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Abstract

We extend an earlier result obtained by author in [Hua2].

1 Introduction

Let D be a bounded domain in Cn+1 with n ≥ 1. An extremal map φ of D is a holomorphic

map from the unit disk ∆ := {ξ ∈ C : |ξ| < 1} into D such that the Kobayashi metric of D

at φ(0) along the direction φ′(0) is realized by φ. We say φ is a complex geodesic if it realizes

the Kobayashi distance between any two points in φ(∆) ([Ab2]).

Fundamental work on extremal maps and complex geodesics has been done in the earlier

1980s by Lempert [Lem1-2], Poletsky [Pol], Abate[Ab], etc. Among many other things, Lem-

pert showed that extremal maps of a bounded strongly convex domain with a C2,α-smooth

boundary are complex geodesics. Poletsky [Pol] showed that extremal maps of a bounded

pseudo-convex domain with a reasonably smooth boundary, say C1-smooth, are almost proper.

Both Lempert [Lem1] and Poletsky [Pol] derived the Euler-Lagrange equations for extremal

maps in their considerations. In his paper in the earlier 1990s [Hua1] [Hua2], motivated by
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the Abate-Vensentini problem on establishing the Wolff-Denjoy iteration theory for bounded

contractible strongly pseudo-convex domains, the author proved two localization theorems for

extremal maps of pseudoconvex domains near a C3-smooth strongly pseudoconvex point, which

was fundamentally used to resolving the Abate-Vensentini conjecture in [Hua2]. These local-

ization results have also found many other applications later, e.g., in solving the homogeneous

Monge-Ampére equstions with a prescribed boundary singularity. (See [BP][BPT][HW].)

In this note, we extend the non-degeneracy property obtained in [Hua2] to a strongly

psuedoconvex point with only C2,α-regularity for α ∈ (0, 1].

Before stating our result, we need to introduce some notations. Let D be a bounded domain

with a C2-smooth boundary near p ∈ ∂D. For any point z ∈ D near p, we have a unique

boundary point of D near p, denoted by π(z) such that |z−π(z)| is precisely the distance from

z to ∂D. Then for any v ∈ T
(1,0)
z D, we use vtan and vnor to denote the tangential and complex

normal component of v at π(z), respectively. Namely, v = vtan + vnor with vtan ∈ T
(1,0)
π(z) ∂D

and vnor ⊥ vtan.

Theorem 1.1. Let D ⊂ Cn+1 be a bounded domain with p a C2,α-strongly pseudoconvex

boundary point of D, where α ∈ (0, 1]. Then there are two positive numbers ε(p) and δ(p) with

0 < ε(p) < δ(p) << 1 such that for any p∗ ∈ ∂Ω with |p∗− p| < ε(p) and for any extremal disk

ϕ of D with |ϕ(ξ) − p| < δ(p) for any ξ ∈ ∆ it holds that

|(ϕ′(ξ))nor| ≤ Cηα(ϕ, p∗)|(ϕ′(ξ))tan| ∀ ξ ∈ ∆.

Here η(ϕ, p∗) := maxξ∈∆ |ϕ(ξ) − p∗|, C is a constant independent of ξ ∈ ∆, p∗ and ϕ.

Theorem 1.1 was proved in [Hua2] when α = 1. Our proof here is very similar to that

in [Hua2]. If we make the ϕ in Theorem 1.1 sufficiently small such that |ϕ(ξ) − p| < ε(p)

for ξ ∈ ∆ and apply Theorem 1.1 with p∗ = ϕ(1), noticing that we now have η(ϕ, ϕ(1)) ≈
diam(ϕ) := maxξ1,ξ2∈∆ |ϕ(ξ1) − ϕ(ξ2)|, we arrive at the following:

Corollary 1.2. Let D ⊂ Cn+1 be a bounded domain with p being a C2,α-strongly pseudoconvex

boundary point of D, where α ∈ (0, 1]. Then there is a small positive number ε(p) such that

for any extremal map ϕ of D with |ϕ(ξ) − p| < ε(p) for any ξ ∈ D

|(ϕ′(ξ))nor| ≤ Cdiamα(ϕ)(ϕ′(ξ))tan| ∀ ξ ∈ ∆.

Here C is a constant independent of ξ ∈ ∆ and ϕ.
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2 Proof of Theorem 1.1

We basically follow the argument presented in [Hua2]. We include enough details to facilitate

a reader’s reading.

Let D be a bounded domain in Cn+1 with p ∈ ∂D a C2,α-smooth boundary. Here, 0 < α ≤
1. Namely, there is an open neighborhood U of p ∈ Cn+1 and a C2,α-smooth function ρ over U

such that D∩U = {ρ < 0} and dρ|∂D∩U 6= 0. For instance, when α = 1, we require any second

derivative of ρ is Lipschitz continuous over U . Since there is a strongly convex subdomain of

Ω (after a biholomorphic change of coordinates) which shares a piece of boundary near p with

D, by the monotonicity property of Kobayashi metrics we conclude that there exists a small

neighborhood Up of p in Cn+1 such that any extremal map ϕ of D with ϕ(∆) ⊂ Up is a complex

geodesic of Ω. Moreover ϕ satisfies the Euler-Langrange equation in the sense of Lempert-

Polestky. Namely, there exist a p(ξ) ∈ C1,α−(∂∆) with p(ξ) > 0 such that ϕ̃ = ξp(ξ)ν(ϕ(ξ))

extends to a holomorphic map over ∆ with ϕ̃ ∈ C1,α−(∆). Here ν(q) is the outward unit

vector of ∂Ω at q; C1,α−(∆) = C1,α(∆) for α ∈ (0, 1) and C1,1−(∆) =
⋂

α∈(0,1) C1,α(∆). Now,

shrinking Up if needed, for any p∗ ≈ p, we have a quadratic holomorphic polynomial change

of coordinates Ψ(·; p∗) defined over Up that maps p to 0 and Mp∗ = Ψ(∂Ω ∩ Up; p
∗) near 0 is

defined by an equation of the form:

ρp∗ = zn+1 + zn+1 +
n∑

j=1

|zj|2 + o(|z|2). (2.1)

Here ρp∗ depends C2,α-smoothly on p∗ ≈ p.

The unit outer normal vector in the normal coordinates as in (2.1) is given by νp∗ =

(ν1, · · · , νn+1) with νj =

∂ρp∗
∂zj

|∇zρ| along M for j = 1, · · · , n + 1. Hence, νj = zj + o(|z|), j =

1, · · · , n, νn+1 = 1 + o(|z|). The Webster surface W of M near p = 0 is given by

W = {w = (z, ω) ∈ C2n+1 : z ∈ M, z ' 0},

and ω = ( ν1(z)
νn+1(z)

, · · · , νn(z)
νn+1

(z)) or w = (z′, iyn+1, z
′) + o(|z|). Then TpW at p = 0 is spanned

by T1,r, · · · , Tn,r, Tn+1, T1,i, · · · , Tn,i where

Tj,r = (0, · · · , 0, 1, · · · , 1, 0, · · · , 0), Tj,i = (0, · · · , 0, i, · · · ,−i, 0, · · · , 0).
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Write

A0 =




T1,r

...

Tn+1

...

Tn,i




=




In 0 In

0 i 0

iIn 0 −iIn


 . (2.2)

For ξ ∈ ∂∆, we have

Φ = (ϕ(ξ), ϕ∗(ξ)) =

(
ϕ(ξ),

v1(ϕ)

vn+1(ϕ)
, · · · ,

vn(ϕ)

vn+1(ϕ)

)
.

Replacing ϕ by ϕ ◦ σ for a suitable σ ∈ Aut(∆) such that ϕ∗ has only a simple pole at 0.

Write ϕ∗ = ϕ∗∗
ξ

. Then

ϕ∗∗(0) =
1

2π

∫ 2π

0

ϕ∗(eiθ)dθ = O(‖ϕ‖C0).

where ‖ϕ‖C0 := sup∆ |ϕ(ξ)| = supξ∈∂∆ |ϕ(ξ)|. Write W ∗ = W · A−1
0 = {w · A−1

0 : w ∈ W}
which is a C1,α-regular totally real submaifold in C2n+1 near the origin. Then W ∗ is defined

near 0 by Y = H(X) with X + iY ∈ C2n+1 where H(0) = 0, d0H = 0 and H is C1,α-smooth

near 0.

Consider the following Riemann-Hilbert problem:

{ Im{Q(X) · (I + i∂H
∂X

)−1(X)} = 0,

Re(Q(X)(0)) = I2n+1.
(2.3)

where X ∈ C
1
2 (∂∆), Q(X)(·) is a (2n + 1) × (2n + 1) holomorphic matrix in ∆ depending on

X belonging to the Hardy space H4(∆), which thus has L4-integrable boundary value. Write

X = (X1, · · · , X2n+1) and H = (h1, · · · , h2n+1). Then

∂H

∂X
=




∂h1

∂X1
· · · ∂h2n+1

∂X1

· · · · · · · · ·
∂h1

∂X2n+1
· · · ∂h2n+1

∂X2n+1


 .

For 0 < ε ¿ 1, we write

Bε = {X(ξ) ∈ C
1
2 (∂∆) : ‖X‖

C
1
2

< ε}.
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For X∗
0 ∈ R2n+1 with |X∗

0 | ≤ 1
2
ε, we write Bε(X

∗
0 ) = X∗

0 + Bε. In what follows, for each

X ∈ Bε(X
∗
0 ), we write X = X∗

0 + X̂ with X̂ ∈ Bε.

Write Q = q1 + iq2,
(
I + i∂H

∂X

)−1 ◦X = e1(X)+ ie2(X). Then ‖e1(X)−I‖
C

α
2
, ‖e2(X)‖

C
α
2

<
∼

Cεα for X ∈ Bε(X
∗
0 ) with ε ¿ 1. Here and in what follows, C stands for a constant,

independent of ξ, X∗
0 and X that may be different in different contexts. Write S for the

standard Hilbert transform with u + iS(u) having a holomorphic extension to an element in

the Hardy space H4(∆) whose imaginary part has 0 value at 0 for any u ∈ L4(∂∆). Then

q1 = −S(q2)+I. Notice that S is a bounded self-operator acting both on L4(∂∆) and C
α
2 (∂∆).

Hence (2.3) is reduced to

q2(X) − S(q2(X))h(X) = h(X). (2.4)

Here h(X) = −(e2 · e−1
1 ) ◦X. Notice that the solution of (2.4) is h(X∗

0 ) when X = X∗
0 , for the

Hilbert transform maps a constant function to 0. Now for X ∈ Bε(X
∗
0 ) with 0 < ε ¿ 1, we

can also solve uniquely (2.4) to get q2 and thus Q in the C
α
2 (∂∆)-space with

‖q2(X) − h(X∗
0 )‖

C
α
2
≤ C‖X̂‖α

C
1
2
.

This is because ‖h(X̂)‖
C

α
2

<
∼
‖X̂‖α

C
1
2
. If X ∈ C

1
2 (∂∆) only with ‖X‖C0 ¿ 1 we can still solve

(2.4) in the L4(∂∆)-space to get q2(X) with the estimate ‖q2(X)− q2(X
∗
0 )‖L4 ≤ C‖X̂‖α

C0 . By

the uniqueness, when ε << 1, these two solutions are the same. We can similarly consider the

Riemann-Hilbert problem: { Im{(I + i∂H
∂X

)Q̂(X)} = 0

Re(Q̂(X)(0)) = I2n+1.
(2.5)

We similarly solve it in the H4(∆)-space when X ∈ C
1
2 (∆) with ‖X‖C0 ¿ 1. We can also solve

it in the C
α
2 (∆)-space when X ∈ Bε(X

∗
0 ) with 0 < ε ¿ 1. Notice that Im(Q(X)Q̂(X)) = 0.

Since Q(X)Q̂(X) ∈ H2(∆). Then by applying the reflection principle, one easily sees that it

is a constant invertible matrix depending on X. Hence, we have

Q−1(X) = C∗−1(X)Q̂(X)

with C∗ = Q(X)(0)Q̂(X)(0) ≈ I for X ∈ C
1
2 (∂∆) and ‖X‖C0 << 1. Indeed, |C∗ − I| <

∼
C‖X‖α

C0 when ‖X‖C0 ¿ 1. Summarizing the above, we have
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Proposition 2.1. Let X ∈ C
1
2 (∂∆). When ‖X‖C0 is sufficiently small, (2.3) can be uniquely

solved with Q(X) ∈ H4(∆),

‖Q(X) − (I + ih(X∗
0 )) ‖L4(∂∆) ≤ C‖X̂‖α

C0 , ‖Q−1(X) − (I + ih(X∗
0 ))−1 ‖L4(∂∆) ≤ C‖X̂‖α

C0 .

When X ∈ Bε(X
∗
0 ) with 0 < ε ¿ 1, (2.3) can be solved uniquely with Q ∈ C

α
2 (∆) with

‖Q(X) − (I + ih(X∗
0 )) ‖

C
α
2
, ‖Q−1(X) − (I + ih(X∗

0 ))−1 ‖
C

α
2
≤ Cεα.

These two solutions are the same for ε << 1.

Now, back to our extremal map ϕ, we write

Φ∗ = Φ · A−1
0 = X + iY

along ∂∆. Notice that X,Y ∈ C1,α(∂∆) with ‖X‖C0(∆) << 1. Then since Φ∗ is attached to

W ∗, we get Y = H(X) along ∂∆ and we have

dΦ∗

dθ
=

dX

dθ
+ i

dY

dθ
=

dX

dθ
(I2n+1 + i

∂H

∂X
)

or

Im

{
dΦ∗

dθ
(I2n+1 + i

∂H

∂X
)−1

}
= Im

dX

dθ
= 0.

Hence

Im

{
dΦ∗

dθ
·Q−1(X) ·Q(X)(I2n+1 + i

∂H

∂X
)−1

}
= 0

or

Im

{
dΦ∗

dθ
·Q−1(X)

}
= 0

along ∂∆. Since dΦ∗
dθ

= dΦ∗
dξ

· iξ and Q,Q−1 ∈ H4(∆), we obtain by the reflection principle that

ξ
dΦ∗

dξ
Q−1(X)(ξ) =

α(X)

ξ
− α(X)ξ + iβ(X). (2.6)

Here,

α(X) = lim
ξ→0

ξ2dΦ∗

dξ
Q−1(X)(ξ) = (0,−ϕ∗∗(0))A−1

0 Q−1(X)(0).
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Write R(X)(ξ) = Q(X)(ξ)(I2n+1 + i∂H
∂X

)−1, γ = −ϕ∗∗(0) = O(|X∗
0 | + ‖X̂‖). Notice that

dΦ∗

dθ
Q−1(X)(ξ) =

dX

dθ
R−1(X).

We get the following equation for X from (2.6)

dX

dθ
= i(

α(X)

ξ
− α(X)ξ + iβ(X))R(X)(ξ), ξ = eiθ. (2.7)

Note that ∫ 2π

0

R(X)dθ = 2π + O(‖X̂‖α
C0)

and β is determined by
∫ 2π

0
dX
dθ

dθ = 0 or

β =
i
∫ 2π

0
(a(X)

ξ
− α(X)ξ)R(X)(ξ)dθ

∫ 2π

0
R(X)(eiθ)dθ

.

By the formula for α and β, we have

|α(X) − α(X∗
0 )|, |β(X) − β(X∗

0 )| ≤ C‖X̂‖C0 .

Denote X(1) = X0. Then (2.7) can be written as

X(eiθ) = i

∫ θ

0

(
α(X)

ξ
− α(X)ξ + iβ(X))R(X)(eiθ)dθ + X0 (2.8)

with |α(X)|, |β(X)| ≤ C‖X‖C0 , ‖R(X) − I‖L2(∂∆)| <
∼
‖R(X) − I‖L4(∂∆) ≤ C‖X‖α

C0 . By the

Hölder inequality, we get

|X̂(eiθ1) − X̂(eiθ2)| ≤
∫ θ2

θ1

|(α(X)

ξ
− α(X)ξ + iβ(X))R(X)(ξ)|dθ

≤ C‖X‖C0

∫ θ2

θ1

|R(X)|dθ

≤ C‖X‖C0(∂∆)|θ2 − θ1| 12‖R(X)‖L2(∂∆)

≤ C‖X‖α
C0|θ2 − θ1| 12 .

Also, |X(eiθ)| ≤ |X0| + ‖X‖C0 ≤ 2‖X‖C0(∂∆). We thus get

‖X̂‖
C

1
2 (∂∆)

≤ C‖X̂‖α
C0
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with C independent of X when ‖X‖C0 ¿ 1. Hence, for any 0 < ε ¿ 1, when ‖X‖C0 is

sufficiently small, X ∈ Bε. Thus by Proposition 2.1,

‖Q(X) − I‖
C

α
2
≤ C‖X‖α

1
2
, ‖Q−1(X) − I‖

C
α
2
≤ C‖X‖α

1
2
, ‖R(X) − I‖

C
α
2
≤ C‖X‖α

1
2
.

With these estimates under our disposal, we can now complete the proof of Theorem 1.1 as

follows:

Proof. Let B0 be the (2n + 1) × (n + 1) matrix, formed by the first (n + 1)-columns of A0.

Namely,

B0 =




In 0

0 i

iIn 0


 .

Then ϕ(ξ) = Φ∗B0 and thus for ξ 6= 0,

ϕ′(ξ) = Φ∗′
ξ ·B =

(
a(X)

ξ2
− a(X) + iβ(X)

1

ξ

)
·Q(X)(ξ) ·B.

Write Q1(X) = Q(X) −Q(X)(0), Q2(X) = Q1(X) −Q′
ξ(X)(0)ξ. Then

ϕ′
ξ =

(
α

ξ2
Q2(X)(ξ) − α(X)Q(X)(ξ) + iβ

Q1(X)

ξ

)
·B

Since X ∈ Bε with ε ¿ 1 after making ‖ϕ‖C0 ¿ 1, by the Cauchy formula, we have

∥∥∥∥
Q2

ξ2

∥∥∥∥
C0(∆)

,

∥∥∥∥
Q1

ξ

∥∥∥∥
C0(∆)

= O(‖X‖α
C0)

as ‖X‖C0 → 0. Notice that

a(X) = (0, γ)A−1
0 + O(|γ|‖X‖α

C0), β = O(|γ|), γ = ϕ∗∗(0) 6= 0.

Hence, we get
1

|γ|ϕ
′
(ξ) = −

(
0,

γ

|γ|
)

A−1
0 × B + O(‖X‖α

C0).
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Write γ
|γ| = (b1, · · · , bn) with

∑ |bj|2 = 1. Also notice that

A−1
0 =




1
2
In 0 − i

2
In

0 −i 0
1
2
In 0 iIn

2
,




we get

1

|γ|ϕ
′(ξ) = −(0, γ)A−1

0

|γ| ×B0 + O(‖X̂‖α
C0)

= −(0, b)




1
2
In 0 i

2
In

0 i 0
1
2
In 0 −iIn

2







In 0

0 i

iIn 0


 + O(‖X‖α

C0(∂∆))

= −(b, 0) + O(‖X̂‖α
C0(∂∆)).

or ϕ′
n+1(ξ) = O(|γ|‖X‖α

C0(∂∆)), (ϕ′
1(ξ), · · · , ϕ′

n(ξ)) = −b|γ| + O(‖X‖α
C0|γ|). We see that

|ϕ′
n+1(ξ)|

|(ϕ′
1(ξ), · · · , ϕ′

n(ξ))| ≤ C‖X̂‖α
C0 for any ξ ∈ ∆

with C independent of ϕ. Notice that ‖X̂‖C0(∂∆) ≈ η(ϕ, p∗) = maxξ |ϕ(ξ) − p∗|.
Next for any vector χ(∈ Cn+1) = (χ′, χn+1) 6= 0 and for any z ∈ ∂Ω with |z| < kη(ϕ)

for a fixed positive integer k, the orthogonal projection of χ to the orthogonal complement of

T
(1,0)
z ∂Ω is denoted and given by χz,nor = χ·ν(z)ν(z). Here ν(z) =

∂ρ
∂z

|∇zρ| = (0, · · · , 0, 1)+O(|z|).
The orthogonal projection of χ to T

(1,0)
z ∂Ω is denoted and given by χz,tan = χ − χz,nor.

Now assume that |χn+1| ≤ Cη(ϕ)α‖χ′‖. Then |χz,nor| = |χn+1| + O(|z||χ|) and |χz,tan| =

|χ′|+ O(|χ||z|) = |χ′|(1 + O(|z|). Hence |χz,nor|
|χz,tan| = |χn+1|

|χ′| + O(|z|) <
∼

η(ϕ)α. We thus derive that

for any z ∈ ∂D with |z| < kη(ϕ) and for any ξ ∈ ∆

|(ϕ′(ξ))z,nor| ≤ Ckη
α(ϕ)|(ϕ′(ξ))z,tan| (2.9)

in the normal coordinate (2.1). In particular, letting k = 1, we arrive

|(ϕ′(ξ))nor| ≤ Cηα(ϕ)|(ϕ′(ξ))tan|.

To verify the estimate in (2.9) is also valid after a holomorphic change of coordinates. Let

w = F (z) be a biholomorphic map from a neighborhood Up of p = 0 to a neighborhood of
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p̃ ∈ Cn+1 sending Ω ∩ Up to Ω̃ ∩ Ũ and F (p) = p̃. Let ϕ be a proper holomorphic embed-

ding from ∆ into Ω ∩ Up with ϕ(∆) ≈ p such that for any z ∈ ∂Ω with |z − p| ≤ kη(ϕ),

|(ϕ′(ξ))z,nor| ≤ Ckη
α(ϕ)|(ϕ′(ξ))z,tan|. Let ψ = F ◦ϕ. Then ψ′(ξ) = ϕ′(ξ)∂w

∂z
. Write the orthog-

onal decomposition ϕ′(ξ) = (ϕ′(ξ))z,tan + (ϕ′(ξ))z,nor. Then F∗(ϕ′(ξ)) = (ϕ′(ξ))z,tan
∂w
∂z

(ϕ(ξ)) +

(ϕ′(ξ))z,nor
∂w
∂z

(ϕ(ξ)) = (ϕ′(ξ))z,tan
∂w
∂z

(z) + (ϕ′(ξ))z,nor
∂w
∂z

(z) + |ϕ′(ξ)| · O(|z − p|). By the Hopf

lemma, we can write (ϕ′(ξ))z,nor
∂w
∂z

(z) = aw,tan + aw,nor with aw,tan ∈ T
(1,0)
w ∂D̃ and aw,nor 6= 0

along the normal direction of ∂D̃ at w = F (z). Notice that |aw,nor|, |aw,tan| ≤ Ck|(ϕ′(ξ))z,nor| ≤
Ckη

α(ϕ)|(ϕ′(ξ))z,tan|.
Hence |F∗(ϕ′(ξ))w,nor|

|F∗(ϕ′(ξ))w,tan| =
|aw,nor + ϕ′(ξ)O(|z − p|)|

|(φ′(ξ))z,tan
∂w
∂z

(z) + aw,tan + ϕ′(ξ)O(|z − p|)| .

Notice that |(ϕ′(ξ))z,tan
∂w
∂z

(z) + aw,tan + ϕ′(ξ)O(|z − p|)| <
∼

Ck|(ϕ′(ξ))z,tan|(1 + ηα(ϕ)) and

|aw,nor|
|(φ′(ξ))z,tan| ≤ Ckη

α(ϕ). We easily conclude that |F∗(φ′(ξ))w,nor|
|F∗(φ′(ξ))w,tan| ≤ Ckη

α(ϕ). Now we choose k

such that maxξ∈∆ |ψ(ξ) − p̃| ≤ k
2
η(ϕ). Then we conclude that there is an 0 < ε(p̃) << 1 such

that when |ψ − p̃| < ε(p̃) and for any w ∈ ∂Ω̃ with |w − p̃| < 2η(ψ), it holds

|(ψ′(ξ))z,nor| ≤ Cηα(ψ)|(ψ′(ξ))z,tan|. (2.10)

This, in particular, completes the proof of our theorem.

Remark A: Let p∗(≈ p) ∈ ∂Ω. We choose a holomorphic change of coordinates which

depends C2,α on p∗ such that p∗ is mapped to the origin and the local defining function of Ωp∗

is defined by an equation ρp∗ of the normal form as in (2.1) with ρp∗ also depending C2,α on

p∗. Then we proceed the same way as above to trace the dependence on p∗ for each quality

to obtain the following statement:

There are small positive numbers δ, ε such that for any p∗ ≈ p and any extremal disk ϕ of

D such that when |ϕ(ξ) − p∗| < ε for each ξ ∈ ∆ we have for any z ∈ ∂D with |p− z| < δ,

|(ϕ′(ξ))z,nor| ≤ Cηα(ϕ, p∗)|(ϕ′(ξ))z,tan| (2.11)

with C independent of φ and p∗. Here η(ϕ, p∗) = maxξ∈∆ |ϕ(ξ) − p∗|. Now, when the ex-

tremal disk φ is sufficiently close to p, by picking p∗ = φ(1), since η(ϕ, p∗) ≈ diam(ϕ) :=

maxξ1,ξ2 |φ(ξ1)−φ(ξ2)|, we see that in Theorem 1.1, we can replace η(ϕ) by diam(ϕ). By using

the Lebesque covering lemma, we then have the following:
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Theorem 2.2. Let Ω ⊂ Cn+1 be a bounded strongly pseudoconvex domain with a C2,α-smooth

boundary, where α ∈ (0, 1]. Then there is a positive number ε with 0 < ε(p) ¿ 1, such that

for any extremal map ϕ of D when diam(ϕ) < ε it holds that

|(ϕ′(ξ))nor| ≤ Cdiamα(ϕ)|(ϕ′(ξ))tan|, ∀ ξ ∈ ∆.

Here C is a constant independent of ξ ∈ ∆ and ϕ.

However, I do not know the answer to the following conjecture, which asserts that an

extremal disk wandering around the boundary should be a small disks:

Conjecture 2.3. Let D be a bounded strongly pseudoconvex domain with a C2,α-smooth bound-

ary. Then for any δ > 0 there is a small number ε such that for any extremal disk ϕ of D, if

maxξ∈∆ dist(ϕ(ξ), ∂D) < ε, then we must have diam(ϕ) < δ.

Remark B: Once Theorem 1.1 is proved, the existence part of [Theorem 3, Hua2] also

holds with the domain D being just assumed to be C2,α-smooth for α ∈ (0, 1). However,

the uniqueness part which was only discussed much later in [HW] only holds for the bounded

strongly convex domain D being C2,α smooth for α > 1/2. [Theorem 1, Hua2] also holds for

the domain D there to be C2,α-smooth.
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