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Abstract
In this paper, we prove rigidity results for holomorphic mappings between possibly
degenerate and indefinite hyperbolic spaces.
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1 Introduction

Write B" = {z € C" : ||z|| < 1} for the n-dimensional complex unit ball, and dB”
for the unit sphere in C". A classical rigidity result of Poincaré [22] states that a
nonconstant holomorphic map sending an open connected piece of B2 into dB? is
linear fractional and furthermore must extend to an automorphism of B2. This work
is the starting point of numerous far reaching rigidity type results in several complex
variables, including Tanaka [24], Chern-Moser [6], Alexander [1, 2], and so on. In
particular, Alexander [2] showed that any holomorphic proper self-map of B"”, n > 2,
must be an automorphism. Since the work of Webster [25], much attention has been
paid to the mapping problem for proper holomorphic maps between complex balls
of different dimensions. In this scenario, the rigidity of a proper holomorphic map F
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from B" to BY fails dramatically in its full generality if N > n. However, rigidities
can still be expected when the codimension is small and a certain boundary regularity
of F is assumed. For more related research on this matter, the readers are referred
to the work in [7-11, 14-16, 23, 27], etc. In 2005, Baouendi and the first author
[3] discovered a rigidity phenomenon of different flavor for holomorphic mappings
between generalized balls. Recall the (nondegenerate) generalized complex unit ball
is defined as the following domain in P" :

B} = {[z0, .- zal € P" t zol* + - + |zl* > |lzp1 1P + - + |20l

The integer [ with 0 </ < n — 1 is often called the signature of the generalized ball.
When !/ = 0, the generalized ball is reduced to the standard unit ball B”. The boundary
0B} of B} is not strongly pseudoconvex when/ > 1, but it s still Levi-nondegenerate.
It follows from [3] that, under some natural side-preserving assumptions, every holo-
morphic map sending an open piece of dBB} to 8IBSIN must extends to a linear map
from P" to PV for any I > 1 and N > n. For further investigation on mapping
problems between generalized balls, see [5, 12, 13, 17, 18, 20, 26, 28] and references
therein. In general, the complexity of mappings between two generalized balls B}
and IBBZIY heavily hinges on the signature difference I’ — [. Recently, Ng-Zhu [21] and
Gao-Ng [13] considered holomorphic mappings between degenerate generalized balls,
whose boundaries are Levi-degenerate hypersurfaces. They developed a more alge-
braic approach to study holomorphic maps between generalized balls and extended a
number of well-known rigidity results to the degenerate settings (cf. Theorem 1.1 in
[13]).

Denote by N the set of positive integers, and by Z=" the set of non-negative integers.
Letm=r+s+¢twithr,s € N, ¢t € Z20. Write

(Z1=1[z. &, nl=1[z1,-- 2 &1, oo Esy MLy ey 2]

for the homogeneous coordinates for P!, Here z, & and 7 denote the z;, & i Mk
coordinates, respectively. The possibly degenerate generalized complex unit ball is
defined as the following domain in P" :

r N
B =21 e P Yzl = ) 1g1F >0
j=1

i=1

The generalized ball B"*"! possesses a canonical indefinite metric wpgr.s. that is
invariant under the action of its automorphism group (see Proposition 2.3 in Sect.
2.1):

r N
WRr.s,t = —V_laélog Z|Zi|2 - Z|§j|2
i=1 j=1
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The generalized ball equipped with the metric wpr.s.r is called a generalized hyperbolic
space form. When r = 1,s > 1 and ¢t = 0, it is reduced to the standard hyperbolic
space form (up to a normalization). We say (B"**"!, wpr.s.1) is an indefinite hyperbolic
space if r > 2, and we say it is a degenerate hyperbolic space if # > 1. In the special
case of 1 = 0, we will simply denote B"** by B"*. The two notions of B} and B"**
are related by B} = B/+1.n1,

We continue to introduce more notations which will be needed to formulate our
results. Denote by F(B"*!, BR-5:T) the set of all holomorphic maps F satisfying the
following three conditions:

(a) F is a holomorphic map from an open set U C P"+5*~1 depending on F, into

HDR+S+T—1 :

(b) U NOB"*! % @and U N B! is connected;

() F(UNB*) < BRST F(UnoB") c aBRST.

If ]—'(IEB”S”,IB%R’S'T) # (§, then we must have R > r and § > s (see Remark
2.7. See also Proposition 3.9 in [13]). Let F € F(B" !, BRST) We say F is an
isometry if it preserves the (possibly indefinite and degenerate) hyperbolic metrics:
F*(wprst) = wgrsr on U N B™5'. We recall Theorem 1.1 in [18], which can be
formulated as follows in the above terminology.

Theorem1 [18] Fix R, S,r,s e Nwith R > r > 2and § > s > 2. Assume one of
the following conditions holds:

(1) R<2r—1,R<r+s—1;
2) R<2r—1,S<r+s—1;
B S<2s—1,R<r+s—1;
4 S<2s—1,S<r+s—1.

Then every F € F(B™*, IB%R’S) is isometric.
Likewise, Theorem 2 in [26] has the following formulation.

Theorem 2 [26] Let R,r,s € N. Assume r +s > 5 and R < 2r + 2s — 3. Write
S=2r+2s—R—2.IfR#2r—land R #r+s—1, thenevery F € F(B"*, BR-5)
is isometric.

We are now in a position to introduce the main result of this paper.

Theorem 1.1 Let R, S,r,s € N, andt, T € Z=°. Then each F € F(B" %!, BR-S.T)
is an isometry if and only if each G € F(B"*, BR-S) is isometry.

Remark 1.2 (1) Let r,s € N and r +s > 3. It is well known that every F €
F (B, B"*) is isometric (cf. [3]). Then by Theorem 1.1, every G € F(B-*!, B"*T)
is isometric for 7, T € Z=Y.

(2) We immediately obtain a consequence of Theorem 1.1 as follows. Let
R,S,r,s € N,and t;,1, T1, T» € ZZ°. Then every F € F@®B" %1, BRST) is
isometric if and only if every G € F(B" %2, BR5:12) is isometric.

@ Springer
PDF Pro Trial


xhuangj
PDF Pro Trial
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We combine Theorems 1 and 1.1 to get the following:

Proposition 1.3 Let R, S,r,s € Nand t,T € 7=, Assume R > r > 2 and
S > s > 2 and one of the conditions (1)—(4) in Theorem I holds. Then every
F € FB"%!, BRST)Y is isometric.

Asin [18] (see Remark 1.5 there), the above proposition is optimal in the sense that
if none of the conditions (1)—(4) holds, then the conclusion fails. Theorems 2 and 1.1
yield the following result.

Proposition 1.4 Let R,r,s € Nand t,T € 729, Assume r +s > 5 and R <
2r +2s — 3. Assume R #2r —land R #r +s — 1. Write S =2r +2s — R — 2.
Then every F € F(B"5!, BRST)Y is isometric.

As elucidated in [26] (see Remark 1.2 there), Proposition 1.4 is also optimal in the
sense that if R = 2r — 1 or R = r + s — 1, the conclusion fails. As applications of
Propositions 1.3 and 1.4, we have the following corollaries. In particular, Corollary 1.5
extends Corollary 1.3 in [18]. For a holomorphic rational map F from P’ 5+ =1 o
PRESHT=1 with I < Pr+5+~1 jts set of indeterminacy, we say F is a rational proper
map from B"%* to BR-S-T if F maps from B \ I to BR-ST  and maps aB"*" \ I
to aBRS.T,

Corollary 1.5 Let R, S,r,s € Nandt,T € Z7°. Assume R > r >2and S > s > 2
and one of the conditions (1)—(4) in Theorem I holds. Let F be a rational proper map
from B"5! to BR-ST Then F extends to a linear map from P +5+1=1 1o PRES+HT -1,

Corollary 1.6 Let R, S, T,r,s,t be as in Proposition 1.4. Assume in addition that
r > 2. Let F be a rational proper map from B"*! to BRST Then F extends to a
linear map from Pr5+1=1 1o pR+S+T—1,

Remark 1.7 Note if r > 2, then every proper holomorphic map from B"-5> to BX-S-T
extends to a rational map from P’ t5+=1 to PR+S+T=1_(This fact follows from the
same proof as in Proposition 3.2 of [20]). Consequently, Corollaries 1.5 and 1.6 still
hold if we assume F to be a proper holomorphic from B”*! to B®-S.T.

We should refer the readers to [13] (cf. Theorem 1.1 there) for many related results.
The paper is organized as follows. In Sect. 2.1, we discuss the automorphism group
of possibly degenerate and indefinite hyperbolic spaces. We describe isometric maps
between degenerate and indefinite hyperbolic spaces in Sect. 2.2. Then in Sect. 2.3,
we give the proofs of Theorem 1.1 and Corollaries 1.5 and 1.6.

2 Proof of the Main Theorem and Corollaries
2.1 Automorphisms of Degenerate Hyperbolic Spaces

Forr,s € Nandt € Z=9 withm = r + s + ¢, write E(r, s, t) for the m x m diagonal
matrix, where its first r diagonal elements equal —1, the next s diagonal elements
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equal 1 and the rest equal 0. When ¢t = 0, we will simply write E(r, s) for E(r, s, 0).
We define the generalized unitary group U (r, s, t) as follows.

U(r,s,t)={X e GL(m,C): XE(,s, I)Tt =E(,s, 1)}

Recall the element Y € G L(m, C) naturally acts on P! by sending [Z] € P"~ ! to
[Z)]. Itis clear that every element X in U(r, s, t) gives a (biholomorphic) automor-
phism of B"*:!. Moreover, such an automorphism preserves the metric wpr.s.r.

Write 0 «; for the k x [ zero matrix and denote by M (n, m; C) the space of n x m
matrices with complex entries. For X € GL(m, C). Then one can readily verify that

X e U(r,s,t) if and only if
A B
X = ,
(0tx(r+s) C)

where A € M(r+s,r+s;C), Be M(r+s,1;C),C € M(t,1; C)and AE(r, 5) A" =
E(r,s),detC # 0.

Define an equivalence relation in U (r, s, t) by setting X ~ YV if X = ey for
some 6 € R. Set PU (s, u,t) := U(r, s, t)/~ be the quotient group of U (r, s, t) by
this equivalence relation. Equivalently, PU (r, s, t) is the quotient group of U (7, s, t)
by the normal subgroup {¢/?I,, : § € R}, where I,, denotes the m x m identity matrix.
Then PU(r, s, t) gives a subgroup of the automorphism group Aut(B"5"") of B!,

One can also verify that PU(r, s, t) acts transitively on B"*S:'. When ¢ = 0, the
group also acts transitively on 0B"* 0 Whent > 0, however, PU (r, s, t) does not act
transitively on dB"*"’. Indeed, in this case dB"*’ decomposes into two orbits under
the action of PU(r, s, 1):

My = {[z, &, n] € 9B"*" : z # 0}
My ={[z.E,n] € IB"*' : z =& =0}.

Here in the above homogeneous coordinates, z, &£, and 1 have r, s, and t components,
respectively. Note if ¢+ = 0, M» is empty.

When r = 0, Aut(B"5-?) equals to PU(r, s, 0) (cf. [3]). Now assume ¢ > 1.
If in addition r > 2, Aut(B"5:") also equals to PU(r, s, t). (See Proposition 2.4.)
However, if t > 1 and r = 1, then the automorphism of Bl might not be linear or
even rational, as elucidated by the following examples. In any case, the automorphism
of B"5:" always preserves the metric wpr.s.. See Proposition 2.3.

Example 2.1 Lets > 1,¢t > 1. Write [Z] = [z, &, n] for the homogeneous coordinates

of P, where z is a scalar, £ = (&1, ..., &) has s components and n = (31, ..., n,)
has ¢ components. Let & be the following rational map from P$* to P¥+,

(I) : [Z] - [Zz’ ZEI, e 7Z$.Ys an - 5121 ans . e 7an]'

One can readily verify that ® is an automorphism of B!*:/.
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Example 2.2 Note B! can be naturally identified with B* x C’. Write & and 5 for
the coordinates of C* and C', respectively. Let f (&) be any holomorphic map from
C’ to C'. Then the map ® : (£, 1) — (£, n — f(£)) is an automorphism of B® x C'.

The following propositions will not be used to prove the other results in the paper.
We include them anyway to describe the automorphisms of B"*!.

Proposition 2.3 Let r,s € N,t € ZZ°. Then every automorphism of B"*' must
preserve the metric wpr.s.: .

Proof First assume r = 1. Note B'* can be naturally identified with B* x C'.
Fix an automorphism W of B’ x C’. Write z and & for the coordinates of C* and C',
respectively. Write W = (G, H), where G has s components and H has t components.
By Liouville’s theorem, G only depends on z. Then by considering the inverse of W,
one can readily verify that G is an automorphism of B*. Consequently, W preserves
the metric wgi,s.:.

Next let r > 2, and thus r + s > 3. By the extension theorem of Ivashkovich [19],
every automorphism of B"*- can be regarded as an element in F(B"*", B"*"). Then
the conclusion follows from Remark 1.2. O

Proposition2.4 Letr > 2,5 > 1 and t > 0. Then every automorphism of B"*"! is
linear, and can be further identified with an element in PU(r, s, t). Consequently,
Aut(B"5") = PU(r, s, t).

Proof Let W be an automorphism of B”*5:!. First by Proposition 2.3, ¥ is isometric
with respect to the metric wpr.s... Secondly by the same proof of Proposition 3.2 in
[20], every automorphism of B"*! must be rational. Then the linearity of ¥ follows
from Lemma 2.11 (see Sect. 2.3). Write W ([Z]) = [Z)] for some m x m matrix ).
Since W is a biholomorphism of B”**"!, one can readily verify that ) € GL(m, C).
Finally, since W maps B"5' to B"*/, and maps dB"*"' to 9B"*', we must have
YE(r,s, t)yt = AE(r, s, t) for some A € R™. By scaling )V, we can assume A = 1.
Hence W can be identified with an element in PU (r, s, ). m|

2.2 Description of Isometric Maps

In this subsection, we give a description of isometric maps between two generalized
hyperbolic spaces which are possibly degenerate and indefinite. The result will be
used in the proofs of Corollaries 1.5 and 1.6.

Theorem 2.5 Lerr,s, R, S € Nandt,T € 7Z2°. Let F be a holomorphic map from
an open connected subset Q of B! to BRST Assume Q is contained in the affine
cell Uy = {[z0, - .. 2rasti—1] € P11 720 £ 0} and F(R) is contained in the
affine cell Vo = {[wo, ..., wryse7—1] € PRFSTT=1 0y £ 0). Then the following
are equivalent:

(a) F is isometric with respect to wgr.s.: 10 WRR,S.T.

(b) After composing with appropriate elements in PU(r,s,t) and PU(R, S, T)
from the right and the left, respectively, F locally (shrinking Q2 if needed) equals to
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the following map in the standard affine coordinates on Uy and Vj:

C = (;17---a§r+s+t71)_> (C]?”wé‘rfl’d)?gr’"°7§r+5715 wyh)

Here ¢, and h are holomorphic maps in ¢ with R —r, S — s and T components,
respectively, and satisfy ||¢|| = ||V ||.

In the above, || - || denotes the usual Euclidean norm, and the standard affine coor-
dinates on Uy are given by ¢; = i—(’;, 1 <j <r+s—1, and likewise for the standard
affine coordinates on V. We remark that if a map F as in (@) exists, then we must
have R > r and S > . The proof of Theorem 2.5 is analogous to that of Theorem 2.1
in [17]. For the self-containedness, we sketch a proof here.

Proof of Theorem 2.5 1t is easy to see (b) implies (a). It remains to show (a) implies
(b). Let F : @ — BRST be as (a). Write pg = [1,0,...,0] € Uy. By composing
F with elements in PU(r, s, t) and PU(R, S, T), and shrinking 2 if necessary, we
can assume that pg € @, F(pg) = [1,0,...,0] € Vp, and F(2) C Vy. To keep
notions simple, we still denote the map by F(¢) = (F1(¢), ..., Frys+7—1(¢)) in the
standard affine coordinates of Uy and Vjy. By the isometry assumption, we have

R—1 R+S—1 r—1 r+s—1
aalog(1+Z|F,-|2— > |Fi|2>=aalog(1+2|m2— > |;~|2>.
i=r

i=1 i=R i=1

Since now F(0) = 0, by a standard reduction, we get

R—1 R+S—1 r—1 r+s—1

2 2 2 2
E |Fil” — E |Fil =§ 1il” — E 1gi 1~
i=1 i=R i=1 i=r

By Proposition 2.2 in [17], R > r and S > s. Moreover, there exists a matrix 4 €
GL(R+ S—1; C) and two holomorphic maps ¢, ¥ with R —r and S — s components,
respectively, such that

(1) AE(R—1,5 A" =E(R-1,5);

@:(Fr, .o, Frys—DA=C1s oo 61,8, 8 oo Srgs—1, W5

G el = llvll.

Write I7 forthe 7' x T identity matrix. Set X to be the (R+S+T) x (R+S+T) block
diagonal matrix diag (1, A, I7) . Then XYE(R, S, T)?T = E(R, S, T). Therefore, X
can be identified with an element in PU (R, S, T'). The composition of F with X" has
the desired form in (b) under standard affine coordinates. This finished the proof of
Theorem 2.5. ]

2.3 Proof of Theorem 1.1 and Corollaries

In this subsection, we prove Theorem 1.1, and Corollaries 1.5 and 1.6. We start with
the proof of Theorem 1.1.
Proof of Theorem 1.1 We first observe the following fact.

@ Springer
PDF Pro Trial


xhuangj
PDF Pro Trial


23  Page8of13 X. Huang, M. Xiao

Proposition2.6 Let R, S,r,s € Nandt,T € 729 Then every H € F(B"51, IEBR’S)
is isometric if and only if every F € F(B"%!, BRST) is isometric.

Proof Fix H € F(B"*' BR5). By shrinking the domain U of H if necessary, we
assume U is contained in some affine cell of P"++/~! and H is given by

Hw) =[H(w), ..., Hpys(w)]on U.

Here w is some affine coordinates of P’ ***~! on U, and the right-hand side of
the above equation is in the homogeneous coordinates of PX+5~! Define a map
ﬁ U — PRHS+T-1 by

H(w) = [H|(w), ..., Heps(w),0,...,0lon U,

where the right-hand side is in the homogeneous coordinates of PRT5+7—1 Since
H € F@® s, BRS), it is clear that H € F(B"S!, BR-5T). Furthermore, H is
isometric if and only if H is so.

Conversely, fix F € F (B, BR:5:T) By shrinking the domain V of F, we assume
V is contained in some affine cell of P" 5+~ and F is given by

F(w)=[Fi(w),..., Frysyr(w)]on V.

Here w is some affine coordinates of P"+*/~1 on V', and the right-hand side is in the
homogeneous coordinates of PR+S+7=1 By shrinking V if necessary and dropping
the last 7 components in the above, we obtain a new (well-defined) map F from V to
PR+S=1 Ttis clear that F e F@B st IB%R’S). Furthermore, F is isometric if and only
if F is so.

The conclusion in the proposition then follows from the above observations. O

Remark 2.7 We remark that if F(B"™*! BRST) £ @ then we must have R > r
and S > s. Indeed, assume F € F(B"*!, BR-ST). Then as in the proof of Proposi-
tion 2.6, we can construct a map FeF (B"5-t, BR-S). Furthermore, we can find a local
holomorphic embedding 7 : P"+5~! — Pr+s+/=1 sending an open piece of B to
0B”5, such that the composition F=Folc F(B"*, ]B%R’S). By the existence of
such a map F, we apply Theorem 1.1 of [4] (or Lemma 4.1 in [3]) and a standard CR
geometric argument (cf. Lemma 2.1 in [3]) to obtain R > r and S > s.

To establish Theorem 1.1, by Proposition 2.6, it suffices to prove that, for
R,S,r,s,t € N, every F € F(B“”,IB%R’S) is isometric if and only if every
G € F(B"5, BRS) is isometric. We note that the forward direction is easy:

Proposition 2.8 Let R, S,r,s,t € N. Ifevery H € F(B"5!, ]B%R’S) is isometric, then
every G € F(B"*, BR:S) is isometric.

Proof Write [W] = [W,..., W,4,] for the homogeneous coordinates of P"+$~1,
Write Uy for the affine cell {{[W] € P"™~! : W; # 0}. Fix G € F(B"*, BX-5). By
shrinking the domain V C P"t~! of G if necessary, we assume that V C Uy, and
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that we still have V N dB™¥ # ¢ and V N B"* is connected. Therefore, every point
[W]in V can be written in the form [1, w] with w the affine coordinates of P"~1 on
Up. Assume

G([I,w]) =[G1(w),...,Grys(w)]on V,

where the right-hand side is in the homogeneous coordinates of PX+5~1 We define
an open subset V of P"+5+ =1 to be

V={lwneP 1.1, wleV,neCl

By the assumption on V', we have VNoB st # () and V NB"5 is connected. Define
amap G from V to PR+5—1 by

G(1, w, D) =[G1(w), ..., Grysw)].

It is clear that G < F@Bs1 ]B%R’S). By assumption, G is isometric. But since the
functions G’js only depend on w, this implies G is also isometric. This finishes the
proof. O

It remains to show the converse of Proposition 2.8.

Proposition2.9 Let R, S,r,s,t € N. Ifevery G € F(B"*, BR-5) is isometric, then
every H € F(B"!, BRS) is isometric.

Proof of Proposition 2.9 Write [W] = [Wy, ..., W,4s4.] for the homogeneous coor-
dinates of P" *$*/=1 Write Uy for the affine cell {{W]: W; # 0} of P"$+=1 Write
po =1[1,0,_1,1,051,_1] € 3B"*! N Uy, where 0} denotes the k-dimensional zero
row vector. Similarly, write V; for the affine cell of P" T ~! consisting of points whose
first component in homogeneous coordinates is nonzero.

Fix H € FB"%!, BRS). By shrinking the domain @ < P'™+~! of H and
composing H with an appropriate elementin PU (r, s, t), we can assume pg € €2 and
Q C Uy. Denote by w = (z,&,1) € C~1 x C* x ! the standard affine coordinates
on Uy ~ C" =1 That is, w is identified with the point [1, w] € Up. In the affine
coordinates, po = (0,1, 1, 0g4+;—1).

Write A(0, €) for the open disk in C centered at 0 with radius € > 0. Write
AR, €) = A0, €) x -+ x A(0, €) for the polydisk in C*. To make the argument
simpler, we further shrink €2 to be a polydisk centered at pg of the form {w € Up :
w— po € ATHH=1(0, €)} for some small € > 0 (one can easily verify that QN B"5*
is still connected).

Recall (z,&,n) denotes the standard affine coordinates on Up. Fix a point
p = GET € QNB C Uy Write z = (z1,...,2—1) and correspond-
ingly Z = (Z1,...,Z,_1). Similar notations apply to &, £ as well as 7, 7. Next we
fix row vectors Ay, ..., Ar_1, i1,..., s € C' and denote by (z, &) the standard
affine coordinates on Vj. We define a canonical embedding L (depending on p and
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My oeos Aply [l -+ ig) from Vg &~ C7H=1 to Uy ~ C7 15+ =1 a5 follows:

r—1 K

L(z,8) = Z,E,ﬁ-ﬁ*Z(Zi—Zi))\i‘i‘Z(éj_gj)Mj . 2.1

i=1 j=1

It is clear that L(Vy N B"™*) € B"*! and L(Vy N 9B™*) C 9B"%!. Moreover, L
preserves the metric: L*(wgr.s.r) = wprs on Vo N B,

We truncate p to getq € Vo : ¢ = (2, £). It is clear that q € B~ and L(g) = p.
Similarly we truncate pg to get go = (0,—1, 1,05_1) € Vo N 9B"™*. Set N to be the
projection of 2 :

Ni={@oeV: @ -qea™0.0].

One can readily verify thatg € A'NB”"** and N'NB"** are connected. Furthermore, if
we choose vectors Ay, ..., Ap—1, i1, ..., s € C' with sufficiently small norm, then
we have L(N) C Q. Consequently, H o L is well defined on N and thus gives an
element in F(B"*, BX-5). By the assumption of Proposition 2.9, H o L is isometric.
This yields (H o L)*(wgr.s) = wprs = L*(wgr.s+) on N'NB"*. This further implies

L* (H*(wpr.s) — wgros) =0on N N B 2.2)

We pause to prove the following lemma.
Lemma 2.10 The Hermitian (1, 1)-form @ := H*(wgr.s) — wprs. equals 0 at p.

Proof of Lemma 2.10 To make notations simple, we also write the coordinates w =
(z,&,m)as(wy, ..., w4s4,—1). Thatis, we identify w; with z;, & and ; accordingly.
Writen = r+s—1,m = r+s+7—1and writew = \/—_121<i’j<m gi7(w)dw; AW
in Q N B with G(w) := (gij(w))lfi, j<m a Hermitian matrix-valued real analytic
function. By (2.2), in particular L*(w) = 0 at gq. Recall L(g) = p. A standard
calculation of the pull-back form L*(w) at g yields:

LG(P)L" = 0. (2.3)
Here L is the complex Jacobian matrix of L, which by (2.1) has the following expres-
sion.
A
L = (I,, A), where the n x t matrix A = A;_l (2.4)
1
s

By the discussion preceding to Lemma 2.10, (2.3) holds for £ as in (2.4) if we choose
VECtOrS Ay, ..., Ap—1, i1, ..., iy € C" with sufficiently small norm. We then see (2.3)
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holds for any choices of vectors A1, ..., Ar—1, i1, ..., 4s € C' by the analyticity of
the left-hand side of (2.3).

Recall M (n, m; C) denotes the space of n x m matrices with complex entries. Now
for a generic element ) € M (n, m; C) ~ C"", there exists some Z € GL(n, C) such
that Y = Z L for some matrix £ € M (n, m; C) in the form of (2.4). Consequently,

YG(p)Y' = ZLG(p)L 2T = 0.

It then follows again from the analyticity that )G (p)yT = 0 for every Y €
M (n, m; C). This yields G(p) = 0 and therefore w = 0 at p. This proves the lemma.
O

By Lemma 2.10, since p can be any point in N B, we obtain @ = 0 in
QN B, This proves H is isometric and we thus establish Proposition 2.9. O
Theorem 1.1 now follows from Propositions 2.6, 2.8 and 2.9. O
We finally prove Corollaries 1.5 and 1.6. For that, we establish the following lemma.

Lemma2.11 Let R, S,r,s € N, and t,T € 729 Let F be a rational proper map
from PrHst=1 o PRESHT =1 \pimy [ its set of indeterminacy. If r > 2 and F is an
isometric map from (B"5' \ I, wgr.s.) to (BRST, wgr,s.7), then F is a linear map
from Prsti=1 o PRESTT =1

Proof of Lemma 2.11 The proof is very similar to that of Lemma 2.5 in [18]. For con-
venience of the readers, we sketch a proof here. Recall [Z] = [z, &, n] denotes the
homogeneous coordinates on Prtsti=1 \where z, &, nhaver, s, t components, respec-
tively.

By Theorem 2.5, we conclude, by composing elements in PU(r,s,t) and
PU(R, S, T), F equals to the map: [Z] = [z,&,n] — [z, ¢, &, ¥, h], where ¢, ¥,
and h are holomorphic maps in Z with R —r, S — s, and 7 components, respectively,
and satisfy ||¢|| = |l¢|| at points where they are defined. Moreover, by the rationality
assumption, ¢, ¥, and h are rational maps in Z = (z, &, ).

Thus we can write ¢ = 2L, ¢y = %, h = %. Here p1, p2, ad p3 are polynomial
maps in Z, such that their nonzero components are all homogeneous polynomials
with the same degree. And g # 0 is also a homogeneous polynomial maps in Z. They
satisfy the following conditions:

A) Ip1(D] = I p2(2)ll, VZ e Crst;

(B) p1, p2, p3 and g have only trivial common factors;

(C)Foreach 1 <i <3, degg = deg p; — 1 if p; is not identically zero.

Write z = (z1,...,2-) and & = (&1, ..., &), and rewrite F as

F(Z]) =219, .-, 2rq, P1. 614, - - .. &4, P2, p3]. (2.5)
Note the set of indeterminacy I of F satisfies

[ C{Z]1 e P p(2) = pa(Z) = p3(Z) = q(Z2) =0} U {[Z] e PP Hsti~]
1z=0,& =0}
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Note I is of codimension at least 2 in P"+5+~1 We claim ¢ is a constant function.
Otherwise, since » > 2, we can find a point [Z*] = [z, 2,0, ...,0] € B"*' such
that ¢ (Z*) = 0. Since [ is of codimension at least 2, we can find a point [Z] € B!
close to [Z*] such that ¢(Z) = 0, and [Z] ¢ I. By Eq. (2.5), F([Z]) € dBR-S-T.
This contradicts the definition of rational proper maps from B"-** to BX-S-T Hence ¢
must be constant. Consequently, either deg p; = 1, or p; is identically zero for each
1 <i < 3. Therefore, F is linear. O

Proof of Corollaries 1.5 and 1.6 Corollary 1.5 follows from Proposition 1.3 and
Lemma 2.11. Similarly, Corollary 1.6 follows from Proposition 1.4 and
Lemma 2.11. O
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