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Abstract - In this paper, we develop intelligent control strategies based on the Fuzzy Logic technique to stabilize fluid velocity and
temperature in a toroidal thermosyphon. The goal is on extending the analysis of our previous work [1], which focused on building a
proportional-type fuzzy controller for the fluid flow, and corresponding temperature, of the thermal loop. The natural convection loop
has a toroidal shape of a torus. A known influx of heat occurs in some parts of the loop whereas heat efflux takes place in others. By
using space-averaged values of the fluid velocity and one-dimensional approximation for the fluid temperature, the resulting integro-
differential equations for linear momentum and thermal energy are converted to a nonlinear dynamical system. Three possible scenarios,
namely, stable, limit cycles and chaos, arise naturally in the flow and thermal dynamics of the device. Two types of fuzzy controllers,
each built with an increasing amount of information about the fluid velocity in the system are built and tested. For them, triangular
membership functions along with if-then rules are used to stabilize the system dynamics under different conditions of operation. Since
the tilt angle for the loop and the heat flux are used as the parameters characterizing its dynamic behavior, these are the manipulated
variables, whereas the control variables are average fluid velocity and temperatures inside the loop. MATLAB is used to implement the
fuzzy controller, along with the corresponding control actions, while numerical experiments are conducted to assess its relative
performance. Results demonstrate that all fuzzy controllers can effectively stabilize the thermosyphon system. However, as more
information about the system is supplied to the controller the better it performs.
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1. Introduction

Toroidal thermosyphon devices are natural convection loops, with the shape of a torus, that provide transfer of energy
from one region of the loop by buoyant flow of the working fluid to another without need of external fluid pumps. These
thermal devices are key in application areas such as: geothermal energy, energy storage, solar heating, and electronic and
nuclear reactor cooling [2—4]. Thus, understanding the time-dependent behavior of these systems is important for both
performance prediction and system control. In this context, experimental and numerical investigations have reported the
existence of either constant, cyclic, or chaotic behavior of these systems, depending on the values of parameters such as heat
input, wall temperature or tilt angle, in the open literature [5—9]. Therefore, depending on the objective, often the system
would need to be controlled in some fashion.

Building reliable controllers for a given design, in a specific application, is difficult due to the dynamic nature of the
fluid flow and the related energy transfer, and though the proportional-integral-derivative (PID) scheme has been widely
used in industry, its lack of robustness [10] requires alternative control strategies. Preliminary work on intelligent control
schemes of thermosyphon models has been recently reported by Lopez and Pacheco-Vega [1], where the focus was on
building controllers based on fuzzy logic. This technique has the ability of describing complex systems via linguistic
variables and expert-based rules derived from human experience [11, 12], and has been successful in control applications of
complex thermal systems [13—16]. The results by Lopez and Pacheco-Vega [1], demonstrated that a fuzzy controller based
on information about the fluid velocity only, is capable of stabilizing the device by manipulating the tilt angle to a region
where the system is naturally stable.
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Here we are interested in extending the analysis of Lopez and Pacheco-Vega [1], on the development of robust
fuzzy controllers for a toroidal thermosyphon system by increasing the amount of information about the system is
provided to the controller. Thus, we first briefly describe the device, its mathematical model, and a set of numerical tests
for different conditions of the parameters. Then, we provide a short introduction to fuzzy logic along with details on the
development of the controller. Finally, numerical experiments are conducted to assess the relative performance, and the
results and corresponding analysis are discussed.

2. System Description and Mathematical Equations

Consider a loop filled with a single-phase fluid, as depicted in Figure 1. The tube diameter is d and the length from
the center of the loop to the midpoint of the tube is R, with R>>d. The angle 6 describes the position along the
circumference of the loop. The regions where heat leaves and enters the device are 0< 0 < (0°< 0 < 180°), and t< 0 <
21 (180° < 8 < 360°), respectively. Differences in temperature within the fluid cause differences in fluid density
generating its motion. Though three possible heating conditions, namely known heat flux, known wall temperature and
mixed conditions [8] may exist, in the present study we will focus on the “known heat flux” heating condition.
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Fig. 1: Schematic of a toroidal thermosyphon. Fig. 2: Linear stability curve.

Though a detailed account of the governing equations, is in [8] and the references therein, here we use the same
one-dimensional versions of the momentum and energy equations of [1, 8]. Mass conservation provides a velocity
independent of the spatial coordinate; i.e., u = u(¢), while temperature is 7 = T(z,0). Here, time ¢ and the angle 0 are the
independent variables whereas u# and 7 are the dependent variables of the problem. The tilt angle, a, is one of the
parameters, while the heat flux, Q, is the other. Thus, under the Boussinesq approximation for the buoyancy term, and
absent axial conduction within the fluid, the integral of the momentum equation over the loop and the energy equation,
both in nondimensional form, are given as [8]

Q= 1f2nr 6 +a) do )
It u—n . cos( a)do,
aT+ Lo, ith Q= —Qsiné )
3% uae—Q, with Q = —Qsing,

where Q is a prescribed non-dimensional heat flux of strength @ either going in or out of the system.
By following Pacheco-Vega et al. [8], Egs. (1) and (2), can be transformed into a system of first-order ODEs. Thus,
by expanding the temperature as
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T(t,0) = TE(E) + z [T () cosm + TE,(¢) sinmé], 3)
m=1
using the orthogonality conditions, integrating around the loop, and by definingx = u,y = Tf andz = T{, Egs. (1) and
(2), become

dx .

i —x+ycosa—zsina, (4)
d
d—}t]=—xz, (5)
R ©
dt Q+xy,

where x(t) is the fluid velocity, and y(t) and z(t) are the coefficients - for the first mode - of the nondimensional temperature
distribution in Eq. (3). By finding x, y and z, for a given Q and a, the behavior of the thermosyphon can be predicted.

3. System Dynamics

As it was the case in our previous work [1], the heat in-flux and out-flux are modeled using Q = Qsin6, over the entire
loop (0 < 8 < 2m). Thus heat flux O, and the inclination angle a, are parameters that determine the behavior of the system.
Previous work [1, 7, 8] has shown that the system can have a stable, cyclic, or chaotic flow and heat transfer. The two critical
points [1] of the system, P; and P>, of Egs. (4)—(6), are P, , = (X,¥,2) = (i\/Q cosa, i\/Q/ cosa, 0), both of which exist
if —=90° < a < 90°, with X,y,Z representing the critical points. For our purposes, a linear stability analysis of P; =
(\/Q cosa, \/Q/ cosa, 0), indicates that the critical point is stable as long as @ < sin®a / cos® a, with a > 0. The neutral
stability curve, shown in Figure 2, shows the stable and unstable regions in the Q — « parameter plane. This is the plane we
will use to decide which control tests will be carried out. In agreement with the information of Figure 2, examples of the
aforementioned dynamic behavior for P;, are shown in Figures 3, 4, and 5, respectively, for stable-, limit cycle-, and chaotic-

behavior for a heat flux value of Q0 =5, and tilt angles of o = 60°, 50°, 30°. The relationship between o and Q lays the
groundwork for developing the fuzzy controller.
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Fig 3: Phase space for 0 =5, a = 60°. Fig 4: Phase space for Q =5, a. = 50°. Fig. 5: Phase space for O =5, a = 30°.

4. Fuzzy Control
4. 1. Fuzzy logic Background

The fuzzy logic (FL) technique uses linguistic variables to develop rules, based on external “expert” knowledge, along
with so-called membership functions of fuzzy sets, which enable handling vagueness and imprecision in the data to solve a
particular problem [18]. The concept of fuzzy sets (which includes a sliding scale of membership of an element belonging
to a specific set) establishes a generalization of that of a strict binary crisp set, where an element can either belong to the set
or does not belong in it. In the context of crisp sets, for example, the fluid temperature, T, “is” either hot or it “is not”. This
is defined mathematically as
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1, T, €A
ua(Ty) = {o, Ty ¢ A° )
where iy is the membership function of the crisp set 4; i.e., the set of water temperature being hot. In the context of fuzzy
sets, on the other hand, an element can have a varying degree of membership to a specific set; so, in fact, it can partially
belong to several sets. Thus, in the same example of the fluid temperature, 7, in a fuzzy set a fluid can be described anywhere
in between “very hot”, “hot”, “warm”, “cold”, or “very cold”. This notion of degree of belonging allows for a smooth
transition among membership functions of a specific variable. This is defined, mathematically, as

ua(Tr) = €l0,1], ®)
with the set of water temperature now being a fuzzy set 4, defined as

T ;
MW—Z““, ©)

with a membership function 4 is for the i-th fuzzy water temperature set. After a so-called fuzzification process, in which
a crisp value is mapped into fuzzy sets via their membership functions, the inference engine uses knowledge about the process
or system from the expert, and generates a cumulative fuzzy output — via output membership functions — which then is
mapped back (by a so-called defuzzification process), into a crisp value. This inference engine is outlined in Figure 6.

4-‘ Knowledge base
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Fig. 6: Fuzzy logic inference engine.

In the context of thermal control, although most control applications use PID controllers, significant improvements
in fuzzy logic controllers have shown to be promising in controlling these complex devices [19-21]. Thus, this is the
type of controller that will be used to manipulate the tilt angle a, to control the fluid flow and temperature in the
thermosyphon device.

4.2. Controller Development

The goal of the fuzzy control strategies is to achieve specific fluid flow and temperature values inside the thermosyphon
system while, at the same time, maintaining its stability. This is done by controlling the value of nondimensional velocity x,
with respect to a predefined setpoint, by adjusting the tilt angle a, in a closed single-input single-output feedback loop. In
this context, we note that the three dependent variables, the non-dimensional velocity x, and the two Fourier coefficients of
fluid temperature, y(¢) and z(¢), are interconnected by the heat transfer by convection physics. Thus, the three variables will
not separate into different behaviors but if one is stable, then the others will also be. From this fact, only x will be used to
determine how much the tilt angle would need to be adjusted. To this end, in the present work we focus on developing two
different fuzzy controllers, namely FLC1 and FLC2, the difference between them being the information provided to the
controller. For the first controller (FLC1), for instance, the error value Ex., between the setpoint x,.;, and the actual x, fluid
velocity, will dictate the how much the tilt angle a, will change until the system stabilizes. For the numerical tests, the ranges
for the fuzzy sets of both the input and output variables have been set to Eac € [—1,1] and Aa € [0.5,0.5]°, respectively.
Using these ranges, the corresponding fuzzy sets, along the membership functions, for Ea. and the Aa, are shown for clarity
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in Figures 7 and 8. Although not included here, the set of linguistic rules, for this FLC1 controller, were also established. For
the second controller, FLC2, not only Ea. was considered as an input to the controller but also the information on its derivative
dEa/dt, for which the respective fuzzy sets and membership functions, in the range of [-0.06,0.06], are shown in Figure 9.
For this FLC2 controller the resulting response-control surface, illustrated in Figure 10, provides a map between the two
inputs, Ea, and dEa/dt, to the controller and the controller output (which is the input to the thermosyphon system), i.e., the
tilt angle a.
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Fig. 7: Fuzzy sets and membership functions for E ;. Fig. 8: Fuzzy sets and membership functions for Aa(°).
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Fig. 9: Fuzzy sets and membership functions for dE  /dt. Fig. 10: Response control surface for FLC 2 controller.

To test the ability of the fuzzy controllers in stabilizing the thermosyphon system, single-input single-output (SISO)
feedback loops for both FLC1 and FLC2 — shown in Figures 11 and 12, respectively — were designed and implemented in
Simulink-MATLAB. The input to the system is the tilt angle o, while the system output is the fluid velocity x (which is
linked to the Fourier fluid temperature modes y and z). In reference to Figures 11 and 12, once x is set to X, the inputs to
the controller, E4 and dE,/dt, go through the controller to determine the change in «, which then becomes an input to the
plant (represented by the system of non-linear ODEs [Eqgs. (4)-(6)]), thus computing the values of x, y and z. For the next
time increment, the feedback value (where the output value x, is compared to the reference value x,.), is fed to the controller
until stability is achieved. A number of different initial conditions can also be used to determine if, when provided a value
that should result in chaotic behavior, the controller can stabilize the system.
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o Controller Equations
\1/,(“) (4) - (e)

Fig. 11: SISO feedback loop system with one input to the controller (FLC1).
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Fig. 12: SISO feedback loop system with two inputs to the controller (FLC2).

5. Results of the Thermal Control
5.1 Open loop tests

Numerical simulations were ran in MATLAB using a 4th order Runge-Kutta method to solve the system of ODEs
(4)-(6), for a heat input of O = 5 and values of the tilt angle a = 60°, 50°, and 30°, shown, respectively, in Figures 3, 4
and 5. As seen from these figures, respectively, the system either arrives to a stable (constant) flow, a sustained periodic
flow or a totally chaotic flow. These results show that the nonlinear system has a wide range of fluid flow and
temperature behavior which stem from the different combinations of inputs to the thermosyphon device.
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Fig. 13: FLCI control actions with starting condition of Q = 5 and a = 30°.

5.2 Closed-loop tests

The objective of the two FL controllers was to maintain this system at a stable operating condition. To this end,
various initial conditions and starting values of the parameters were used to test the robustness of controllers FCL1 and
FCL2. However, for brevity, only starting values of Q = 5 and @ = 30°, which correspond to a point in the unstable
region of the stability curve of Figure 2, with natural chaotic behavior of the system, are reported here. Figure 13 presents
the results for both the fluid velocity x, and the tilt angle a for FLC1 while Figure 14 shows those of the FCL2 controller.
From Figure 13 it can be seen that the system immediately shows unstable behavior; however the FCL1 controller begins
to stabilize the system by increasing the tilt angle @ and reducing the difference between x and x... As the system enters
the stable region and E,, is minimal, the controller then begins to decrease a to return the system to the unstable region
while maintaining a fixed x value. As the system destabilizes, the controller starts to act again until the oscillatory
behavior of the system decreases to a value close to zero. This cycle repeats as the controller manipulates the tilt angle
in the 51° to 64° range with the system achieving a smaller-amplitude oscillatory behavior. On the other hand, from
Figure 14, with the same starting conditions for the test as before, shows a similar overall performance of the FLC2 than
that of the FLC1, with a couple of marked differences, the first being the larger timeframe that the controller maintains
the system under stable conditions along with the smaller oscillatory behavior of the system under those conditions, and
the smoother manipulation of the tilt angle, which is reflected in the way the fluid velocity evolves with time. This is a
result from increasing the amount of information supplied to the FCL2 controller, as now E4 and dE/dt, is used to
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control the system. This test clearly illustrates that the performance of the FL controller improves as more information about
the system is provided to it.
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Fig. 14: FLC2 control actions with starting condition of Q = 5 and a = 30°.

6. Conclusions

Robust and efficient controllers are important to ensure thermal stability of complex systems, while operating under off-
design conditions, as it is the case of natural convection loops, also known as thermosyphons. Although PID controllers are
common in industry, they lack robustness. In this work we have developed two fuzzy-based controllers which use information
about the difference in the fluid velocity, and its time derivative, to provide adequate input values of the tilt angle in order to
stabilize the fluid velocity and its corresponding temperatures. The numerical tests show that both fuzzy controllers
successfully perform the control actions, and they are able to stabilize the system under different operating conditions. The
controllers have been tested against different starting conditions to simulate experimental data of a complex system.
Furthermore, the FCL2 controller illustrates that as more information about the system is provided to the controller, the better
it performs. This work has clearly demonstrated that a fuzzy logic based controller is an accurate and efficient alternative to
the control of these complex applications. Future work will include the implementation of a third fuzzy controller that uses
not only Ea., the derivative of Ex., and the corresponding integral of Ea, to further improve its performance.
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