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Abstract—In this paper, we consider policy optimization
over the Riemannian submanifolds of stabilizing controllers
arising from constrained Linear Quadratic Regulators (LQR),
including output feedback and structured synthesis. In this
direction, we provide a Riemannian Newton-type algorithm
that enjoys local convergence guarantees and exploits the
inherent geometry of the problem. Instead of relying on the
exponential mapping or a global retraction, the proposed
algorithm revolves around the developed stability certificate
and the constraint structure, utilizing the intrinsic geometry
of the synthesis problem. We then showcase the utility of the
proposed algorithm through numerical examples.

Index Terms— Structured LQR Control; Output-feedback
LQR Control; Policy Optimization on Manifolds

I. INTRODUCTION

Policy Optimization (PO) for control, such as LQR syn-
thesis, has recently attracted considerable attention in the lit-
erature, as it establishes a direct bridge between control and
learning, and in the meantime, puts fundamental questions
at the interface of system theory, dynamics, and optimiza-
tion under the spotlight. PO for linearly constrained LQR,
e.g., state-feedback Structured Linear Quadratic Regulators
(SLQR) and Output-feedback Linear Quadratic Regulators
(OLQR), on the other hand, has been explored to a much
lesser degree. This is more a reflection of the intricate
geometry of such constrained synthesis problems than their
importance. For example, although reparameterization of
the LQR problem to convex optimization is possible for
unconstrained scenarios [2], trivial constraints on policy
often lead to nontrivial and non-convex problems after such
reparameterizations. Furthermore, the domain of the opti-
mization problems for constrained LQR (and its variants) are
generally non-convex [3] and even disconnected [4], with po-
tentially multiple local minima on each component; as such,
there are even no guarantees that first-order stationary points
are local minima; see [5], [6]. This state of affairs might
appear discouraging, as in our view, constrained synthesis
problems are often the main motivation for control design
in practice. Over the past few years, PO for control synthesis
has been investigated through the lens of first-order methods
for many variants of the LQR problem, such as OLQR [7]
and its model-free version [8]. Crucial for such studies has
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been the so-called gradient dominance property [9], [10],
that plays a critical role for showing global convergence of
first order methods for control synthesis problems [11]–[13].
This important property however is only valid with respect to
the global optimum of the unconstrained synthesis problem
and not expected for general constrained case, let alone
considering the disconnectedness of the respective feasible
domains. By merely using first-order information on the cost
function, Projected Gradient (PG) techniques—whenever
feasible—can be shown to converge sublinearly to first-
order stationary points of SLQR and OLQR problems [7],
[12]. However, a sublinear rate is generally unfavorable–and
theoretically unsatisfying–particularly when second-order in-
formation of the synthesis cost and the geometry of the
stabilizing gains can be utilized.

The main contribution of this paper is characterizing the
notion of geometric stability certificate required for develop-
ing feasible iterative algorithms for challenging constrained
synthesis problems. In particular, this work develops the
differential geometric machinery that can be utilized to char-
acterize this certificate in the absence of a computationally
feasible (global) retraction [14]–[16]. Moreover using this
construct, a Newton-type algorithm is developed for linearly
constrained synthesis problems with guaranteed local linear
convergence rate–that eventually transitions to a quadratic
one–even though the feasible domain of such problems may
not be connected, and possibly include multiple local min-
ima. Furthermore, we demonstrate how this unified approach
applies to a wide range of constrained synthesis problems,
including structured state-feedback SLQR and OLQR. The
extended version of this work provides a more general dif-
ferential geometric point of view for system design [1]. The
aforementioned manuscript also includes a general extrinsic
analysis of smooth synthesis costs over the Riemannian
submanifolds of stabilizing controllers.

The rest of the paper is organized as follows. In §II, we
introduce the problem setup and discuss its reformulation. In
§III, we elaborate on the geometry of stabilizing controllers
and the resulting second-order behavior of constrained LQR
cost and study the geometry of SLQR and OLQR problems
in this context. The proposed algorithm and convergence
rate analysis are discussed in §IV. We provide numerical
examples in §V, followed by concluding remarks in §VI.

II. BACKGROUND AND PROBLEM SETUP

Consider the discrete-time linear system,

xk+1 = Axk +Buk, (1)

2022 IEEE 61st Conference on Decision and Control (CDC)
December 6-9, 2022. Cancún, Mexico

978-1-6654-6761-2/22/$31.00 ©2022 IEEE 1472

20
22

 IE
EE

 6
1s

t C
on

fe
re

nc
e 

on
 D

ec
is

io
n 

an
d 

C
on

tro
l (

C
D

C
) |

 9
78

-1
-6

65
4-

67
61

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
C

D
C

51
05

9.
20

22
.9

99
28

77

Authorized licensed use limited to: University of Washington Libraries. Downloaded on June 16,2023 at 20:43:55 UTC from IEEE Xplore.  Restrictions apply. 



where A ∈ Rn×n and B ∈ Rn×m are system parameters,
i.e., n× n and n×m real matrices, xk and uk denote the
state and input vectors, respectively, and x0 is given. Con-
ventionally, the Linear Quadratic Regulators (LQR) problem
is to design a sequence of inputs u = (uk)

∞
0 ∈ ℓ2 (square

summable sequences) that minimizes

Jx0(u) =
1

2

∞∑
k=0

x⊺
kQxk + u⊺

kRuk, (2)

subject to (1), where Q and R are positive semidefinite and
positive definite matrices, respectively. It is well known that
the optimal solution to this problem reduces to solving the
Discrete-time Algebraic Riccati Equation (DARE) for the
unknown matrix PLQR that quadratically parameterizes the
so-called cost-to-go. Subsequently, one sets u∗

k = KLQRxk,
where the optimal LQR gain (policy) KLQR ∈ Rm×n is
given by KLQR = −(R + B⊺PLQRB)−1B⊺PLQRA, and
the optimal cost Jx0

(u∗) = x⊺
0PLQRx0/2.

The PO approach to control design in contrast, starts with
the feasible domain of the synthesis problem. First, we define
the set of stabilizing controllers by

S := {K ∈ Rm×n | A+BK ∈M},
where M denotes a subset of (Schur) stable matrices
M = {A ∈ Rn×n | ρ(A) < 1} and ρ(·) denotes the spectral
radius. We also introduce a non-Euclidean geometry over S
by a natural Riemannian metric arising in the context of LQR
problem. Specifically, here we are interested in controllers
that lie on a relatively “simple” subset K of Rm×n, such
that K ∩ S is an embedded submanifold of S . Common
examples of these subsets are linear subspaces of Rm×n

that characterize a prescribed sparsity pattern in the optimal
controller gain, or the output-feedback constraint [1]. Before
we proceed with the main analysis, we restate the following
lemma from [1] for completeness. Define the “Lyapunov
map” L :M×Rn×n → Rn×n that sends the pair (A,Q) to
the solution Y of the following discrete Lyapunov equation,

Y = AY A⊺ +Q. (3)

We naturally identify the tangent space T(A,Q)(M ×
Rn×n) ∼= Rn×n ⊕ Rn×n. 1

Lemma 1 ([1, Lemma III.1]). The subset M is an open
submanifold of Rn×n and the Lyapunov map L : M ×
Rn×n → Rn×n is smooth, and its differential acts as

dL(A,Q)[E,F ] = L
(
A,E L(A,Q)A⊺ +AL(A,Q)E⊺ + F

)
,

for any E,F ∈ Rn×n. Furthermore, for any A ∈ M and
Q,Σ ∈ Rn×n, we have the so-called “Lyapunov-trace”
property,

tr [L(A⊺, Q)Σ] = tr [L(A,Σ)Q] .

One can view the LQR cost naturally as a map K 7→
Jx0(u = Kx); however, this would depend on x0 and

1The reader is referred to [1] for a more systematic treatment of
referenced mathematical constructs and notation.

generally, its value can be infinite as K is not necessarily
stabilizing, i.e., when K /∈ S . This motivates studying the
(natural) constrained optimization problem,

minimize f(K) := E
x0∼D

Jx0
(Kx) over K ∈ S̃ (4)

s.t. xk+1 = (A+BK)xk, for all k ≥ 0,

where S̃ is an embedded submanifold of S , and D denotes
a distribution of zero-mean multivariate random variables of
dimension n with a positive definite covariance Σ.

We further reformulate the problem in (4) as follows. For
each stabilizing controller K ∈ S , from (1) and (2) we have,

Jx0(u = Kx) =
1

2
x⊺
0

[ ∞∑
k=0

(Ak
cl)

⊺[Q+K⊺RK]Ak
cl

]
x0,

where Acl := A + BK is the closed-loop dynamics. Since
Acl is a Schur stable matrix, the sum converges to

PK := L(A⊺
cl, Q+K⊺RK),

noting that Acl ∈M implies A⊺
cl ∈M. Therefore, for each

K ∈ S , we can compute f(K) as,

f(K) = 1
2 Ex0∼D tr [PKx0x

⊺
0 ] =

1
2 tr [PKΣ] .

Hence (4) reduces to,

min
K

f(K) =
1

2
tr [PKΣ] such that K ∈ S̃. (5)

If there are no additional constraints on the stabilizing
controllers, i.e., S̃ = S , then a well-known quasi-Newton
algorithm due to Hewer is known to converge to the global
optimum (under the usual control-theoretic assumptions) at
a Q-quadratic rate [17]. This elegant algorithm has the above
favorable convergence properties as, 1) the optimum point
of the optimization problem coincides with the stationary
point of the gradient field of f with respect to an intrinsic
Riemannian metric, 2) the positive definite estimates of the
“Hessian” of f are accurate representation of the quadratic
behavior of the cost function near the optimum, and 3)
the unit step-size–remarkably–keeps the iterates inside S
throughout the updates.

III. GEOMETRY OF SLQR AND OLQR PROBLEMS

The motivation behind the geometric analysis of stability
certificates is to develop an analogous iterative procedure
to that of Hewer’s, but for the cost function f restricted to
S̃ . In order to accomplish this, we need to investigate the
following questions: 1) What is the “useful” geometry on
this constrained submanifold? 2) What is the gradient field
and the accurate estimate of the Hessian operator on this
submanifold? and finally 3) What choice of step-size keeps
the iterates stabilizing throughout the algorithm?

Before we proceed, it is worth noting that if we were
to use the machinery developed for optimization over man-
ifolds [14], it would be necessary to access a retraction
from the tangent bundle T S̃ onto S̃ . Unfortunately, such
a mapping is not available in general, due to the intricate
geometry of S; however, if S̃ is endowed with a linear
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structure, then one can circumvent this issue by utilizing
the tangential projection (with respect to the geometry) onto
T S̃ , a more accessible construct in general.

A. Domain Manifold

In this paper, we focus on S as a manifold on its own.2 It is
known that S is contractible, and unbounded when m ≥ 2
[18]. Furthermore, S is open in Rm×n (a consequence of
continuity of maximum eigenvalue of a parameterized matrix
with smooth entries), and therefore a submanifold without
boundary. On the other hand, the constrained submanifold
S̃ does not even need to be connected and might have
exponential number of connected components; first-order
stationary points are also not necessarily local minima.

Notation. For manifolds, we follow the notation and
results in [19] and [20] unless stated otherwise. At each
point K ∈ S , we identify the tangent space TKS canonically
with Rm×n. Also, since S can be covered by a single
smooth chart, the tangent bundle of S , denoted by TS ,
is diffeomorphic to S × Rm×n. We refer to this identifi-
cation as “the usual identification of the tangent bundle”
(or TKS ∼= Rm×n at any point K ∈ S) if we need to
identify an element of TS (or TKS). In particular, let us
denote the coordinates of the global chart by (xi,j), its
associated global coordinate frame by ( ∂

∂xi,j ) or simply
(∂i,j), and its dual coframe by (dxi,j), where i = 1, . . . ,m
and j = 1, . . . , n. We also use the Einstein summation
convention as explained in [20] for double indices as, for
example, xi,j∂i,j denotes

∑m
i=1

∑n
j=1 x

i,j∂i,j . Lastly, the
(i, j)-th element of any matrix A ∈ Rm×n is denoted by
[A]i,j or [A]i,j depending on viewing A as a point or a
tangent vector, respectively. The set of smooth functions on
S is denoted by C∞(S). A vector field V on S is a smooth
map V : S → TS , usually written as K → VK , with the
property that VK ∈ TKS for all K ∈ S . We denote the set
of all vector fields over S by X(S). A covariant 2-tensor
field is a smooth real-valued multilinear function of two
vector fields. Finally, for any general mapping P : S → ⋆,
we use PK , P |K or P (K) to denote the element in ⋆ for
which K ∈ S has been mapped to. For reasons that become
apparent subsequently, in what follows, we define a smoothly
varying bilinear function (i.e., a covariant 2-tensor field) on
S which turns out to be a Riemannian metric. Define the
map ⟨., .⟩Y : X(S) × X(S) → C∞(S) as follows:3 for any
V,W ∈ X(S),

⟨V,W ⟩Y
∣∣
K

= tr [(VK)⊺ WK YK ] , ∀K ∈ S, (6)

where YK = L(Acl,Σ) ∈ Rn×n satisfying

YK = AclYKA⊺
cl +Σ. (7)

2This statement, however, necessitates elaborating on what this approach
would entail, justifying our brief exposition of the required differential
geometry in §III-A; the reader can refer to this section as needed as we are
obliged to provide the key constructs for our subsequent analysis.

3The notation ⟨·, ·⟩Y should not be confused with the (ordinary) inner
product in inner-product spaces as it is varying over S.

Lemma 2. The map ⟨., .⟩Y : X(S)×X(S)→ C∞(S) as in
(6) is well-defined and induced by a Riemannian metric g on
S . Moreover, with respect to the dual coframe (dxi,j), g =
g(i,j)(k,ℓ)dx

i,j ⊗ dxk,ℓ with g(i,j)(k,ℓ) ∈ C∞(S) satisfying

g(i,j)(k,ℓ)(K) =

{
[YK ]ℓ,j if i = k

0 otherwise.

Proof. Note that Σ ≻ 0 in (4); thus, (Acl,Σ
1/2) is control-

lable and the claim follows by [1, Proposition III.3] with
Σ1 = Σ and Σ2 = 0.

Now, we consider the Riemannian manifold (S, g,∇)
where ∇ denotes the associated Riemannian connection
(see [1] for computing its associated Christoffel symbols
Γi,j
(k,ℓ)(p,q)). This induces a unique geometry on S̃ as a Rie-

mannian submanifold (S̃, g̃, ∇̃), with g̃ and ∇̃ denoting the
induced Riemannian metric and connection. Considering any
smooth function f on S , recall the gradient of f with respect
to the Riemannian metric g, denoted by grad f ∈ X(S), is
the unique vector field satisfying

⟨V, grad f⟩Y = V f,

for any V ∈ X(S).4 Also, define the “Hessian operator” of
f ∈ C∞(S) as the map Hess f : X(S)→ X(S) defined by

Hess f [U ] := ∇U grad f,

for any U ∈ X(S).5 Note that we use the same notation
to denote the gradient and Hessian operators defined on the
submanifold S̃ , even though they are different objects; for
further discussions regarding Hessian operator refer to [1].
Finally, we are interested in the restriction h := f |S̃ , and
relating its gradient and Hessian to those of f .

B. Extrinsic Analysis of the LQR Cost

Herein, we aim to apply the general extrinsic analysis
proved in [1, Proposition III.5] to the LQR cost and its
restriction to any embedded submanifold of S (including
the ones induced by constrained K). Before applying this
abstract extrinsic analysis, we need the geometric notion
of Riemannian projection [20]. Denote the (Riemannian)
tangential and normal projections by π⊤ : TS|S̃ → T S̃
and π⊥ : TS|S̃ → N S̃ , respectively, with N S̃ indicating
the normal bundle of S̃ .

Proposition 1. Let f(K) = 1
2 tr [PKΣ] with PK =

L(A⊺
cl,K

⊺RK + Q). Define h = f |S̃ where S̃ ⊂ S is an
embedded Riemannian submanifold with the induced metric
and connection. Then, h is smooth and under the usual
identification of tangent bundle,

gradhK = π⊤(RK +B⊺PKAcl).

4Note that the action of a vector field V on a smooth function f results in
a smooth function V f ∈ C∞(S) where its value at K, i.e., V f |K , can be
viewed as the directional derivative f at K in the direction of VK ∈ TKS.

5Note that ∇U grad f is itself a vector field that refers to the covariant
derivative of the vector field grad f in the direction of the vector field U .
See [1] and [20, Chp. 4] for more on covariant derivative, its computation
and relation to the Christoffel symbols Γi,j

(k,ℓ)(p,q)
.
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Furthermore, Hessh is a self-adjoint operator and can be
characterized as follows: for any E,F ∈ TK S̃ ⊂ TKS ,

⟨Hessh[E], F ⟩YK
= ⟨B⊺(SK |F )Acl, E⟩YK

+ ⟨(R+B⊺PKB)E +B⊺(SK |E)Acl, F ⟩YK

−
〈
gradhK , [E]k,ℓ[F ]p,qΓi,j

(k,ℓ)(p,q)(K)∂i,j

〉
YK

,

where Γi,j
(k,ℓ)(p,q)(K) denotes the Christoffel symbols asso-

ciated with g and

SK |E := L(A⊺
cl, E

⊺ grad fK + (grad fK)⊺E).

Remark 1. The second-order behavior of the constrained
cost h is captured in the Hessh operator above which is
obtained using the unique Riemannian connection. On the
other hand, one could in principle think of capturing this
behavior using the so-called Euclidean connection—that cor-
responds to the connection on (S, g) with all zero connection
coefficient Γi,j

(k,ℓ)(p,q) in the global coordinate frame. We
denote the latter operator by Hessh which will behave quite
differently than the former one, as will be illustrated through
examples. Finally, one could instead incorporate a positive
definite estimate of Hessh which can result in a quasi-
Newton variant of the proposed algorithm.

C. Newton Direction on Constrained Stabilizing Policies

In the upcoming sections, we aim to characterize a descent
direction using the second-order behavior of the constrained
cost h. In particular, we refer to the solution G ∈ TK S̃ of
the following equation as the Newton direction on S̃:

HesshK [G] = − gradhK ,

where h = f |S̃ ; similarly, the analogous construct is re-
ferred to as the Euclidean Newton direction if Hessh is
replaced by Hessh. Next, we discuss how SLQR and OLQR
problems can be treated similarly using this approach, each
corresponding to a different Riemannian submanifold S̃ of
S . In order to solve for the Newton direction at any K ∈ S̃ ,
suppose that the tuple (∂̃(p,q)|(p,q)∈D) denotes a smooth local
frame for S̃ on a neighborhood of K, where D is a subset
of [m]× [n] depending on the dimension of S̃ .6 In fact, for
any G = [G]k,ℓ∂̃(k,ℓ)|K ∈ TK S̃ (interpreted as a subspace of
TKS), finding the Newton direction on S̃ reduces to solving
the following system of |D|-linear equations (for each index
(p, q) ∈ D):∑

(k,ℓ)∈D[G]k,ℓ h;(k,ℓ)(p,q)(K) =

−
〈
π⊤(grad f |K), ∂̃(p,q)|K

〉
YK

,

with the coefficient h;(k,ℓ)(p,q) computed as h;(k,ℓ)(p,q)(K) =〈
HesshK [∂̃(k,ℓ)|K ], ∂̃(p,q)|K

〉
YK

; or with Hessh replaced

by Hessh, depending on the choice of the connection.

6Each TK S̃ can be viewed as a subspace of TKS as S̃ ⊂ S is embedded;
and, the specific choice of the local frame for S̃ depends on the application.

D. State-feedback SLQR

Any desired sparsity pattern on the policy, i.e., controller
gain K, leads to a linearly constrained set, denoted by KD,
indicating a linear subspace of Rm×n with nonzero entries
only for a prescribed subset D of entries, i.e.,

KD :=
{
K ∈ Rm×n | [K]i,j = 0 whenever (i, j) /∈ D

}
.

One can show that S̃ = S ∩ KD is a properly embedded
submanifold of S with dimension |D|. Furthermore, at any
point K ∈ S̃ and for any tangent vector E ∈ TKS , the
tangential projection π⊤ : TKS → TK S̃ sends E to Ẽ
where it must satisfy E − Ẽ ⊥ KD with respect to the
Riemannian metric at K; or equivalently,

ProjKD

[
(E − Ẽ)YK

]
= 0,

with ProjKD
denoting the Euclidean projection onto the

sparsity pattern KD. Note that at each K ∈ S̃ , the last
equality consists of |D| nontrivial linear equations involving
|D| unknowns (as the nonzero entries of Ẽ).

Finally, if ∂̃(i,j) (as described in §III-C) is taken to be
∂̃(i,j) = ∂(i,j) for (i, j) ∈ D, then (∂̃(i,j)|(i,j)∈D) forms a
global smooth frame for T S̃ . Thus, for each (k, ℓ), (p, q) ∈
D, the coordinates h;(k,ℓ)(p,q)(K) simplifies to

h;(k,ℓ)(p,q)(K) =
〈
B⊺(SK |∂(p,q)

)Acl, ∂(k,ℓ)
〉
YK

+
〈
(R+B⊺PKB)∂(k,ℓ) +B⊺(SK |∂(k,ℓ)

)Acl, ∂(p,q)
〉
YK

−
〈
π⊤ grad fK ,Γi,j

(k,ℓ)(p,q)(K)∂i,j

〉
YK

.

E. Output-feedback LQR

The OLQR problem can be formulated as the optimization
problem in (5) with the submanifold S̃ = S ∩ KC with the
constraint set KC defined as

KC :=
{
K ∈ Rm×n | K = LC, L ∈ Rm×d

}
,

where C ∈ Rd×n is the prescribed output matrix. Note that
KC is a linear subspace of Rm×n whose dimension depends
on the rank of C. For simplicity of presentation, we suppose
C has full rank equal to d ≤ n. Then, one can show that S̃ is
a properly embedded submanifold of S with dimension md.
Furthermore, at each K ∈ S̃ , we can canonically identify
the tangent space at K with TK S̃ ∼= KC .

Similar to the SLQR case, at any K ∈ S̃ and for any E ∈
TKS , the tangential projection of E, denoted by Ẽ = π⊤ E,
must satisfy E − Ẽ ⊥ KC (with respect to the Riemannian
metric), or equivalently,

tr
[
C⊺L⊺(E − Ẽ)YK

]
= 0, ∀L ∈ Rm×d.

Since C is assumed to be full-rank, we conclude that
π⊤ E = L∗C where L∗ ∈ Rm×d is the unique solution
of the following linear equation

L∗CYKC⊤ = EYKC⊤.

Finally, let D := [m]× [d] (the set of ordered pairs each
from the corresponding index set) and consider the identi-
fication TK S̃ ∼= KC . Then, at each point K ∈ S̃ , we can
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choose ∂̃(i,j) = ∂(i,j)C with (i, j) ∈ D as a global smooth
frame for T S̃ . But then, the coordinates of the covariant
Hessian h;(k,ℓ)(p,q)(K) with respect to this frame can be
computed by substituting E = ∂(k,ℓ)C and F = ∂(p,q)C
in Proposition 1 for each (k, ℓ), (p, q) ∈ D—similar to the
SLQR case. It is worth noting that the sparsity pattern in E,
F and Christoffel symbols can simplify the computations;
we will not further delve into such considerations for brevity.

IV. NEWTON-TYPE ALGORITHM

We first show how the perspective pursued in this work
is related to the well-known Hewer algorithm [17]; this was
first pointed out in [12]. Consider the Hewer’s algorithm
updating the stabilizing controller as,

K+ = −(R+B⊺PKB)−1B⊺PKA,

that can be reformulated as,

K+ = K − (R+B⊺PKB)−1((R+B⊺PKB)K +B⊺PKA)

= K − (R+B⊺PKB)−1(RK +B⊺PKAcl).

The algorithm is thereby equivalent to,

K+ = K +G,

where G is the quasi-Newton direction obtained by solving,

(R+B⊺PKB)G = − grad fK .

One can in fact argue that (R+B⊺PKB) is a “good” positive
definite approximation of the Riemannian Hessian operator
Hess fK of the (unstructured) LQR problem! The reason
becomes clear if we view the LQR cost as discussed in
Proposition 1 with no constraints (i.e., when S̃ = S). In
particular, at optimality, we have grad f |KLQR = RKLQR +
B⊺PKLQRAcl = 0 and thus by Proposition 1, we have
SKLQR |E = SKLQR |F = 0 for any vector E and F . Therefore,
the Hessian operator as in Proposition 1 reduces to,

⟨Hess fK [E], F ⟩YKLQR
=

〈
(R+B⊺PKLQRB)E,F

〉
YKLQR

,

for any tangent vectors E,F . The connection between
Hewer’s algorithm as a Riemannian quasi-Newton method
for the unconstrained LQR problem is now clear. The rest of
this section illustrates how we can extend this perspective to
propose a Newton-type algorithm for constrained LQR with
convergence guarantees. We claim that, starting close enough
to a local minimum (when one exits), a Newton-type method
using Riemannian metric and the Euclidean/Riemannian
connection must converge quadratically if one could have
used stepsize η = 1. This is in fact due to the exponential
mapping with respect to the Euclidean connection that serves
as a retraction with the desirable properties. However, unlike
the case with Hewer’s algorithm, the stability constraint
suggests that at least away from the local minimum, it might
not be possible to use such a large stepsize. Therefore, a
stepsize rule has to be deduced—that in turn, hinges upon
the notion of stability certificate; since deriving this certiciate
is intimately connected with the Riemannian geometry of the
synthesis problem, we refer to it as the geometric stability
certificate.

A. Geometric Stability Certificate and Step-size Selection

Our road map for choosing a step-size is to come up
with a stability certificate st at each iteration t that can
be combined with the geometric tangential projection as
described in §III-B. Later on, we show how to use this
certificate to choose step-sizes in practice with theoretical
guarantees, and more importantly, how it ensures existence
of neighborhoods each containing a local minimum on which
our algorithm achieves a quadratic rate of convergence.

For brevity and simplifying the presentation, here we
assume that Q ≻ 0; when Q ⪰ 0, one can leverage
the observability of the pair (A,Q1/2) to obtain analogous
results. The following lemma can be used for analyzing
generic iterative PO algorithms for structured and unstruc-
tured synthesis with stability requirements.

Lemma 3. Given any direction G ∈ TKS ∼= Rm×n, if
K ∈ S and step-size η is such that,

0 ≤ η ≤ sK := λ(K⊺RK +Q)
/
(2λ(PK)∥BG∥2),

then K+ = K + ηG ∈ S . Furthermore,

sK ≥ λ(Q)λ(Σ)
/
(4f(K)∥BG∥2).

Here, ∥.∥2 refers to the spectral norm, and λ (or λ) denotes
the maximum (or minimum) eigenvalue of a matrix. We refer
to sK as the geometric “stability certificate at K”.

Proof. We can choose a mappingQ : K → QK to beQK =
Q+K⊤RK ≻ 0 as Q ≻ 0. Then, the stability certificate sK
as defined in Lemma 3 follows using [1, Lemma IV.1]. Next,
since also R ≻ 0, f(K) ≥ 1

2 λ(Σ)λ(PK), where we have
used the trace inequality as both PK ,Σ ≻ 0. The claimed
lower-bound on the stability certificate now follows.

Algorithm 1: Riemannian Newton-type Policy Op-
timization (RNPO) for Constrained Problems on S

1: Initialization: Problem parameters (A,B,Q,R),
the linear constraint K and an initial feasible
stabilizing controller K0 ∈ S̃ = S ∩ K; set t← 0

2: Until stopping criteria are met, do
3: Find the Newton direction Gt on S̃ satisfying

HesshKt
[Gt] = − gradhKt

4: Obtain a stability certificate sKt
from Lemma 3

5: Compute the step-size ηt ← min {sKt
, 1}

6: Update Kt+1 ← Kt + ηtGt

7: t← t+ 1

In Line 4, Hessh can be replaced by its Euclidean counterpart Hessh.

Remark 2 (Conditioning and Choice of Mapping Q). In
general, the convergence rate of RNPO is directly related to
the stability certificate sK that depends on the “conditioning”
of the Lyapunov mapping at (A⊺

cl,QK)), defined as,

κK := λ(L(A⊺
cl,QK))

/
λ(QK),
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for any QK ≻ 0. This may affect the algorithm performance
by constant factors, and also the regions on which the
convergence rate remains linear. The natural choice of the
mapping Q is K → Q + K⊺RK relates this conditioning
to the value of f(K) as shown in Lemma 3.

Remark 3 (Stopping Criteria). Given ϵ > 0, a simple choice
for stopping criteria may be ⟨gradhKt

, gradhKt
⟩YKt

< ϵ.
Furthermore, one may derive a more elaborate stopping
criteria based on the sample complexity of the algorithm
and its linear-quadratic convergence rate as follows:

Stopping criteria: Initialize i = 0 at t = 0 and check (∀t > 0):
1: If ηt < 1 and t < O(ln(1/ϵ))
2: i← i+ 1
3: Continue
4: else-if ηt = 1 and t− i < O(ln ln(1/ϵ))
5: Continue
6: else
7: Stop

The big O notation hides constant factors that depend on the
local condition number and variation bound of Hessh.7

Next, we present the local linear-quadratic convergence
of RNPO algorithm on the submanifold S̃; the complete
proofs are deferred to [1] which treats a more general setup.
To proceed, we say that K∗ is a critical point of h if
gradhK∗ = 0, and additionally, it is “nondegenerate” if
HesshK∗ is nondegenerate, i.e.,

⟨HesshK∗ [G1], G2⟩YK∗ = 0, ∀G2 ∈ TK∗ S̃ =⇒ G1 = 0.

Lemma 4. Suppose K∗ is a nondegenerate local minimum
of h := f |S̃ . Then, it is isolated, gradhK∗ = 0 and there
exists a neighborhood of K∗ on which Hessh is positive
definite. Furthermore, HesshK∗ = HesshK∗ .

Theorem 1. Suppose K∗ is a nondegenerate local minimum
of h := f |S̃ over the submanifold S̃ = S∩K for some linear
constraint K. Then, there exists a neighborhood U∗ ⊂ S̃
of K∗ with the following property: whenever K0 ∈ U∗,
the sequence {Kt} generated by RNPO remains in U∗ (and
therefore, stabilizing), and it converges to K∗ at least at a
linear rate– and eventually–with a quadratic one.

Remark 4 (Basin of attraction). The proposed algorithm is
guaranteed to converge in a neighborhood U∗ of each nonde-
generate local minimum where the size of this neighborhood
indeed depends on the local condition number and variation
bound of Hessh.7

V. NUMERICAL EXAMPLES
We now provide examples for optimizing the LQR cost

over submanifolds induced by SLQR and OLQR.

Example 1: First, we consider a system with n = 6 number
of states and m = 3 number of inputs, and simulate the

7See the proof of Theorem 1 in [1] for a specific description of the local
condition number and variation bound appearing as the ratios of M/m and
L/m, respectively.

behavior of RNPO and PG for 100 randomly sampled system
parameters. We adopt a sampling approach where parameters
(A,B) are sampled from a zero-mean unit-variance normal
distribution, and the system matrix A is scaled so that the
open-loop system is stable, i.e., K0 = 0 is stabilizing, and
the pair is controllable. This provides consistency in the
choice of the initial controller as well as bypassing finding
the initial stabilizing controller that is not the subject of the
present contribution. Furthermore, we choose Q = Σ = In
and R = Im in order to consistently compare the con-
vergence behaviors across different samples as λ(Q) and
λ(Σ) may affect the constants in the convergence bound. For
each problem, we have simulated three different algorithms;
the first two are variants of Algorithm 1, where we use
Riemannian connection or Euclidean connection to compute
Hessh or Hessh, respectively. Note that we expect Hessh
and Hessh to have distinct information on neighborhoods
of isolated local minima that directly influences the per-
formance of RNPO as will be discussed below. The third
algorithm is the Projected Gradient (PG) as studied in [12].
PG is feasible for constraints in our examples as, under
relevant assumptions, one is able to perform PG updates by
having access to merely the projection onto linear subspace
of matrices—see for example [12, Theorem 7.1]. Here, the
step size for PG is a constant value that guarantees the
iterates stay stabilizing as suggested therein. For the SLQR
problem, we randomly sample for the sparsity pattern D so
that at least half of the entries are zero and the algorithm
has converged from K0 = 0 for all instances in less than
30 iterations. For the OLQR problem, we also randomly
sample the output matrix C with d = 2, where 98% and
92% of the corresponding iterates have converged from
K0 = 0 in less than 50 iterations using Hess and Hess,
respectively. The minimum, maximum and median progress
of the three algorithms for both SLQR and OLQR problems
are illustrated in Figure 1a and Figure 1b, respectively. As
guaranteed by Theorem 1, the linear-quadratic convergence
behavior of RNPO is observed in these problems. In both
cases, Algorithm 1 (blue curves) built upon the Riemannian
connection has a superior convergence compared with the
case of using the Euclidean connection (orange curves); this
is expected as the Riemannian connection is compatible with
the metric induced by the geometry inherent to the cost
function itself.
Example 2: Next, we consider optimal control of diffusion
dynamics on random networks. In particular, we consider
a random-3-regular graph G on 14 nodes (Figure 1c), con-
taining two specific control nodes (also chosen at random).
While the rest of the network has adopted consensus dy-
namics, the control nodes act as “leaders” where we can
measure their states and inject control signals in order to
derive the dynamics of the entire network. We consider
the Laplacian L(G) with node labels such that the control
nodes appear as the last two label indices. Next, we partition
L(G) =

(
Af Bf

B⊺
f ∗

)
, where ∗ hides a 2-by-2 matrix. Then,

the dynamics of the scalar states of the nodes 1 through
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Fig. 1: The min, max and median progress of normalized error of iterates and cost values at each iteration of Algorithm 1, for
the (a) SLQR and (b) OLQR with 100 different randomly sampled system parameters, sparsity patterns and output matrices. (c) The
random-3-regular graph in Example 2 with the two control nodes in red.

12 are governed by the continuous-time LTI dynamics with
system parameters A = −Af , B = −Bf , and C = −B⊺

f ;
see [21, Chapter 10] discussing this network control prob-
lem. Finally, we discretize the continuous dynamics with 0.1
time-step and consider the OLQR problem with the rest of
the problem parameters Q,R,Σ as set in the first simulation.
Regulating the entire network is possible with the natural
choice of zero input (i.e., with K0 = 0 ∈ KC ∩ S as −Af

is Schur stable) which amounts to the LQR cost of 22.02
units. On the other hand, using RNPO, the locally optimal
output-feedback LQR policy is,

L∗ =

(
−0.23486552 0.01978442
0.02255697 −0.25106536

)
,

incurring 17.41 units of cost, a 26% improvement.

VI. CONCLUSIONS
We considered minimizing the LQR cost over submani-

folds of stabilizing policies. In order to treat this problem
in a natural geometric framework, we studied the first and
second-order behavior of the synthesis cost when constrained
to an embedded submanifold of stabilizing policies. Then,
by leveraging on the second-order behavior of the restricted
LQR cost and the developed geometric stability certificate,
we proposed a Riemannian Newton-type algorithm with
guaranteed convergence to a local minima at a linear-
quadratic rate. The proposed algorithm was tailored to linear
constraints on stabilizing controllers arising from SLQR and
OLQR; however, the machinery is rather general and can
handle more elaborate submanifolds in PO problems.
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