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Abstract—Duality of control and estimation allows mapping
recent advances in data-guided control to the estimation setup.
This paper formalizes and utilizes such a mapping to consider
learning the optimal (steady-state) Kalman gain when process
and measurement noise statistics are unknown. Specifically,
building on the duality between synthesizing optimal control
and estimation gains, the filter design problem is formalized
as direct policy learning. In this direction, the duality is
used to extend existing theoretical guarantees of direct policy
updates for Linear Quadratic Regulator (LQR) to establish
global convergence of the Gradient Descent (GD) algorithm
for the estimation problem–while addressing subtle differences
between the two synthesis problems. Subsequently, a Stochastic
Gradient Descent (SGD) approach is adopted to learn the opti-
mal Kalman gain without the knowledge of noise covariances.
The results are illustrated via several numerical examples.

I. INTRODUCTION

Duality of control and estimation provides an important
relationship between two distinct synthesis problems in
system theory [1]–[3]. In fact, duality has served as an
effective bridge for developing theoretical and computational
techniques in one domain and then “dualized” for use in
the other. For instance, the stability proof of the Kalman
filter relies on the stabilizing feature of the optimal feedback
gain for the dual LQR optimal control problem [4, Ch. 9].
The aim of this paper is to build on this dualization for the
purpose of learning the optimal estimation policy via recent
advances in data-driven algorithms for optimal control.
The setup that we consider is the estimation problem for a

system with known linear dynamics and observation model,
but unknown process and measurement noise covariances.
The problem is to learn the optimal steady-state Kalman
gain using a training data that consists of independent
realizations of the observation signal. This problem has a
long history in system theory, often examined in the context
of adaptive Kalman filtering [5]–[10]. The classical reference
[6] includes a comprehensive summary of four solution
approaches to this problem: Bayesian inference [11]–[13],
Maximum likelihood [14], [15], covariance matching [9],
and innovation correlation methods [5], [7]. The Bayesian
and maximum likelihood setup are known to be computa-
tionally costly and covariance matching admits undesirable
biases in practice. For these reasons, the innovation corre-
lation based approaches are more popular and have been
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subject of more recent research [16]–[18]. The article [19]
includes an excellent survey on this topic. Though relying
strongly on the statistical assumptions on the model, these
approaches do not provide non-asymptotic guarantees.
On the optimal control side, there has been a number

of recent advances in data-driven synthesis methods. For
example, first order methods have been adopted for state-
feedback LQR problems [20], [21]. This direct policy op-
timization perspective has been particularly effective as it
has been shown that the LQR cost is gradient dominant
[22], allowing the adoption and global convergence of first
order methods for optimal feedback synthesis despite the
non-convexity of the cost, when represented directly in terms
of this policy. Since then, Policy Optimization (PO) using
first order methods has been investigated for variants of LQR
problem, such as Output-feedback Linear Quadratic Regula-
tors (OLQR) [23], model-free setup [24], risk-constrained
setup [25], Linear Quadratic Gaussian (LQG) [26], and
recently, Riemannian constrained LQR [27].
This paper aims to bring new insights to the classical

estimation problem through the lens of control-estimation
duality and utilizing recent advances in data-driven optimal
control. In particular, we first argue that the optimal mean-
squared error estimation problem is “equivalent” to an LQR
problem. This in turn, allows representing the problem of
finding the optimal Kalman gain as that of optimal policy
synthesis for the LQR problem—under conditions distinct
from what has been examined in the literature. In particular
in this equivalent LQR formulation, the cost parameters–
relating to the noise covariances–are unknown and the
covariance of initial state is not positive definite. By ad-
dressing these technical issues, we show how exploring this
relationship leads to computational algorithms for learning
optimal Kalman gain with non-asymptotic error guarantees.
The rest of the paper is organized as follows. The es-

timation problem is formulated in §II, followed by the
estimation-control duality relationship in §III. The theoret-
ical analysis on policy optimization for the Kalman gain
appears in §IV while the proofs are deferred to [28]. We
propose an SGD algorithm in §V with several numerical
examples, followed by concluding remarks in §VI.

II. BACKGROUND AND PROBLEM FORMULATION

Consider the stochastic difference equation,

x(t+ 1) =Ax(t) + ⇠(t), (1a)
y(t) =Hx(t) + !(t), (1b)



where x(t) 2 Rn is the state of the system, y(t) 2 Rm is
the observation, and {⇠(t)}t2Z and {!(t)}t2Z are the uncor-
related zero-mean process and measurement noise vectors,
respectively, with the following covariances,

E [⇠(t)⇠|(t)] = Q 2 Rn⇥n, E [!(t)!|(t)] = R 2 Rm⇥m,

for some (possibly time-varying) positive (semi-)definite
matrices Q,R < 0. Let m0 and P0 < 0 denote the mean
and covariance of the initial condition x0.

Now, let us fix a time horizon T > 0 and define an
estimation policy, denoted by P , as a map that takes a history
of the observation signal YT = {y(0), y(1), . . . , y(T�1)} as
an input and outputs an estimate of the state x(T ), denoted
by x̂P(T ). The filtering problem of interest is finding the
estimation policy P that minimizes the mean-squared error,

E
⇥
kx(T )� x̂P(T )k2

⇤
. (2)

We make the following assumptions in our problem setup:
1) The matrices A and H are known, but the process and
the measurement noise covariance matrices, Q and R, are
not available. 2) We have access to a training data-set that
consists of independent realizations of the observation signal
{y(t)}Tt=0. However, ground-truth measurements of x(T ) is
not available.1

It is not possible to directly minimize (2) as the ground-
truth measurement x(T ) is not available. Instead, we propose
to minimize the mean-squared error in predicting the obser-
vation y(T ) as a surrogate objective function. In particular,
let us first define ŷP(T ) = Hx̂P(T ) as the prediction
for the observation y(T ). This is indeed a prediction since
the estimate x̂P(T ) depends only on the observations up
to time T � 1. The optimization problem is now finding
the estimation policy P that minimizes the mean-squared
prediction error,

J est
T (P) := E

⇥
ky(T )� ŷP(T )k2

⇤
. (3)

1) Kalman filter: Indeed, when Q and R are known,
the solution is given by the celebrated Kalman filter algo-
rithm [2]. The algorithm involves an iterative procedure to
update the estimate x̂(t) according to

x̂(t+ 1) = Ax̂(t) + L(t)(y(t)�Hx̂(t)), x̂(0) = m0, (4)

where L(t) := AP (t)H|(HP (t)H| +R)�1 is the Kalman
gain, and P (t) := E[(x(t)� x̂(t))(x(t)� x̂(t))|] is the error
covariance matrix that satisfies the Ricatti equation,

P (t+ 1) = (A� L(t)H)P (t)A| +Q, P (t0) = P0.

Note that the update law presented here combines the
information and dynamic update steps of the Kalman filter.
It is known that P (t) converges to an steady-state value

P1 when the pair (A,H) is observable and the pair (A,Q
1
2 )

is controllable [29], [30]. In such a case, the gain converges

1This setting arises in various applications, such as aircraft wing dy-
namics, when approximate or reduced-order models are employed, and the
effect of unmodelled dynamics and disturbances are captured by the process
noise.

to L1 := AP1H|(HP1H| +R)�1, the so-called steady-
state Kalman gain. It is a common practice to evaluate the
steady-state Kalman gain L1 offline and use it, instead of
L(t), to update the estimate in real-time.
2) Learning the optimal Kalman gain: Inspired by the

structure of the Kalman filter, we consider restriction of the
estimation policies P to those realized with a constant gain.
In particular, we define the estimate x̂L(T ) as one given by
the Kalman filter at time T realized by the constant gain L.
Rolling out the update law (4) for t = 0 to t = T � 1, and
replacing L(t) with L, leads to the following expression for
the estimate x̂L(T ) as a function of L,

x̂L(T ) = AT
Lm0 +

PT�1
t=0 AT�t�1

L Ly(t), (5)

where AL := A � LH . Note that this estimate does not
require knowledge of the matrices Q or R. By considering
ŷL(T ) := Hx̂L(T ), the problem is now finding the optimal
gain L that minimizes the mean-squared prediction error

J est
T (L) := E

⇥
ky(T )� ŷL(T )k2

⇤
. (6)

Numerically, this problem falls into the realm of stochas-
tic optimization and can be solved by algorithms such
as Stochastic Gradient Descent (SGD). Such an algorithm
would require accessing independent realizations of the
observation signal. An algorithm that utilizes such realiza-
tions is presented in §V. Theoretically, however, it is not
yet clear if this optimization problem is well-posed and
admits a unique minimizer. This is the subject of §IV,
where certain properties of the objective function, such as
its gradient dominance and smoothness, are established.
These theoretical results are then used to analyze first-order
optimization algorithms and provide stability guarantees of
the estimation policy iterates. The results are based on the
duality relationship between estimation and control that is
presented next.

III. ESTIMATION-CONTROL DUALITY RELATIONSHIP

We use the duality framework, as described in [31,
Ch.7.5], to relate the problem of learning the optimal es-
timation policy to that of learning the optimal control policy
for an LQR problem. In order to do so, we introduce the
adjoint system:

z(t) = A|z(t+ 1)�H|u(t+ 1), (7)

where z(t) 2 Rn is the adjoint state and UT :=
{u(1), . . . , u(T )} 2 RmT are the control variables (dual to
the observation signal YT ). The adjoint state is initialized
at z(T ) = a 2 Rn and simulated backward in time starting
with t = T � 1. We now formalize a relationship between
estimation policies for the system (1) and control policies
for the adjoint system (7). Consider estimation policies that
are linear functions of the observation history YT 2 RmT

and the initial mean vector m0 2 Rn. We characterize
such policies with a linear map L : RmT+n ! Rn and
let the estimate x̂L(T ) := L(m0,YT ). The adjoint of this
linear map, denoted by L† : Rn ! RmT+n, is used



to define a control policy for the adjoint system (7). In
particular, the adjoint map takes a 2 Rn as input and outputs
L†(a) = {b, u(1), . . . , u(T )} 2 RmT+n. This relationship
can be depicted as,

{m0, y(0), . . . , y(T � 1)} L�! x̂L(T )

{b, u(1), . . . , u(T )} L†
 � a

Note that ha,L(m0,YT )iRn = hL†(a), (m0,YT )iRmT+n , so

b|m0 +
PT�1

t=0 u(t+ 1)|y(t) = a|x̂L(T ). (8)

The following proposition relates the mean-squared error
for a linear estimation policy, to the following LQR cost:

J LQR
T (a, {b,UT }) := [z|(0)m0 � b|m0]

2

+ z|(0)P0z(0) +
PT

t=1 [z
|(t)Qz(t) + u|(t)Ru(t)] . (9)

Proposition 1. Consider the estimation problem for the
system (1) and the LQR problem (9) subject to the adjoint dy-
namics (7). For each estimation policy x̂L(T ) = L(m0,YT ),
with a linear map L, and for any a 2 Rn we have the identity

E
⇥
|a|x(T )� a|x̂L(T )|2

⇤
= J LQR

T (a,L†(a)).

Furthermore, the prediction error as in (6) satisfies

J est
T (L) =

mX

i=1

J LQR
T (Hi,L†(Hi)) + tr [R] ,

where ŷL(T ) := Hx̂L(T ) and H|
i 2 Rn is the i-th row of

the m⇥ n matrix H for i = 1, . . . ,m.

Remark 1. The duality is also true in the continuous-
time setting where the estimation problem is related to a
continuous-time LQR problem. Recent extensions to the
nonlinear setting appears in [32] with a comprehensive study
in [33]. This duality is different than the maximum likeli-
hood approach which involves an optimal control problem
over the original dynamics instead of the adjoint system.
1) Duality in the constant control gain regime: In this

section, we use the aforementioned duality relationship to
show that the estimation policy with constant gain is dual to
the control policy with constant feedback gain. This result
is then used to obtain an explicit formula for the objective
function (6).
Consider the adjoint system (7) with the linear feedback

law u(t) = L|z(t). Then,

z(t) = (A|
L)

T�ta, for t = 0, 1, . . . , T. (10)

Therefore, as a function of a, u(t) = L|(A|
L)

T�ta. More-
over, for this choice of control, the optimal b = z(0) =
(A|

L)
Ta. These relationships are used to identify the control

policy L†(a) = ((A|
L)

Ta, L|(A|
L)

T�1a, . . . , L|a). This
control policy corresponds to an estimation policy by the
adjoint relationship (8):

a|x̂L(T ) = a|AT
Lm0+

PT�1
t=0 a|AT�t�1

L Ly(t), 8a 2 Rn.

As this relationship holds for all a 2 Rn, we have,

x̂L(T ) = AT
Lm0 +

PT�1
t=0 AT�t�1

L Ly(t),

that coincides with the Kalman filter estimate with constant
gain L given by the formula (5). Therefore, the adjoint
relationship (8) relates the control policy with constant gain
L| to the Kalman filter with the constant gain L.

Next, we use this relationship to evaluate the mean-
squared prediction error (6). Denote by JLQR

T (a, L|) as the
LQR cost (9) associated with the control policy with constant
gain L| and b = z(0). Then, from the explicit formula for
z(t) and u(t) above, we have,

JLQR
T (a, L|) = a|XT (L)a,

where

XT (L) := AT
LP0(A

|
L)

T +
TX

t=1

AT�t
L (Q+ LRL|)(A|

L)
T�t.

Therefore, by the second claim in Proposition 1, the mean-
squared prediction error (6) becomes,

J est
T (L)�tr [R] =

mX

i=1

JLQR
T (Hi, L

|) = tr [XT (L)H
|H] ,

where we have used the cyclic permutation property of the
trace and the identity H|H =

Pm
i=1 HiH

|
i .

2) Duality in steady-state regime: Define the set of Schur
stabilizing gains

S := {L 2 Rn⇥m : ⇢(A� LH) < 1}.

For any L 2 S , in the steady-state limit as T ! 1:
XT (L) ! X1(L) :=

P1
t=0 (AL)

t (Q+ LRL|) (A|
L)

t
.

The limit coincides with the unique solution X of the
discrete Lyapunov equation X = ALXA|

L + Q + LRL|,
which exists as ⇢(AL) < 1. Therefore, the steady-state limit
of the mean-squared prediction error assumes the form,

J(L) := lim
T!1

J est
T (L) = tr [X1(L)H|H] + tr [R] .

Given the steady-state limit, we formally analyze the fol-
lowing constrained optimization problem:

min
L2S

 J(L) = tr
⇥
X(L)H

|H
⇤
+ tr [R] , (11)

s.t. X(L) = ALX(L)A
|
L +Q+ LRL|.

Remark 2. Note that the latter problem is technically the
dual of the optimal LQR problem as formulated in [20] by
relating A $ A|, �H $ B|, L $ K|, and H|H $ ⌃.
However, one main difference here is that the matrices Q
and R are unknown, and the H|H may not be positive
definite, for example, due to rank deficiency in H specially
whenever m < n. Thus, in general, the cost function J(L)
is not necessarily coercive in L, which can drastcially effect
the optimization landscape. For the same reason, in contrast
to the LQR case [20], [22], the gradient dominant property
of J(L) is not clear in the filtering setup. In the next section,
we show that such issues can be avoided as long as the pair
(A,H) is observable.



IV. THEORETICAL ANALYSIS

In this section, we provide theoretical analysis of the
proposed optimization problem (11). The following lemma
is useful for our subsequent analysis which is a direct
consequence of duality described in Remark 2, Lemmas 3.5
and 3.6 in [20], and the fact that the spectrum of a matrix
remains unchanged under the transpose operation.

Lemma 1. The set of Schur stabilizing gains S is regular
open, contractible, and unbounded when m � 2 and
the boundary @S coincides with the set {L 2 Rn⇥m :
⇢(A � LH) = 1}. Furthermore, J(.) is real analytic on
S whenever Q and R are time-independent.

1) Coercive property: Next, we provide sufficient con-
ditions to recover the coercive property of J(.) which
resembles Lemma 3.7 in [20], but extended for the time-
varying cost parameters Q and R.

Proposition 2. Suppose the pair (A,H) is observable, and
Q and R are lower bounded uniformly in time with some
positive definite matrices. Then, the function J(.) : S ! R
is coercive, i.e., for any sequence {Lk} 2 S,

if Lk ! @S or kLkk ! 1 then J(L) ! 1.

Furthermore, for any ↵ > 0, the sublevel set S↵ := {L 2
Rn⇥m : J(L)  ↵} is compact and contained in S whenever
Q and R are time-independent.

Remark 3. This approach recovers the claimed coercivity
also in the control setting with weaker assumptions. In
particular, using this result, one can replace the positive
definite condition on the covariance of the initial condition
in [20], i.e., ⌃ � 0, with just the controllability of (A,⌃1/2).
2) Gradient dominance property: Next, we establish the

gradient dominance property which resembles Lemma 3.12
in [20]. While our approach utilizes a similar proof tech-
nique, this property is not trivial in this case as H|H may
not be positive definite. This, apparently minor issue, hin-
ders establishing the gradient dominated property globally.
However, we are able to recover this property on every
sublevel sets of J(L) which is sufficient for the subsequent
convergence analysis.
Before presenting the result, we compute the gradient of

J(L) to characterize its global minimizer and consider the
following simplifying assumption for the rest of the analysis.

Assumption 1. Suppose (A,H) is observable and the co-
variance matrices Q � 0 and R � 0 are time-independent.

The explicit gradient formula for J takes the form,

rJ(L) =2Y(L)

⇥
�LR+ALX(L)H

|⇤ ,

where Y(L) is the unique solution of Y = A|
LY AL+H|H.

While the derivation appears in [28], note that the expression
for the gradient is consistent with Proposition 3.8 in [20] af-
ter applying the duality relationship explained in Remark 2.
We also characterize the global minimizer L⇤ =

argminL2S J(L). The domain S is non-empty whenever

(A,H) is observable. Thus, by continuity of L ! J(L),
there exists some finite ↵ > 0 such that the sublevel set
S↵ is non-empty and compact. Therefore, the minimizer
is an interior point and thus must satisfy the first-order
optimality condition rJ(L⇤) = 0. Moreover, by coercivity,
the minimizer is stabilizing and unique satisfying,

L⇤ = AX⇤H| (R+HX⇤H|)�1 ,

with X⇤ being the unique solution of

X⇤ = AL⇤X⇤A|
L⇤ +Q+ L⇤R(L⇤)|. (12)

As expected, the global minimizer L⇤ is equal to the steady-
state Kalman gain, but explicitly dependent on the noise
covariances Q and R.

Proposition 3. Let L⇤ be the unique optimizer of J(L) over
S and consider any non-empty sublevel set S↵ for some
↵ > 0. Then, the function J(.) : S↵ ! R satisfies

c1[J(L)� J(L⇤)] + c2kL� L⇤k2F  hrJ(L),rJ(L)i,

c3kL� L⇤k2F  J(L)� J(L⇤),

for some positive constants c1 = c1(↵) > 0, c2 = c2(↵) > 0
and c3 = c3(↵) > 0 that are independent of L.

Remark 4. The proposition above implies that J(.) is gra-
dient dominated on S↵, i.e., for any L 2 S↵ we have

J(L)� J(L⇤)  1
c1(↵)

hrJ(L),rJ(L)i.

Note that the first inequality characterizes the dominance
gap in terms of the iterate error from the optimality. This
is useful in obtaining the iterate convergence results in the
next section where we analyze first-order methods in order
to solve the minimization problem (11).

A. Gradient Descent (GD)
Here, we consider the GD policy update:

[GD] Lk+1 = Lk � ⌘krJ(Lk),

for k 2 Z and a positive stepsize ⌘k. As a direct consequence
of Proposition 3, we can guarantee convergence for the
Gradient Flow (GF) algorithm (see [28] for details). But
then, establishing convergence for GD relies on carefully
choosing the stepsize ⌘k, and bounding the rate of change
of rJ(L)—at least on each sublevel set. So, the following
lemma provides a Lipschitz bound for rJ(L) on every
sublevel set. This results resembles its “dual” counterpart
in [20, Lemma 7.9], however, it is not implied directly by
the duality argument as H|H may not be positive definite.

Lemma 2. Consider any (non-empty) sublevel set S↵ for
some ↵ > 0. Then,

krJ(L1)�rJ(L2)kF  ` kL1 � L2kF , 8L1, L2 2 S↵,

for some positive constant ` = `(↵) > 0 that is independent
of both L1 and L2.

In what follows, we establish linear convergence of the
GD algorithm. Our convergence result only depends on the



value of ↵ for the initial sublevel set S↵ that contains L0.
Note that our proof technique is distinct from those in [20]
and [34]; nonetheless, it involves a similar argument using
the gradient dominance property of J .

Theorem 1. Consider any sublevel set S↵ for some ↵ >
0. Then, for any initial policy L0 2 S↵, the GD updates
with any fixed stepsize ⌘k = ⌘ 2 (0, 1/`(↵)] converges to
optimality at a linear rate of 1 � ⌘c1(↵)/2 (in both the
function value and the policy iterate). In particular, we have

J(Lk)� J(L⇤)  [↵� J(L⇤)](1� ⌘c1(↵)/2)
k,

and kLk �L⇤k2F 
h
↵�J(L⇤)
c3(↵)

i
(1� ⌘c1(↵)/2)k, with c1(↵)

and c3(↵) as defined in Proposition 3.

V. ALGORITHMS AND NUMERICAL SIMULATIONS

In this section, we discuss numerical algorithms in order
to solve the minimization problem (11). Note that, it is
not possible to implement the gradient-descent algorithm
because evaluating the gradient involves the noise covariance
matrices Q and R, assumed to be unknown. Instead, here
we explore alternative approaches to recover the gradient
information from the data at hand.
1) Stochastic Gradient Descent (SGD): Herein, we allow

a variable initial time t0 (instead of just t0 = 0) for the sys-
tem (1) and use Y{t0:T} := {y(t0), y(t0+1), . . . , y(T � 1)}
to denote the measurement time-span. Using this notation,
the statistical steady-state can be equivalently considered as
the limit t0 ! �1 with fixed T .

Recall that any choice of L 2 S corresponds to a filtering
strategy that outputs a prediction ŷL(T ), which with the
variable initial time t0, is given by

ŷL(T ) = HAT�t0
L m0 +

PT�1
t=t0

HAT�t�1
L Ly(t).

Also, let e{t0:T}(L) := y(T ) � ŷL(T ) denote the incurred
error corresponding to this filtering strategy and let

"(L,Y{t0:T}) := ke{t0:T}(L)k2,

denote the squared-norm of the error, where the dependence
on the measurement sequence Y{t0:T} is explicitly specified.

The optimization objective function is then to minimize
the expectation of the squared-norm of the error over all
possible random measurement sequences:

J{t0:T}(L) := E
⇥
"(L,Y{t0:T})

⇤
;

at the steady-state, we obtain limt0!�1 J{t0:T}(L) = J(L).
The SGD algorithm aims to solve this optimization prob-

lem by replacing the gradient, in the GD update, with an
unbiased estimate of the gradient in terms of samples from
the measurement sequence. In particular, assuming access to
an oracle that produces independent realization of the mea-
surement sequence, say M randomly selected measurements
{Yi

[t0,T ]}Mi=1, the gradient can be approximated according to

rJ{t0:T}(L) ⇡ 1
M

PM
i=1 rL"(L,Yi

{t0:T}).

This forms an unbiased estimate of the gradient, i.e.,

E
h

1
M

PM
i=1 rL"(L,Yi

{t0:T})
i
= rJ{t0:T}(L),

with variance that converges to zero with the rate O( 1
M ) as

the number of samples increase. The number M is referred
to as the batch-size.
Using the stochastic estimation of the gradient, the algo-

rithm proceeds as follows: we let,

[SGD] Lk+1 = Lk � ⌘k

M

PM
i=1 rL"(L,Yi

{t0:T}),

for k 2 Z, where ⌘k > 0 is the step-size and {Yi
{t0:T}}

represent M fresh realizations of the measurement sequence.
Although the convergence of the SGD algorithm is ex-

pected to follow similar to the GD algorithm under the
gradient dominance condition and Lipschitz property, the
analysis becomes complicated due to the possibility of the
iterated gain Lk leaving the sub-level sets. It is expected that
a convergence guarantee would hold under high-probability
due to concentration of the gradient estimate around the
true gradient. Complete analysis in this direction will be
presented in our subsequent work.
Finally, for implementation purposes, we compute the

gradient estimate explicitly in terms of the measurement
sequence and the filtering policy L.

Lemma 3. Given L 2 S and a sequence of measurements
Y = {y(t)}T�1, we have,

rL"(L,Y) = �2
1X

t=0

(A|
L)

tH|eT (L)y|(T � t� 1)

+2
1X

t=1

tX

k=1

(A|
L)

t�kH|eT (L)y|(T�t�1)L|(A|
L)

k�1H|.

Remark 5. Computing the gradient above only requires the
knowledge of the system parameters A and H , and does not
require the noise covariance information Q and R.
2) Numerical Simulations: Herein, we showcase the ap-

plication of the developed theory for improving the esti-
mation policy for an LTI system. Specifically, we consider
an undamped mass-spring system with known parameters
(A,H) with n = 2 and m = 1. In the hindsight, we
consider a variance of 0.1 for each state dynamic noise,
a state covariance of 0.05 and a variance of 0.1 for the
observation noise. Assuming a trajectory of length T at
every iteration, the approximate gradient is obtained as in
Lemma 3, only requiring an output data sequence collected
from the system in (1). Then, the progress of policy updates
using the SGD algorithm for different values of trajectory
length T and batch size M are depicted in Figure 1 where
each figure shows statistics over 20 rounds of simulation.
The figure demonstrates a “sublinear rate” of convergence
which is expected as every update only relies on an approxi-
mation of the gradient—in contrast to the linear convergence
established for GD. Finally, Figure 1c demonstrates also
the convergence in the Kalman gain as predicted by the
properties of J studied in §IV (see Proposition 3).



(a) (b) (c)

Fig. 1: SGD directly from output data and without prior knowledge of the noise covariances or state information. Mean progress of the
normalized estimation error over 20 simulations obtained from data trajectories of a) different length T and b) different batch size M ;
also, c) progress in the Kalman gain with the mean in orange, variance in black line and the outliers in circles.

VI. CONCLUSIONS

In this work, we considered the problem of learning the
optimal Kalman gain with unknown process and measure-
ment noise covariances. We proposed a direct stochastic
PO algorithm with theoretical analysis that are based on
the duality between optimal control and estimation. The
extension for the other variant of the problem, where the dy-
namics/observation parameters are also (partially) unknown,
is an immediate future direction of this work.
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[17] B. M. Åkesson, J. B. Jørgensen, N. K. Poulsen, and S. B. Jørgensen,
“A generalized autocovariance least-squares method for Kalman filter
tuning,” Journal of Process Control, vol. 18, no. 7-8, pp. 769–779,
2008.
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