950) positive (z+) 
or negative (z~) interactions, the cross helicity of the forced modes is set to zero. This 
is accomplished as part of the forcing scheme by enforcing orthogonality between the 
magnetic held vector and the velocity held vector (see e.g., Muller et al. 2012). The 
magnitude of the total cross helicity, normalized by VEv VEb never rises above 0.095 in 
the simulations examined in this work. This prevents the MHD turbulent system from 
becoming imbalanced, which can lead to a break-down of the non-linear energy cascade (as 
discussed in Biskamp 2003). In addition, the level of total magnetic helicity, normalized by 
Eb2/7vforcing, never rises above 5 • 10-4. For a system in a quasi-stationary state, homogeneous 
forcing is expected to disturb the natural turbulent how only mildly; this forcing method has 
been examined in Ghosal et al. (1995); Vorobev et al. (2005). Based on the forcing, our 
simulations are consistent with strong turbulence as described by Perez & Boldyrev (2007) 
and Verdini & Grappin (2012). Large-scale Alfven waves are permitted and are observed 
when homogeneous forcing is used.

2.1. Lagrangian tracer particles
The positions of Lagrangian tracer particles are initialized in a homogeneous random 
distribution at a time when the turbulent how has attained a statistically stationary state. 
The approximate number of tracer particles deployed in each simulation, in millions, is given 
in table 1. The particle numbers we use are comparable to earlier MHD turbulence studies 
(Busse et al. 2007; Homann et al. 2007b; Busse & Muller 2008; Pratt et al. 2020b), and are 
larger than those used in Yeung et al. (2006) and Sawford et al. (2008) to study homogeneous 
isotropic hydrodynamic turbulence. The consequence is that the Lagrangian statistics that 
we produce in this work are well-resolved in space. At each time-step the particle velocities 
are interpolated from the instantaneous Eulerian velocity held using a bicubic polynomial 
interpolation scheme (Lekien & Marsden 2005; Homann et al. 2007a). Particle positions 
are calculated by numerical integration of the equation of motion using a low-storage third- 
order Runge-Kutta method that matches the one used for the Eulerian held integration. We 
record particle information every four time steps, at approximate time intervals of 0.1 r,,. 
so that the Lagrangian statistics produced are also well-resolved in time. The hydrodynamic 
simulation that we perform for comparison, simulation 3H, uses a slightly larger time interval 
of 0.2rv. Particles are initially arranged in tebads with a reference particle at the vertex and 
three other particles aligned along each Cartesian direction at hxed separations from the 
reference particle. Each dispersion result is dehned by this initial separation distance. The 
smallest initial separation distances that we deploy are well-resolved by the grids used in 
each simulation; this will be quantified in hie section on the resolution. Each simulation is 
run for at least 400 of the Kolmogorov time scale r,,. At large times, the particles that make 
up a pair can reach a separation that is on the scale of the simulation volume. For pairs 
of particles that have separated that far, the probability is low for a statistically significant 
number to reapproach each other again. Although the forcing is applied on length scales 
comparable to the simulation volume, the velocity held experienced by pairs of Lagrangian 
bacer particles separated by the size of the simulation volume is generally decorrelated, and 
the two particles move approximately independently from each other.
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Figure 1. Time-averaged kinetic energy spectra for the four MHD simulations described in 
table 1. The spectra are calculated for a one-dimensional wavevector k taken in the (a) re­
direction (perpendicular to the mean magnetic held), and (b) z-direction (parallel to the mean 
magnetic held). Grey lines indicate theoretical scaling laws relevant to the inertial range for 
MHD turbulence.

3. Resolution of anisotropic MHD turbulence
In anisotropic MHD turbulence, attention must be given both to the shape of the simulation 
volume and the ability to resolve the smallest relevant scales of the turbulent dynamics. 
At both large scales and small scales, differences exist between the energy spectra in the 
directions parallel and perpendicular to the mean magnetic field (see figure 1). The asymptotic 
spectral scaling exponents of the one-dimensional energy spectra are approximately -1.5 
(perpendicular) and -1.6 (parallel). These spectra are defined as E(k) = f dik'E(k')S(\k' ■ 
eu \ ~k), where the wavenumber k runs along the direction given by the appropriately chosen 
and fixed unit vector 2%. These scalings are consistent with the current understanding of 
inertial-range dynamics of incompressible MHD turbulence, which is based on the concepts 
of critical balance of characteristic timescales parallel and perpendicular to the local magnetic 
field (Goldreich & Sridhar 19956; Mallet et al. 2015) and dynamical alignment of fluctuations 
of velocity and magnetic field (Boldyrev 2006), in combination with specific Log-Poisson 
intermittency corrections (Chandran et al. 2015; Mallet & Schekochihin 2017). We provide 
these scalings purely for the sake of completeness; they should be viewed with care. The main 
caveat is the limited width of the inertial scaling range, a consequence of the well-resolved 
dissipation region required for Lagrangian small-scale statistics. Another relevant issue is 
that anisotropic MHD energy transfer for systems with moderate mean magnetic fields should 
be analyzed in a local frame of reference aligned with the local mean magnetic field, which 
includes contributions from magnetic fluctuations, instead of the global mean field B0. Such 
an analysis of spectral transfer is outside the scope of this Lagrangian investigation. For the 
present work, the following simple observations of MHD spectral dynamics seem sufficient 
to characterize the system investigated. As the energy cascade proceeds to smaller scales, 
the eddies become more elongated in the direction parallel to the magnetic field; the amount 
of elongation is dependent on the length-scale of motions in that direction, which in turn is 
dependent on the strength of the magnetic field (e.g. as discussed in Cho & Vishniac 2000; 
Schekochihin et al. 2008; Verdini et al. 2015). We explored the corresponding time-scale 
dependence of this anisotropy from the Lagrangian point of view in Pratt et al. (20206).
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Due to the elongation of eddies in the direction aligned with the magnetic held, the smallest 
length scales relevant for the study of turbulence are different from those in the perpendicular 
direction. At the largest scales, correlation lengths are also longer in the direction aligned 
with the mean magnetic held than in the perpendicular direction.

3.1. Resolution of the largest scales of anisotropic MHD turbulence
Corresponding to these correlation lengths, velocity structures have different characteristic 
scales in the directions parallel and perpendicular to the mean magnetic held. To assure that 
these velocity structures are both resolved, we consider how the periodic simulation volume 
should be shaped. We solve the magnetohydrodynamic eqs. (2.1) - (2.3) in a simulation 
volume with sides of length 2n in the x and y directions, that are perpendicular to the mean 
magnetic held. Using a simulation volume that is elongated in the z-di recti on is common for 
simulations of anisotropic MHD that examine a strong mean magnetic held. To determine 
the necessary length in the z-direction, we consider the correlation length of the velocity 
held in each direction. In test simulations with a stronger mean magnetic held, we measure a 
correlation length of the velocity held LC || in the direction parallel to B,< that is significantly 
larger than in the perpendicular direction. This measurement agrees with previous results 
(e.g. Chandran 2008; Boldyrev 2005; Cho et al. 2002). For the strong turbulence regime, 
a relative change in length scales can be predicted from the premise of critical balance 
(Goldreich & Sridhar 1995a). Using this premise, the ratio of the largest-scale wavenumbers 
(k ~ 'InIL) in the perpendicular and parallel directions grows linearly with the magnitude 
of the mean magnetic held B<<:

k\\B() ~ k±BRMS ■ (3.1)

Thus for the largest scales of the how, critical balance predicts that the ratio of parallel and 
perpendicular length scales should grow linearly with B0. The critical balance relation in 
eq. (3.1) implies that the non-linear eddy-turnover time is of the order of the Alfven time 
tnl ~ ta. For the Bo = 1 simulations examined in this work, the box length in the parallel 
direction is much larger than the parallel correlation length, L- > 10LC,||. We therefore are 
able to use a cubic simulation volume with no elongation for all simulations in table 1.

3.2. Resolution of the smallest scales of anisotropic MHD turbulence
We revisit the resolution criterion commonly used to measure whether isotropic turbulence is 
sufficiently resolved, and we extend this criterion to the anisotropic case. The smallest length 
and time scales that characterize Navier-Stokes turbulence are defined in terms of the kinetic 
energy dissipation rate ev and the kinematic viscosity. These are the Kolmogorov microscale 
z/koi = (v3/ev)1/4 and the Kolmogorov time-scale = (v/ev)1/2. To test whether a direct 
numerical simulation adequately resolves the smallest physically relevant spatial scales of 
turbulence, the Kolmogorov microscale %oi is typically multiplied by the highest wavenumber 
resolved in a simulation knux. This provides a nondimensional number that indicates how 
well the grid spacing resolves this smallest physical length scale. The “standard" criterion for 
adequate spatial resolution for a simulation in the case of homogeneous isotropic turbulence 
(Pope 2000; Yeung & Pope 1989; Donzis et al. 2008; Yeung et al. 2018) is then

kmaxhkol ^ 1-5 • (d.2)

The presence of a mean magnetic held makes the gradients of the turbulent fields higher in 
the perpendicular directions compared to the gradients in the parallel direction. Therefore, 
we need to extend the criterion in eq. (3.2) to ensure that the smallest eddies are well-resolved 
both for the mean held parallel and perpendicular direction.



7

To extend this resolution criterion, we examine the definition of the kinetic energy 
dissipation rate, which is related to gradients in the velocity held

(3.3)

In Fourier space this is expressed
3

ev = >'l*l2^<v,*(*,l)v,'(A:,r)> • <3.4)
k '=i

By separating the modulus of the wave-vector in eq. (3.4) into components parallel k\\ = 
k • (Bo£)/Bo and perpendicular k± = k x {Boz) /Bo to the direction of anisotropy, the kinetic 
energy dissipation rate can be split into contributions that arise from gradients parallel and 
perpendicular to the mean magnetic held. We dehne these components

2 1
ev = xW-L + xev,|| , (3.5)

3 3
ey,± = 7;J]v\k±\2Yj(v*{k,t)Yi{k,t)) , (3.6)

k ,=1
3

ev.ll = 3gv^g(v;(t,f)v,(t,f)> . (3.7)
k ,=1

In the case of homogeneous isotropic turbulence, these dehnitions recover ev,_L = Wll = 6v- 
In the case of a finite mean magnetic held, gradients perpendicular to the mean magnetic 
held will be larger than gradients parallel to the mean magnetic held, leading to ev,_L > ev 
and ry y < ey.

Two different length scales, for the direction perpendicular and parallel to the mean 
magnetic held, can be dehned from ev,± and ev,n- These are

/ 5 \ 1/4
rikoi,± = [v'VW-l] » (38)

%oi,|| = (v7wil) • (39)

In the isohopic case, these length scales are equal to the Kolmogorov length scale. Using 
z/kou and //koi.|| a generalized version of the small-scale resolution criterion in eq. (3.2) can 
be dehned for homogeneous anisohopic turbulence. This combined criterion for adequate 
resolution of the smallest scales both parallel and perpendicular to the mean magnetic held 
direction is

^max,_L%ol,_i_ $ 1-5 , (o.lO)
^max,||77kol,|| $ 15 . (d.ll)

These two criteria are fulfilled in all simulations discussed in this work, and their values are 
listed in table 1. When we use these criteria to set-up our simulations, the smallest scales 
of anisotropic MHD turbulence appear to be well-resolved in both directions. For example, 
Perez et al. (2014) notes that the numerical effects of insufficient small-scale resolution are 
a steepening of the spectrum at intermediate scales and a battening closer to the grid scale. 
Those effects are not observed in the spectra of our simulations in figure 1. The smallest 
of initial separation distances for pairs of Lagrangian tracer particles are set to 2//k0i,±.
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Because the Kolmogorov length scale in this direction is well-resolved, so are these particle 
separations.

3.3. Reynolds number for anisotropic MHD turbulence 
For a homogeneous isotropic system, the Reynolds number is standardly defined from the 
kinetic energy, the viscosity, and a characteristic length scale

Re = (Ey/2LE)/v . (3.12)

The characteristic length scale LE is defined as a dimensional estimate of the size of the 
largest eddies, LE = Ev3/2/ev. This length scale is summarized in table 1 for each of our 
simulations.

To calculate the Reynolds number for anisotropic flows, we use the more general definition 
of the Reynolds number (see Chapter 6.1.2 of Pope 2000)

Re = c (77koU/LF)-4/3 , (3.13)

where LE is a forcing length scale, and c is a constant that must be determined. Our method 
of homogeneous forcing affects a minimum length scale

LE = 2^/i'F,max = O.S/T . (3.14)

We determine the constant c by comparing the definitions of the Reynolds number in eq. (3.12) 
with that ineq. (3.14) for an isotropic Bo = 0 simulation; this produces a value of the constant 
c ~ 1.16. The Reynolds number calculated using eq. (3.13) is summarized in table 1 for 
each of our simulations. For an isotropic flow, the standard Reynolds number based on the 
Kolmogorov microscale, Re, and the Taylor-scale Reynolds number, Re.,, provide equivalent 
information (see for example Pope 2000; Sawford et al. 2008), and are related by

15 Re = Re2. (3.15)

Thus the Reynolds numbers in table 1 can be translated to Taylor-scale Reynolds numbers; 
for simulation 4, we find Re , « 560. The magnetic Reynolds number is defined from the 
Reynolds number and the magnetic Prandtl number, i.e. Rem = PrmRe. In all simulations in 
this work, the magnetic Prandtl number Prm = 1 so that the magnetic Reynolds number is 
equal to the Reynolds number.

Table 1 provides an overview of the Reynolds number and other fundamental parameters. 
Among the fundamental parameters in this table are also two time scales: the Kolmogorov 
time scale rv. which is associated with the smallest scales of motion, and a time scale 
associated with the largest scales of motion, called the large-eddy turnover time IE = Ev/ev. 
Our measurements for the ratio of these time scales, rv /TE decrease as Re~1/2, as expected 
for isotropic hydrodynamic turbulence (see Chapter 6.1.2 of Pope 2000).

4. Single-particle Lagrangian Diffusion
The examination of single-par tide diffusion curves, the average square distance that a particle 
has moved from its initial position, is common in Lagrangian studies of turbulence. We 
designate this quantity by (A2 (t)), where the brackets indicate an average over all Lagrangian 
tracer particles. In anisotropic MHD turbulence, such diffusion curves were first studied by 
Busse & Muller (2008), who examined the influence of mean magnetic fields of magnitude 
B(, = 2 and 5 in units of BRMs- Our present results are physically distinct from that work in 
three ways: (1) we examine a significantly weaker mean magnetic held, (2) we use a different 
forcing method, and (3) our simulations extend to a higher Reynolds number.
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sim. no. grid size N~ Np (millions) 5rms r„<10-2) Le Te ^max.J.'/kol.J. ^max, H'/kol, || Re

i 25 63 1 0.90 12.59 3.32 5.00 1.61 1.99 1400

2 5123 8 | 0.98 8.21 3.49 5.16 1.70 2.11 3200

3 10243 8 1.03 5.28 3.67 5.32 1.77 2.18 7600

3H 10243 8 0.0 4.78 3.56 4.88 1.77 1.77 10,400

4 20483 8 1.07 3.17 3.35 5.00 1.64 2.04 21,000

Table 1. Simulation parameters: the simulation number, the Eulerian grid size N~, and the 
number of tracer particles Np is provided for each simulation. The Kolmogorov time scale Tn, 
large-eddy length scale Lg, the large-eddy turnover time TE, and the time-averaged root-mean- 
square of magnetic fluctuations SRMS are given. The magnitude of the mean magnetic field is 
Sq = 1 for case 1,2,3,4. The resolution in the perpendicular' direction fcmax.j.'/kou. and in the 
parallel direction fcmax y %oi. || are provided. The Reynolds number is calculated as described in 
eq. (3.13) using the perpendicular' Kolmogorov microscale %oi._i_- All simulations take place in 
a cubic simulation volume, and flow statistics are gathered for at least 400r^. The simulation 
3H is a purely hydrodynamic simulation performed for comparison with simulation 3.

If diffusion curves are calculated from a single initial time, they can be influenced by 
idiosyncrasies of the flow at that time. We produce our diffusion curves by averaging 
the results for several independent initial times using the conventional averaging methods 
described in Dubbeldam et al. (2009), so that they are not dependent on any single initial state 
of the flow. Diffusion, as a single particle statistic, is also notoriously sensitive to large-scale 
flow features because each particle's separation is measured relative to a fixed point in space. 
Large-scale flows are able to sweep along large numbers of Lagrangian particles, affecting 
the outcome of diffusion curves. Because of this large-scale sweeping, diffusion statistics 
cannot be formulated to provide information about a specific length scale and the related 
time scale.

Since diffusion is dominated by the largest-scale fluctuations of the system that carry 
most of the kinetic energy, the natural time-scale to normalize the time is the large-eddy 
turnover time Tg. For a fixed integral scale of turbulence, the Kolmogorov time decreases 
as the extension of the inertial range increases. In a statistically isotropic Navier-Stokes 
setting, dimensional analysis relates this large-scale quantity to the Kolmogorov time scale 
IE ~ r,, Re1/3 (Ishihara et al. 2009; Pope 2000). This relation is responsible for the later 
arrival of particles in the diffusive regime with increasing Reynolds number reported in 
Sawford (1991). In the MHD case, we reproduce this later arrival of particles in the diffusive 
regime with increasing Reynolds number when we normalize time by r,,. However, due to 
the dependence of rv on Reynolds number, normalizing by the Kolmogorov time confuses a 
physical interpretation of the diffusion curves. Using Te instead allows for a close comparison 
of the diffusion curves, which collapse to show a universal trend (see figure 2). At short times, 
our single-particle diffusion curves demonstrate the expected ballistic scaling with time to 
the power of two. At long times, a diffusive regime is expected; for homogeneous isotropic 
turbulence the curves scale as a power of one in this regime.

A close examination of the diffusive scaling in our simulations (see figure 3) reveals 
oscillations in the log derivative curves in the diffusive regime. This derivative is calculated
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Figure 2. Average square separation of particles from their initial position (A2(f)), for (a) 
separations perpendicular to the mean magnetic held and (b) separations aligned with the mean 
magnetic held. Each curve represents an average over at least three independent initial times. 
Distance is measured in units of the large-eddy length scale Lg and time is measured in units 
of the large-eddy turnover time Tg. The straight black lines indicate the scaling laws that are 
theoretically predicted, with the scaling exponent labeled.

using a simple forward Euler method. Fluctuations are present in homogeneous isotropic 
turbulence, however the oscillations that we observe in anisotropic MHD turbulence tend to 
be more regular and noisier. In the perpendicular direction a scaling with an average value 
close to unity has been established. In the parallel direction, this is also true for the lower 
Reynolds number simulations. The highest Reynolds number simulation continues to have 
an average slope that is clearly steeper than one throughout the simulation time; at no point 
is this slope as low as one. This measurement of parallel diffusion is calculated parallel to 
Bo rather than parallel to the local mean held; particularly in the present case where B<< is 
approximately equal to the fluctuations in magnetic held, that difference may be significant, 
so that a deeper interpretation of this anisotropy becomes difficult.

5. Lagrangian statistics for particle-pairs
Large-scale how features, in the present case Alfvenic fluctuations (e.g. Howes 2015), can 
dominate Lagrangian statistics based on single particles. We therefore focus our attention 
on diagnostics based on pairs of Lagrangian tracer particles to expose characteristics of the 
smaller scales of turbulence.

5.1. Lagrangian two-particle dispersion
The most commonly examined pair statistic is two-particle dispersion. Two-particle disper­
sion is the separation of a pair of particles relative to each other, and is usually expressed as 
a mean-square displacement. The separation of a pair of Lagrangian tracer particles labeled 
i and j respectively is simply g = n(t)~ rj (t) where r, is the vector position of particle i in 
three-dimensional space. Dispersion is typically calculated as ((£ - £0)2) where the angular 
brackets denote an average over all particle pairs that have an initial separation £0. At time 
t = to, the quantity ((£-£0)2) is identically zero. Three subranges are theoretically predicted
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Figure 3. Derivative of the log of (A2(t)) as in figure 2 for (a) separation perpendicular to the 
mean magnetic field and (b) separation aligned with the mean magnetic field. Each diffusion 
curve represents an average over at least three independent initial times. Distance is measured 
in units of the Kolmogorov length scale %oi._L and time is measured in units of the Kolmogorov 
time scale Tn. A grey line indicates the theoretical prediction that the diffusion curve scales 
linearly with time.

to exist for isotropic hydrodynamic turbulence:

((£ - £o)">
t2, ballistic regime 

- t \ Richardson regime 
t, diffusive regime.

(5.1)

These three predictions are relevant to short separation times, intermediate separation times, 
and long separation times, respectively. The ballistic regime and diffusive regime have been 
theoretically motivated, and confirmed by simulations and experiments for hydrodynamic 
turbulence; simulations have also confirmed that these two regimes exist for isotropic MHD 
turbulence. The Richardson scaling is a plausible prediction for high-Reynolds-number 
hydrodynamic turbulence (for example see figure 5 of Bourgoin 2015), and assumes that 
the initial separation of the pair of particles is arbitrarily small. For details of the derivations 
of these scaling laws and further work to improve them we refer to the reviews of Salazar & 
Collins (2009), and Sawford (2001).

We examine dispersion curves for pairs of particles that are initially separated in either the 
direction perpendicular or parallel to the mean magnetic held; we call these ‘perpendicular 
pairs' and parallel pairs' respectively. We also calculate the distances that the particle 
pairs separate in the perpendicular direction and the parallel directions. Because a pair of 
particles has an initial separation that is small compared to the large-scale how features, two- 
particle statistics avoid the influence of large-scale sweeping. The most relevant time-scale 
for measuring two-particle dispersion is therefore the Kolmogorov time-scale rv rather than 
the large-eddy turnover time Tg. Dispersion curves for pairs initially separated by 2//koL± 
are displayed in figure 4. This is the closest initial separation for the particle pairs that 
we have followed; larger initial separations and directions also display a scaling regime 
with a clear slope but the transitions are less sharp. The dispersion curves of our four
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Figure 4. Average square separation of particle pairs initially separated by fo = 2%oi._i_ for (a) 
perpendicular pairs and separation measure perpendicular’ to the mean magnetic field, and (b) 
parallel pairs and separation measured in the direction aligned with the mean magnetic field. 
Reference scalings for the ballistic regime, Richardson regime, and diffusive regime are included 
as straight black lines, with the scaling exponent labeled,

simulations appear nearly identical at short times until approximately I Or,,, a range in time 
corresponding roughly to the ballistic regime; the length of this range appears similar in 
parallel and perpendicular directions. During the ballistic regime, faster relative dispersion 
is observed in the perpendicular direction shown in figure 4(a) than in the parallel direction 
shown in figure 4(b). At long times approaching 4()0t//. the scaling of the dispersion curves 
is steeper than one. For the three simulations with lowest Reynolds number (sim. no. 1-3), 
the single particle diffusion curves have established a clear diffusive scaling at these late 
times, characterized by a mildly superdiffusive trend.

Following Salazar & Collins (2009), we refer to the middle range of scales, between 
approximately 20rv and I 00tv , as the inertial subrange without implying that the Richardson 
scaling or any other scaling with time is a correct prediction for anisotropic MHD turbulence. 
For simulations 1 and 2 in table 1, which have lower Reynolds numbers, the dispersion curves 
display a mild curvature that prevents the clear definition of a scaling during the inertial 
subrange of time scales. For the higher Reynolds number simulations numbered 3 and 4, the 
dispersion curves flatten during the inertial subrange and approach a scaling prediction that is 
clearer. In the perpendicular direction, for the pairs with initial separation £o = 2%oi,_i shown 
in figure 4, this scaling approaches 3, a number reminiscent of the Richardson prediction. In 
the parallel direction, the equivalent scaling appears to be steeper than 3.

We examine the log derivative, to quantitatively analyze these scalings (see figure 5). 
Here the derivative of the log is calculated using a simple forward Euler method, because 
such a two-point method allows the very early behavior to be seen most clearly. The log 
derivative shows an initial slope of 2 during the ballistic regime for both perpendicular and 
parallel results. The inertial subrange and diffusive regime are both characterized by chatter 
in the log derivative. During the inertial subrange, between roughly 20rv and I 00tv. the log 
derivative of the perpendicular dispersion curve for perpendicularly separated pairs ranges 
between 2.3 and 3.7, while the parallel dispersion of pairs separated in the parallel direction 
ranges between approximately 3.0 and 4.0. The range over which these derivatives chatter
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Figure 5. Derivative of the log of the average square separation of particle pahs for (a) 
perpendicular pahs and separation measured perpendicular' to the mean magnetic held, and 
(b) parallel pahs and separation measured in the direction aligned with the mean magnetic held, 
as in figure 4. The initial separation of particle pairs is fo = A grey line indicates the
theoretical prediction that the dispersion cur ve scale with the square of tune at early times.

provides an estimate of the uncertainty for the scaling of the dispersion curves. Some of 
the noisiness here results from the fact that our two-particle statistics are constructed from 
a single initial time. During the diffusive regime both perpendicular and parallel dispersion 
curves decay to values between approximately 1.0 and 2.0. Simulations 1 and 2 have an 
average scaling greater than 1 and less than 1.5 between 300rv and 400rv. corresponding to 
a slightly superdiffusive separation.

As we have discussed, for particle pairs that are initially separated by £o = 2%oi,j_, the 
separation in the perpendicular direction appears close to the Richardson prediction of a 
scaling of 3. Calculating the log derivative for particle pairs with different initial separations 
£o in simulation 4 (see figure 6) clarifies that this scaling is indeed dependent on £o < as 
discussed by Biferale et al. 2005). This figure also provides a comparison to the hydrodynamic 
simulation 3H. For anisotropic MHD turbulence, the log derivative reveals larger changes 
between the ballistic and the inertial subranges than in the hydrodynamic case. For each 
group of particle pairs with the same initial separation, there is first a dip before or near 
tu indicating a temporary slowing down of dispersion. This dip is followed by a series of 
peaks as the pair separation enters the inertial subrange; since the hydrodynamic simulation 
has a single smooth peak, the multiple peaks and the chatter during this period are likely to 
result from Alfvenic fluctuations. The maximum value of the log derivative for anisotropic 
MHD turbulence is a higher value than the hydrodynamic case. Thus, although the dispersion 
curves for simulation 4 point toward a Richardson-like scaling regime for the perpendicular 
dispersion, they do not clearly confirm Richardson scaling for anisotropic MHD turbulence. 
The log derivative curves indicate a larger slope is achieved during the inertial subrange for 
a smaller initial separation £o- Therefore in the limit where £o becomes arbitrarily small, we 
expect that the slope of the dispersion curves will be greater than 3 in both the perpendicular 
and parallel directions. We thus also expect that corrections to a Richarson-like prediction 
are needed for the case of anisotropic MHD turbulence.

It has been shown (e.g., Yeung & Borgas 2004), that the intermittency of particle-pair
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Figure 6. Log derivative of the average square separation of particle pairs in the direction 
perpendicular to the mean magnetic held for (a) perpendicular pahs and separation measured 
perpendicular to the mean magnetic held, and (b) parallel pahs and separation measured in the 
direction aligned with the mean magnetic held. Each line is labeled by the initial separation 
distance of the particle pairs. Data from simulation 4, described in table 1, Equivalent curves 
from simulation 3H are shown as dashed lines in the background for comparison, A grey line 
indicates the theoretical prediction that the dispersion curve scale with the square of tune at 
early times,

dispersion is larger in higher Reynolds number simulations of isotropic hydrodynamic 
turbulence. In hydrodynamic turbulence, increasing the Reynolds number leads to a stronger 
intermittency at the small scales; the separation of particle pairs provides a convenient 
measure for this, since they sample the velocity held on a length scale comparable to their 
separation distance. The skewness, a normalized third moment, indicates the asymmetry 
of the wings of a distribution; it is therefore one indicator of intermittency, which can 
also be observed in other high-order moments. A larger skewness of the distribution of 
particle-pair separations indicates the importance of the extremes of dispersion, and the 
relative importance of pairs of particles that separate much faster than the average. In our 
simulations of anisotropic MHD turbulence, the skewness of the separation distance provides 
a particularly clear result that demonstrates the Reynolds number dependence (see figure 7). 
In the figure, the particle pairs are initially separated by 4%oi,j_, so that this diagnostic can 
be compared with figure 13 of Yeung & Borgas (2004). We also include the results from our 
simulation 3H in this figure to provide a direct comparison with the isotropic hydrodynamic 
case. We find that anisotropic MHD turbulence develops a larger skewness of the particle- 
pair separations than isotropic hydrodynamic turbulence, even for similar Reynolds number 
simulations.

At early times, the values of the skewness of particle-pair separations are small and 
negative, but quickly become positive. The skewness rises more rapidly at earlier times for 
perpendicular pairs than for parallel pairs. This difference may be due to the presence of 
Alfvenic fluctuations, oscillations on large-scale temporal and spatial scales, which become 
elongated in the direction of the mean magnetic held. The initialization of particle pairs 
allows some pairs to reside entirely inside such how structures. Other particle pairs saddle 
the boundary of a how structure, with one particle inside and another particle outside; those
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Figure 7. Skewness of the particle-pair separations for (a) perpendicular pairs with separation 
measured in the perpendicular direction, and (b) parallel pairs with separation measured in the 
aligned direction. For comparison with isotropic hydrodynamic turbulence, we provide the blue 
line from simulation 3H. The initial separation of the particle pairs is 4%oi._i_ in each simulation.

pairs tend to separate more rapidly than the average. Because of the elongation of flow 
structures, pairs that saddle such boundaries are more likely to have an initial separation in 
the perpendicular direction.

As the pairs of particles move further apart in space, they experience a decorrelation 
between their local velocities. Eventually the rate of separation of these early fast-separating 
pairs slows, and the skewness reaches a peak. The peaks in skewness for our anisotropic 
MHD simulations occur at a time of approximately I 0rv. a later time than for our isotropic 
hydrodynamic turbulence simulation. This peak is positioned near the point of transition 
between the ballistic regime and the inertial subrange. We observe no clear difference in 
the placement of this peak with Reynolds number, or between the anisotropic directions. 
The peak in skewness is higher for larger Reynolds number, and is also higher for parallel 
pairs than for perpendicular pairs. The difference in the height of the peak indicates that 
intermittency is more intense along the direction of the mean magnetic held, as well as more 
intense for higher Reynolds number. This difference between the parallel and perpendicular 
directions suggests that the current sheets that define anisotropic MHD turbulence could be 
responsible for more frequent large particle separations in this setting.

5.2. Two-particle velocity statistics
To expose further differences between homogeneous isotropic hydrodynamic turbulence 
and MHD turbulence, we examine the separation speed, i.e. the projection of the velocity 
difference experienced by a pair of Lagrangian tracer particles onto the line connecting 
the particles. The separation speed has been used to construct stochastic models and 
other Lagrangian statistics (e.g. Sokolov 1999; Boffetta & Sokolov 2002), and to examine 
intermittency and alignment in isotropic hydrodynamic hows (Biferale et al. 2005; Yeung & 
Borgas 2004). From early times until the end of the inertial subrange, the separation speed 
is significantly higher for perpendicular pairs than for parallel pairs. In our simulations, the 
average separation speed displays a characteristic dip, first identified by Muller & Busse
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Figure 8. Average separation speed for (a) perpendicular' pairs, and (b) parallel pairs. Time is 
given in units of the Kolmogorov time-scale r^. These pahs of particles are initially separated 
by 2//k0|,j_.

(2007), near the beginning of the inertial subrange of time scales for MHD turbulence (see 
figure 8). The isotropic hydrodynamic simulation 3H is provided on the plot for comparison; 
it does not experience a similar dip. This dip occurs between approximately 2rv and 10rv. 
a period where pairs of particles have separated sufficiently to sense temporal fluctuations 
of the velocity held. At the same time, the slope of the average dispersion curve is changing 
between the ballistic regime and the inertial subrange; the skewness of the pair separation 
distance is increasing to a peak. We find that this characteristic dip in the separation speed is 
deeper and lasts longer for higher Reynolds number simulations.

Following the dip, the separation speed rises again as the particle pairs probe ever larger 
and more energetic fluctuations. This comes to an end as the pairs reach separation distances 
comparable to the size of the largest fluctuations in the system. We find that the separation 
speed ultimately reaches a higher value for higher Reynolds number simulations.

As an increasing number of particle pairs reaches the diffusion regime, the average 
separation velocity begins a period of fluctuating decay. At this point the large-scale velocities 
experienced by the separating particles tend to become decorrelated, resulting in slower, 
asymptotically diffusive separation dynamics. The separation speed is expected to level off 
at a quasi-stationary diffusive separation velocity once most pairs have left the superdiffusive 
region of pair dispersion. The fluctuations during this decay period are more noisy for 
anisotropic MHD turbulence, where Alfvenic fluctuations are present at all scales, than for 
isotropic hydrodynamic turbulence.

We calculate the log derivative to determine whether a scaling exists with Reynolds number 
for the separation speed (see figure 9). The log derivative of the separation speed shows that 
the dip deepens, and is not simply shifted for higher Reynolds number. Instead, higher 
Reynolds number causes a milder upward slope at the end of the ballistic regime, and this 
persists throughout the inertial subrange. For example at 10rv. the slope is clearly different 
for different Reynolds number simulations. This is a consequence of the longer duration of 
the alignment process for the separation velocity that occurs at higher Reynolds number, as 
well as the stronger slowing down that resulting from it.
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Figure 9. Derivative of the log of the average separation speed for (a) perpendicular’ pahs, and 
(b) parallel pairs. These curves correspond to figure 8.

5.3. Alignment statistics
Yeung & Borgas (2004) explain the behavior of the average separation speed in isotropic 
hydrodynamic turbulence through an examination of the alignment statistics using the 
angle between the relative velocity and separation vector of pairs of particles. Concepts 
of alignment also prove useful in explaining differences between isotropic hydrodynamic 
and MHD turbulence, an idea first explored by Muller & Busse (2007). Here we expand 
on those ideas of alignment statistics; we extend the arguments of Muller & Busse (2007) 
to examine the relationship between alignment and Reynolds number in the distinct case of 
Bo = 1 anisotropic MHD turbulence.

To quantify how the separation of pairs of particles differs in the anisotropic magnetohydro- 
dynamic case, we examine the average of the cosine of the angle between the relative velocity 
of pairs of Lagrangian tracer particles and their separation vector. Following Yeung & Borgas 
(2004); Yeung (1994), we describe this angle as the “alignment angle," and designate it with 
>S. Examining the cosine of the alignment angle is particularly useful because it should be 
larger when the relative velocity and separation are better aligned. Recently Malik & Hussain 
(2021) have defined a pair diffusion coefficient Kit) to be the average value of the scalar 
product of the separation vector and the relative velocity, a quantity strongly related to the 
alignment angle. Their work demonstrates that the alignment angle is integral to scaling laws 
that can be constructed for the inertial subrange.

The average cosine of the alignment angle is clearly different for particles initially separated 
in the directions parallel and perpendicular to the mean magnetic held. These diagnostics 
also display a trend with Reynolds number. In figure 10 the average cosine of the alignment 
angle grows from approximately zero to a peak at approximately 2rv. This measure reveals 
that during these early times, the separation vector of a particle pair tends toward a state in 
which it is better aligned with the separation velocity. The growth phase takes place during 
the ballistic regime of dispersion, as the particles follow the initial velocity of the fluid. 
For perpendicular pairs, the amplitude of the peak is about 0.4, which is slightly lower, 
but comparable to, the hydrodynamic case; for parallel pairs, the amplitude of the peak is 
approximately 0.28. The effect of the particle separations aligning with the relative velocity
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Figure 10. Average cosine of the alignment angle /?. This average is shown for (a) perpendicular’ 
pahs, and (b) parallel pahs. These pahs of particles are initially separated by 2 %oi._i_- Time is 
given in units of the Kolmogorov thne-scale r^.

is larger in the perpendicular direction. This can be related to the higher separation speed 
that we observed for perpendicular pairs.

As particle pairs separate further in the flow, they begin to probe the lower end of the 
inertial subrange of time scales. The signature of this in the average cosine of the alignment 
angle is a drop-off between 2rv and I Or,,, after which the average cosine enters a plateau 
and exhibits noisy behavior. The time for the first drop-off, which signifies the loss of 
initial strong alignment of the particle pairs, correlates with the slow-down in separation 
velocity noted in figure 8. For higher Reynolds number the drop-off is larger, suggesting 
a link between the loss of alignment and the magnitude of the slow-down in separation 
speed. The isotropic hydrodynamic case is provided in figure 8 for comparison; in this case 
the alignment experiences a small and brief dip, then regains and maintains its initial high 
alignment throughout the inertial subrange of time scales. For particle pairs in anisotropic 
MHD, regardless of their initial separation direction, the value of the average cosine of 
the alignment angle during the plateau is between 0.2 and 0.3; for isotropic hydrodynamic 
turbulence, the magnitude is nearly twice as large. Finally, at long times corresponding to the 
diffusive range, the average cosine of the alignment angle again decreases. For anisotropic 
MHD turbulence it ultimately drops to about 0.1; for isotropic hydrodynamic turbulence, this 
value is higher, about 0.2. In both the inertial subrange and the diffusive regime, the relative 
dispersion is slower for MHD turbulence, when compared with hydrodynamic turbulence, 
because of the weaker alignment between the relative velocity and the separation vector.

For MHD turbulence, Muller & Busse (2007) demonstrated that the angle between the 
separation vector and the local mean magnetic held needs to be considered. We call this the 
“magnetic alignment angle" and designate it with y. The local mean magnetic held is simply 
the average of the total magnetic held experienced by the pair of Lagrangian tracer particles at 
their positions at each point in time, which includes contributions of both the fluctuating held 
and mean held. The average values of cos y should approach zero for a perfectly isotropic 
turbulent how. In an anisotropic how, where the initial magnetic alignment angle needs to 
be taken into account, this is not the case. For perpendicular pairs, alignments perpendicular 
to the local magnetic held have an increased probability because the local magnetic held
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Figure 11. Standard deviation of the cosine of the magnetic alignment angle y, for (a) 
perpendicular pahs, and (b) parallel pairs. These pahs of particles are initially separated by 
2 z/koi.j,- Tune is given in units of the Kolmogorov time-scale r^. The grey line indicates the 
value for an isotropic distribution of magnetic alignment angles.

tends to be dominated by the mean magnetic field. Thus the initial value for (cos y) is close 
to the zero. For parallel pairs, the initial value for (cos y) is finite because the separation 
vector between particles consistently points in the direction antiparallel to the mean magnetic 
field. Regardless of the initial separation direction, as the pairs of particles evolve in time, 
(cos y) approaches zero because the dependency on the initial alignment state disappears. 
The average thus does not display a clear Reynolds number dependence in our simulations.

We find that higher order statistics, such as the standard deviation cr [cos y] do exhibit clear 
trends for our simulations (see figure 11). If no magnetic alignment angles are preferred, 
then the distribution of cos y is uniform on [-1,1] and its standard deviation is -^1/3, a point 
that is marked by a horizontal grey line in the figure. For perpendicular pairs, at early times 
the distribution of magnetic alignment angles is concentrated around cos y = 0 to a higher 
degree than for an isotropic case. A rise in cr [cos y] proceeds between roughly 2rv and 
20r^, suggesting that as a pair of particles leaves the ballistic regime, the particles achieve a 
wider range of alignments with the local mean magnetic field, which also results in a lower 
alignment of pair separation with the relative velocity vector. A more uniform distribution 
develops in this transient phase; the standard deviation passes through the point x/l/3 at 3rv 
and continues to rise. Near the beginning of the inertial subrange, the cr [cos y] reaches a peak, 
at a state where the separation vector is preferentially aligned parallel or antiparallel to the 
local mean magnetic field. For higher Reynolds number simulations, the peak in the standard 
deviation of cos y is higher, corresponding to particle pairs that align more thoroughly with 
the local mean magnetic field. Throughout the inertial subrange and diffusive regime, this 
alignment decreases, indicating that there is a progressive decorrelation; the value attained 
for long times is close, but does not reach, the reference value of \J I /3 for an isotropic 
distribution. Parallel pairs are initialized so that their separation vectors are preferentially 
oriented to be anti-parallel to the mean magnetic held. As this distribution becomes more 
uniform, cr [cos y] grows. Eventually, the parallel pairs attain a mix of antiparallel and parallel 
alignments, and exhibit similar trends to the perpendicular pairs at longer times.
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A comparison between the different alignment statistics in figures 11 and 10 shows 
interesting similarities. Parallel pairs reach the peak in (cos/?) slightly later than the 
perpendicular pairs, and the peak in cr[cosy] also occurs at a slightly later time. Although 
there is a lower level of alignment achieved for these parallel pairs, as measured by (cos/?), 
both types of pairs reach similar values of cr[cosy]. These observations point to two 
competing alignment processes at work, stemming from the physical differences in the 
parallel and perpendicular directions. Parallel pairs are initially strongly aligned with Bo, 
and they do not achieve a strong alignment between the separation vector and the relative 
velocity. For perpendicular pairs, a strong alignment between the separation vector and 
relative velocity is readily developed at early times. Then an increasing alignment with the 
local mean magnetic held reduces the alignment between the separation vector and relative 
velocity. This ultimately slows the relative dispersion for both groups of particle pairs.

6. Discussion and Conclusions
We have produced Lagrangian statistics for incompressible homogeneous anisotropic MHD 
turbulence and examined how those statistics change as a function of the Reynolds number. 
Several of these diagnostics were investigated in earlier studies (Yeung & Borgas 2004; Yeung 
et al. 2006; Sawford et al. 2008) of incompressible homogeneous isotropic hydrodynamic 
turbulence at different Reynolds numbers. From among the many diagnostics in these earlier 
works, we have selected those that are most significant to the physical complexities of 
anisotropic MHD turbulence. Additional diagnostics have also been evaluated to further 
clarify the Reynolds number dependence in this new physical setting.

Anisotropic MHD turbulence is distinct from isotropic hydrodynamic turbulence in that 
the presence of a magnetic held interacts with the velocity of the flow, and a mean magnetic 
field introduces a global anisotropy in the dynamics. That anisotropy necessitates the use of 
a more restrictive resolution criterion, which we have introduced to assure that the energy 
spectra in the direction perpendicular to the magnetic field are resolved at the same level 
as the spectra in the direction aligned with the magnetic field. Our examination of single- 
par tide diffusion confirms that ballistic and diffusive scaling regimes apply in each of 
these physically distinct directions. Two-particle dispersion also produces clear ballistic and 
diffusive regimes. The diffusive regime exhibits a mildly super-diffusive scaling in both 
parallel and perpendicular directions. During the inertial subrange, a scaling emerges as we 
examine larger Reynolds number simulations. We quantify this scaling by examining the 
log derivatives of the dispersion curves. In the perpendicular direction, for particles with 
separation 2%oi,_i this scaling is close to 3; in the direction aligned with the magnetic field, 
this scaling is clearly larger than 3. The skewness of the pair separation diagnostic reveals 
a higher level of intermittency with larger Reynolds number, and that intermittency is more 
pronounced in the direction aligned with the mean magnetic field.

The presence of a mean magnetic field also introduces large-scale Alfvenic fluctuations 
to the system, which interact with the turbulent dynamics. We observe oscillations in the 
average square separation of particle pairs, clearly visible in the log-derivatives, which can 
be attributed to Alfvenic fluctuations. Further work would be necessary to attempt to separate 
the effect of waves from the fundamental anisotropy.

To explore the anisotropy more deeply with a view toward theoretical modeling, we 
have examined the separation velocity of particle pairs. The average separation velocity of 
particle pairs shows a dip following the ballistic range and preceding the beginning of the 
inertial subrange, between 2rv and I Or,,. This dip deepens for larger Reynolds number, and 
provides a transition to the inertial subrange that is characteristically different from that of 
isotropic hydrodynamic turbulence. We probe these results further by examining alignment
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statistics: the cosine of the alignment angle and the cosine of the magnetic alignment angle. 
Slightly preceding the dip, an increase in the standard deviation of the cosine of the magnetic 
alignment angle begins, and this increase continues throughout the dip period. The dip period 
also correlates with a sharp drop in the average cosine of the alignment angle. This indicates 
that there are two competing alignment processes at work, namely the alignment between the 
separation vector of a pair of particles and the relative velocity, and the alignment between 
the separation vector and local mean magnetic field. The balance between these alignment 
processes is affected by the Reynolds number and by the anisotropy of the system. These 
alignment statistics show clear trends with increasing Reynolds number. A detailed evaluation 
of the strength of the mean magnetic field on alignment processes should be evaluated in 
future studies.
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