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Abstract

We extend an earlier result obtained by author in [Hua?2.

1 Introduction

Let D be a bounded domain in C*™! with n > 1. An extremal map ¢ of D is a holomorphic
map from the unit disk A := {£ € C: |{| < 1} into D such that the Kobayashi metric of D
at ¢(0) along the direction ¢/(0) is realized by ¢. We say ¢ is a complex geodesic if it realizes
the Kobayashi distance between any two points in ¢p(A) ([Ab2]).

Fundamental work on extremal maps and complex geodesics has been done in the earlier
1980s by Lempert [Leml-2], Poletsky [Pol], Abate[Ab], etc. Among many other things, Lem-
pert showed that extremal maps of a bounded strongly convex domain with a C*%smooth
boundary are complex geodesics. Poletsky [Pol] showed that extremal maps of a bounded
pseudo-convex domain with a reasonably smooth boundary, say C*-smooth, are almost proper.
Both Lempert [Leml] and Poletsky [Pol] derived the Euler-Lagrange equations for extremal
maps in their considerations. In his paper in the earlier 1990s [Hual| [Hua2|, motivated by
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the Abate-Vensentini problem on establishing the Wolff-Denjoy iteration theory for bounded
contractible strongly pseudo-convex domains, the author proved two localization theorems for
extremal maps of pseudoconvex domains near a C*-smooth strongly pseudoconvex point, which
was fundamentally used to resolving the Abate-Vensentini conjecture in [Hua2|. These local-
ization results have also found many other applications later, e.g., in solving the homogeneous
Monge-Ampére equstions with a prescribed boundary singularity. (See [BP][BPT|[HW].)

In this note, we extend the non-degeneracy property obtained in [Hua2] to a strongly
psuedoconvex point with only C*?-regularity for o € (0, 1].

Before stating our result, we need to introduce some notations. Let D be a bounded domain
with a C2-smooth boundary near p € dD. For any point z € D near p, we have a unique
boundary point of D near p, denoted by 7(z) such that |z —7(2)| is precisely the distance from
zto 0D. Then for any v € Tz(l’O)D, We use Uy, and vy, to denote the tangential and complex
normal component of v at m(z), respectively. Namely, v = v, + Vpor With vy, € T;E;))ﬁD

and Vnor L Vgn-

Theorem 1.1. Let D C C"™ be a bounded domain with p a C**-strongly pseudoconvex
boundary point of D, where o € (0,1]. Then there are two positive numbers €(p) and 6(p) with
0 < €(p) < d(p) << 1 such that for any p* € 0 with |p* —p| < €(p) and for any extremal disk
© of D with |p(&) — p| < (p) for any & € A it holds that

(& (€))norl < C*(0, D)@' (E))1an| ¥ € € A
Here n(p,p") = maxe.x [¢(§) — p*|, C is a constant independent of £ € A,p* and ¢.

Theorem 1.1 was proved in [Hua2] when o = 1. Our proof here is very similar to that
in [Hua2]. If we make the ¢ in Theorem 1.1 sufficiently small such that |p(§) — p| < €(p)
for £ € A and apply Theorem 1.1 with p* = (1), noticing that we now have n(p, p(1)) ~
diam(¢) = maxg, gen |¢(&1) — ©(&2)|, we arrive at the following:

Corollary 1.2. Let D C C"**! be a bounded domain with p being a C*“-strongly pseudoconvex
boundary point of D, where o € (0,1]. Then there is a small positive number (p) such that
for any extremal map ¢ of D with |p(§) — p| < €(p) for any & € D

|(90/(§))nor| < Cdiama(@)(@,(f))tan’ A f < A.

Here C' is a constant independent of £ € A and .



2 Proof of Theorem 1.1

We basically follow the argument presented in [Hua2]. We include enough details to facilitate
a reader’s reading.

Let D be a bounded domain in C**! with p € 9D a C*“-smooth boundary. Here, 0 < o <
1. Namely, there is an open neighborhood U of p € C**! and a C*®-smooth function p over U
such that DNU = {p < 0} and dp|spry # 0. For instance, when oo = 1, we require any second
derivative of p is Lipschitz continuous over U. Since there is a strongly convex subdomain of
Q (after a biholomorphic change of coordinates) which shares a piece of boundary near p with
D, by the monotonicity property of Kobayashi metrics we conclude that there exists a small
neighborhood U, of p in C"™! such that any extremal map ¢ of D with p(A) C U, is a complex
geodesic of 2. Moreover ¢ satisfies the Euler-Langrange equation in the sense of Lempert-
Polestky. Namely, there exist a p(¢) € C* (A) with p(€) > 0 such that @ = £p(&)v(¢(€))
extends to a holomorphic map over A with & € C* (A). Here v(q) is the outward unit
vector of 0Q at ¢; C* (A) = C**(A) for a € (0,1) and C* (A) = N, (0.1) C*(A). Now,
shrinking U, if needed, for any p* ~ p, we have a quadratic holomorphic polynomial change
of coordinates ¥(-;p*) defined over U, that maps p to 0 and M, = ¥(9Q N U,; p*) near 0 is
defined by an equation of the form:

b = Zusr + 2na + 3 |5 + o(|2P?) 1)
j=1

Here p,- depends C**-smoothly on p* ~ p.

The unit outer normal vector in the normal coordinates as in (2.1) is given by v, =
8p£*
% along M for j = 1,--- ,n+ 1. Hence, v; = z; + 0(|2]), j =
L,---,n, Vpt1 =1+ 0(]z]). The Webster surface W of M near p = 0 is given by

(v1, -+, Upg1) With v; =

W={w=(z,w) €C™": 2 M, z~0},

v1(z2) . Un(2)

and w = <vn+1(z)’ 7 (2)) or w = (2,141, 7") + o(|z]). Then T,IW at p = 0 is spanned
by Tl ry "t 7Tn,r7 Tn+17 Tl,z', ct 7Tn,z‘ where

Tjr=(0,--+,0,1,---,1,0,---,0),Tj; = (0,--- ,0,4,--- ,—4,0,---,0).



Write

Ty,
: I, 0 I,
Ag=| T | = 0 i o |. (2.2)
: il, 0 —il,
T

For £ € OA, we have

® = (00, 70) = (410 1 D)

Replacing ¢ by ¢ o o for a suitable 0 € Aut(A) such that ¢* has only a simple pole at 0.
Write ¢* = “"T Then
ok 1 o * (il
o0 =5 [ & ()8 = Ofllelen).
T Jo

where [igllen = sup, [9(€)] = supgeon [9(€)]. Wiite W* = W+ A3t = {w- A" : w € W}
which is a Cl%regular totally real submaifold in C*"*! near the origin. Then W* is defined
near 0 by Y = H(X) with X +4Y € C**! where H(0) = 0,dgH = 0 and H is C"*-smooth
near 0.

Consider the following Riemann-Hilbert problem:

{ ImQ00) - (1 i) ()} 0

Re(Q(X)(0)) = i, (2:3)

where X € C2(0A), Q(X)(+) is a (2n + 1) x (2n + 1) holomorphic matrix in A depending on
X belonging to the Hardy space H*(A), which thus has L*-integrable boundary value. Write
X = (Xl, tee >X2n+1) and H = (hl, cee >h2n+1)- Then

Oh1 ... Ohania
aH 0X1 0X4
X ohy ... Ohanp

8X2n+1 8X2n+1

For 0 < e < 1, we write
B. ={X(§) € C2(0A) - || X]| 3 <e}.
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For X; € R*™ ! with |X;| < ie, we write B.(Xj) = X§ + B.. In what follows, for each
X € B.(X{), we write X = X*—l-XWlthXEB
Write QQ = g1 +1igo, (I + zgg) o X = e1(X)+iey(X). Then [ey(X)—TI| g, [le2(X)l o5 <
Ce* for X € B.(Xj) with ¢ < 1. Here and in what follows, C' stands for a constant,
independent of £, Xj and X that may be different in different contexts. Write S for the
standard Hilbert transform with u + iS(u) having a holomorphic extension to an element in
the Hardy space H*(A) whose imaginary part has 0 value at 0 for any u € L*(OA). Then
q1 = —S(q2)+1. Notice that S is a bounded self-operator acting both on L*(0A) and C'2 (0A).
Hence (2.3) is reduced to
¢2(X) = S(q(X))h(X) = h(X). (2.4)
Here h(X) = —(ey-e; ") o X. Notice that the solution of (2.4) is h(X;) when X = X¢, for the

Hilbert transform maps a constant function to 0. Now for X € B.(X}) with 0 < ¢ < 1, we
can also solve uniquely (2.4) to get ¢ and thus @ in the C2 (9A)-space with

la2(X) = h(X5)ll s < CIUX2,-

This is because ||h(X )||C2 < HXH‘“ If X € C2(8A) only with || X|co < 1 we can still solve

(2.4) in the L*(0A)-space to get QQ(X) with the estimate ||g2(X) — q2(X{) |21 < C’HXH%O By
the uniqueness, when ¢ << 1, these two solutions are the same. We can similarly consider the
Riemann-Hilbert problem:

~

I T -O0H

{ m{(L +i5%)Q(X )} (2.5)
Re(Q(X )( ) =

We similarly solve it in the H*(A)-space when X € Cz(A) with || X||co < 1. We can also solve

it in the C'2 (A) _space when X € B.(X) with 0 < ¢ < 1. Notice that Im(Q(X)Q(X)) = 0.
Since Q(X )Q( ) € H?(A). Then by applying the reflection principle, one easily sees that it

n+1

is a constant invertible matrix depending on X. Hence, we have

Q7N(X) = M X)Q(X)

with C* = Q(X)(0)Q(X)(0) ~ I for X € C2(dA) and || X|[|co << 1. Indeed, |C* — I| <

C|| X |0 when || X||co < 1. Summarizing the above, we have



Proposition 2.1. Let X € C2(OA). When | X||co is sufficiently small, (2.3) can be uniquely
solved with Q(X) € H*(A),

1Q(X) = (I +ih(X5)) | s(om) < CIX &0, 1Q7H(X) = (T +ih(X5) ™" Iroa) < ClIXI|o-
When X € B.(XE) with 0 < e < 1, (2.8) can be solved uniquely with Q € C% (A) with
1Q(X) = (T +ih(X3)) e 1QTHX) = (T +ih(X5)) " g < Ce™
These two solutions are the same for e << 1.
Now, back to our extremal map ¢, we write
P* =P A = X +iY

along OA. Notice that X,Y € C'*(0A) with || X|| ooy << 1. Then since ®* is attached to
W=, we get Y = H(X) along 0A and we have

d@*_dX+,dY_dX(I +0H)
a0~ do e T ae VT ox

or

dd*
Im { ([2n+1 +i1— =0.

OH | dx
do )} fm

0X do

Hence

0X
de*
Im{ i -Q 1(X)}=0

along OA. Since 4% = g* i€ and Q, Q™' € H*(A), we obtain by the reflection principle that

Im{dCI)* . Qil(X) Q(X)(Ign+1 +ZaH) 1} =0

or

de” -1 —M—a 1
& Q3O =T~ alXe +iB(x), 26)

§

Here,

a(X) = lim £ 209"

&9 HX)(E) = (0, —¢™(0)) A7 QT (X)(0).



Write R(X)() = Q(X)()(Ians1 +i95) 7, v = —¢™(0) = O(|X;| + [|X]]). Notice that
do* dX

QX)) = Do (x)
We get the following equation for X from (2.6)
dX X .
o =i GTe + 0RO €)= . 27)

Note that o
/)mmw:%+mw%@
0

and 3 is determined by f027r 42df =0 or

§_ T — Al RO
Jo T RX)(e |

By the formula for a and 3, we have
|a(X) = a(X5)], [B(X) = BX5)] < Cf|X]|co-

Denote X (1) = Xo. Then (2.7) can be written as

0

) X — )

X(e?) = z/ (% — a(X)E+iB(X))R(X)(e")do + X, (2.8)
0

with [a(X)[, [B(X)] < Ol X]|co, [R(X) = TL20a)] < [[R(X) = Il[Ls6a) < Cl| X[|¢o- By the

Holder inequality, we get

(01 — X (2 7 a(X)
X (™) - X( ﬂsA|(§

0>
<ClXlev [ IRCY)IdS

01

< C|| X cooaylb2 — 6117 | R(X) || 20
< ClIX|&ol62 — 64].

— a(X)§ +iB(X))R(X)(E)|d0

Also, |X ()] < | Xo| + | X leo < 21X ]|cooa). We thus get

1 X103 oy < CIXNE0

c3 (oA
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with C independent of X when || X|co < 1. Hence, for any 0 < ¢ < 1, when || X||co is
sufficiently small, X € B.. Thus by Proposition 2.1,

1Q(X) = Illog < CIXIL, QTHX) = Illpg < CIXIT, IR(X) = Illog < ClXIS

With these estimates under our disposal, we can now complete the proof of Theorem 1.1 as
follows:

Proof. Let By be the (2n + 1) x (n + 1) matrix, formed by the first (n + 1)-columns of Ay.
Namely,

I, 0
BO = 0 2
il, O
Then ¢(§) = ®* By and thus for £ # 0,
d© =07 5= ("5 a0+ i) - Qeoe -
Write Q1(X) = Q(X) — Q(X)(0), Qa(X) = Q1(X) — Q¢(X)(0)§. Then
o= (G0 -atmeeo© + 2 b
Since X € B. with ¢ <« 1 after making ||¢|/co < 1, by the Cauchy formula, we have
% 2| —ous
I o |8, = otz

as || X||co — 0. Notice that

a(X) = (0,7)A;" + O(WlIIX[[Z), B =0(91), v =¢"(0) #0.

Hence, we get

. N
REGE _(o, I%I) Ayt x B+ O(|[X]|20):



Write g—‘ = (by,---,b,) with >_[b;|> = 1. Also notice that

L, 0 —iI,
A'=]1 0 —i 0
I 0 He
we get
1, (0,7)A4,"
e &) =— X By + O([| X|[¢0)
] ] “
5L 0 %I, I, 0
=) 0 i 0 0 i [+O0(X[[2osa))
2lo 0 =5 ) \iky 0

= —(0,0) + O(| X |20 on))-
or ¢,11(8) = O(IIX [[Zooa))s (£1(€), -+, @n () = —bly| + O X[[Zo|7]). We see that

|on11 ()]
|(90,1(£>’ T (p’n(f))

with C' independent of . Notice that ||X||CO(3A) ~ n(p, p*) = maxe |p(§) — p*|.
Next for any vector x(€ C"*') = (X, xnt1) # 0 and for any z € 9Q with |z| < kn(y)
for a fixed positive integer k, the orthogonal projection of x to the orthogonal complement of

op
T;LO)aQ iS denoted a:nd given by Xz,nor - XV(Z>V(Z) Here U(Z) = IV(ijI - (0’ o ’07 1)+O<|Z|)

The orthogonal projection of y to T8990 is denoted and given by Xztan = X — Xznor-

| <C|X|& forany £ € A

Now assume that [xn1| < Cn(@)*[[X'[l. Then [xznor| = [Xnta| + O(I2[Ix]) and [x tan| =
X' +O(x||2]) = |X'|(1 + O(|z]). Hence Xenerl — % + O(|z]) < n(p)*. We thus derive that

|Xz,tan| o |

for any z € 0D with |z| < kn(p) and for any £ € A

1(€'(€)) 2mor] < Crn™(@)|('(€)).tan| (2.9)

in the normal coordinate (2.1). In particular, letting k = 1, we arrive

(@' (€))nor| < C*(@)I(£'(€) )tanl-

To verify the estimate in (2.9) is also valid after a holomorphic change of coordinates. Let

w = F(z) be a biholomorphic map from a neighborhood U, of p = 0 to a neighborhood of
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p € C"! sending QN U, to QN U and F(p) = p. Let ¢ be a proper holomorphic embed-
ding from A into Q N U, with ¢(A) =~ p such that for any z € 0Q with |z — p| < kn(p),
|(90/(£))z,nm"| < Ckna(@)|(90/(f))z,tan’~ Let ¢ = Fop. Then ¥/(§) = ‘Pl(f)%_f Write the orthog-
onal decomposition ¢'(€) = (¢'(€))z tan + (¢'(€))zmor- Then F.(¢'(€)) = (#'(€)),1an 32 ((€)) +
(' (€))zmor 32(0(€)) = (¢'(€))z1an 22(2) + ('(€))zmor 32(2) + |/ (€)] - O(|z — p|). By the Hopf
lemma, we can write (¢’ (f))z,noraa—f(z) = Gy tan + Qwnor With Gy tan € 799D and Ay nor 7 0
along the normal direction of D at w = F(z). Notice that |ay nor|, |Gw.tan| < Ckl(¢'(€))z.n0r] <
Cin® (@) [(¢'(€))z tan] -

Hence
| ( ,(f))w,nor‘ . ’aw,nor‘ + ¢'(§)O(|z — p|)|

'
|F*(90/<£))w,tan| ’(¢/(5))z,tan%_1;(z) + aw,tcm + 90/<£)O(|Z - pl)‘ .
Notice that |(¢'(€))ztan 3 (2) + usan + €' (€)O(2 = pI)| < Crl(¢'(€))ztanl (1 + 1%(0)) and
lownorl < 0y (). We easily conclude that Ex@lwrerl ¢y po() Now we choose k

(&' (€))z,tan N [F2 (97 (€))w, tan]
such that maxeea [¢(€) — p| < &n(¢). Then we conclude that there is an 0 < €(p) << 1 such

that when |¢) — p| < €(p) and for any w € 8Q with |w — p| < 2n(¢), it holds

|[(V(€))zmor] < CN* (W)Y (€))2 tanl- (2.10)

This, in particular, completes the proof of our theorem. n

Remark A: Let p*(=~ p) € 092. We choose a holomorphic change of coordinates which
depends C%“ on p* such that p* is mapped to the origin and the local defining function of 2,
is defined by an equation p,- of the normal form as in (2.1) with p,+ also depending C** on
p*. Then we proceed the same way as above to trace the dependence on p* for each quality
to obtain the following statement:

There are small positive numbers 6, € such that for any p* ~ p and any extremal disk ¢ of
D such that when |p(§) — p*| < € for each £ € A we have for any z € 0D with |p — z| < ¢,

|(©"(€))znor | < C* (0, P)(#'(€)) 2,tan (2.11)

with C' independent of ¢ and p*. Here n(p,p*) = maxeea |¢(§) — p*|. Now, when the ex-
tremal disk ¢ is sufficiently close to p, by picking p* = ¢(1), since n(p,p*) ~ diam(p) =
maxe, ¢, |¢(&1) — #(&2)|, we see that in Theorem 1.1, we can replace 1(y) by diam(y). By using
the Lebesque covering lemma, we then have the following;:
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Theorem 2.2. Let Q C C* be a bounded strongly pseudoconvex domain with a C*%-smooth
boundary, where o € (0,1]. Then there is a positive number ¢ with 0 < £(p) < 1, such that
for any extremal map ¢ of D when diam(yp) < € it holds that

(&' (€))nor| < Cdiam®()|('(E))tanl, ¥ € € A.

Here C' is a constant independent of € € A and .

However, I do not know the answer to the following conjecture, which asserts that an
extremal disk wandering around the boundary should be a small disks:

Conjecture 2.3. Let D be a bounded strongly pseudoconvex domain with a C*“-smooth bound-
ary. Then for any d > 0 there is a small number € such that for any extremal disk ¢ of D, if
maxeea dist(¢(§), 0D) < €, then we must have diam(yp) < 4.

Remark B: Once Theorem 1.1 is proved, the existence part of [Theorem 3, Hua2] also
holds with the domain D being just assumed to be C*®-smooth for a € (0,1). However,
the uniqueness part which was only discussed much later in [HW] only holds for the bounded
strongly convex domain D being C** smooth for @ > 1/2. [Theorem 1, Hua2| also holds for
the domain D there to be C*®-smooth.
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