EULER CHARACTERISTICS OF TAUTOLOGICAL BUNDLES OVER QUOT
SCHEMES OF CURVES

DRAGOS OPREA AND SHUBHAM SINHA

ABSTRACT. We compute the Euler characteristics of tautological vector bundles and their exterior
powers over the Quot schemes of curves. We give closed-form expressions over punctual Quot schemes
in all genera. For higher rank quotients of a trivial vector bundle, we obtain answers in genus 0. We
also study the Euler characteristics of the symmetric powers of the tautological bundles, for rank 0
quotients.

1. INTRODUCTION

In this paper, we prove several closed-form expressions for the holomorphic Euler characteristics of

tautological vector bundles and their exterior and symmetric powers over the Quot schemes of curves.

1.1. Punctual Quot schemes. To set the stage, let £ — C be a locally free sheaf over a smooth
projective curve C. Let Quoty(E) denote the Quot scheme parameterizing rank 0 degree d quotients of
E:
0—-S—F—>Q—0, rank @=0, deg@=4d.
It is easy to see that Quoty(E) is smooth of dimension Nd where N = rank E.
We write
0->S—=>p'E—-Q—0

for the universal exact sequence over C' X Quoty(E), and we let p and 7 denote the two projections over
the factors of C' x Quoty(F). For any line bundle L — C, there is an induced tautological rank d vector

bundle over Quoty(E) given by
(1) M =n(p'L® Q).

We first study the holomorphic Euler characteristics of all exterior powers A*LI4. To this end, for

any vector bundle V', we set
NyV = Z y* ARV
k
We show

Theorem 1. Let E — C be a vector bundle over a smooth projective curve, and let L — C be a line
bundle. Then

S ¢ x(Quoty(E), Ay L) = (1 — q)X(O) (1 4 gy)x(FeD),
d=0

1
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The same methods will establish a slightly stronger result:

Theorem 2. For any line bundles My, Ms, ..., M, and L over C, where 0 <r < N — 1, we have

> a'x (Quota(E), A, L @ (A, MIT)Y) = (1= q)X(O) (14 gy)XE0) [T (1 = quyg) S0,
d=0 i=1

Our proofs rely on universality arguments in the spirit of [EGL] to reduce to the case of genus 0,
and equivariant localization in genus 0. These are well-established techniques. In general however, the
ensuing localization sums are not immediately expressed in closed form. Here, we show how to overcome
the combinatorial difficulties by using Lagrange-Biirmann inversion and considerations involving Schur
polynomials and Jacobi-Trudi determinants. These lead to drastic simplifications of the answers.

In a similar context, the prior work [MO1] also makes use of localization techniques to calculate a
large part of the intersection theory of Quot schemes of curves (for quotients of arbitrary ranks of a
trivial vector bundle), in particular to derive and extend the Vafa-Intriligator formula. The current K-
theoretic setup requires that we handle the localization sums differently. We believe that the simplicity

of the final formulas makes the calculations worthwhile to be recorded.

1.2. Analogies with surfaces. Theorems 1 and 2 suggest an unexpected analogy between Quot,(E)
and the Hilbert scheme of points X! over a smooth projective surface X. Specifically, Theorem 1 can

be compared with the calculations of [A1l, Da, Scl]:
D g (X A, L) = (1= ¢) (O (14 gy)¥B).
d=0

This is proved in [Scl] by passing to the derived category and computing the image of A* L9 under the
Bridgeland-King-Reid equivalence

D"(x!¥) ~ DY, (X%

established in [BKR, H]. The same result is obtained by studying different equivariant limits in the
Donaldson-Thomas theory of toric Calabi-Yau 3-folds in [A1].
In the same vein, Theorem 2 when r = 1 mirrors the following result of [WZ] and its strengthening

by [K1]:
St (X AL @ (ha M) ) = (1= g) O+ g P (14 qep MO (1 gay) XM,
d=0

While the latter equality is conjectured to hold in all dimensions > 2, it was noted in [K1] that the naive
analogue for symmetric products of curves fails. Theorem 2 can be viewed as a remedy: a similar but
different formula holds for curves, and only when N > 2. Theorem 2 furthermore allows for multiple

dualized factors.
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1.3. Higher rank. Turning to higher rank quotients, while we do not obtain a closed-form expression
for the corresponding generating series, our techniques yield the result below. We restrict to the case
C = P!, and E a trivial rank N vector bundle. The Quot scheme Quot,(E,r) parametrizes short exact
sequences
0—-S—-FEF—>Q—0, rank@Q=r, degQ =d.
In higher rank, we modify (1) setting
L = R7, (p"L® Q) — R'm, (p"L ® Q),

where p and 7 continue to denote the projections over C' x Quoty(E, 1), and Q stands for the universal

quotient.
Theorem 3. Let degL =/¢ and 0 <r < N. We have
det( (2
 (Quoty (B, )., L) = (~1)v=r-v [qr) SULz))
det(z; ~7)
In the numerator (f;(z;)) is the N x N matriz with
) ZAFd+N=it+l if1<i<N-—7r
il\Z) = ; ) .
N+ )t fN-r+1<i<N
and z1,...,zn are the distinct roots of the equation (z — 1) — q(z +y)z"~' = 0. The denominator is

the Vandermonde determinant.

In the statement above, the brackets indicate taking the coefficient of the corresponding power of q.
In Corollary 15 of Section 4, we note a connection between y (Quotd(E, r), det L[d]) and Schur poly-

nomials. We also work out several specializations of the corresponding formula.

1.4. Symmetric products. For rank zero quotients, we similarly study the series of symmetric powers
of the tautological bundles

o)

> a'x (QUOtd(E)v SymyL[d]> :

d=0
Here, for any vector bundle V', we write

Sym,V = Z y* Sym*V.
k=0
Theorem 4. For C =P! and d > k, we have

v (Quoty(B), Sym* L) = <X(E QL) +k— 1>.

k

The answer is independent of d > k. The question was also studied over Hilbert schemes of points on
surfaces [A1, Sc2]. Just as for exterior powers, the analogy with the Hilbert scheme of surfaces persists
here as well. Indeed, the following result was established in [A1] via the Donaldson-Thomas theory of

toric Calabi-Yau 3-folds

(d] kra) _ (X(D)+ k=1
x(X ,Sym™L ) ( i ,
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whenever d > k and x(Ox) = 1.
Theorem 12 in Section 3 gives a more general result than Theorem 4 above, covering the case d < k
as well.

In arbitrary genus, universality arguments as in [EGL] show that the factorization
o0
W=> g’ (Quotd(E), SymyL[d]> = Ax(©c) . gx(Eel)
d=0

holds true, for two universal power series A,B € Q(y)[[¢]] that depend on the triple (C, E, L) only
through the rank N of E. Our results give precise information about the series B. While we can

determine A in principle, we do not have a closed-form expression.

=1 (=)

where f(z) is the solution to the equation

JEN = FNT 2 =0, f(0)=1.

Theorem 5. We have

For instance, in the special case N = 2, we obtain
4 1 vV
flz) =1+ 3 sinh? (3 arcsinh <3 23Z>> .

In the last section, we raise a few questions related to the results in this paper.

1.5. Previous work. Several aspects of the geometry of the punctual Quot schemes Quoty(E) are
already understood. Since it is difficult to be exhaustive here, we mention only a few selected results.
The Poincaré polynomials and the motives of Quoty(F) are computed in [Bi, BFP, C, R, Str], the
cohomology and stabilization phenomena are considered in [Mo], automorphisms and Torelli type results
are studied in [BDH, Gal, various cones of divisors are investigated in [GS, Str], positivity results for
the tautological vector bundles are obtained in [O], the cohomology of the tangent bundle is studied in
[BGS]. The punctual Quot schemes bear close connections to the moduli space of bundles over curves,
and in fact, the study of the Poincaré polynomials and motives of the latter can be undertaken in this
context [BD, BGL, HPL]. As alluded to above, the (virtual) intersection theory of Quot schemes (of
quotients of arbitrary rank) over curves was studied in a wider context, see [Berl, Ber2, MO1] (see also
[ST] for the Kontsevich compactification perspective). Furthermore, in this wider context, connections
with the intersection theory of the moduli of bundles were proven in [BDW, M, MO2].

Regarding the K-theory of Quot schemes, fewer direct calculations were available.! We note however
the work of [RZ] which connects certain holomorphic Euler characteristics of line bundles over certain

10ver surfaces, the virtual K-theory of the punctual Quot schemes Quoty(E) was thoroughly studied in [AJLOP,
Bo]. Via cosection localization to a canonical curve, these results can be used to compute certain twisted holomorphic

Euler characteristics of tautological bundles over the punctual Quot schemes. These calculations are indirect, and more
importantly, due to the aforementioned twists, the results of our paper are not accessible via these methods.
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Quot schemes (parametrizing rank 2 subbundles of a trivial high rank bundle) with the Verlinde numbers

over the moduli of rank 2 bundles, via a wallcrossing analysis as in [BDW, T].2

1.6. Acknowledgements. We thank Noah Arbesfeld, Patrick Girardet, Drew Johnson, Woonam Lim,
Alina Marian, Rahul Pandharipande and Ming Zhang for discussions related to K-theoretic invariants
of Quot and Hilbert schemes. The authors are supported by the NSF through grant DMS 1802228.

2. RANK ZERO QUOTIENTS AND EXTERIOR POWERS

In this section we prove Theorems 1 and 2. The proofs of the two theorems are similar. The

calculations for Theorem 1 are however simpler and already illustrate the main points.

2.1. Torus action. We first establish Theorem 1 when C = P! and E = O(a;) @ - -- ® O(an), and for
L such that
degL+a; +1>0
for all 7. The arbitrary genus case follows from here by universality arguments, see Section 2.6 below.
Under the above assumptions, we seek to show that

oo
@) >~ a"x(Quoty, A, LIT) = (1= q) 7! (14 qy) 0.

d=0
Here, for simplicity, we wrote Quot, instead of Quoty(FE).

We evaluate expression (2) via Hirzebruch-Riemann-Roch

X (Quotd, /\yL[d]) = / ch(Ay L9) Td (Quoty),
Q

uoty

and we use C*-equivariant localization to compute the integral.
To this end, we let C* act on F with weight —w; on the summand O(a;). This induces a C*-action

on Quoty. The fixed subbundles correspond to split inclusions

N N

S = @Kl(al) — K = @(’)(az)

i=1 i=1

Thus, the fixed loci are products of projective spaces
Fy=P" x ... x PV

for vectors d = (dy,...,dn) such that dy + --- + dy = d. The factor P?% corresponds to the Hilbert
scheme of d; points of P! parameterizing short exact sequences

0K, -0—=T,—=0

such that T; is a torsion sheaf of length d;.

2Tt is natural to ask whether the Euler characteristic X(/\dL[d]) given by Theorem 1 can be computed via wall-crossing,
say in rank 2 for simplicity. In principle, we are led to finding the Euler characteristics of certain higher rank twists of
the theta line bundles over the moduli space of semistable vector bundles, whose intersection theory is known. However,
obtaining exact formulas in this fashion seems combinatorially difficult.



6 DRAGOS OPREA AND SHUBHAM SINHA

There is a universal exact sequence
0=-Ki=-0—=T; =0
over the product P' x P% with the universal kernel given by
(3) Ki = Op1(—d;) ® Opa, (—1).

For future reference, we note that the universal exact sequence 0 =+ S — p*E — Q — 0 over P! x Quot,

restricts to P! x F 7 as

(4) 0= P Ki(a;) = O(ar) &+ & Oan) = P Tila:) = 0,
1€[N] i€[N]
where pullbacks from the factors are understood above. We also set [N] = {1,2,...,N}.
By Atiyah-Bott localization, we have

Td(QUOtd)

(5) X(Quoty, Ay L)y = 3~ [ ch(A, L) o (N
~(Ng

-~ F
|d|=d

Fa Fz

Here N ; denotes the normal bundle of the fixed locus F ;.

2.2. Explicit calculations. We proceed to calculate the expressions appearing in the localization sum
(5). In the next subsections, we record the Todd genera, the normal bundle contributions and the Chern

characters of the tautological bundles.

2.2.1. Todd Classes. By (4), the tangent bundle T'Quot; = Hom, (S, Q) restricts to
D . (K (~a) © Ti(ay)
,3€[N]

over the fixed locus Fy;= P x ... x PAv. Here 7 : Quoty; xP! — Quot, denotes the projection. In

K-theory, the above expression equals
P 7 (Ki(aj—a))— P 7 (K @K (a; —ai)).
i,J€[N] i,j€[N]
In this discussion 7, = R%7m, — Rl7,. Therefore the Todd class of Quot, restricted to each fixed locus is

-1

[T Td(m. (K (a; - a:)) [I Td@ (K @Kjla; —ai)

i,jE[N] i,JE[N], i#j

The above (i, j)-terms carry the weight w; — w;. The assumption ¢ # j in the second product can be

made since the term ¢ = j is trivial in genus 0.
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2.2.2. Equivariant normal bundles. Over each fixed locus, the normal bundle is given by the moving

part of the tangent bundle:

(6) Ng=1"%" LT P . (K (—a) ® Tiay))
i it
=P . (K (a; — ;) - P (KY @ Kj(a; — ai)),
i#j i#j

where we continue to keep track of the weights w; — w;. Therefore, we find the Euler classes

1 -1
- O (emm@-an) I e @ om-w).
N gelN), i iJEIN], i

Td(Quoty)

Collecting all expressions above, we obtain that over the fixed locus F 7 the factor = N
C d

in the

localization expression (5) restricts to

@ Trawen [T S(ewe-an) TS (n e o -).

e«
i€[N] i €[N, iAj © i, JEIN], i

2.2.3. Eaxplicit contributions. The terms in (7) can be made explicit. For the first term, recalling (3),

we immediately compute

hl‘ d;+1
m(K)) = €4 0 O0pu (1) = TAm () = (1 )

where h; is the hyperplane class on P% (by abuse of notation also pulled back to P% x - .. x P4V). The
equivariant weights vanish for this term. (This is the Todd genus of the projective space, as it should.)

Turning to the remaining terms, more generally, equation (3) straightforwardly yields
e(me (K (a5 — i) = (1 + hy) Bttt
c(me(KY @ Kj(aj —a;))) = (14 (hy — hy))hditamatt,
In the equivariant cohomology, recalling that the above sheaves carry the weight w; — w;, we obtain
(T (KY (a; — a;))) = (1 + (h; + wie — wje)) it =it
c(m(KY @ Kj(aj —a;))) = (1 + (h; + wie — hj — wje))di_dﬁ“j_“i“.

Here, € denotes the equivariant parameter. This implies the following expressions for the equivariant

Todd genera

hi + w;e — wje tajait
1— e*(hi+’uji67w]‘6)

Td(m, (Y (a; — a2)) = (

hi —+ w;€e — h]‘ — 11.)]‘6
1 — e~ (hitwie—h;—wje)

di—dj+a;—a;+1
T, (06! K0y~ a0)) = )
Similarly we obtain the Euler classes

ece (1o (K (aj — a;))) = (h; + wie — wje)hiTe—ot!

ec (o (KY @ Kj(a; — a;))) = (h; +wie — hj — wje)di_dﬁ“j_“”l.
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Simplification. All told, substituting the above expressions into (7) and cancelling terms, we obtain

dita;—a;+1 di—dj+a;—a;+1
Td(QUOtd) _ H hc,li'—"_l H Zi J Zi — Zj jT a5
‘ Zi — Q Zi

e€c+ (NJ) Fz{ lG[N] i,je[N]

(8)

i,J€[N], i#]

where we set for notational convenience

_ _hijtw;e
— e 2 K s

Z; o; = e™i€,

We rewrite this in a slightly more convenient form in terms of the polynomial
R(z) = [ (z—ay).
JE[N]
Combining the (7, ) and (j,i)-factors in the last product appearing in (8), and judiciously accounting
for the remaining terms, we eventually obtain

(9) M =-u- H ( hi‘ >di+1zg+1(m>ai+“1, H (zifzj)Q

eC*(NJ) F - iE[N] R(2l> jG[N](ZJ - i,jE[N],i<j

d
for the sign
u= (—1) N DS @t D)+(3)

The integer ¢ included in the above expression will be useful later on. For now, the value of ¢ plays no

role. Any ¢ will work since
11 R(z)
(2 — o)
2.2.4. Chern classes. For the remaining term in (5), we record the following

Lemma 6. The equivariant restrictions of the Chern characters of the tautological bundles to the fized

loci are given by

a;+£4+1 d;
1 WA L _ zi(ai +y) Zi +y
(10) h(r L) 3 1:[ <ai(zi +y) 2
14 o\ @4 ,
[d]\V — v N\di
(11) ch ((/\mM ) ) . 1:[ ( o zzx) (1+ zx)

where L and M are line bundles of degree £ and m respectively.

Proof. We only explain the first formula, the second assertion being entirely similar. We note that over

Fy= P% x ... x PN the bundle L9 splits as contributions coming from each factor

LM =7, (Q®p'L) = P 7 (T @ p*L(a)),
i€E[N]
with each summand acted on with C*-weight —w;. In K-theory, we have by (3) that
Ti =0 —K; = Oprypa; — Op1(—d;) K Opa, (—1).
This yields
T (Ti ® p*L(a;)) = C* T @ Opa, — CH 4 @ Opa, (—1).
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The result follows immediately from here, using that A, (V + W) = A,V - A,W and accounting for all

terms. 0

2.3. Proof of Theorem 1. With the above ingredients in place, the key steps of the argument are as

follows:

(i) after judiciously accounting for all localization terms, the fixed point contributions are summed
using the Lagrange-Biirmann formula;
(ii) next, the answer is recast as a quotient of suitable determinants. Schur polynomials evaluated
at the roots of a certain algebraic equation arise at this step;
(iii) finally, an application of the Jacobi-Trudi formula to the Schur polynomials greatly simplifies

the answer and gives the result.

To begin, we substitute equations (9) and (10) into the localization expression (5). We obtain that

x(Quotg, A, L) equals

e b GRS () () ()

i

Here, we wrote for simplicity
b =a; +/0+ 1.

The brackets indicate extracting the coefficient of h‘li1 . h‘JiVN in the relevant expression; this corresponds
to integration over the product of projective spaces F ; = P4 x ... x P, The equivariant parameter e
is set to 0 at the end.

The rest of this section is dedicated to the explicit combinatorial manipulations (i)-(iii) which bring
the above expression (12) into the form stated in Theorem 1. We first apply the multivariable Lagrange-
Biirmann formula [Ge]. The formulation we need in this case is as follows. Consider formal power series

®y(h1),...,Pn(hy) with ®;(0) # 0, and consider a power series ¥(hy,...,hy). We have

(13) St gl [l ] (@)t O ) - U, ) =
(dy,....,dn)

for the change of variables

h;
q; = &, (h)
with Jacobian
_dayday
dhy dhyn'

This formula will be used to derive equation (18) below. The intermediate calculations are straightfor-

ward; nonetheless, we record the details for completeness.
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Set
hi zi+vy
(I)i hi = )
and let 1 b
B (E22) ) e
=u % T (2 — o)) ' S
H (az (2 +y) Zi b ) E< ’

be determined by the remaining terms in (12).> Due to the factor z; — o; in R(z;) which has a simple

zero at h; = 0, we have ®,(0) # 0. We apply (13) with
qgr=...=4nNn = (.
Thus, letting z; be the root of the equation
a(z +y) = zR(z), Zi’q:o =y,
and letting h; be determined by z; = a;e", we have ¢ = T (h - It follows from (12) and (13) that
% (Quotd7/\yL[d]) = [qd] Wi (h1(q),...,hn(q)) -
Equivalently, x (Quotd, /\yL[d]) equals

wo W EER) () G (s ) T

(% i<j

e=0

Consider the polynomial
(15) P(z) = 2zR(z) — q(z + y).

Note that P has degree N + 1, so it admits NV + 1 roots, with z1,...,2y being N of them. Let zny11
be the additional root of P which satisfies

ZN+1 ‘q:O =0.

We will greatly simplify (14) using the additional root zy41.

To this end, write P(2) = (z — 2z1) -+ (2 — zy+1). A simple calculation gives

dq dg dz; dq Z

1 = . = = P'(z).

Here, we used that
_ ziR(%) . dg _ R(z)  zR(z) zR(z) _ Pl(z)

2z +y dz;  z+y 2ty (zi+y)? zity’

where the definition of P was necessary in the last equality. The terms in (14) with exponent b; further

simplify since

st yRE) v ve - )

7
() (Zz+y)H 1(zj — ) &i

= (s +y)ziR(2z) = — (2 +y)P()

4+1 as an independent parameter, foregoing for the

d+1

3In the expression ¥, we regard the exponent d in the term z;

moment the requirement that d = d; +...+dpy. The careful reader may wish to replace the term z; by a more general

f+1 for e > d in the proof below. This leads to (21) written instead for the partition A\, = (e, ) or (k—N,(e+1)N).
One then specializes back to the case of interest e = d and continues by applying Lemma 7.
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where the last identity holds true using (15) and the fact that P(z;) = 0, R(c;) = 0. Substituting
identities (16) and (17) into (14), we obtain the expression

A NI LA
as) [qd]u)(mdﬂ(l *) ] )

) (5. ’
i=1 @ Pe)  cidien =0
Having arrived at (18), a new idea is needed to go further. Note that
N N N+1 N Vv
/ _ PR— . —_— . p— . —_ N
[[PE=111G-2 = s 1 @-2=g
i=1 i=1 j=1 i=1 1<i#j<N
J#i
Here, we introduced the two Vandermonde determinants
z{v_l ez 1 AN 21 1
zé\f*l ez 1 AN 22 1
V=1 . . V=
N 1 N anar 1
We thus rewrite expression (18) in the form
LN GAEN-1 L dd
d+N  _d+N-1 d+1
g (W AR SRR A i o — ZN41
(19) [ "~ — 11 . :
N+1 : e N i @ e=0
Z%JrN Z%JFNA o ziIH

Next, recall that [¢°]zx11 = 0. Hence we may add terms which are multiples of z?vtrll without
changing the coefficient of ¢¢. Using this observation, we enlarge the determinant in the numerator by
adding one more row and column. The answer is recast as the quotient of two determinants of size

(N +1) x (N +1):

d+N  _d+N-1 d+1 N ay—z1\b;
Zl+ leL A Z1+ H?\?l(alail )bz
d+N  _d+N-— d =20 \b;
(20) (] (—1)(V-1)d 2PN RdEN-L L pdHl Hizl(aaizz)b
6 e —
V41 : U :
d+N d+N—-1 d+1 N i— b;
EN+1 AN+1 ooy ML (=)™

This does not change expression (19). Indeed, expanding along the last row, the first entries do not
contribute by the above reasoning, while the rightmost corner contribution matches (19). The assump-
tion deg L + a; + 1 > 0 made in the beginning of this section is also used here. This condition rewrites
as b; > 0, so the terms we added on the last column do not contribute poles at ¢ = 0.

Expression (20) is symmetric in the roots z1, ..., zy41 of P(z). The answer can be rewritten in terms

of the elementary symmetric functions in the z;’s which depend polynomially on the a;’s. Thus (20) is
b;

a rational fraction in the a’s, with denominator vazl o' (coming from the last column). Since we are
interested in the coefficient of €°, since the elementary symmetric functions depend continuously on the

a’s, we may substitute a; = 1, noting that there are no poles in (20) at these values.
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After the substitution, the z;’s solve 2(z — 1) — ¢(z 4+ y) = 0. Furthermore, since

N
d bi=x(E®L):=x,
i=1
the entries in the last column of the determinant (20) become
(1— =)= (~1)F(*) 2k
k (2
k>0

Expanding the determinant along the last column yields sums over Schur polynomials. Specifically,

we obtain
(21) 4] Z(—l)(N_l)dJrk (;i) Sae (21,5 2N41)-
k>0

Here, we set
Me = (dN, k) =(d,...,d, k),

and sy, (21, ...2n+1) denotes the corresponding Schur polynomial, when k < d. The terms for d < k <
d + N have vanishing contribution due to repeating columns in the determinant. To account for the

ordering of the exponents, the shape of the partition changes when k > d + N. In all cases, we find

N LCARD) ifk<d
"Tlh-N,@d+1)N) ifk>d+ N

The lemma below identifies the coefficient of ¢¢ in sy, (21, .-, 2n11). We obtain

d
X(Quoty, A, LIy =3 (Z) v =[] A+ a1 —q) "

k=0

This completes the proof of Theorem 1 in genus 0 under the assumption b; > 0 for all 1 < ¢ < V.

Lemma 7. We have

(1IN ()t ifk<d

d _
[‘I}Sxk(zla~-,21\/+1){0 ifhk>d+ N’

Proof. Since the z;’s are the roots of the polynomial P(z) = z(z — 1)V — ¢(z + y), the elementary

symmetric functions in z1,...,zy41 are
() if j #N,N+1
e =41+ (-1)N"1qg ifj=N
(—1)Nqy ifj=N+1

Assume k < d so that A\, = (d"V,k). The Jacobi-Trudi formula expresses the Schur polynomial as a

d x d determinant in the elementary symmetric functions. The entries are dictated by the conjugate
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partition A}, = ((N + 1)*, N9=%)  so that

eN+1 0 0 ce 0 0 ce 0 0
EN EN+1 0 0 0 e 0 0
eEN—1 eN EN+1 0 0 0 0
(22)  sn, = | EN—k+2 EN—k+3 EN—ktd - EN+1 0 e 0 0
EN—k  EN—k4+l1 EN—kt2 “° eN_1 eN e 0 0
EN—d+2 €EN—-d+3 €EN—-d+4 ' EN—d+k+1 EN—d+k+2 " EN EN+1
EN—d+1 €EN—-d+2 €EN—d+3 - EN—d+k EN—d+k+1 *°° EN-1 EN

Each of the e;’s is at most linear in ¢. Since the determinant has size d, extracting the q¢ coefficient is
immediate. In fact, we can replace the e;’s by their linear terms in ¢; these are zero unless j = N or
7 =N + 1. We obtain that

EN+1 0 o --- 0 0
eN EN+1 o --- 0 0
0
0 0 0 --- e e
d _[d N EeN+1
[q :IS)\k - [q ] EN EN+1 0 0 0
0 ex ent1 0 0
0 :
0 0 0 0 en
Thus,
la%)sx, = [a7] ehopael® = (~LRNTEROD
The case k > d + N changes the conjugate partition X}, but the reasoning is identical. (Il

2.4. Proof of Theorem 2. A similar but slightly more involved argument yields Theorem 2 in genus

0 when b; > 0 for all 1 < < N. Specifically, we prove that

% r v
(23) x (Quotd7 AL @7, (AxpM}fl]) ) = [¢"] (1 = @) (1 + qu)¥*FO) T (1 — apygq) XM,
p=1

We indicate some of the steps.
Just as in Theorem 1, we begin by applying Hirzebruch-Riemann-Roch followed by Atiyah-Bott

localization:

v
(24) X (Quoty, /\yL[d] ®p=1 (/\g;legd]> )

d

Fg
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All terms that appear here have been computed in the previous subsections. Using (9), (10) and (11),

we rewrite (24) as

N d; T a;+mp+1
)\ (mty)" L+ ajzy \ "7 .
hdl...thi| a 4 1 i d;
ulz e I (Gery) (557) s, (1+ i2,)
d|=d

1=1 p=

() (rets) ) 6]

j=1

e=0

where b; = a; + £+ 1 and u = (—1)N"DEHZ00+(3) | Here, we set m,, = deg M,
Next, the Lagrange-Biirmann formula with the change of variables

T

(25) q(zi+y) [ (1 + zimp) = z:R(z:)

p=1

turns (24) into the following unwieldy expression
(7] u ﬁ ziloi + )\ ﬁ 14z, \
ai(zi+y) ) S\ 1+ ziwp

(mitey) | L s

1<i<j<N

-1

dh;
H 1 + lep ) quf+1

e=0

However, there are further simplifications. To this end, we define the polynomial

r

P(z) =zR(z) —q(z+y) H(l + zx,).

Since r < N — 1, the degree of P is N + 1, so there is an additional root zy41 for P. Following the

same steps that led to (18), we simplify the above expression to

II G-2)

1<i#j<N

N d+1

(26) [q }( )(N l)df ZN+1 H P,( )

e=0

where

7 = [0 + 2 mp—fn(azaz )b

p=1

We record the details of the simplification in the lemma below; the reader can also skip directly to (29).
Lemma 8. We have

(27) ( Z; Y

and

a;+mp+1
oo (e ) T () ™) - =

-1 j=1

i dq /
pl;[l(l + Zﬂp)) dh P'(2)

<.
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Proof. Equation (27) follows by differentiating the expression for ¢ given in (25). For (28), recall
b; = a; + £+ 1, and use the following identities

r

ziR(z) = q(zi +y) H(l + ziTp),

p=1
N T
H(Z, — o) = (_1)N+1M _ (—I)Nq(ai +y) Hp:1(1 +Oéi’1}p).
j=1 ’ Z EN+1 — &4 ZN+1 — O

In the last line we used the definition of P and the fact that R(a;) = 0. Then (28) becomes
ﬁ <<(_1)N (zn+1 — Ozi))bi ﬁ <1 + Oém:p)mp—£>
P o; pei 1+ 2z

Finally, recalling that «; and z; are roots of R and P, for each fixed p we have

il 1+aow,  R(—1/zp) ( 1

- - - (1 .
[z, P(jmy) \ 1 ZN“) (Lt 2npazy)

=1

In the last equality, we used again the definition of P in terms of R. The lemma follows from here. [

Having arrived at (26), by the same reasoning as in (19) we rewrite the answer as the quotient of

two determinants

d+N d+N-—1 d+1
Zl Zl DR Zl
0 a7 (—1HW-Dd gt g
(29) [€"¢"] dot(zN 77T : f(zn 1)
ZjvarN Z%Jerl o Z?Vﬂ

The denominator is the Vandermonde determinant of size (N + 1) x (N + 1), while the numerator has
size N x N. Using the previous arguments, in particular that [¢°]zx11 = 0, we enlarge the determinant

appearing in the numerator of (29) by adding one row and one column:

N WV W

(30) [qud} (_1)1(\’]\1_.1” ) ) B f(ZQ)
det(z 7Ty | : U :

AL AN A Flava)

Since (30) is symmetric in z/s, it can be written as a rational function in the a;’s whose denominator
equals Hiil ai.” coming from the denominator of f. The substitution a; = 1 therefore makes sense.

After this substitution, the last column can be rewritten in terms of

r

FOlai=1 = [T+ )™= (1 - )*

p=1
for the values t = zy,22,...,2n41. Here Y = x(E ® L). We expand f(t) into powers t*, and then we
expand the determinant (30) along the last column yielding

(31) (D)WY ] F() - [0 sa(zs o znen),

k>0
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for the partition
N — (dN, k) ifk<d
Tl =N, (d+1)N) ifk>d+N.
By Lemma 9 below, for & < d we have
[qd] SA (Zla RS ZN+1) = (_1)(N_1)d<_y)k I:td_k:l

Substituting the last formula into (31), we obtain that

1
(1 =) —zyt) - (1 — zpyt)’

% (Quotd, /\yL[d] ®p=1 (Az, Mpﬁd])v)

d T
X e (= - -
:§]ﬂ<u—w@MwHHWW l>(wqﬁﬂuwW‘u%m

k=0 p=1 p=1
d T
- k X(E®L) R e I el 1
kZ:O [t*] ((1 + yt) ,,1;[1(1 Lut) ) [t47F] TRy

(1 4 yt)x(EeL)

=[]
(1= ) [y (1 — apyt) M

This completes the proof of (23) and of Theorem 2 in genus 0 when b; > 0 for all 1.
2.5. Schur polynomials. Let z1,...2xy4+1 be N + 1 roots of
P(z) = 2(z = )Y — q(z + y)(1 + 221) - - (1 + 2,),

where 0 <r < N — 1. We show

Lemma 9. For the partition A\ above, and k < d, we have
[¢7] sx, (21, 2vgn) = (1) N DI ()P [147H]

If k > d + N, the coefficient vanishes.

1
(1= = zayt) - (1 = 2pyt)’

Proof. The proof is similar to that of Lemma 7. Assume k < d, the other case being analogous. Since

the z;’s are the roots of the polynomial P(z), the elementary symmetric functions are

e = (N) + (=1 "1q [ZN"’l_j] (y+2)(L+zz1) -+ - (1 + za,).

J
We examine again the Jacobi-Trudi determinant (22)
eNt1 0 . 0 0 . 0 0
en eNt1 - 0 0 . 0 0
en_1 en 0 0 0 0
Sx, = | EN—kt2 EN_k4+3 - EN+1 0 0 0
EN—k  EN_kt1 eN—1 eN e 0 0
EN-d+2 EN-d+3 “°° EN-—dtk+1 EN—d+k+2 "7 EN  eN4l
EN—d+1 EN-d+2 " EN—d+k €N—d+k+1 " €EN-1 €N
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The e;’s are at most linear in ¢g. To find the coefficient of ¢® in the above d x d determinant, we may
thus replace e; with the coeflicient of the linear term in gq. Thus, we may take
(32) ej = (=177 [N (y+ 2) (L4 zaq) - (1 + 22y,

In particular ey;1 = (—1)Yy. Furthermore, note that the first k& x k block of the determinant is lower

triangular, hence
(q%] sx, = ey - Tur = (—1)NFyF - Ty,

where T, is the m x m determinant

eEN EN+1 0 e 0 0
EN_-1 EN EN+1 R 0 0
eN—2 EN—1 eN 0 0
T, =
EN-m+2 EN-m+3 EN-m+2 -~ °° EN EN+1
eN-m+1 €EN-m42 EN-m+41 "°° €EN-1 €N
The argument is completed using the Lemma below. O
Lemma 10. Assume eq,...,ent1 are given by (32). For any m > 0, we have
1
(33) Ty = (=1)N =D [gm]

(1 =) —zyt) - (1 — zpyt)
Proof. We set Ty = 1 and T; = 0 for ¢ < 0. By expanding the determinant T}, along the first column

and then successively along the rows, we obtain the recursion

r

T = Z(_l)jeg\]+1eN—ijfjf1 for all m > 0.
j=0

Note that by (32), for degree reasons we have ex_; = 0 if j > r. This explains the upper bound of the

index j in the sum. Forming the generating series

T= i Tot™,
m=0

the above recursion immediately yields

T -1
= <1 - Z(_l)jeg\fﬂeN—jth) :

§=0
Substituting the values of e; from (32), we obtain for all 0 < j < r that

(1) Htel en—y = (~1)NUFTD i+l [3H] ((1 + ;) (1+2z1)--(1+ zxr)>
=[] (Q - EDVTHA - (DY eyt - (- ()N )

where the substitution z = (—1)Nyt was carried out in the last step. Therefore

JoJ 4J+1 - — 1
r= (1 -2 (e pentT ) S O I (- DN ol

=0

r

Taking the coefficient of ¢t gives the required identity. O
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2.6. Arbitrary genus. Relying on the ideas of [EGL], we show how the calculations for C' = P! imply
Theorems 1 and 2 for arbitrary genus. We explain this for Theorem 1, the case of Theorem 2 being
entirely similar. The argument is also noted and used in [OP] over surfaces for punctual quotients of
trivial bundles, and extended to quotients of arbitrary vector bundles in [St2]. The case of curves is

analogous, but we record the details for the benefit of the readers who seek a self-contained account.

Stepl. The first goal is to show that the Euler characteristic
(34) X(Quoty(E), A, LY)

is a polynomial (that may depend on N) in deg E, deg L and x(O¢) (with coefficients in Q[y]), for
all smooth projective possibly disconnected curves C. In fact, the statement holds for all tautological

integrals of the form

(35) / p
Quoty(E)

where P is a polynomial in the Chern classes of the tangent bundle of Quoty(E) and L.

We first analyze the case of split vector bundles
N
E=@F, tkF=1
i=1
For such a vector bundle, we can use the action of C* on the summands of E to evaluate (35), just as

we have done for genus 0 above. This way, we are led to considering integrals of the form

(36) / Q
Cldil x...xcldn]

where di + ...+ dy = d. Here Q is a polynomial involving the Chern classes of
T (Ki@p M), m (K] @p* M), m(K]®K;®p*M)
for various M — C, including M = FY ® F; or M = L® F;. The notation K; was introduced in Section
2.1. We can evaluate these Chern classes with the aid of Grothendieck-Riemann-Roch. The integrals
(36) can be pulled back via the finite map
04— Cldil ... ldn],

The pullbacks of K over C? x C correspond to sums of diagonals A, 441, and thus (36) takes the form

d1!~--dN!/ 3
dl cd

where Q is a universal expression in the diagonals and classes from C. In general, monomials in diagonals

and classes from C can be evaluated explicitly using that for A — C x C we have
A? =2x(0¢), A-M =degM,

for all smooth projective possibly disconnected curves C, M — C. Therefore (35) is a polynomial in
deg F;, deg L and x(Oc¢).
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Step 2. We next argue that the above polynomial only depends on deg E = ). deg F;, deg L and

X(O¢). This requires additional considerations. We write

z; =degF;, y=degL, z=x(0c),

and R(z1,...,2N,¥, 2) for the universal polynomial found above. The polynomial R is certainly sym-
metric in x1,...,2N.
We claim that if z; are sufficiently large, R(x1, ...,z N, y, 2) is in fact a polynomial in Zf\;l x;. Indeed,

for large degrees, the line bundles F; are globally generated (over connected curves C'). Thus we can

write E as a quotient

0—-K—-W—FE—=D0,

where W is a trivial bundle (whose rank depends on deg E). By [St1, Theorem 5], modified from the

original setting of surfaces to the case of curves, there is an embedding
(37) Quoty(E) < Quoty (W)

cut out by a canonical section of the bundle (K V)[d]. With this observation, the integral (35) rewrites

as

Quoty (E) Quoty (W)

where P is a polynomial in the Chern classes of the tangent bundle of Quoty(W) and the tautologi-
cal bundles (K V)[d] and L9, Applying the localization argument in Step I once again, this time to
Quoty (1), we see that (38) only depends on

deg KY =degE, degL, x(Oc¢).
Thus, the polynomial R(z1,...,2n,v, 2) is a function of EZ\LI T;,y, 2, when x; are large. Hence
R(z1,...,2N,y,2) =S(x1 + ... + 2N, Y, 2),

for a new universal polynomial S. This proves the statement we need about (35) when the bundle F
splits.

Step 3. The general case follows from the following observation. Assume E sits in an extension
0—-F —F— Ey— 0.
Considering the universal extension
0—=p By —E—p'Ey—0

over p : C x Ext'(Es, Fy) — C, and constructing the relative Quot scheme Quoty(€) over the extension

T .
Quoty(E) Quoty (E1®E2)

space, we see that
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To reduce to the case of split F, consider a line bundle M such that
0-M-—->E—F—=0

is exact and F' is a vector bundle of smaller rank. By the above observation we can replace £ by M & F,

and then continue inductively.

Step 4. We return to the series appearing in Theorem 1, namely

Zor,E = qux (QUOtd(E)a /\yL[d]) :
d=0

Consider a disconnected curve C = C; UCsy, E = Ey U FEy and L = Ly U Ly. We compare the Quot

schemes of C, C7, Cy and the tautological bundles over them:

Quoty(E) = | | Quoty (E1) x Quoty,(B), LW = || ri"mri.
di+da=d di+do=d

This implies

(39) Lo, =20y, 0,,By  LCo,Ly,Bs -

By the arguments of [EGL, Theorem 4.2], the factorization (39) shows that
(40) ZCL g = Ax(C,(Dc) . BdegL . CdegE7

for universal series A, B, C € Q(y)|[[¢]] that depend only on N. We specialize to (C, L) = (P!, Op: (¢))

with ¢ sufficiently large, and E = O(a1) @ ... ® O(ay). Comparing (2) and (40), we obtain
A=(1-q " (I+a", B=0+a", C=1+gy.

Substituting these expressions back into (40), we obtain Theorem 1 for all genera:

= AX(C:0c) . gdeg L cdeg B — (1 _ ¢)=x(Oc) . (1 4 gy)X(ESL),

Zc,L,E

This completes the argument. O

Example 11. Theorem 1 immediately implies
_ -1\ (x(E® L)
ta(E), A L) = (—1)7k (¥ .
Thus, in higher genus, we obtain the vanishing

X (Quotd(E),/\kL[d]> =0 ifd>k+g, g>1.

3. SYMMETRIC POWERS

3.1. Genus zero. Theorem 4 concerns the symmetric powers of the tautological bundles SymyL[d] in
genus 0 and is proven in a similar fashion as Theorem 1. The calculations are however more involved.

The higher genus case and Theorem 5 will be considered in Section 3.2.
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By Section 2.6, for each d and k, the Euler characteristic
X (Quotd, Syka[d])

depends polynomially on ¢. To prove Theorem 4, it suffices to assume b; = £+ a; +1 > d+ 1 for all 4.
By Hirzebruch-Riemann-Roch followed by Atiyah-Bott localization, we calculate

(41) «x (Quotd,SymyL[d]> :/ ch(SymyL[d])Td (Quoty) = Z/ ch(SymyL[d])
7 ‘Fa

Quoty

Td(QUOtd)
€c* (NJ) F -

d
Instead of Lemma 6, for the current computation we use the expression
a;+6+1 d;
_ H <047(Zzy)> < Zi )
Fr o ie[M] zi(a; —y) %Y

The Todd genera and the normal bundle contributions are found in (9). We substitute (9) and (42)

(42) ch(Sym,, L!4)

into (41) and apply Lagrange-Biirmann. Carrying out these steps carefully, we arrive at the following.
Consider the polynomial

P(z) = (z —y)R(z) — ¢z,
and let zq,...,2zny41 be its roots with z;(¢ = 0) = a; for 1 < i < N. Then, just as in the derivation
leading up to (18) for exterior powers, (41) turns into

o T (52 (2) T e

ey N VT ijEN], i =0

This simplification makes use of the fact that

dgq
= P'(z).
ah: (2)
As in (19), the above expression can be recast as the quotient of determinants
(21 —y)zf (21— y)zf
[ 0 d] (—1)(N71)d (22 — ZU)%HN?1 e (22— y)2s H <Ozi - ZN+1>bj
S ey vy : : Cai—y
det(zi ) : - : ie[V] o, — Y
(en —y)2y™ (an —y)2f
The same derivation that led to (20) yields the enlarged (N + 1) x (N + 1) determinant
- N fai—z1\b,
(21 — y)ZiH_N ' T (21 — )zt 1—11':1((;,17_;)1)1
_ N a;—z3\b;
[ 0 d] (_1)(1\/—1)(1 (22 _ y)Z¢21+N 1 .. (22 _ y)zg Hi:l( aiiyz )b
€q .

det(z¥ 711

) B R CIVIPE B ORI | AT C L
This uses b; > d + 1 for all ¢, and the fact that «; — z; has no free ¢g-term, so in particular the first NV
entries of the last column do not contribute to the ¢%-coefficient.

The expression above is symmetric in the roots of P, and as previously remarked the substitution

a; = 1 is allowed to obtain the coefficient of €”. Thus z1,...,zx,1 become roots of

P(2) = (z-)V(z—y) — =



22 DRAGOS OPREA AND SHUBHAM SINHA

This also turns the last column into the vector with entries

(1—z)x 1 X7y
T~ Topi & (€)<—1>sz '

£=0

Here x =3, bi = x(E® L).
Using the additivity of the determinant with respect to the first N columns, we split the last deter-

minant into a sum

(_1)(N—1)d+é

%S S (1) oo

£=0 m=0
ZiH_N .. Zil'*‘m“'l pdtm=1 Zf Zf
1 2‘21+N .. 2'2d+m+1 Zg*’"*l oo 2121 Zﬁ
) det(zN Ity | : :
A AT AT e A A

Indeed, from each of the first N columns we select N powers of z; whose exponents range from d to
d + N. Exactly one value d + m must be skipped, giving a term in the sum. The contribution (—y)™
comes from terms with exponents between d and d +m — 1.

Regarding the last sum, we make the following three remarks.

(i) When ¢ < d, the above quotient of determinants is the Schur polynomial for the partition
A= (d¥=™ (d —1)™,¢). Using Jacobi-Trudi as in Lemma 7, we obtain that
4 (-)WN=Ddifp=m =0
salz1,...,2 = . .
[q] A N+ {O otherwise
(i) When ¢ > d + N, the shape of the partition changes to A = (¢ — N, (d + 1)¥=™,d™), and
we also acquire an additional (—1) coming from permuting the columns to bring the last

one to the front. Note that A\ contains the rectangular partition (dV*1) and a hook partition

p = ({— N —d,1¥~™). Examining the determinant, we can factor z{ from each column. Thus
Sx= €Nt Su=y" s,
Here we used that ey 1 = y which can be seen from the expression P(z) = (z—1)¥ (2 —y) —q=.
(iii) Finally, for d < ¢ < d+ N, the only value that can contribute is £ = d+m, in which case we can
directly evaluate the corresponding quotient of determinants to be (—1)™y?. The coefficient of
g vanishes in this case (for d # 0).

Putting everything together we conclude
1

@y _ __ - d
x (Quoty, Sym, L) Gy oW
Consequently, for d > k, we have
) 1 xX+k-1
Epldl — [*o] ——  —
X (Quotd,Sym L ) [y ] T < i >

The result is also correct for d = k; this can be seen for instance from the result below. O
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With a bit more effort, the same ideas (combined with a residue calculation) yield a general expression

in genus 0. We need this result in order to prove Theorem 5 in all genera in Section 3.2.
Theorem 12. When C =P and x = x(E ® L), we have
(—x +d(N + 1)> (=9)*

(1

d
X(Quoty(E), Sym, LI) = I —y)dNFD)

k=0
Proof. Since both sides depend polynomially on ¢, see for instance the arguments in Section 2.6 for the

left hand side, we may assume / is sufficiently large. In this case, we have seen above that
N

1 - 1
[dy — _N(N=L)d+N+e (X d T d oam
X(Quot,(E), Sym, L4 = (17y)x+é>§d+jN TV (£>y [°] > (=) sp(em):
for the partition u(¢,m) = ({ — N —d,1V=™).

Lemma 13 below evaluates the sum over m. We obtain

X(Sym L[d]) — # 1+ XX: (_1)(N—1)d+Z X yd+1 [te—N—d] tN(d—l)J,-l
y (1 - y)x / (1 _ t)Nd(l — yt)dﬂ

1 - (N=1)d+¢ [ X\, d+1 N F =L
=—|1 - Res;— dt|.
<1—y>x[ U;‘N( ) (e)y CE A NI = ) ]

We can allow all values £ > 0 in the sum above since the residue vanishes in the range £ < N + d. The

m=0

binomial theorem evaluates the sum over £. Letting
t(N+1)dfx(1 _ t)fod
(1 — yt)dt+1

w =

dt,
we conclude that

X(Sym, LI") = LR (=1)NV=DdHxyd+1Res, o w).

(I-v)
Lemma 14 finishes the proof. O
Lemma 13. Let z1,...,2zn41 be the roots of P(z) = (z — 1)N(z — y) — qz. For £ > 0, we have

4 N N ytN(d=1)+1
[q ] Z (—y)ms(e,lN*m)(Zlv <o zN41) =(=1) [t ] (1— t)Nd(l _ yt)d+1'
m=0

Proof. Using Jacobi-Trudi, the left hand side of the expression in the lemma equals the £ x £ determinant

EN+1—-m EN+42—m EN+43—m e EN+L—m
N €o €1 €2 T €r—1
Z (—y)™ 0 €o el e ey
= s s S
0 0 0 e el

Summing with respect to m, we obtain that the ¢th term in first row becomes
N
A= Z ()" enti—m = [tN+i] (I—yt+---+ (—1)NyNtN)(1 +et+--+ eNHtN“)
m=0

1- ()™

— (71)N+i [tN+i] ( - yt . tNJrlP(]_/t).
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Expanding with respect to the first row, we obtain the required determinant equals

Avhy oy — Ashy o+ + (1) A,
where h; = s(;) is the homogeneous symmetric polynomial. We know that the homogeneous symmetric
polynomials are given by

hi = [t] ! J—

Ao 0w — U vsiparm

Thus the required sum equals
‘

(43) Z(_l)i_lAihé—i =

i=1

M~

_ N+1 .

-
Il

2
M=

o[ ) S e )] [ 9] s

= 1—yt INFLP(L/D)
N NP1/t , 1
P ) S ) )

where ~ means equality of the ¢¢ coefficients. To justify the second line, we note that the difference

with the previous term equals

[¢%] (—1)N [£¥+4] (1_1(yt)yttN+1P(1/t) . tNH}lD(l/t))

for d > 0. Moreover, since j runs from 0 to N, we may also ignore the term (y¢)V ! in the second line,

=0

thus yielding the third equality.
Note that
NP/t = (1 —yt) (1 — )N — gt
Thus

1—yt _1—yt

Hence the g?-coefficient in the sum (43) equals

[qd} i(_l)j <N> [tﬁj} 1 + (_1)N+1 [qd—l} [te]
— j (1 —yt)(1 = )N —gt¥ (1 —yt)(1 =) — gtV

J

(1-6)N 1
= (=1 [¢] [t”N] 1—yt)(1—t)N — qt¥ (1—yt)(1 = )N — gV’

We note that the order in which we take the ¢% and ¢tV -coefficients can be switched. This is allowed

+ (71)N+1 [qdfl] [tq

in our case since we are considering expressions of the form (1 — A(q, t))_l expanded near ¢ =t = 0,

where A is a polynomial in ¢,¢ (and y). Thus, taking the respective coefficient of powers of ¢ in the

above expression we obtain

tNd tN(d_ 1)

(—1)N [£4+] .
(1—yt)™ (1 1) (1 =yt)*(1 — )N

This immediately implies the lemma. ]

~Na T (_1)N+1 [te]
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Lemma 14. For x > Nd, set

_ t(N+1)d—X(1 _ t)X_Nd p
w= (1= gyt t.

We have
d

k
N(N-1)d+x, d+1 _ Z X+ (N+1)d (-y)
1+ (=) YT Resi—o w = P < k (1 — y)(N+Dd—x"

Proof. Since x > Nd, the form w has poles at worst at t =0, ¢t = co and t = % By the residue theorem,
we have

Resi—gw = —Resj—oo w — Restzl/y w

Changing variables t = %, we compute

d
Res;—oo w = —Res,—g (s — )X V(5 — y)_d_l?s = (=1}~ (VHdy—d=1,
Similarly, changing variables ¢ = 1
_ _ _4-1 ds
Rest:% w=—Res,_o (1 — s) XHN+Dd(g 4y 1)x—Ndy—d-1 e

_ _yfdfl [Sd] (1 _ s)*X+(N+1)d(S +y— 1)X7Nd
d
— it kZ:O(_l)k (—X + (2\7 + 1)d) (Xd—_fid> (y — 1)X~N—d+k,

Collecting terms, we obtain

M&

14 (=1)N=Ddxy 1 Reg, o — ( X+ ( N+1 d) (Xd—_]\]id>(1 )Ntk

k=0
d

( X+ ( N+1 d)(1 (—y)*

— )N+ Dd—x"

b
Il

0

To justify the last equality, we write u = —x + (N + 1)d and show more generally

305 (e

This follows by induction on d. Indeed, write Ly for the left hand side. Using Pascal’s identity and then

rewriting the binomials, we obtain

B @G () -0

k=0

- :i (o) (3 evma—ar = (1) e

The proof follows immediately from here. (|
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3.2. Universal functions. Over a smooth projective curve C' of arbitrary genus, let

W = i a‘x (Quotd(E), SymyL[d]> .
d=0

The arguments in Section 2.6 exhibit W as a product of universal series*

(44) W = AX(Oc)  BX(E®L)

Theorem 12 determines in principle both series A, B from the genus 0 answer. Theorem 5 asserts that

8= 1 (=)

where f(z) is the solution to the equation

FEN = N 4z2=0, f(0)=1.

more precisely we have

Proof of Theorem 5. The function f is most conveniently expressed in terms of a change of variables.

We have

t
=— forz=——-—.
1@ =1 fre=—grpva
We record the one-variable version of the general Lagrange-Biirmann formula (13). Assuming ®(0) #
0, for the change of variables z = %, the following general identity holds
> T(t) dt
45 (et V() = L — .
(45) > (1 o' v(0) = g

We introduce two functions which will be useful in the argument. Write

(46) FX(Z) - izd <_X + (iiv + 1)d> — FX(Z) _ izd ([td} (1 +t)—x+(N+l)d) )

d=0 d=0
An immediate application of (45) yields

(14 ¢)—x*! t
4 F = forz= ———.
(47) x(2) 1— Nt ors (1+¢)N+1

Setting y = 0 and integrating, we also obtain the expression

O N/((N+1)(d-1)\ 1

for the same change of variables. With this understood, we note that for the function f in the theorem,
we have
=)V =1-G(2).

The statement to be proven thus becomes

r-e{- )

4Strictly speaking, we only explained the factorization W = AT(OC) . leieg B, B;eg L in terms of 3 universal series. An
argument of [St2] shows that only 2 series are needed. Indeed, tensorization by a line bundle M — C' gives an isomorphism
Quoty(E) ~ Quoty(E® M) in such a fashion that L[4 gets identified with (Lo M~1) [ On the level of generating series
this implies Biv = Ba, which then yields the result with A = Ay - B;N, B =B;j.
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or equivalently
(49) _ i N <(N+d1>(61l_1)>'<(1q@%zv+1>d~

Turning to the generating series (44), we specialize to genus 0 and we keep track on the dependence

on deg L = { in the notation, so that

= qux (Quotd(E), SymyL[d]) — Al.BX.
d=0
As usual, x = x(E ® L). This yields
(50) Wy =W, -BY.

By Theorem 12, we have

We=> ca(x)-q*, Werr =Y calx+N)-q*
d=0
where for simplicity, we wrote
d
_ —x+d(N +1) (="
(51) ca(x) = Z ( k (ly)W'

k=0

Examining the coefficient of ¢¢ in the identity (50), it follows that in order to confirm (49) it suffices to

i+ V) = calx +ch J(x e+1]Z((N+€1_)(f—1)> <(1_yy)N+1>£

We use the defining expressions (51) to verify this equality. After multiplying by (1 — 3)*™+1 and

prove

extracting the coefficient of 4* on both sides, we need to show that for 0 < k < d, we have

(52) (XN;d(N+1)>:(X+d]§N+1)>

- Z < (N +€17 f - 1)) (-X + (dk—iéi(N + 1)>.

Using Pascal’s identity, it is easy to see that if (52) holds for k& and all x, then it also holds for k — 1
and all x. Thus, by downward induction it suffices to assume k = d. In this case, we seek to show

zd: % ((N +£1_)(f - 1)) (—X + (dd—_éz(N + 1)) _ (—x + dC(ZN + 1)) 3 (—x - N +dd(N + 1)) .

This is indeed correct. Recalling (46) and (48), we see that the two sides equal the z%-coefficient in the
identity

G(2) - Fx(2) = Fx(2) = Fx4n(2)-
The latter equality is immediately justified using the explicit formulas (47) and (48) after changing

variables from z to t as above.
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4. HIGHER RANK QUOTIENTS

It is natural to wonder whether the formulas proven in Section 2 extend to Quot schemes parametriz-
ing quotients of rank r > 0. We write Quoty(E,r) for the corresponding Quot scheme. Throughout
this section, we write

s=N-—-r
for the rank of the subbundles. We restrict to the case C = P!, and E a trivial rank N vector bundle.
In this case, Quoty(E, ) is smooth, see for instance [Str].

Theorem 3 gives an expresion for the Euler characteristics
x(Quoty(E, 7), A, L)
in terms of the roots z1,...,zyx of the equation
(z =D —qlz+y)" ! =0.

Unlike our previous computations, this result does not immediately give the answer in higher genus,
since the factorization (40) of the generating series demonstrated in Section 2.6 does not hold when

r>0.°

Proof of Theorem 3. We follow the same steps as in the proof of Theorem 1. However, some modifications
are necessary. We use the torus action on Quoty(E,r) coming from the torus action on E = CY ® Op
with weights —w1, ..., —wy. As shown in [MO1], the fixed loci are parameterized by pairs (J; I), where
d=(dy,...,ds) with |d| = dy +---+ds = d, and I C [N] is a subset of cardinality s. The fixed loci are

products of symmetric powers of P':

Fi;=P% x ... x P

Each such product appears (1: ) times corresponding to the choice I of s summands of the trivial bundle
E into which the kernel injects
0—>S—>@(’)p1 — @ Op1 = E.
el 1€[N]

This changes slightly the expressions for the normal bundles N ir With the same notation as in Section
2.1, we find that (6) becomes

Ng,= P mkh)- P mKek).

i€1, jE[N], i#] i,JEI, i#]

Compared to prior expressions, the range of the indices i,j has changed. The above sheaves carry
weights w; — w;. By direct calculation, we obtain the analogue of equation (9)

 N-—s di+1
Dot _ e T (B T i)

ec+(Ngz ;) icl R(zi) L€l i#]

5The Quot scheme is typically singular in higher rank and higher genus, but we may consider virtual invariants — see
Section 5. Using virtual localization directly in this case requires more work.
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where z;, a; and R(z) = HN_ (z—a; ) were defined before. Similarly, the analogue of Lemma 6 becomes

Jj=1
141 d;—(£+1)
Y Y
= 1 —_— 1 — .
H ( " aj) H ( " Z)

iel v

ch(A, L)

Fir  je[N]

We substitute these expressions into Hirzebruch-Riemann-Roch and Atiyah-Bott localization:

Td(Quoty)
Quoty, A, L) = E / h(A, L)
X o Y eC*(Nd,I)

FJ,I
After substitution, we invoke Lagrange-Biirmann formula, but the change of variables takes a slightly
different form for » > 0. If

P(z) = R(2) —q(z +y)2" !

and z; are the roots of the above equation, the reader can verify by direct calculation that we arrive at

the following expression

N } 41 AN —at1
d s—1ya 1j=1(5 +9) Z H £+1) H
[q ] (_1)( ) HN 1+1 Zz‘f’y ~( P’(z) (Zi_zj)
j=1% 41 i€l Vo igel i e=0

Since P(—y) = R(—y), it follows that

N N
H(Oéj +y) = H zi + ),
j=1 j=1

and thus the previous expression can be further simplified to

1)(s=1d dH0+N —s+1

(53) 1y S0 o I G-

HJ 1Y gl il ijEL i

e=0

Compared to Theorem 1, for » > 0 we do not have an additional root, so we finish the argument in
a different way. The key observation is that we can rewrite (53) as the ¢%-coefficient in the quotient of

two N x N determinants

AN AN o SN
SHAN-1 SHAN-1 o LN
(54) (—1)s—Dd 1 Z«11+é+}\f—s+1 Zg+e+N_s+1 Z;iv-&-l-i-}\f—s-&-l
5 .
H;.V:l a?“ det(z)7)
2 a4yt B T ) e T ey )
(21 +9) ! (22 +y) ! . (zn +9)

This agrees with the prior expression (53). To justify this assertion, we use generalized Laplace ex-
pansion of the determinant in the numerator along the last N — s rows simultaneously. Picking s
columns labeled by the index set I, the corresponding minors of (54) (evaluated using Vandermonde

determinants) contribute exactly the I-term of (53).



30 DRAGOS OPREA AND SHUBHAM SINHA

Since the above expression is a symmetric function in the z;’s, it can also be expressed in terms of
the elementary symmetric functions, which are in turn polynomials in c;. Setting € = 0 corresponds to

setting a; = 1 for all j, or in turn working with the roots of
P(z)=(z-1)"N —q(z+y)z"" L =0.

This completes the argument. |

Corollary 15. As in Theorem 8, let C = P!, E is trivial of rank N, degL = ¢ > —d — 1. Then
% (Quotgl(E7 r), det L[d]) = (—1)(N_T_1)d [qd] sa(z1,29,...2N)

for the partition A = ((d+£+1)N="). The z;’s are the distinct roots of the equation (z—1)N —qz""1 = 0.

Proof. The statement follows by running the argument above for the determinant det L% instead of
/\yL[d]. (We prefer this route since extracting the top y-coefficient in the determinant (54) requires

some care.) The reader can verify that this results in the following two changes:

(i) the new localization sum requires a new change of variables, so in particular, z1,...,2zy are
roots of R(z) — 2" 1q = 0;
(ii) the analogue of expression (53) is

(s 1)d d+€+N s+1

[qd N 41 Z HW H (2i = 2)

H] 1 Q5 d1 i€l i,j€l, i#j €=0

As a result, the counterpart of (54) takes the form

LN ZAHEN o d+e+N
d+e+N 1 d+e+N T d+é+N 1
s—1)d A N—s+1  drerN+1— A0+ N—s+1
[eoqd] (=1)=1 1 ZHAN=st1 il N+l=s N st
[T, ot det(2) )
J= J N—-s—1 N—-s—1 N s—1
21 Z2 N
1 1 1

The proof is completed setting o; = 1, and noting that when d+£¢41 > 0, the last expression is exactly
the Schur polynomial of the partition A = ((d + £ + 1)%). O

Example 16. In the simplest case d = 0, the Quot scheme is the Grassmannian G = G(s, N) and
det L9 = Og(£41). In the corollary, since we are extracting the coefficient of ¢°, we can set z; = 25 =

.= zny = 1 to obtain the identity
X(G,0c(+1)) =sa(1,...,1), A= (((+1)%).

This is in agreement with the Borel-Weil-Bott theorem.
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Example 17. An interesting specialization of Corollary 15 arises for £ = 0. We show

X (Quotd(Eﬂ“),det O[d]) = < N >

r+d
We have
X (Quoty, det O[d]) = [qd] (71)(871)‘{5)\(21, . .3 ZN)
where A = ((d + 1)®). The elementary symmetric functions in z,...zx are
™ Jj#s+1
ej = ]'<[ s . :
(j)+(,1) qg j=s+1
Using Jacobi-Trudi, we have
€s €s+1 €s+2 o €s4d—1 €s+d
€s—1 €s €s+1 ctt €s4d—2  Es4d—1
S)\(Zl,...,ZN)Z : : : :
€s—d+1 €s—d+2 €Es—d+3 - €s €s+1
€s—d €s—d+1 €s—d+2 ¢ €s—1 €s

In the (d+1) x (d+1) determinant, the only term yielding the power ¢¢ is (—1)%e?, ; e5_q, coming from

the lower left corner es_4 and the terms e,41 above the diagonal. To conclude, it remains to note that
N
d] d d
(4] e5ires-a = (=1)° (s - d>'

Example 18. Assume d > s(¢+1). The Schur polynomial sy has weighted degree |A| = s(d+{+1) <
(s + 1)d in the elementary symmetric functions e;, where we set dege; = i. We noted in Example 17
that only e;4; contains a linear g-term. By degree reasons, es;+1 appears in sy with exponent < d.

Thus, in this case the ¢%-coefficient vanishes, and

X <Quotd(E, r),det L[d]) =0.

Example 19. Assume d = s(¢+1), so that d+£+1 = (s+1)(¢+1) and |A| = d(s+1) for A = ((d+£+1)%).

With these numerics, we claim that

(55) sy = (—1)*%e?, | + lower order terms in ey ;.

Using that the only nonzero g-contribution in e;(21,...,2x) is given by
[ essa(z1, .- 2n) = (=1)°,

we obtain

[qd] sa(z1,...,2n) =1, and thus x (Quotd(E,r),det L[d]> =1
To justify (55), we let
(xla"'axN) = (1?C7C2a"'7<—s707"'70),

where ( is a primitive (s + 1)-root of 1. In this case, we have

esr1(x1,...,xn) = (=1)%, ej(xy,...,an)=0for j #0, j#s+1.



32 DRAGOS OPREA AND SHUBHAM SINHA
Thus, to confirm (55) it remains to show that
(56) sa(z1,...,zny) = 1.

This follows from the (first) Jacobi-Trudi identity

Pst1y(e41) hstnyern+r 0 Pyt +(s-1)
h(s+1y(e+1)—1 hs+1)(e41) o M) (1) +(5—2)
S\ = e )
hist1yerny—(s—2) Msr1yery—(s—1) - h(st1ye41)+1
hist1yerny—(s—1) Msr1yer)—(s—2) - h(st1y(es1)

where h; are the homogeneous symmetric functions. In our case, we have
hj(z1,...,zny)=1ifj=0 mod s+1, h;(zi,...,zn) =0 otherwise.

Hence the above matrix evaluated at (z1,...,zy) is the identity, yielding (56).

5. FURTHER QUESTIONS

5.1. Cohomology groups. It is natural to inquire whether Theorem 1 can be refined to yield infor-

mation about all cohomology groups of the tautological bundles AF L. We ask:

Question 20. Is it true that

(57) H* (Quotd(E), /\kL[d]> =AH*(E® L) @ Sym™ " H*(O¢)?

To explain the notation, if V* = Vy & V7 is a Zs-graded vector space, we define the graded vector
spaces
NV = P AV eSym'Vi,  Sym'Ve = B Sym' V@ MV
i+ji=k it+j=k
where the summands have degree j. With the convention

dim W* = "(~1)/ dim W’

for the superdimension of a graded vector space, the usual formulas hold true

dim V7 ), dim Sym*V* = (—1)* <_ dim V7 )

di k ° _
im A®V < i 1

Thus, taking dimensions in (57), we immediately match the expressions in Theorem 1. There is also a
natural analogue for Theorem 2.

Evidence. Formula (57) is true in the following cases

(i) over the symmetric product of a curve, that is for rank £ = 1. This was shown in [K2, Section
3] using the derived category;
(ii) for d =1 so that Quot;(E) = P(E), the projective bundle of length 1 quotients of F;
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(iii) for k = 0, the formula predicts the Hodge numbers h?%(Quoty(E)) = (Z) for p < d. This follows

from [BFP, R] which give the Hodge polynomials
rk(E)—1

>~ P (Quoty(B))(—u) (<o)t = ]

=0

(1 — ulviT1)9(1 — uitloit)9
(1 — wivit)(1 — witloitie)

We note that (57) has an analogue for the Hilbert scheme of points on smooth projective surfaces

X. In this case, the cohomology groups
e (X[dl, AkL[dl) = AFH*(L) ® Sym™* H*(Ox)

were determined in [Scl, Theorem 5.2.1] using derived category techniques. Answering Question 20 in

full generality may likewise require the study of the derived category of the Quot scheme.

5.2. Rationality. For any line bundles L,,...,L; — C and integers ki,...,k; > 0, the series of

K-theoretic invariants
Zow Ly, Lol ko ke) = > g% (Quotd(E), Mg ... g AkaLd])
d

are given by rational functions with pole at ¢ = 1. This assertion was proved in [AJLOP] in the context
of punctual Quot schemes of surfaces, endowed with the virtual class, but the same argument applies
here as well. (The argument proceeds by localization when E is split, but this is sufficient in light
of the universality statements of Section 2.6.) Keeping with the theme of Section 1.2, we note that a
similar result also holds true for Hilbert schemes of points on surfaces (without virtual classes). This
was conjectured in [AJLOP] and proved in [A2].

Theorem 1 gives the simple expression

ZC,E(L ‘ k) _ <X(Ek® L)>qk . (1 _ q)_X(OC).

Question 21. What is the structure of the rational functions Zo g(L1,...,Le| k1, ..., ke)? Do they

admit explicit formulas?

It is natural to inquire whether the results proved here carry over to the Quot schemes Quoty(FE, 1)
parametrizing quotients of E of any rank r and degree d. The latter possess 2-term perfect obstruction

theories [CFK, MO1].
Question 22. Are the series
200 (Lo Lo kry o k) = i o (Quoty(B,r), AR L @ o b LT
d=0
rational functions with pole only at ¢ = 12 Do they admit explicit expressions?
Here, for a scheme Y with a 2-term perfect obstruction theory and virtual structure sheaf Oy, and for

V =Y, we set
XY, V) = x(Y,V @ Oyh).
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We have remarked in Section 4 that the factorization (40) of the generating series of invariants fails

in higher rank. In line with the methods of the paper, we can nonetheless ask whether
T vir d d
Z8)s (Ly, .. L) = Y gy (Quotd(E,r), A I @ .. @ Ay, L ])
d=0

can be expressed in terms of universal series. We do not pursue this here, but we note that over smooth
projective surfaces and for quotients of dimension at most one, such universality statements are proven
in [AJLOP, Theorem 17]. In turn, this led to rationality results for the surface analogues of the series

in Question 22.

5.3. Higher rank. Extending Theorems 1 to K-theory classes V' — C of arbitrary rank is not imme-

diate. In general, a change of variables is likely needed.

Question 23. Find a closed-form expression for the series
> a'x (Quotd(E)’ AyV[d]) :
d=0

This may potentially be used to address Question 21 as well. Theorem 5 partially addresses the case
V = —L, for L a line bundle.

Turning to higher rank quotients and Theorem 3, we could ask for the arbitrary genus version:
Question 24. For line bundles L — C, find a closed-form expression for x''"(Quotq(E, 1), A, L.

For example, in genus 0, for E trivial of rank N, for rank r > 0, deg L = ¢, numerical experiments

suggest that the answer stabilizes to
x (Quota(E,r), A, LIT) = (14 ) Ve,

assoon as d > (N —r)({ +1).

Analogous questions can be asked about symmetric powers or other Schur functors as well.
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