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Abstract—In this paper, we develop a distributed consensus

algorithm for agents whose states evolve on a manifold. This

algorithm is complementary to traditional consensus, predom-

inantly developed for systems with dynamics on vector spaces.

We provide theoretical convergence guarantees for the proposed

manifold consensus provided that agents are initialized within

a geodesically convex (g-convex) set. This required condition

on initialization is not restrictive as g-convex sets may be

comparatively “large” for relevant Riemannian manifolds. Our

approach to manifold consensus builds upon the notion of

Riemannian Center of Mass (RCM) and the intrinsic structure

of the manifold to avoid projections in the ambient space. We

first show that on a g-convex ball, all states coincide if and

only if each agent’s state is the RCM of its neighbors’ states.

This observation facilitates our convergence guarantee to the

consensus submanifold. Finally, we provide simulation results

that exemplify the linear convergence rate of the proposed

algorithm and illustrates its statistical properties over randomly

generated problem instances.

Index Terms—Consensus, Riemannian Manifolds, Riemannian
Center of Mass

I. INTRODUCTION

Consensus techniques are a ubiquitous class of algorithms
that arise in fields such as distributed computation, optimiza-
tion, and control of multi-agent systems. At a foundational
level, consensus algorithms steer a set of dynamical agents
towards a single point in a distributed fashion [1]. Such
a setup is essential in multi-agent systems that lack all-
to-all communication. Applications of such a setup include
constellations around planetary bodies, an intelligent system
of cameras tracking moving targets, and resource allocation
for an electric grid [2]. Consensus type algorithms also
appear in nature, e.g., synchronization in neuronal networks
and flashing of fireflies in unison [3].
However, consensus algorithms have been predominantly

studied in the context of discrete and Euclidean spaces. There
is a strong motivation to generalize this fundamental niche
of multi-agent control to particular regimes of Riemannian
manifolds. The state space of many systems in robotics
and aerospace are manifolds. This includes orientation of
satellites, dome cameras, and robot arms [4], [5]. As a
result for many applications, it is more natural to utilize the
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manifold structure of the underlying state space, rather than
linearizing the dynamics in a local neighborhood.
Consensus algorithms for manifolds have been studied pre-

viously in the literature. One of the earliest papers that studies
consensus on manifolds and provides numerical schemes
is [6], which introduces a discrete distributed consensus
algorithm on SO(3) and SE(3). The proof of convergence
of this algorithm appeared in [7]. Furthermore, the works [8],
[9] provide a globally convergent algorithm for a particular
class of homogeneous manifolds. This algorithm hinges on
the projection from the ambient space, and hence is not
intrinsic. Finally, another relevant work is [10] that proposes
a discrete distributed consensus algorithm with almost-global
convergence on SO(3).
In this paper, we propose a discrete-time distributed con-

sensus algorithm for Riemannian manifolds. The algorithm
is intrinsic to the manifold and does not require any em-
bedding. Also, the radius of initialization set for guaranteed
convergence is reasonably large which is also shown to be
forward invariance. The rest of the paper is organized as
follows. §II introduces the problem statement and provides a
brief overview of the algorithm. §III provides a short back-
ground on essential constructs for manifolds and consensus
algorithms. In §IV, we explicate the proposed distributed
consensus algorithm. Subsequently, we provide a proof of
convergence and elaborate on properties of our algorithm
in §V. §VI showcases a concrete application to SO(n),
including numerical results for several examples. Lastly, we
conclude our paper and discuss future directions in §VII.

II. PROBLEM STATEMENT

Consider M as a complete Riemannian manifold. Let
x1, ..., xN 2 M be the states of N dynamic agents and
G = ([N ], E) be a connected undirected communication
graph. The problem considered is to develop a consensus al-
gorithm with the following three properties: (1) The designed
dynamics are discrete, memoryless, and distributed, i.e., the
dynamics for the ith agent depends only on the information
of itself and its neighbors Ni. In other words, we want to
design mappings Ti : N ⇥ M ⇥ M|Ni| ! M for every
i 2 [N ] which can be implemented as

xi(k + 1) = Ti(k, xi(k), xj(k) : j ⇠ i),

where j ⇠ i denotes any neighbor j 2 Ni of the ith
agent. (2) The algorithm is intrinsic to the manifold. In



particular, the way the manifold is embedded in the ambient
Euclidean space has no effect on the algorithm. This implies
the algorithm does not use projections. One benefit of this
feature is that the choice of parameterization has no effect
on the convergence properties of the algorithm, such as error
rate, convergence point, etc. For instance, when M = SE(3)
the algorithm should have the same performance and con-
vergence guarantees if we use dual quaternions or (vector,
rotation matrix) pairs. And lastly, (3) there is a proven
reasonably large radius such that consensus is guaranteed if
agents are initialized within a geodesic ball characterized by
that bound. By “large” we mean a quantified lower bound on
the radius of the domain on which consensus is guaranteed.
To the best of our knowledge, the only algorithm that meets

all these goals is presented in [7]; this paper is a key resource
for the topic of distributed consensus on manifolds. However,
the paper shows that a small domain is forward invariant
under the proposed dynamics. This domain depends on the
manifold convexity radius and the diameter of the graph.
In contrast, our proposed algorithm provides convergence
guarantees for a larger domain is invariant of the graph
structure. Our approach builds on an observation we refer
to as the “Mean-Consensus Lemma.”

III. MANIFOLDS AND CONSENSUS

In this section, we provide a brief overview of geometric
concepts used in this paper. We then summarize the intuition
on consensus algorithms in the Euclidean setup, illustrating
our motivation in developing the analogous algorithm for the
Riemannian case.

A. Manifolds
Many geometric constructs–such as curvature, direction,

and length on a smooth manifolds–can be characterized by
a Riemannian metric [11], [12]. Specifically, it is a mapping
from the manifoldM to 2-tensor fields, that smoothly assigns
to each point x 2 M an inner product defined on the tangent
space TxM of that point:

h· , ·ix : TxM⇥ TxM ! R;

this inner product naturally defines a norm k·kx that depends
on x. Then, a Riemannian manifold is just a smooth manifold
equipped with a Riemannian metric.
Next, given a smooth curve � : J ! M on M parame-

terized by an interval J ⇢ R, we naturally define its length
as

L(�) :=

Z

J
k�̇(t)k�(t) dt. (1)

Also, for any x, y 2 M, let Cx,y be the family of constant-
speed curves � starting from x and ending at y. Then,
restricting (1) to Cx,y , any extremum curve1 is called a
geodesic and any globally minimizing curve is called a
minimizing geodesic. Finally, the geodesic distance between
x and y is defined as,

d(x, y) := inf{L(�) : � 2 Cx,y}. (2)

1Over Cx,y , (1) only admits minima and saddle points, and never maxima.

Suppose M is complete. The manifold exponential at
x 2 M, denoted by expx : TxM ! M, is defined
as expx(v) = �(1), where �(.) is the unique geodesic
with �(0) = x and �̇(0) = v. The manifold exponential
is invertible on a neighborhood U ⇢ TxM of 0x, and
its inverse, called the manifold logarithm, is denoted by
logx : expx(U) ⇢ M ! TxM.

B. Consensus Algorithms

Herein, we review the analogy between standard con-
sensus algorithm in an Euclidean space and its “standard
counterpart” on Riemannian manifolds. We then clarify our
intuition behind the developed algorithm and its convergence
properties.
1) Consensus algorithm in the Euclidean case: Let

x1, ..., xN 2 Rn represent the states of discrete dynamical
agents under the connected communication graph G. The
dynamics of the ith agent assumes the form,

xi(k + 1) = xi(k) + ✏

X

j⇠i

(xj(k)� xi(k)), (3)

for some ✏ > 0. This is standard consensus algorithm that
can compactly be represented as,

x(k + 1) = x(k)� ✏(L⌦ I)x(k),

where x(k) = [x1(k), . . . , xN (k)]T and L is the graph
Laplacian of G. For sufficiently small ✏ > 0, it is guaranteed
for this algorithm that the states eventually reach consensus,
i.e., x(k) ! x

⇤1 for some x
⇤ 2 Rn; in fact, x⇤ will be the

average of agents’ initial states.
2) An analogous algorithm on manifolds: Here, we

present a standard consensus algorithm on Riemannian man-
ifolds. The paper [7] is the first work providing rigorous
convergence analysis for the Riemannian consensus. Like
before, let x = (x1, ..., xN ) 2 MN be agents’ states
evolving on the product manifold MN in discrete-time and
under the connected communication graph G. The dynamics
of the ith agent is then designed as,

xi(k + 1) = expxi(k)

⇣
✏

X

j⇠i

logxi(k)(xj(k))
⌘
, (4)

for some ✏ > 0. Define

'(x) :=
1

2

X

{i,j}2E

d(xi, xj)
2 =

1

4

NX

i=1

X

j⇠i

d(xi, xj)
2
. (5)

We refer to '(x) as the consensus error with respect to
G as '(x) = 0 if and only if x is at consensus. Notice
that self-loops in G does not affect '(x). We also define
the local consensus error 'i(x) :=

1
2

P
j⇠i d(xi, xj)2. Then,

compactly, we can write the dynamics in (4) as,

x(k + 1) = expx(k)(�✏r'(x(k))).

We draw attention to the similarity between (4) and (3),
justifying calling the former a direct generalization of the
latter.



It was proven that if M is complete and has sectional
curvature bounded above, then as long as agents are initial-
ized such that '(x(0)) < (r⇤)2/2D, where D = diam(G),
consensus is guaranteed with a sublinear rate. Relaxing this
constraint, if one assumes that x(0) are initialized within
any geodesic ball B with radius r < r

⇤, and that the
iterates remain in B indefinitely, then consensus is guar-
antee. This assumption is not uncommon in the field of
optimization on manifolds. Alternatively, if M is complete,
simply connected, and has non-positive sectional curvature
(making M a Hadamard manifold), consensus is guaranteed
regardless of where the agents have been initialized. This
observation follows from the fact that Hadamard manifolds
are diffeomorphic to Euclidean space. Such manifolds in-
clude projective spaces and the manifold of positive-definite
matrices under certain Riemannian metrics [13]. Variants of
(4) have also been studied. [10] considers one such variant
for M = SO(3) with almost-global consensus guarantee,
where a continuous version is studied in [14].

IV. THE RCM AND OUR ALGORITHM

In this section, we present our algorithm that builds on
the properties of Riemannian Center of Mass (RCM) as its
cornerstone. As a generalization of the Euclidean mean, RCM
retains many desirable properties of being a “mean” not
reflected in other such generalizations [15].
Let A ⇢ M. We say U is g-convex if for any x, y 2 A,

there exists a unique minimizing geodesic connecting x and
y contained in A. Some authors refer to this as strong g-
convexity [12]. Also, the convexity radius of M is defined
as

r
⇤ :=

1

2
min(inj(M),

⇡p
�
),

where inj(M) is the injectivity radius and � is the upper-
bound on the sectional curvature of M [16].
The RCM of states xi (i = 1, 2, . . . , N) is defined as a

point that globally minimizes the sum of squared distances,
i.e.

RCM(x) 2 argmin
y2M

1

2

NX

i=1

d(y, xi)
2
.

The RCM exists and is unique if all xi’s are contained within
some geodesic ball with radius r < r

⇤ [16]. Therefore,
RCM : C ! M is well-defined where,

C :=
�
x 2 MN | 9y 2 M, r < r

⇤ : xi 2 By(r) 8i
 

is the convexity submanifold of the product manifold MN

[7]. The RCM of x can be computed by fixing a tolerance
⌧ > 0 and step size ✏ > 0, and performing gradient descent
on the sum of squared distances

fx(y) :=
1

2

mX

i=1

d(y, xi)
2
. (6)

The details are laid out in Algorithm 1. Due to the strong g-
convexity of sum of squared distances cost, gradient descent
under a fixed step size enjoys a linear rate of convergence.
See [17] for optimally chosen stepsizes.

Algorithm 1: RCM Subroutine
Input: (x1, ..., xm) 2 C, stepsize ✏ > 0, tolerance
⌧ > 0
Initialize: x̄(0) = x1

do

Compute rfx(x̄(k)) = �
Pm

i=1 logx̄(k)(xi)
Update x̄(k + 1) = expx̄(k)(�✏rfx(x̄(k)))

while krfx(x̄(k))kx̄(k) > ⌧

return x̄(k + 1)

A. Brief Overview of the Algorithm

In our algorithm, each agent moves to the Riemannian
Center of Mass (RCM) of its neighbors one at a time:

xi(k + 1) =

(
RCM(xj(k) : j ⇠ i) i� 1 ⌘ k (mod N)

xi(k) else
(7)

We emphasize that the RCM step above excludes self-loops
as j 6= i. Yet, we observed that consensus is always achieved
experimentally–in the case of SO(3)–even if self-loops are
included. However, our proof technique for arbitrarily Rie-
mannian manifolds builds on the consensus error (5) that
naturally excludes these self-loops.
Note this algorithm is memoryless and distributed since

we are only taking the RCM of an agent’s neighbors at the
current iteration. Also, this algorithm is intrinsic since RCM
is defined in terms of the geodesic distance function–as we
will subsequently discuss in this paper. A simple illustration
of our algorithm for four agents evolving on a sphere is
depicted in Figure 1. Here, we perform four iterations of
the algorithm, moving each agent once. Notice how agents
2 and 4 both end up at the same position after one iteration
due to the fact that agent 2 is the only neighbor of agent 4.
A similar asynchronous method where one agent moves

at a time has been briefly mentioned in [9]. However, this
reference was in regards to an extrinsic center known as the
induced arithmetic mean. Furthermore, no convergence nor
domain analysis were discussed. In the rest of this paper, we
provide convergence analysis of our algorithm.

B. The Algorithm

Given a set of agents with initial states x(0) 2 C ⇢ MN ,
a connected graph G, and a fixed tolerance level ⌧ > 0, the
proposed distributed algorithm proceeds as Algorithm 2.

Algorithm 2: Distributed RCM-based Consensus
Input: (x1(0), ..., xN (0)) 2 C, tolerance ⌧ > 0
for k = 0, 1, ... do

for i = 1, ..., N do

if 'i(x(k)) > 2⌧/N & i� 1 ⌘ k (mod N)
then xi(k + 1)  RCM(xj(k) : j ⇠ i) else

xi(k + 1)  xi(k)



3'

2',4'

1'

4

1

3

2

4

1

3

2

Fig. 1: (Left) illustrates four agents under the communication
graph with states to be evolved on a sphere. (Right) illustrates
how the algorithm is updating the states of ith agent on the
sphere from i to i

0, sequentially.

Note that the local stopping criterion

'i(x(k)) :=
1

2

X

j⇠i

d(xi(k), xj(k))
2
>

2⌧

N
, (8)

ensures that '(x(k)) = 1
2

PN
i=1 'i(x(k))  ⌧ whenever the

agents halt. We note that there is no distributed global stop-
ping criterion in Algorithm 2. This can be achieved simply by
performing Boolean consensus with (8) after each iteration.
We emphasize that despite there being no distributed global
stopping criterion for Algorithm 2, our proof of convergence
ensures the agents will themselves eventually stop moving in
finite iterations.
For the remainder of this paper, we will refer to k as

an “iteration” of Algorithm 2 where a single agent moves
per iteration. A “time step” of Algorithm 2 then denote N

consecutive iterations within which every agent has moved
exactly once. We subsequently show that our algorithms
converges to a consensus point denoted as x⇤ 2 M.

C. Properties of Algorithm 2

In what follows, we discuss mean-like properties of Al-
gorithm 2 in certain regimes of Riemannian manifolds that
play an important role in different applications.
1) Equivariance: Let G be a group acting on sets X,Y .

We say a map f : X ! Y is G-equivariant if for any g 2 G

and x 2 X , we have f(g · x) = g · f(x).
Now, suppose M is a Riemannian manifold acted on

transitively and isometrically by a Lie group G. For example,
if M is a sphere, then we may choose G = SO(3). Then,
RCM : C ! M is G-equivariant, and so is Algorithm 2. In
particular, if (x1, ..., xN ) 2 C, g 2 M, and x

⇤ was the point
of consensus via Algorithm 2, then the point of consensus
when the input is (g · x1, ..., g · xN ) will become g · x⇤—
similar to the Euclidean mean that is translation-equivariant.
2) Forward Invariance and Contractability: Like the Eu-

clidean mean, the consensus point is always inside the
g-convex hull of the initial points. This is due to the property
of the RCM that it is always contained in the interior of the
g-convex hull of the points [16]. In fact, at every iteration of
the algorithm, the agents move inside the current g-convex
hull. This property induces a behavior such that the initial
positions contract to “their center” as the consensus point.

V. CONVERGENCE ANALYSIS

Define the consensus submanifold of MN as

A := {(x1, . . . , xN ) 2 MN : x1 = · · · = xN}.

To prove convergence, we first introduce an intuitive lemma.
We also provide a proof since, to the best of our knowledge,
is missing from literature.

Lemma 1. (Mean-Consensus Lemma) Let M be a Rieman-
nian manifold and let C be the convexity submanifold ofMN .
Suppose x = (x1, ..., xN ) 2 C and let G = ([N ], E) be a
connected graph. Then x 2 A if and only if xi = RCM(xj :
j ⇠ i) for each i. That is, each point is at the RCM of its
neighbors.

Proof. If x 2 A then the claim is obvious, so to show the
converse and for the sake of contradiction, suppose these
points are not in consensus. Since xi = RCM(xj : j ⇠ i),
then we have for each i

rf(xj :j⇠i)(xi) =
X

j⇠i

logxi
(xj) = 0, (9)

where f(xj :j⇠i)(·) is defined in (6). Remark the gradient of
' at x is

r'(x) =

2

4
X

j⇠i

logxi
(xj)

3

5

i

2 TxMN
,

where [⇠i]i 2 TxiM denotes the ith component of a tangent
vector in the product topology to be ⇠i. Note that the
coordinates of x fit within a g-convex geodesic ball, yet are
not at consensus. Thus, by connectivity of the graph, x cannot
be a critical point of ' [7]. Thus, we must have r'(x) 6= 0.
This contradicts (9). Therefore if each point is at the RCM
of its neighbors, they are necessarily at consensus, which
completes the proof.

Theorem 1. Let M be a complete Riemannian manifold
with curvature bounded above, and let C be the convexity
submanifold of MN . Let x1, ..., xN 2 M be discrete
dynamic agents under the connected communication graph
G = ([N ], E). Suppose x(0) = (x1(0), ..., xN (0)) 2 C, then
under Algorithm 2, the agents eventually reach consensus,
i.e. x(k) ! A as k ! 1.

Proof. In our proof, we use the cost function (5) and show
that it strictly decreases over each iteration unless the agent
that is supposed to move is already at the RCM of its
neighbors. We then show convergence of the cost implies
convergence of the agents to a consensus configuration.
Suppose agent i moved at iteration k. Let E(i) ⇢ E be

all edges adjacent to i. Then, by decomposing '(x(k)) into
edge distances of E(i) and E(i)c, we arrive at

'(x(k)) =
1

2

X

{i,j}2E(i)

d(xi(k), xj(k � 1))2

+
1

2

X

{l,m}2E(i)c

d(xl(k � 1), xm(k � 1))2



Since xi(k) is the unique point that minimizes the function
f(xj(k�1):j⇠i)(·), it follows

1

2

X

{i,j}2E(i)

d(xi(k), xj(k � 1))2

 1

2

X

{i,j}2E(i)

d(xi(k � 1), xj(k � 1))2

with equality if and only if

xi(k � 1) = RCM(xj(k � 1) : j ⇠ i). (10)

Therefore

'(x(k))  1

2

X

{i,j}2E(i)

d(xi(k � 1), xj(k � 1))2

+
1

2

X

{l,m}2E(i)c

d(xl(k � 1), xm(k � 1))2

= '(x(k � 1)),

for all k, with equality if and only if (10). Since {'(x(k))}
is bounded below by 0, the sequence converges.
For 1  i  N , define Ti : C ! C as

Ti(x1, ..., xN )

= (x1, ..., xi�1,RCM(xj : j ⇠ i), xi+1, ..., xN ).

Next, define T : C ! C as the composition

T := TN � TN�1 � ... � T1. (11)

In other words, (11) represents one time-step of (7), effec-
tively moving each agent exactly once. Remark T is time-
invariant and '(T (x))� '(x)  0 for all x 2 C. Define

I := {x 2 C : '(T (x)) = '(x)}.

Note x 2 I if and only if (10) holds for each 1  i  N . It
was then showed in Lemma 1 that coordinate of x is at the
RCM of its neighbors iff x 2 A. Therefore I = A.

Next, by Whitney Embedding Theorem, every smooth
n-dimensional manifold admits a proper embedding ◆ into
R2n+1 ([11, Corollary 6.16]). But such an embedding is a
closed mapping [11, Theorem A.57]. That is, there exists
a smooth embedding (i.e., a smooth mapping with injective
differential) ◆ : MN ! R2nN+1 such that ◆(C) is closed in
R2nN+1 for any C ⇢ MN closed in MN under the product
manifold topology. For the remainder of this proof, we will
identify MN with ◆(MN ) ⇢ R2nN+1.
Let ⌦(x(0)) be the forward limit set of x(0) under T .

That is, ⌦(x(0)) is the set of limit points of all conver-
gent subsequences of {x(k)}. Let B ⇢ M be a closed
g-convex geodesic ball with radius r < r

⇤ with each
x1(0), ..., xN (0) 2 B. Since ◆ is a closed smooth embedding
(in particular continuous), the N -product set BN is compact
in R2nN+1.

Note that the RCM is always contained inside the closed
g-convex hull of the points [16]. Thus, for every iteration
of the algorithm, the agents always move inside the current
closed g-convex hull. As such, {x(k)} ⇢ B

N for all k. But

then we must have ⌦(x(0)) ⇢ B
N since B

N is closed in
R2nN+1. Since B

N is compact and {x(k)} ⇢ B
N , then

by the discrete version of LaSalle invariance principle [18,
Theorem 2], we have x(k) ! I = A.

Remark 1. Note that the proposed algorithm and its con-
vergence guarantees provided here are more general. In
particular, our RCM-based algorithm can be generalized by
replacing the RCM with any other “mean-type construct”
arising from locally minimizing “a distributed consensus
error”. The convergence guarantees then directly follows by
the same arguments in this section.

VI. APPLICATION: SYNCHRONIZATION ON LIE GROUPS

Herein, we let M ⇢ Rn⇥n to be a matrix Lie group
equipped with the following left-invariant Riemannian metric
defined at x 2 M as

h⇠, ⌘ix :=
1

2
tr
⇥
(x�1

⇠)Tx�1
⌘
⇤
, 8⇠, ⌘ 2 TxM. (12)

This metric is commonly equipped to matrix Lie groups due
to its nice geometric properties. First, all connected matrix
Lie groups equipped with (12) are geodesically complete
since they are homogeneous [19]. Second, the induced norm
on the corresponding Lie algebra g coincides with half the
Frobenius norm, i.e.,

k⇠k2I :=
1

2
tr(⇠T ⇠), 8⇠ 2 g.

Let Exp(.) and Log(.) be the matrix exponential and log-
arithm, respectively. In the case that M = SO(n) ⇢ Rn⇥n,
the squared geodesic distance under (12) is

d(x, y)2 = �1

2
tr
⇥
Log(x|

y)2
⇤
. (13)

For matrix Lie groups equipped with any bi-invariant
metrics, such as the case when M = SO(n) equipped with
(12), the unique geodesic starting at x 2 M with initial
velocity v 2 TxM is always2

�(t) = xExp(tx�1
v).

Under this setup, the geodesic connecting x, y 2 M attains
the form

�(t) = xExp
⇥
tLog(x�1

y)
⇤
. (14)

Note that while (2) is defined everywhere, (13) and (14) only
hold whenever the argument of Log(.) is contained in its
domain of definition.

A. Simulations and Numerical Results
In this section, we exemplify the performance of our

algorithm through several simulation scenarios. We also
provide a comparison with the algorithm presented in [6].
We illustrates these numerical simulations for the case of
SO(3) equipped with (12). The MATLAB code for these
simulations are available online in [20].

2Note that this does not necessarily hold when the metric is merely left-
invariant.
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Fig. 2: Statistical visualization of the normalized consensus
error at each time step, for (top) the proposed Algorithm 2,
and (bottom) the algorithm in [7] over the same 40 random
problem instances.

We generate 40 different problem instances with N = 10
agents randomly initialized in C ⇢ SO(3)10. We run Algo-
rithm 2 on each instance for 30 time steps. We illustrate the
result in Figure 2 showing the statistics of the consensus
error '(x) at each time step of Algorithm 2, confirming
a linear convergence rate. Although this observation is not
formally proved in this work, several numerical experiments
with different communication graphs and initial states have
confirmed this hypothesis.
Next, for comparison, we also ran the algorithm presented

in [7] on the same problem instances for 30 time steps. The
user-tuned step size for this algorithm is set to 0.1 as sug-
gested therein. The resulting consensus error are illustrated in
Figure 2. In order to compare our algorithm to this one, note
that each time step in Figure 2 corresponds to N iterations of
Algorithm 2, within which every agent moves exactly once.
While both algorithms converge on all problem instances,
the proposed algorithm in this paper tends to have a faster
convergence (seemingly linear) with less variance.

VII. CONCLUDING REMARKS

In this paper, we presented a novel discrete-time distributed
consensus algorithm for Riemannian manifolds with bounded
curvature. We proved that consensus is guaranteed if agents
are initialized within a geodesic ball whose radius is less
than the convexity radius of the manifold. A key observation
that enabled our result is established in Lemma 1 that we
believe is of independent interest and can be used to analyze
other classes of consensus algorithms. An immediate future
direction of this work is to justify the linear rate of conver-
gence which is apparent in the numerical simulations. Also,
several variants of the proposed algorithm can be considered.
This includes updating the agents randomly, rather than in an

order which would remove the need for a global agent index.
The case in which agent are moving simultaneously is yet
another interesting variant to study.
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