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Abstract. We compute the Euler characteristics of tautological vector bundles and their exterior
powers over the Quot schemes of curves. We give closed-form expressions over punctual Quot schemes

in all genera. For higher rank quotients of a trivial vector bundle, we obtain answers in genus 0. We

also study the Euler characteristics of the symmetric powers of the tautological bundles, for rank 0
quotients.

1. Introduction

In this paper, we prove several closed-form expressions for the holomorphic Euler characteristics of

tautological vector bundles and their exterior and symmetric powers over the Quot schemes of curves.

1.1. Punctual Quot schemes. To set the stage, let E → C be a locally free sheaf over a smooth

projective curve C. Let Quotd(E) denote the Quot scheme parameterizing rank 0 degree d quotients of

E:

0→ S → E → Q→ 0, rank Q = 0, deg Q = d.

It is easy to see that Quotd(E) is smooth of dimension Nd where N = rank E.

We write

0→ S → p∗E → Q→ 0

for the universal exact sequence over C×Quotd(E), and we let p and π denote the two projections over

the factors of C×Quotd(E). For any line bundle L→ C, there is an induced tautological rank d vector

bundle over Quotd(E) given by

(1) L[d] = π?(p
∗L⊗Q).

We first study the holomorphic Euler characteristics of all exterior powers ∧kL[d]. To this end, for

any vector bundle V , we set

∧yV :=
∑
k

yk ∧k V.

We show

Theorem 1. Let E → C be a vector bundle over a smooth projective curve, and let L → C be a line

bundle. Then
∞∑
d=0

qdχ(Quotd(E),∧yL[d]) = (1− q)−χ(OC)(1 + qy)χ(E⊗L).

1
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The same methods will establish a slightly stronger result:

Theorem 2. For any line bundles M1,M2, . . . ,Mr and L over C, where 0 ≤ r ≤ N − 1, we have

∞∑
d=0

qdχ
(
Quotd(E),∧yL[d] ⊗

(
∧xi M

[d]
i

)∨)
= (1− q)−χ(OC)(1 + qy)χ(E⊗L)

r∏
i=1

(1− qxiy)−χ(M∨i ⊗L).

Our proofs rely on universality arguments in the spirit of [EGL] to reduce to the case of genus 0,

and equivariant localization in genus 0. These are well-established techniques. In general however, the

ensuing localization sums are not immediately expressed in closed form. Here, we show how to overcome

the combinatorial difficulties by using Lagrange-Bürmann inversion and considerations involving Schur

polynomials and Jacobi-Trudi determinants. These lead to drastic simplifications of the answers.

In a similar context, the prior work [MO1] also makes use of localization techniques to calculate a

large part of the intersection theory of Quot schemes of curves (for quotients of arbitrary ranks of a

trivial vector bundle), in particular to derive and extend the Vafa-Intriligator formula. The current K-

theoretic setup requires that we handle the localization sums differently. We believe that the simplicity

of the final formulas makes the calculations worthwhile to be recorded.

1.2. Analogies with surfaces. Theorems 1 and 2 suggest an unexpected analogy between Quotd(E)

and the Hilbert scheme of points X [d] over a smooth projective surface X. Specifically, Theorem 1 can

be compared with the calculations of [A1, Da, Sc1]:

∞∑
d=0

qdχ(X [d],∧yL[d]) = (1− q)−χ(OX)(1 + qy)χ(L).

This is proved in [Sc1] by passing to the derived category and computing the image of ∧•L[d] under the

Bridgeland-King-Reid equivalence

Db(X [d]) ' Db
Sd

(Xd)

established in [BKR, H]. The same result is obtained by studying different equivariant limits in the

Donaldson-Thomas theory of toric Calabi-Yau 3-folds in [A1].

In the same vein, Theorem 2 when r = 1 mirrors the following result of [WZ] and its strengthening

by [K1]:

∞∑
d=0

qdχ
(
X [d],∧yL[d] ⊗ (∧xM [d])∨

)
= (1− q)−χ(OX)(1 + qy)χ(L)(1 + qx)χ(M∨)(1− qxy)−χ(L⊗M∨).

While the latter equality is conjectured to hold in all dimensions ≥ 2, it was noted in [K1] that the naive

analogue for symmetric products of curves fails. Theorem 2 can be viewed as a remedy: a similar but

different formula holds for curves, and only when N ≥ 2. Theorem 2 furthermore allows for multiple

dualized factors.
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1.3. Higher rank. Turning to higher rank quotients, while we do not obtain a closed-form expression

for the corresponding generating series, our techniques yield the result below. We restrict to the case

C = P1, and E a trivial rank N vector bundle. The Quot scheme Quotd(E, r) parametrizes short exact

sequences

0→ S → E → Q→ 0, rank Q = r, degQ = d.

In higher rank, we modify (1) setting

L[d] = R0π? (p?L⊗Q)−R1π? (p?L⊗Q) ,

where p and π continue to denote the projections over C ×Quotd(E, r), and Q stands for the universal

quotient.

Theorem 3. Let degL = ` and 0 < r < N . We have

χ
(
Quotd(E, r),∧yL[d]

)
= (−1)(N−r−1)d

[
qd
] det(fi(zj))

det(zN−ji )
.

In the numerator (fi(zj)) is the N ×N matrix with

fi(z) =

{
z`+d+N−i+1 if 1 ≤ i ≤ N − r
zN−i(z + y)`+1 if N − r + 1 ≤ i ≤ N

and z1, . . . , zN are the distinct roots of the equation (z − 1)N − q(z + y)zr−1 = 0. The denominator is

the Vandermonde determinant.

In the statement above, the brackets indicate taking the coefficient of the corresponding power of q.

In Corollary 15 of Section 4, we note a connection between χ
(
Quotd(E, r),detL[d]

)
and Schur poly-

nomials. We also work out several specializations of the corresponding formula.

1.4. Symmetric products. For rank zero quotients, we similarly study the series of symmetric powers

of the tautological bundles
∞∑
d=0

qdχ
(
Quotd(E),SymyL

[d]
)
.

Here, for any vector bundle V , we write

SymyV =
∞∑
k=0

yk SymkV.

Theorem 4. For C = P1 and d ≥ k, we have

χ
(
Quotd(E),SymkL[d]

)
=

(
χ(E ⊗ L) + k − 1

k

)
.

The answer is independent of d ≥ k. The question was also studied over Hilbert schemes of points on

surfaces [A1, Sc2]. Just as for exterior powers, the analogy with the Hilbert scheme of surfaces persists

here as well. Indeed, the following result was established in [A1] via the Donaldson-Thomas theory of

toric Calabi-Yau 3-folds

χ
(
X [d],SymkL[d]

)
=

(
χ(L) + k − 1

k

)
,
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whenever d ≥ k and χ(OX) = 1.

Theorem 12 in Section 3 gives a more general result than Theorem 4 above, covering the case d < k

as well.

In arbitrary genus, universality arguments as in [EGL] show that the factorization

W =
∞∑
d=0

qdχ
(
Quotd(E), SymyL

[d]
)

= Aχ(OC) · Bχ(E⊗L)

holds true, for two universal power series A,B ∈ Q(y)[[q]] that depend on the triple (C,E,L) only

through the rank N of E. Our results give precise information about the series B. While we can

determine A in principle, we do not have a closed-form expression.

Theorem 5. We have

B = f

(
qy

(1− y)N+1

)
where f(z) is the solution to the equation

f(z)N − f(z)N+1 + z = 0, f(0) = 1.

For instance, in the special case N = 2, we obtain

f(z) = 1 +
4

3
sinh2

(
1

3
arcsinh

(
3
√

3z

2

))
.

In the last section, we raise a few questions related to the results in this paper.

1.5. Previous work. Several aspects of the geometry of the punctual Quot schemes Quotd(E) are

already understood. Since it is difficult to be exhaustive here, we mention only a few selected results.

The Poincaré polynomials and the motives of Quotd(E) are computed in [Bi, BFP, C, R, Str], the

cohomology and stabilization phenomena are considered in [Mo], automorphisms and Torelli type results

are studied in [BDH, Ga], various cones of divisors are investigated in [GS, Str], positivity results for

the tautological vector bundles are obtained in [O], the cohomology of the tangent bundle is studied in

[BGS]. The punctual Quot schemes bear close connections to the moduli space of bundles over curves,

and in fact, the study of the Poincaré polynomials and motives of the latter can be undertaken in this

context [BD, BGL, HPL]. As alluded to above, the (virtual) intersection theory of Quot schemes (of

quotients of arbitrary rank) over curves was studied in a wider context, see [Ber1, Ber2, MO1] (see also

[ST] for the Kontsevich compactification perspective). Furthermore, in this wider context, connections

with the intersection theory of the moduli of bundles were proven in [BDW, M, MO2].

Regarding the K-theory of Quot schemes, fewer direct calculations were available.1 We note however

the work of [RZ] which connects certain holomorphic Euler characteristics of line bundles over certain

1Over surfaces, the virtual K-theory of the punctual Quot schemes Quotd(E) was thoroughly studied in [AJLOP,
Bo]. Via cosection localization to a canonical curve, these results can be used to compute certain twisted holomorphic

Euler characteristics of tautological bundles over the punctual Quot schemes. These calculations are indirect, and more

importantly, due to the aforementioned twists, the results of our paper are not accessible via these methods.
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Quot schemes (parametrizing rank 2 subbundles of a trivial high rank bundle) with the Verlinde numbers

over the moduli of rank 2 bundles, via a wallcrossing analysis as in [BDW, T].2

1.6. Acknowledgements. We thank Noah Arbesfeld, Patrick Girardet, Drew Johnson, Woonam Lim,

Alina Marian, Rahul Pandharipande and Ming Zhang for discussions related to K-theoretic invariants

of Quot and Hilbert schemes. The authors are supported by the NSF through grant DMS 1802228.

2. Rank zero quotients and exterior powers

In this section we prove Theorems 1 and 2. The proofs of the two theorems are similar. The

calculations for Theorem 1 are however simpler and already illustrate the main points.

2.1. Torus action. We first establish Theorem 1 when C = P1 and E = O(a1)⊕ · · · ⊕O(aN ), and for

L such that

degL+ ai + 1 ≥ 0

for all i. The arbitrary genus case follows from here by universality arguments, see Section 2.6 below.

Under the above assumptions, we seek to show that

(2)

∞∑
d=0

qdχ(Quotd,∧yL[d]) = (1− q)−1(1 + qy)χ(E⊗L).

Here, for simplicity, we wrote Quotd instead of Quotd(E).

We evaluate expression (2) via Hirzebruch-Riemann-Roch

χ
(
Quotd,∧yL[d]

)
=

∫
Quotd

ch(∧yL[d]) Td (Quotd) ,

and we use C∗-equivariant localization to compute the integral.

To this end, we let C∗ act on E with weight −wi on the summand O(ai). This induces a C?-action

on Quotd. The fixed subbundles correspond to split inclusions

S =
N⊕
i=1

Ki(ai) ↪→ E =
N⊕
i=1

O(ai).

Thus, the fixed loci are products of projective spaces

F~d = Pd1 × · · · × PdN

for vectors ~d = (d1, . . . , dN ) such that d1 + · · · + dN = d. The factor Pdi corresponds to the Hilbert

scheme of di points of P1 parameterizing short exact sequences

0→ Ki → O → Ti → 0

such that Ti is a torsion sheaf of length di.

2It is natural to ask whether the Euler characteristic χ(∧dL[d]) given by Theorem 1 can be computed via wall-crossing,
say in rank 2 for simplicity. In principle, we are led to finding the Euler characteristics of certain higher rank twists of

the theta line bundles over the moduli space of semistable vector bundles, whose intersection theory is known. However,

obtaining exact formulas in this fashion seems combinatorially difficult.
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There is a universal exact sequence

0→ Ki → O → Ti → 0

over the product P1 × Pdi , with the universal kernel given by

(3) Ki = OP1(−di) �OPdi (−1).

For future reference, we note that the universal exact sequence 0→ S → p∗E → Q→ 0 over P1×Quotd

restricts to P1 × F~d as

(4) 0→
⊕
i∈[N ]

Ki(ai)→ O(a1)⊕ · · · ⊕ O(aN )→
⊕
i∈[N ]

Ti(ai)→ 0,

where pullbacks from the factors are understood above. We also set [N ] = {1, 2, . . . , N}.
By Atiyah-Bott localization, we have

(5) χ(Quotd,∧yL[d]) =
∑
|~d|=d

∫
F~d

ch(∧yL[d])
Td(Quotd)

eC∗(N~d)

∣∣∣∣
F~d

.

Here N~d denotes the normal bundle of the fixed locus F~d.

2.2. Explicit calculations. We proceed to calculate the expressions appearing in the localization sum

(5). In the next subsections, we record the Todd genera, the normal bundle contributions and the Chern

characters of the tautological bundles.

2.2.1. Todd Classes. By (4), the tangent bundle TQuotd = Homπ(S,Q) restricts to⊕
i,j∈[N ]

π? (K∨i (−ai)⊗ Tj(aj))

over the fixed locus F~d = Pd1 × · · · × PdN . Here π : Quotd×P1 → Quotd denotes the projection. In

K-theory, the above expression equals⊕
i,j∈[N ]

π? (K∨i (aj − ai))−
⊕

i,j∈[N ]

π? (K∨i ⊗Kj(aj − ai)) .

In this discussion π? = R0π?−R1π?. Therefore the Todd class of Quotd restricted to each fixed locus is

∏
i,j∈[N ]

Td (π? (K∨i (aj − ai)))

 ∏
i,j∈[N ], i 6=j

Td (π? (K∨i ⊗Kj(aj − ai)))

−1

.

The above (i, j)-terms carry the weight wi − wj . The assumption i 6= j in the second product can be

made since the term i = j is trivial in genus 0.
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2.2.2. Equivariant normal bundles. Over each fixed locus, the normal bundle is given by the moving

part of the tangent bundle:

N~d = Tmov

∣∣∣∣
F~d

=
⊕
i6=j

π? (K∨i (−ai)⊗ Tj(aj))(6)

=
⊕
i6=j

π? (K∨i (aj − ai))−
⊕
i6=j

π? (K∨i ⊗Kj(aj − ai)) ,

where we continue to keep track of the weights wi − wj . Therefore, we find the Euler classes

1

eC∗(N~d)
=

∏
i,j∈[N ], i 6=j

(
eC∗ (π? (K∨i (aj − ai)))

)−1 ∏
i,j∈[N ], i 6=j

eC∗ (π? (K∨i ⊗Kj(aj − ai))) .

Collecting all expressions above, we obtain that over the fixed locus F~d, the factor Td(Quotd)
eC∗ (N~d

) in the

localization expression (5) restricts to

(7)
∏
i∈[N ]

Td (π? (K∨i ))
∏

i,j∈[N ], i 6=j

Td

eC∗

(
π? (K∨i (aj − ai))

) ∏
i,j∈[N ], i 6=j

eC∗

Td

(
π? (K∨i ⊗Kj(aj − ai))

)
.

2.2.3. Explicit contributions. The terms in (7) can be made explicit. For the first term, recalling (3),

we immediately compute

π?(K∨i ) = Cdi+1 ⊗OPdi (1) =⇒ Td(π?(K∨i )) =

(
hi

1− e−hi

)di+1

,

where hi is the hyperplane class on Pdi (by abuse of notation also pulled back to Pd1 × · · · ×PdN ). The

equivariant weights vanish for this term. (This is the Todd genus of the projective space, as it should.)

Turning to the remaining terms, more generally, equation (3) straightforwardly yields

c(π?(K∨i (aj − ai))) = (1 + hi)
di+aj−ai+1

c(π?(K∨i ⊗Kj(aj − ai))) = (1 + (hi − hj))di−dj+aj−ai+1.

In the equivariant cohomology, recalling that the above sheaves carry the weight wi − wj , we obtain

c(π?(K∨i (aj − ai))) = (1 + (hi + wiε− wjε))di+aj−ai+1

c(π?(K∨i ⊗Kj(aj − ai))) = (1 + (hi + wiε− hj − wjε))di−dj+aj−ai+1.

Here, ε denotes the equivariant parameter. This implies the following expressions for the equivariant

Todd genera

Td(π?(K∨i (aj − ai))) =

(
hi + wiε− wjε

1− e−(hi+wiε−wjε)

)di+aj−ai+1

Td(π?(K∨i ⊗Kj(aj − ai))) =

(
hi + wiε− hj − wjε

1− e−(hi+wiε−hj−wjε)

)di−dj+aj−ai+1

.

Similarly we obtain the Euler classes

eC∗(π?(K∨i (aj − ai))) = (hi + wiε− wjε)di+aj−ai+1

eC∗(π?(K∨i ⊗Kj(aj − ai))) = (hi + wiε− hj − wjε)di−dj+aj−ai+1.
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Simplification. All told, substituting the above expressions into (7) and cancelling terms, we obtain

(8)
Td(Quotd)

eC∗(N~d)

∣∣∣∣
F~d

=
∏
i∈[N ]

hdi+1
i

∏
i,j∈[N ]

(
zi

zi − αj

)di+aj−ai+1 ∏
i,j∈[N ], i 6=j

(
zi − zj
zi

)di−dj+aj−ai+1

where we set for notational convenience

zi = ehi+wiε, αi = ewiε.

We rewrite this in a slightly more convenient form in terms of the polynomial

R(z) =
∏
j∈[N ]

(z − αj).

Combining the (i, j) and (j, i)-factors in the last product appearing in (8), and judiciously accounting

for the remaining terms, we eventually obtain

(9)
Td(Quotd)

eC∗(N~d)

∣∣∣∣
F~d

= u ·
∏
i∈[N ]

(
hi

R(zi)

)di+1

zd+1
i

(
R(zi)∏

j∈[N ](zj − αi)

)ai+`+1

·
∏

i,j∈[N ], i<j

(zi − zj)2

for the sign

u = (−1)(N−1)(d+
∑

(ai+`+1))+(N
2 ).

The integer ` included in the above expression will be useful later on. For now, the value of ` plays no

role. Any ` will work since ∏
i

R(zi)∏
j(zj − αi)

= 1.

2.2.4. Chern classes. For the remaining term in (5), we record the following

Lemma 6. The equivariant restrictions of the Chern characters of the tautological bundles to the fixed

loci are given by

ch(∧yL[d])

∣∣∣∣
F~d

=
∏
i

(
zi(αi + y)

αi(zi + y)

)ai+`+1(
zi + y

zi

)di
(10)

ch
(

(∧xM [d])∨
) ∣∣∣∣

F~d

=
∏
i

(
1 + αix

1 + zix

)ai+m+1

(1 + zix)di(11)

where L and M are line bundles of degree ` and m respectively.

Proof. We only explain the first formula, the second assertion being entirely similar. We note that over

F~d = Pd1 × · · · × PdN , the bundle L[d] splits as contributions coming from each factor

L[d] = π?(Q⊗ p?L) =
⊕
i∈[N ]

π?(Ti ⊗ p?L(ai)),

with each summand acted on with C?-weight −wi. In K-theory, we have by (3) that

Ti = O −Ki = OP1×Pdi −OP1(−di) �OPdi (−1).

This yields

π?(Ti ⊗ p?L(ai)) = Cai+`+1 ⊗OPdi − Cai−di+`+1 ⊗OPdi (−1).



EULER CHARACTERISTICS OVER QUOT SCHEMES 9

The result follows immediately from here, using that ∧y(V +W ) = ∧yV · ∧yW and accounting for all

terms. �

2.3. Proof of Theorem 1. With the above ingredients in place, the key steps of the argument are as

follows:

(i) after judiciously accounting for all localization terms, the fixed point contributions are summed

using the Lagrange-Bürmann formula;

(ii) next, the answer is recast as a quotient of suitable determinants. Schur polynomials evaluated

at the roots of a certain algebraic equation arise at this step;

(iii) finally, an application of the Jacobi-Trudi formula to the Schur polynomials greatly simplifies

the answer and gives the result.

To begin, we substitute equations (9) and (10) into the localization expression (5). We obtain that

χ(Quotd,∧yL[d]) equals

u
∑
|~d|=d

[
hd11 . . . hdNN

]{∏
i

(
zi(αi + y)

αi(zi + y)

)bi(zi + y

zi

)di( hi
R(zi)

)di+1

zd+1
i

(
R(zi)∏
j(zj − αi)

)bi
(12)

·
∏
i<j

(zi − zj)2

}∣∣∣∣
ε=0

.

Here, we wrote for simplicity

bi = ai + `+ 1.

The brackets indicate extracting the coefficient of hd11 . . . hdNN in the relevant expression; this corresponds

to integration over the product of projective spaces F~d = Pd1 × . . .× PdN . The equivariant parameter ε

is set to 0 at the end.

The rest of this section is dedicated to the explicit combinatorial manipulations (i)-(iii) which bring

the above expression (12) into the form stated in Theorem 1. We first apply the multivariable Lagrange-

Bürmann formula [Ge]. The formulation we need in this case is as follows. Consider formal power series

Φ1(h1), . . . ,ΦN (hN ) with Φi(0) 6= 0, and consider a power series Ψ(h1, . . . , hN ). We have

(13)
∑

(d1,...,dN )

qd11 · · · q
dN
N

[
hd11 . . . hdNN

] (
Φ1(h1)d1+1 · · ·ΦdN+1

N (hN ) ·Ψ(h1, . . . , hN )
)

=
Ψ

J

for the change of variables

qi =
hi

Φi(hi)

with Jacobian

J =
dq1

dh1
· · · dqN

dhN
.

This formula will be used to derive equation (18) below. The intermediate calculations are straightfor-

ward; nonetheless, we record the details for completeness.
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Set

Φi(hi) =
hi

R(zi)

zi + y

zi
,

and let

Ψ = u
∏
i

(
zi(αi + y)

αi(zi + y)

)bi(zi + y

zi

)−1

zd+1
i

(
R(zi)∏
j(zj − αi)

)bi
·
∏
i<j

(zi − zj)2

be determined by the remaining terms in (12).3 Due to the factor zi − αi in R(zi) which has a simple

zero at hi = 0, we have Φi(0) 6= 0. We apply (13) with

q1 = . . . = qN = q.

Thus, letting zi be the root of the equation

q(zi + y) = ziR(zi), zi
∣∣
q=0

= αi,

and letting hi be determined by zi = αie
hi , we have q = hi

Φi(hi)
. It follows from (12) and (13) that

χ
(
Quotd,∧yL[d]

)
=
[
qd
] Ψ

J
(h1(q), . . . , hN (q)) .

Equivalently, χ
(
Quotd,∧yL[d]

)
equals[

qd
]
u
∏
i

(
zi(αi + y)

αi(zi + y)

)bi(zi + y

zi

)−1
dhi
dq

zd+1
i

(
R(zi)∏
j(zj − αi)

)bi
·
∏
i<j

(zi − zj)2

∣∣∣∣
ε=0

.(14)

Consider the polynomial

(15) P (z) = zR(z)− q(z + y).

Note that P has degree N + 1, so it admits N + 1 roots, with z1, . . . , zN being N of them. Let zN+1

be the additional root of P which satisfies

zN+1

∣∣
q=0

= 0.

We will greatly simplify (14) using the additional root zN+1.

To this end, write P (z) = (z − z1) · · · (z − zN+1). A simple calculation gives

dq

dhi
=

dq

dzi
· dzi
dhi

= zi
dq

dzi
=

zi
zi + y

P ′(zi).(16)

Here, we used that

q =
ziR(zi)

zi + y
=⇒ dq

dzi
=
R(zi)

zi + y
+
ziR
′(zi)

zi + y
− ziR(zi)

(zi + y)2
=
P ′(zi)

zi + y
,

where the definition of P was necessary in the last equality. The terms in (14) with exponent bi further

simplify since

zi(αi + y)R(zi)

αi(zi + y)
∏N
j=1(zj − αi)

= (−1)N
(zN+1 − αi)

αi
⇐⇒ (αi + y)ziR(zi) = −(zi + y)P (αi)(17)

3In the expression Ψ, we regard the exponent d in the term zd+1
i as an independent parameter, foregoing for the

moment the requirement that d = d1 + . . .+dN . The careful reader may wish to replace the term zd+1
i by a more general

ze+1
i for e ≥ d in the proof below. This leads to (21) written instead for the partition λk = (eN , k) or (k −N, (e+ 1)N ).

One then specializes back to the case of interest e = d and continues by applying Lemma 7.
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where the last identity holds true using (15) and the fact that P (zi) = 0, R(αi) = 0. Substituting

identities (16) and (17) into (14), we obtain the expression

(18)
[
qd
]

(−1)(N−1)d
N∏
i=1

(
αi − zN+1

αi

)bi zd+1
i

P ′(zi)
·

∏
1≤i6=j≤N

(zi − zj)
∣∣∣∣
ε=0

.

Having arrived at (18), a new idea is needed to go further. Note that

N∏
i=1

P ′(zi) =
N∏
i=1

N+1∏
j=1

j 6=i

(zi − zj) =⇒
N∏
i=1

1

P ′(zi)
·

∏
1≤i6=j≤N

(zi − zj) =
VN

VN+1
.

Here, we introduced the two Vandermonde determinants

VN =

∣∣∣∣∣∣∣∣∣
zN−1

1 · · · z1 1

zN−1
2 · · · z2 1
... · · ·

...
...

zN−1
N · · · zN 1

∣∣∣∣∣∣∣∣∣ , VN+1 =

∣∣∣∣∣∣∣∣∣
zN1 · · · z1 1
zN2 · · · z2 1
... · · ·

...
...

zNN+1 · · · zN+1 1

∣∣∣∣∣∣∣∣∣ .
We thus rewrite expression (18) in the form

(19)
[
qd
] (−1)(N−1)d

VN+1

∣∣∣∣∣∣∣∣∣
zd+N

1 zd+N−1
1 · · · zd+1

1

zd+N
2 zd+N−1

2 · · · zd+1
2

...
... · · ·

...

zd+N
N zd+N−1

N · · · zd+1
N

∣∣∣∣∣∣∣∣∣
N∏
i=1

(
αi − zN+1

αi

)bi∣∣∣∣
ε=0

.

Next, recall that [q0]zN+1 = 0. Hence we may add terms which are multiples of zd+1
N+1 without

changing the coefficient of qd. Using this observation, we enlarge the determinant in the numerator by

adding one more row and column. The answer is recast as the quotient of two determinants of size

(N + 1)× (N + 1):

[
ε0qd

] (−1)(N−1)d

VN+1

∣∣∣∣∣∣∣∣∣∣
zd+N

1 zd+N−1
1 · · · zd+1

1

∏N
i=1(αi−z1

αi
)bi

zd+N
2 zd+N−1

2 · · · zd+1
2

∏N
i=1(αi−z2

αi
)bi

...
... · · ·

...
...

zd+N
N+1 zd+N−1

N+1 · · · zd+1
N+1

∏N
i=1(αi−zN+1

αi
)bi

∣∣∣∣∣∣∣∣∣∣
.(20)

This does not change expression (19). Indeed, expanding along the last row, the first entries do not

contribute by the above reasoning, while the rightmost corner contribution matches (19). The assump-

tion degL+ ai + 1 ≥ 0 made in the beginning of this section is also used here. This condition rewrites

as bi ≥ 0, so the terms we added on the last column do not contribute poles at q = 0.

Expression (20) is symmetric in the roots z1, . . . , zN+1 of P (z). The answer can be rewritten in terms

of the elementary symmetric functions in the zi’s which depend polynomially on the αi’s. Thus (20) is

a rational fraction in the α’s, with denominator
∏N
i=1 α

bi
i (coming from the last column). Since we are

interested in the coefficient of ε0, since the elementary symmetric functions depend continuously on the

α’s, we may substitute αi = 1, noting that there are no poles in (20) at these values.
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After the substitution, the zi’s solve z(z − 1)N − q(z + y) = 0. Furthermore, since

N∑
i=1

bi = χ(E ⊗ L) := χ,

the entries in the last column of the determinant (20) become

(1− zi)χ =
∑
k≥0

(−1)k
(
χ

k

)
zki .

Expanding the determinant along the last column yields sums over Schur polynomials. Specifically,

we obtain

(21)
[
qd
]∑
k≥0

(−1)(N−1)d+k

(
χ

k

)
sλk

(z1, . . . , zN+1).

Here, we set

λk = (dN , k) = (d, . . . , d, k),

and sλk
(z1, . . . zN+1) denotes the corresponding Schur polynomial, when k ≤ d. The terms for d < k ≤

d + N have vanishing contribution due to repeating columns in the determinant. To account for the

ordering of the exponents, the shape of the partition changes when k > d+N . In all cases, we find

λk =

{
(dN , k) if k ≤ d
(k −N, (d+ 1)N ) if k > d+N

.

The lemma below identifies the coefficient of qd in sλk
(z1, . . . , zN+1). We obtain

χ(Quotd,∧yL[d]) =
d∑
k=0

(
χ

k

)
yk =

[
qd
]

(1 + qy)χ(1− q)−1.

This completes the proof of Theorem 1 in genus 0 under the assumption bi ≥ 0 for all 1 ≤ i ≤ N .

Lemma 7. We have

[
qd
]
sλk

(z1, . . . , zN+1) =

{
(−1)d(N−1)(−y)k if k ≤ d
0 if k > d+N

.

Proof. Since the zi’s are the roots of the polynomial P (z) = z(z − 1)N − q(z + y), the elementary

symmetric functions in z1, . . . , zN+1 are

ej =


(
N
j

)
if j 6= N,N + 1

1 + (−1)N−1q if j = N

(−1)Nqy if j = N + 1.

Assume k ≤ d so that λk = (dN , k). The Jacobi-Trudi formula expresses the Schur polynomial as a

d × d determinant in the elementary symmetric functions. The entries are dictated by the conjugate
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partition λ′k = ((N + 1)k, Nd−k), so that

sλk
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eN+1 0 0 · · · 0 0 · · · 0 0
eN eN+1 0 · · · 0 0 · · · 0 0
eN−1 eN eN+1 · · · 0 0 · · · 0 0

...
...

... · · ·
...

... · · ·
...

...
eN−k+2 eN−k+3 eN−k+4 · · · eN+1 0 · · · 0 0
eN−k eN−k+1 eN−k+2 · · · eN−1 eN · · · 0 0

...
...

... · · ·
...

... · · ·
...

...
eN−d+2 eN−d+3 eN−d+4 · · · eN−d+k+1 eN−d+k+2 · · · eN eN+1

eN−d+1 eN−d+2 eN−d+3 · · · eN−d+k eN−d+k+1 · · · eN−1 eN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.(22)

Each of the ej ’s is at most linear in q. Since the determinant has size d, extracting the qd coefficient is

immediate. In fact, we can replace the ej ’s by their linear terms in q; these are zero unless j = N or

j = N + 1. We obtain that

[
qd
]
sλk

=
[
qd
]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eN+1 0 0 · · · 0 0
eN eN+1 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · eN eN+1

0

0

eN eN+1 0 · · · 0 0
0 eN eN+1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 eN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus,

[qd]sλk
=
[
qd
]
ekN+1e

d−k
N = (−1)kN+(d−k)(N−1)yk.

The case k > d+N changes the conjugate partition λ′k, but the reasoning is identical. �

2.4. Proof of Theorem 2. A similar but slightly more involved argument yields Theorem 2 in genus

0 when bi ≥ 0 for all 1 ≤ i ≤ N . Specifically, we prove that

(23) χ

(
Quotd,∧yL[d] ⊗rp=1

(
∧xp

M [d]
p

)∨)
=
[
qd
]

(1− q)−1(1 + qy)χ(E⊗L)
r∏
p=1

(1− xpyq)−χ(L⊗M∨p ).

We indicate some of the steps.

Just as in Theorem 1, we begin by applying Hirzebruch-Riemann-Roch followed by Atiyah-Bott

localization:

χ (Quotd, ∧yL[d] ⊗rp=1

(
∧xpM

[d]
p

)∨)
(24)

=
∑
~d

∫
F~d

ch(∧yL[d])
r∏
p=1

ch

((
∧xpM

[d]
p

)∨) Td(Quotd)

eC∗(N~d)

∣∣∣∣
F~d

.
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All terms that appear here have been computed in the previous subsections. Using (9), (10) and (11),

we rewrite (24) as

u
∑
|~d|=d

[
hd11 · · ·h

dN
N

]{ N∏
i=1

((
zi(αi + y)

αi(zi + y)

)bi(zi + y

zi

)di r∏
p=1

(
1 + αixp
1 + zixp

)ai+mp+1

(1 + zixp)
di

(
hi

R(zi)

)di+1

zd+1
i

(
R(zi)∏N

j=1(zj − αi)

)bi)
·

∏
1≤i<j≤N

(zi − zj)2

} ∣∣∣∣
ε=0

where bi = ai + `+ 1 and u = (−1)(N−1)(d+
∑
bi)+(N

2 ). Here, we set mp = degMp.

Next, the Lagrange-Bürmann formula with the change of variables

q(zi + y)
r∏
p=1

(1 + zixp) = ziR(zi)(25)

turns (24) into the following unwieldy expression

[
qd
]
u

N∏
i=1

[(
zi(αi + y)

αi(zi + y)

)bi r∏
p=1

(
1 + αixp
1 + zixp

)ai+mp+1(
zi + y

zi

r∏
p=1

(1 + zixp)

)−1
dhi
dq

zd+1
i(

R(zi)∏
j(zj − αi)

)bi]
·

∏
1≤i<j≤N

(zi − zj)2

∣∣∣∣
ε=0

.

However, there are further simplifications. To this end, we define the polynomial

P (z) = zR(z)− q(z + y)

r∏
p=1

(1 + zxp).

Since r ≤ N − 1, the degree of P is N + 1, so there is an additional root zN+1 for P . Following the

same steps that led to (18), we simplify the above expression to

(26)
[
qd
]

(−1)(N−1)df(zN+1)
N∏
i=1

zd+1
i

P ′(zi)

∏
1≤i6=j≤N

(zi − zj)
∣∣∣∣
ε=0

where

f(z) =
r∏
p=1

(1 + zxp)
mp−`

N∏
i=1

(
αi − z
αi

)bi
.

We record the details of the simplification in the lemma below; the reader can also skip directly to (29).

Lemma 8. We have (
zi + y

zi

r∏
p=1

(1 + zixp)

)
dq

dhi
= P ′(zi)(27)

and

(28)
N∏
i=1

((
zi(αi + y)

αi(zi + y)

R(zi)∏N
j=1(zj − αi)

)bi r∏
p=1

(
1 + αixp
1 + zixp

)ai+mp+1
)

= (−1)(N−1)
∑
bif(zN+1).
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Proof. Equation (27) follows by differentiating the expression for q given in (25). For (28), recall

bi = ai + `+ 1, and use the following identities

ziR(zi) = q(zi + y)
r∏
p=1

(1 + zixp),

N∏
j=1

(zj − αi) = (−1)N+1 P (αi)

zN+1 − αi
= (−1)Nq

(αi + y)
∏r
p=1(1 + αixp)

zN+1 − αi
.

In the last line we used the definition of P and the fact that R(αi) = 0. Then (28) becomes

N∏
i=1

((
(−1)N

(zN+1 − αi)
αi

)bi r∏
p=1

(
1 + αixp
1 + zixp

)mp−`
)
.

Finally, recalling that αi and zi are roots of R and P , for each fixed p we have

N∏
i=1

1 + αixp
1 + zixp

=
R (−1/xp)

P (−1/xp)

(
− 1

xp
− zN+1

)
= (1 + zN+1xp).

In the last equality, we used again the definition of P in terms of R. The lemma follows from here. �

Having arrived at (26), by the same reasoning as in (19) we rewrite the answer as the quotient of

two determinants

(29)
[
ε0qd

] (−1)(N−1)d

det(zN−j+1
i )

∣∣∣∣∣∣∣∣∣
zd+N

1 zd+N−1
1 · · · zd+1

1

zd+N
2 zd+N−1

2 · · · zd+1
2

...
... · · ·

...

zd+N
N zd+N−1

N · · · zd+1
N

∣∣∣∣∣∣∣∣∣ f(zN+1).

The denominator is the Vandermonde determinant of size (N + 1)× (N + 1), while the numerator has

size N ×N . Using the previous arguments, in particular that [q0]zN+1 = 0, we enlarge the determinant

appearing in the numerator of (29) by adding one row and one column:

[ε0qd]
(−1)(N−1)d

det(zN−j+1
i )

∣∣∣∣∣∣∣∣∣
zd+N

1 zd+N−1
1 · · · zd+1

1 f(z1)

zd+N
2 zd+N−1

2 · · · zd+1
2 f(z2)

...
... · · ·

...
...

zd+N
N+1 zd+N−1

N+1 · · · zd+1
N+1 f(zN+1)

∣∣∣∣∣∣∣∣∣ .(30)

Since (30) is symmetric in z′is, it can be written as a rational function in the αi’s whose denominator

equals
∏N
i=1 α

bi
i coming from the denominator of f . The substitution αi = 1 therefore makes sense.

After this substitution, the last column can be rewritten in terms of

f(t)|αi=1 =
r∏
p=1

(1 + xpt)
mp−` · (1− t)χ

for the values t = z1, z2, . . . , zN+1. Here χ = χ(E ⊗ L). We expand f(t) into powers tk, and then we

expand the determinant (30) along the last column yielding

(31) (−1)(N−1)d
∑
k≥0

[
tk
]
f(t) ·

[
qd
]
sλk

(z1, . . . , zN+1),
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for the partition

λk =

{
(dN , k) if k ≤ d
(k −N, (d+ 1)N ) if k > d+N.

By Lemma 9 below, for k ≤ d we have[
qd
]
sλk

(z1, . . . , zN+1) = (−1)(N−1)d(−y)k
[
td−k

] 1

(1− t)(1− x1yt) · · · (1− xryt)
.

Substituting the last formula into (31), we obtain that

χ
(
Quotd,∧yL[d] ⊗rp=1

(
∧xp

M [d]
p

)∨)
=

d∑
k=0

[
tk
](

(1− t)χ(E⊗L)
r∏
p=1

(1 + xpt)
mp−`

)
· (−y)k

[
td−k

] 1

(1− t)
∏r
p=1(1− xpyt)

=
d∑
k=0

[
tk
](

(1 + yt)χ(E⊗L)
r∏
p=1

(1− xpyt)mp−`

)
·
[
td−k

] 1

(1− t)
∏r
p=1(1− xpyt)

=
[
td
] (1 + yt)χ(E⊗L)

(1− t)
∏r
p=1(1− xpyt)χ(L⊗M∨p )

.

This completes the proof of (23) and of Theorem 2 in genus 0 when bi ≥ 0 for all i.

2.5. Schur polynomials. Let z1, . . . zN+1 be N + 1 roots of

P (z) = z(z − 1)N − q(z + y)(1 + zx1) · · · (1 + zxr),

where 0 ≤ r ≤ N − 1. We show

Lemma 9. For the partition λk above, and k ≤ d, we have[
qd
]
sλk

(z1, . . . , zN+1) = (−1)(N−1)d(−y)k
[
td−k

] 1

(1− t)(1− x1yt) · · · (1− xryt)
.

If k > d+N , the coefficient vanishes.

Proof. The proof is similar to that of Lemma 7. Assume k ≤ d, the other case being analogous. Since

the zi’s are the roots of the polynomial P (z), the elementary symmetric functions are

ej =

(
N

j

)
+ (−1)j−1q

[
zN+1−j] (y + z)(1 + zx1) · · · (1 + zxr).

We examine again the Jacobi-Trudi determinant (22)

sλk
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eN+1 0 · · · 0 0 · · · 0 0
eN eN+1 · · · 0 0 · · · 0 0
eN−1 eN · · · 0 0 · · · 0 0

...
... · · ·

...
... · · ·

...
...

eN−k+2 eN−k+3 · · · eN+1 0 · · · 0 0
eN−k eN−k+1 · · · eN−1 eN · · · 0 0

...
... · · ·

...
... · · ·

...
...

eN−d+2 eN−d+3 · · · eN−d+k+1 eN−d+k+2 · · · eN eN+1

eN−d+1 eN−d+2 · · · eN−d+k eN−d+k+1 · · · eN−1 eN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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The ej ’s are at most linear in q. To find the coefficient of qd in the above d × d determinant, we may

thus replace ej with the coefficient of the linear term in q. Thus, we may take

(32) ej = (−1)j−1
[
zN+1−j] (y + z)(1 + zx1) · · · (1 + zxr).

In particular eN+1 = (−1)Ny. Furthermore, note that the first k × k block of the determinant is lower

triangular, hence [
qd
]
sλk

= ekN+1 · Td−k = (−1)Nkyk · Td−k

where Tm is the m×m determinant

Tm =

∣∣∣∣∣∣∣∣∣∣∣∣∣

eN eN+1 0 · · · 0 0
eN−1 eN eN+1 · · · 0 0
eN−2 eN−1 eN · · · 0 0

...
...

... · · ·
...

...
eN−m+2 eN−m+3 eN−m+2 · · · eN eN+1

eN−m+1 eN−m+2 eN−m+1 · · · eN−1 eN

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The argument is completed using the Lemma below. �

Lemma 10. Assume e1, . . . , eN+1 are given by (32). For any m ≥ 0, we have

(33) Tm = (−1)(N−1)m [tm]
1

(1− t)(1− x1yt) · · · (1− xryt)
.

Proof. We set T0 = 1 and T` = 0 for ` < 0. By expanding the determinant Tm along the first column

and then successively along the rows, we obtain the recursion

Tm =
r∑
j=0

(−1)jejN+1eN−jTm−j−1 for all m > 0.

Note that by (32), for degree reasons we have eN−j = 0 if j > r. This explains the upper bound of the

index j in the sum. Forming the generating series

T =
∞∑
m=0

Tmt
m,

the above recursion immediately yields

T =

(
1−

r∑
j=0

(−1)jejN+1eN−jt
j+1

)−1

.

Substituting the values of ej from (32), we obtain for all 0 ≤ j ≤ r that

(−1)j+1ejN+1eN−j = (−1)N(j+1)yj+1
[
zj+1

]((
1 +

z

y

)
(1 + zx1) · · · (1 + zxr)

)
=
[
tj+1

] (
(1− (−1)N−1t)(1− (−1)N−1x1yt) · · · (1− (−1)N−1xryt)

)
,

where the substitution z = (−1)Nyt was carried out in the last step. Therefore

T =

(
1−

r∑
j=0

(−1)jejN+1eN−jt
j+1

)−1

=
1

(1− (−1)N−1t)
∏r
p=1(1− (−1)N−1xpyt)

.

Taking the coefficient of tm gives the required identity. �
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2.6. Arbitrary genus. Relying on the ideas of [EGL], we show how the calculations for C = P1 imply

Theorems 1 and 2 for arbitrary genus. We explain this for Theorem 1, the case of Theorem 2 being

entirely similar. The argument is also noted and used in [OP] over surfaces for punctual quotients of

trivial bundles, and extended to quotients of arbitrary vector bundles in [St2]. The case of curves is

analogous, but we record the details for the benefit of the readers who seek a self-contained account.

Step1. The first goal is to show that the Euler characteristic

(34) χ(Quotd(E),∧yL[d])

is a polynomial (that may depend on N) in degE, degL and χ(OC) (with coefficients in Q[y]), for

all smooth projective possibly disconnected curves C. In fact, the statement holds for all tautological

integrals of the form

(35)

∫
Quotd(E)

P

where P is a polynomial in the Chern classes of the tangent bundle of Quotd(E) and L[d].

We first analyze the case of split vector bundles

E =
N⊕
i=1

Fi, rk Fi = 1.

For such a vector bundle, we can use the action of C? on the summands of E to evaluate (35), just as

we have done for genus 0 above. This way, we are led to considering integrals of the form

(36)

∫
C[d1]×···×C[dN ]

Q

where d1 + . . .+ dN = d. Here Q is a polynomial involving the Chern classes of

π? (Ki ⊗ p?M) , π? (K∨i ⊗ p?M) , π? (K∨i ⊗Kj ⊗ p?M)

for various M → C, including M = F∨i ⊗Fj or M = L⊗Fi. The notation Ki was introduced in Section

2.1. We can evaluate these Chern classes with the aid of Grothendieck-Riemann-Roch. The integrals

(36) can be pulled back via the finite map

Cd → C [d1] × · · · × C [dN ].

The pullbacks of K∨i over Cd×C correspond to sums of diagonals ∆•,d+1, and thus (36) takes the form

d1! · · · dN !

d!

∫
Cd

Q̃

where Q̃ is a universal expression in the diagonals and classes from C. In general, monomials in diagonals

and classes from C can be evaluated explicitly using that for ∆ ↪→ C × C we have

∆2 = 2χ(OC), ∆ ·M = degM,

for all smooth projective possibly disconnected curves C, M → C. Therefore (35) is a polynomial in

degFi, degL and χ(OC).
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Step 2. We next argue that the above polynomial only depends on degE =
∑
i degFi, degL and

χ(OC). This requires additional considerations. We write

xi = degFi, y = degL, z = χ(OC),

and R(x1, . . . , xN , y, z) for the universal polynomial found above. The polynomial R is certainly sym-

metric in x1, . . . , xN .

We claim that if xi are sufficiently large, R(x1, . . . , xN , y, z) is in fact a polynomial in
∑N
i=1 xi. Indeed,

for large degrees, the line bundles Fi are globally generated (over connected curves C). Thus we can

write E as a quotient

0→ K →W → E → 0,

where W is a trivial bundle (whose rank depends on degE). By [St1, Theorem 5], modified from the

original setting of surfaces to the case of curves, there is an embedding

(37) Quotd(E) ↪→ Quotd(W )

cut out by a canonical section of the bundle (K∨)
[d]

. With this observation, the integral (35) rewrites

as

(38)

∫
Quotd(E)

P =

∫
Quotd(W )

P̃

where P is a polynomial in the Chern classes of the tangent bundle of Quotd(W ) and the tautologi-

cal bundles (K∨)
[d]

and L[d]. Applying the localization argument in Step 1 once again, this time to

Quotd(W ), we see that (38) only depends on

degK∨ = degE, degL, χ(OC).

Thus, the polynomial R(x1, . . . , xN , y, z) is a function of
∑N
i=1 xi, y, z, when xi are large. Hence

R(x1, . . . , xN , y, z) = S(x1 + . . .+ xN , y, z),

for a new universal polynomial S. This proves the statement we need about (35) when the bundle E

splits.

Step 3. The general case follows from the following observation. Assume E sits in an extension

0→ E1 → E → E2 → 0.

Considering the universal extension

0→ p?E1 → E → p?E2 → 0

over p : C×Ext1(E2, E1)→ C, and constructing the relative Quot scheme Quotd(E) over the extension

space, we see that ∫
Quotd(E)

P =

∫
Quotd(E1⊕E2)

P.
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To reduce to the case of split E, consider a line bundle M such that

0→M → E → F → 0

is exact and F is a vector bundle of smaller rank. By the above observation we can replace E by M⊕F ,

and then continue inductively.

Step 4. We return to the series appearing in Theorem 1, namely

ZC,L,E =
∞∑
d=0

qdχ
(
Quotd(E),∧yL[d]

)
.

Consider a disconnected curve C = C1 t C2, E = E1 t E2 and L = L1 t L2. We compare the Quot

schemes of C,C1, C2 and the tautological bundles over them:

Quotd(E) =
⊔

d1+d2=d

Quotd1(E1)× Quotd2(E2), L[d] =
⊔

d1+d2=d

L
[d1]
1 � L

[d2]
2 .

This implies

(39) ZC,L,E = ZC1,L1,E1
· ZC2,L2,E2

.

By the arguments of [EGL, Theorem 4.2], the factorization (39) shows that

(40) ZC,L,E = Aχ(C,OC) · BdegL · CdegE ,

for universal series A,B,C ∈ Q(y)[[q]] that depend only on N . We specialize to (C,L) = (P1,OP1(`))

with ` sufficiently large, and E = O(a1)⊕ . . .⊕O(aN ). Comparing (2) and (40), we obtain

A = (1− q)−1 · (1 + qy)N , B = (1 + qy)N , C = 1 + qy.

Substituting these expressions back into (40), we obtain Theorem 1 for all genera:

ZC,L,E = Aχ(C,OC) · BdegL · CdegE = (1− q)−χ(OC) · (1 + qy)χ(E⊗L).

This completes the argument. �

Example 11. Theorem 1 immediately implies

χ
(
Quotd(E),∧kL[d]

)
= (−1)d−k

(
g − 1

d− k

)(
χ(E ⊗ L)

k

)
.

Thus, in higher genus, we obtain the vanishing

χ
(
Quotd(E),∧kL[d]

)
= 0 if d ≥ k + g, g ≥ 1.

3. Symmetric Powers

3.1. Genus zero. Theorem 4 concerns the symmetric powers of the tautological bundles SymyL
[d] in

genus 0 and is proven in a similar fashion as Theorem 1. The calculations are however more involved.

The higher genus case and Theorem 5 will be considered in Section 3.2.
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By Section 2.6, for each d and k, the Euler characteristic

χ
(
Quotd,Sym

kL[d]
)

depends polynomially on `. To prove Theorem 4, it suffices to assume bi = `+ ai + 1 ≥ d+ 1 for all i.

By Hirzebruch-Riemann-Roch followed by Atiyah-Bott localization, we calculate

χ
(
Quotd,SymyL

[d]
)

=

∫
Quotd

ch(SymyL
[d]) Td (Quotd) =

∑
~d

∫
F~d

ch(SymyL
[d])

Td(Quotd)

eC∗(N~d)

∣∣∣∣
F~d

.(41)

Instead of Lemma 6, for the current computation we use the expression

(42) ch(SymyL
[d])

∣∣∣∣
F~d

=
∏
i∈[N ]

(
αi(zi − y)

zi(αi − y)

)ai+`+1(
zi

zi − y

)di
.

The Todd genera and the normal bundle contributions are found in (9). We substitute (9) and (42)

into (41) and apply Lagrange-Bürmann. Carrying out these steps carefully, we arrive at the following.

Consider the polynomial

P (z) = (z − y)R(z)− qz,

and let z1, . . . , zN+1 be its roots with zi(q = 0) = αi for 1 ≤ i ≤ N. Then, just as in the derivation

leading up to (18) for exterior powers, (41) turns into

(−1)(N−1)d
[
qd
] ∏
i∈[N ]

(
αi − zN+1

αi − y

)bi( zi
zi − y

)−1
zd+1
i

P ′(zi)

∏
i,j∈[N ], i 6=j

(zi − zj)
∣∣∣∣
ε=0

.

This simplification makes use of the fact that

dq

dhi
= P ′(zi).

As in (19), the above expression can be recast as the quotient of determinants

[
ε0qd

] (−1)(N−1)d

det(zN−j+1
i )

∣∣∣∣∣∣∣∣∣
(z1 − y)zd+N−1

1 · · · (z1 − y)zd1
(z2 − y)zd+N−1

2 · · · (z2 − y)zd2
... · · ·

...

(zN − y)zd+N−1
N · · · (zN − y)zdN

∣∣∣∣∣∣∣∣∣
∏
i∈[N ]

(
αi − zN+1

αi − y

)bi
.

The same derivation that led to (20) yields the enlarged (N + 1)× (N + 1) determinant

[ε0qd]
(−1)(N−1)d

det(zN−j+1
i )

∣∣∣∣∣∣∣∣∣∣
(z1 − y)zd+N−1

1 · · · (z1 − y)zd1
∏N
i=1(αi−z1

αi−y )bi

(z2 − y)zd+N−1
2 · · · (z2 − y)zd2

∏N
i=1(αi−z2

αi−y )bi

... · · ·
...

...

(zN+1 − y)zd+N−1
N+1 · · · (zN+1 − y)zdN+1

∏N
i=1(αi−zN+1

αi−y )bi

∣∣∣∣∣∣∣∣∣∣
.

This uses bi ≥ d + 1 for all i, and the fact that αi − zi has no free q-term, so in particular the first N

entries of the last column do not contribute to the qd-coefficient.

The expression above is symmetric in the roots of P , and as previously remarked the substitution

αi = 1 is allowed to obtain the coefficient of ε0. Thus z1, . . . , zN+1 become roots of

P (z) = (z − 1)N (z − y)− qz.
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This also turns the last column into the vector with entries

(1− zi)χ

(1− y)χ
=

1

(1− y)χ

χ∑
`=0

(
χ

`

)
(−1)`z`i .

Here χ =
∑
i bi = χ(E ⊗ L).

Using the additivity of the determinant with respect to the first N columns, we split the last deter-

minant into a sum[
qd
] χ∑
`=0

N∑
m=0

(−1)(N−1)d+`

(1− y)χ

(
χ

`

)
(−y)m×

× 1

det(zN−j+1
i )

∣∣∣∣∣∣∣∣∣
zd+N

1 · · · zd+m+1
1 zd+m−1

1 · · · zd1 z`1
zd+N

2 · · · zd+m+1
2 zd+m−1

2 · · · zd2 z`2
... · · ·

...
... · · ·

...
...

zd+N
N+1 · · · zd+m+1

N+1 zd+m−1
N+1 · · · zdN+1 z`N+1

∣∣∣∣∣∣∣∣∣ .
Indeed, from each of the first N columns we select N powers of zi whose exponents range from d to

d + N . Exactly one value d + m must be skipped, giving a term in the sum. The contribution (−y)m

comes from terms with exponents between d and d+m− 1.

Regarding the last sum, we make the following three remarks.

(i) When ` < d, the above quotient of determinants is the Schur polynomial for the partition

λ = (dN−m, (d− 1)m, `). Using Jacobi-Trudi as in Lemma 7, we obtain that[
qd
]
sλ(z1, . . . , zN+1) =

{
(−1)(N−1)d if ` = m = 0

0 otherwise
.

(ii) When ` > d + N , the shape of the partition changes to λ = (` − N, (d + 1)N−m, dm), and

we also acquire an additional (−1)N coming from permuting the columns to bring the last

one to the front. Note that λ contains the rectangular partition (dN+1) and a hook partition

µ := (`−N −d, 1N−m). Examining the determinant, we can factor zdi from each column. Thus

sλ = edN+1 · sµ = yd · sµ.

Here we used that eN+1 = y which can be seen from the expression P (z) = (z−1)N (z−y)−qz.
(iii) Finally, for d ≤ ` ≤ d+N , the only value that can contribute is ` = d+m, in which case we can

directly evaluate the corresponding quotient of determinants to be (−1)myd. The coefficient of

qd vanishes in this case (for d 6= 0).

Putting everything together we conclude

χ
(
Quotd,SymyL

[d]
)

=
1

(1− y)χ
+O(yd).

Consequently, for d > k, we have

χ
(
Quotd,Sym

kL[d]
)

=
[
yk
] 1

(1− y)χ
=

(
χ+ k − 1

k

)
.

The result is also correct for d = k; this can be seen for instance from the result below. �
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With a bit more effort, the same ideas (combined with a residue calculation) yield a general expression

in genus 0. We need this result in order to prove Theorem 5 in all genera in Section 3.2.

Theorem 12. When C = P1 and χ = χ(E ⊗ L), we have

χ(Quotd(E),SymyL
[d]) =

d∑
k=0

(
−χ+ d(N + 1)

k

)
(−y)k

(1− y)d(N+1)
.

Proof. Since both sides depend polynomially on `, see for instance the arguments in Section 2.6 for the

left hand side, we may assume ` is sufficiently large. In this case, we have seen above that

χ(Quotd(E), SymyL
[d]) =

1

(1− y)χ
+

χ∑
`>d+N

1

(1− y)χ
(−1)(N−1)d+N+`

(
χ

`

)
yd
[
qd
] N∑
m=0

(−y)msµ(`,m),

for the partition µ(`,m) = (`−N − d, 1N−m).

Lemma 13 below evaluates the sum over m. We obtain

χ(SymyL
[d]) =

1

(1− y)χ

[
1 +

χ∑
`>d+N

(−1)(N−1)d+`

(
χ

`

)
yd+1

[
t`−N−d

] tN(d−1)+1

(1− t)Nd(1− yt)d+1

]

=
1

(1− y)χ

[
1 +

χ∑
`>d+N

(−1)(N−1)d+`

(
χ

`

)
yd+1Rest=0

t(N+1)d−`

(1− t)Nd(1− yt)d+1
dt

]
.

We can allow all values ` ≥ 0 in the sum above since the residue vanishes in the range ` ≤ N + d. The

binomial theorem evaluates the sum over `. Letting

ω =
t(N+1)d−χ(1− t)χ−Nd

(1− yt)d+1
dt,

we conclude that

χ(SymyL
[d]) =

1

(1− y)χ

[
1 + (−1)(N−1)d+χyd+1Rest=0 ω

]
.

Lemma 14 finishes the proof. �

Lemma 13. Let z1, . . . , zN+1 be the roots of P (z) = (z − 1)N (z − y)− qz. For ` > 0, we have[
qd
] N∑
m=0

(−y)ms(`,1N−m)(z1, . . . , zN+1) =(−1)N
[
t`
] ytN(d−1)+1

(1− t)Nd(1− yt)d+1
.

Proof. Using Jacobi-Trudi, the left hand side of the expression in the lemma equals the `×` determinant

N∑
m=0

(−y)m

∣∣∣∣∣∣∣∣∣∣∣

eN+1−m eN+2−m eN+3−m · · · eN+`−m
e0 e1 e2 · · · e`−1

0 e0 e1 · · · e`
...

...
... · · ·

...
0 0 0 · · · e1

∣∣∣∣∣∣∣∣∣∣∣
.

Summing with respect to m, we obtain that the ith term in first row becomes

Ai =
N∑
m=0

(−y)meN+i−m =
[
tN+i

]
(1− yt+ · · ·+ (−1)NyN tN )(1 + e1t+ · · ·+ eN+1t

N+1)

= (−1)N+i
[
tN+i

] (1− (yt)N+1)

1− yt
· tN+1P (1/t).
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Expanding with respect to the first row, we obtain the required determinant equals

A1h`−1 −A2h`−2 + · · ·+ (−1)`−1A`

where hj = s(j) is the homogeneous symmetric polynomial. We know that the homogeneous symmetric

polynomials are given by

hi =
[
ti
] 1

(1− z1t) · · · (1− zN+1t)
=
[
ti
] 1

tN+1P (1/t)
.

Thus the required sum equals∑̀
i=1

(−1)i−1Aih`−i =
∑̀
i=1

(−1)N+1

[ [
tN+i

] (1− (yt)N+1)

1− yt
tN+1P (1/t)

][ [
t`−i

] 1

tN+1P (1/t)

]
(43)

≈
N∑
j=0

(−1)N
[ [
tN−j

] (1− (yt)N+1)

1− yt
tN+1P (1/t)

][ [
t`+j

] 1

tN+1P (1/t)

]

≈
N∑
j=0

(−1)N
[ [
tN−j

] tN+1P (1/t)

1− yt

][ [
t`+j

] 1

tN+1P (1/t)

]
,

where ≈ means equality of the qd coefficients. To justify the second line, we note that the difference

with the previous term equals[
qd
]

(−1)N
[
tN+`

](1− (yt)N+1

1− yt
tN+1P (1/t) · 1

tN+1P (1/t)

)
= 0

for d > 0. Moreover, since j runs from 0 to N , we may also ignore the term (yt)N+1 in the second line,

thus yielding the third equality.

Note that

tN+1P (1/t) = (1− yt)(1− t)N − qtN .

Thus [
tN−j

] tN+1P (1/t)

1− yt
=
[
tN−j

](
(1− t)N − qtN

1− yt

)
=

{
(−1)N−j

(
N
N−j

)
if j > 0

(−1)N − q if j = 0
.

Hence the qd-coefficient in the sum (43) equals[
qd
] N∑
j=0

(−1)j
(
N

j

)[
t`+j

] 1

(1− yt)(1− t)N − qtN
+ (−1)N+1

[
qd−1

] [
t`
] 1

(1− yt)(1− t)N − qtN

= (−1)N
[
qd
] [
t`+N

] (1− t)N

(1− yt)(1− t)N − qtN
+ (−1)N+1

[
qd−1

] [
t`
] 1

(1− yt)(1− t)N − qtN
.

We note that the order in which we take the qd and t`+N -coefficients can be switched. This is allowed

in our case since we are considering expressions of the form (1− A(q, t))
−1

expanded near q = t = 0,

where A is a polynomial in q, t (and y). Thus, taking the respective coefficient of powers of q in the

above expression we obtain

(−1)N
[
t`+N

] tNd

(1− yt)d+1(1− t)Nd
+ (−1)N+1

[
t`
] tN(d−1)

(1− yt)d(1− t)Nd
.

This immediately implies the lemma. �
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Lemma 14. For χ ≥ Nd, set

ω =
t(N+1)d−χ(1− t)χ−Nd

(1− yt)d+1
dt.

We have

1 + (−1)(N−1)d+χyd+1Rest=0 ω =
d∑
k=0

(
−χ+ (N + 1)d

k

)
(−y)k

(1− y)(N+1)d−χ .

Proof. Since χ ≥ Nd, the form ω has poles at worst at t = 0, t =∞ and t = 1
y . By the residue theorem,

we have

Rest=0 ω = −Rest=∞ ω − Rest=1/y ω.

Changing variables t = 1
s , we compute

Rest=∞ ω = −Ress=0 (s− 1)χ−Nd(s− y)−d−1 ds

s
= (−1)χ−(N+1)dy−d−1.

Similarly, changing variables t = 1−s
y , we find

Rest= 1
y
ω = −Ress=0 (1− s)−χ+(N+1)d(s+ y − 1)χ−Ndy−d−1 ds

sd+1

= −y−d−1
[
sd
]

(1− s)−χ+(N+1)d(s+ y − 1)χ−Nd

= −y−d−1
d∑
k=0

(−1)k
(
−χ+ (N + 1)d

k

)(
χ−Nd
d− k

)
(y − 1)χ−Nd−d+k.

Collecting terms, we obtain

1 + (−1)(N−1)d+χyd+1Rest=0 ω =
d∑
k=0

(
−χ+ (N + 1)d

k

)(
χ−Nd
d− k

)
(1− y)χ−Nd−d+k

=

d∑
k=0

(
−χ+ (N + 1)d

k

)
(−y)k

(1− y)(N+1)d−χ .

To justify the last equality, we write u = −χ+ (N + 1)d and show more generally

d∑
k=0

(
u

k

)(
−u+ d

d− k

)
(1− y)k =

d∑
k=0

(
u

k

)
(−y)k.

This follows by induction on d. Indeed, write Ld for the left hand side. Using Pascal’s identity and then

rewriting the binomials, we obtain

Ld+1 − Ld =
d+1∑
k=0

(
u

k

)((
−u+ d+ 1

d+ 1− k

)
−
(
−u+ d

d− k

))
(1− y)k =

d+1∑
k=0

(
u

k

)(
−u+ d

d+ 1− k

)
(1− y)k

=
d+1∑
k=0

(
u

d+ 1

)(
d+ 1

k

)
(−1)d−k+1(1− y)k =

(
u

d+ 1

)
(−y)d+1.

The proof follows immediately from here. �
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3.2. Universal functions. Over a smooth projective curve C of arbitrary genus, let

W =
∞∑
d=0

qdχ
(
Quotd(E), SymyL

[d]
)
.

The arguments in Section 2.6 exhibit W as a product of universal series4

(44) W = Aχ(OC) · Bχ(E⊗L).

Theorem 12 determines in principle both series A,B from the genus 0 answer. Theorem 5 asserts that

more precisely we have

B = f

(
qy

(1− y)N+1

)
where f(z) is the solution to the equation

f(z)N − f(z)N+1 + z = 0, f(0) = 1.

Proof of Theorem 5. The function f is most conveniently expressed in terms of a change of variables.

We have

f(z) =
1

1 + t
for z = − t

(1 + t)N+1
.

We record the one-variable version of the general Lagrange-Bürmann formula (13). Assuming Φ(0) 6=
0, for the change of variables z = t

Φ(t) , the following general identity holds

(45)
∞∑
d=0

zd ·
([
td
]

Φ(t)d ·Ψ(t)
)

=
Ψ(t)

Φ(t)
· dt
dz

.

We introduce two functions which will be useful in the argument. Write

(46) Fχ(z) =
∞∑
d=0

zd
(
−χ+ (N + 1)d

d

)
=⇒ Fχ(z) =

∞∑
d=0

zd
([
td
]

(1 + t)−χ+(N+1)d
)
.

An immediate application of (45) yields

(47) Fχ(z) =
(1 + t)−χ+1

1−Nt
for z =

t

(1 + t)N+1
.

Setting χ = 0 and integrating, we also obtain the expression

(48) G(z) =
∞∑
d=1

zd · N
d

(
(N + 1)(d− 1)

d− 1

)
= 1− 1

(1 + t)N
,

for the same change of variables. With this understood, we note that for the function f in the theorem,

we have

f(−z)N = 1− G(z).

The statement to be proven thus becomes

BN = 1− G

(
− qy

(1− y)N+1

)
4Strictly speaking, we only explained the factorization W = A

χ(OC)
1 ·BdegE

1 ·BdegL
2 in terms of 3 universal series. An

argument of [St2] shows that only 2 series are needed. Indeed, tensorization by a line bundle M → C gives an isomorphism

Quotd(E) ' Quotd(E⊗M) in such a fashion that L[d] gets identified with
(
L⊗M−1

)[d]
. On the level of generating series

this implies BN1 = B2, which then yields the result with A = A1 · B−N1 , B = B1.
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or equivalently

(49) BN = 1 +
∞∑
d=1

(−1)d+1N

d
·
(

(N + 1)(d− 1)

d− 1

)
·
(

qy

(1− y)N+1

)d
.

Turning to the generating series (44), we specialize to genus 0 and we keep track on the dependence

on degL = ` in the notation, so that

W` =
∞∑
d=0

qdχ
(
Quotd(E),SymyL

[d]
)

= A−1 · Bχ.

As usual, χ = χ(E ⊗ L). This yields

(50) W`+1 = W` · BN .

By Theorem 12, we have

W` =
∞∑
d=0

cd(χ) · qd, W`+1 =
∞∑
d=0

cd(χ+N) · qd,

where for simplicity, we wrote

(51) cd(χ) =
d∑
k=0

(
−χ+ d(N + 1)

k

)
(−y)k

(1− y)d(N+1)
.

Examining the coefficient of qd in the identity (50), it follows that in order to confirm (49) it suffices to

prove

cd(χ+N) = cd(χ) +
d∑
`=1

cd−`(χ) · (−1)`+1N

`

(
(N + 1)(`− 1)

`− 1

)(
y

(1− y)N+1

)`
.

We use the defining expressions (51) to verify this equality. After multiplying by (1− y)d(N+1) and

extracting the coefficient of yk on both sides, we need to show that for 0 ≤ k ≤ d, we have(
−χ−N + d(N + 1)

k

)
=

(
−χ+ d(N + 1)

k

)
(52)

−
k∑
`=1

N

`

(
(N + 1)(`− 1)

`− 1

)(
−χ+ (d− `)(N + 1)

k − `

)
.

Using Pascal’s identity, it is easy to see that if (52) holds for k and all χ, then it also holds for k − 1

and all χ. Thus, by downward induction it suffices to assume k = d. In this case, we seek to show

d∑
`=1

N

`

(
(N + 1)(`− 1)

`− 1

)(
−χ+ (d− `)(N + 1)

d− `

)
=

(
−χ+ d(N + 1)

d

)
−
(
−χ−N + d(N + 1)

d

)
.

This is indeed correct. Recalling (46) and (48), we see that the two sides equal the zd-coefficient in the

identity

G(z) · Fχ(z) = Fχ(z)− Fχ+N (z).

The latter equality is immediately justified using the explicit formulas (47) and (48) after changing

variables from z to t as above.
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4. Higher rank quotients

It is natural to wonder whether the formulas proven in Section 2 extend to Quot schemes parametriz-

ing quotients of rank r > 0. We write Quotd(E, r) for the corresponding Quot scheme. Throughout

this section, we write

s = N − r

for the rank of the subbundles. We restrict to the case C = P1, and E a trivial rank N vector bundle.

In this case, Quotd(E, r) is smooth, see for instance [Str].

Theorem 3 gives an expresion for the Euler characteristics

χ(Quotd(E, r),∧yL[d])

in terms of the roots z1, . . . , zN of the equation

(z − 1)N − q(z + y)zr−1 = 0.

Unlike our previous computations, this result does not immediately give the answer in higher genus,

since the factorization (40) of the generating series demonstrated in Section 2.6 does not hold when

r > 0. 5

Proof of Theorem 3. We follow the same steps as in the proof of Theorem 1. However, some modifications

are necessary. We use the torus action on Quotd(E, r) coming from the torus action on E = CN ⊗OP1

with weights −w1, . . . ,−wN . As shown in [MO1], the fixed loci are parameterized by pairs (~d, I), where

~d = (d1, . . . , ds) with |~d| = d1 + · · ·+ ds = d, and I ⊂ [N ] is a subset of cardinality s. The fixed loci are

products of symmetric powers of P1:

F~d,I = Pd1 × · · · × Pds .

Each such product appears
(
N
s

)
times corresponding to the choice I of s summands of the trivial bundle

E into which the kernel injects

0→ S →
⊕
i∈I
OP1 →

⊕
i∈[N ]

OP1 = E.

This changes slightly the expressions for the normal bundles N~d,I . With the same notation as in Section

2.1, we find that (6) becomes

N~d,I =
⊕

i∈I, j∈[N ], i 6=j

π? (K∨i )−
⊕

i,j∈I, i6=j

π? (K∨i ⊗Kj) .

Compared to prior expressions, the range of the indices i, j has changed. The above sheaves carry

weights wi − wj . By direct calculation, we obtain the analogue of equation (9)

Td(Quotd)

eC∗(N~d,I)
= (−1)(s−1)d

∏
i∈I

(
hiz

N−s
i

R(zi)

)di+1

zd+1
i

∏
i,j∈I, i6=j

(zi − zj),

5The Quot scheme is typically singular in higher rank and higher genus, but we may consider virtual invariants – see
Section 5. Using virtual localization directly in this case requires more work.
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where zi, αi and R(z) =
∏N
j=1(z−αj) were defined before. Similarly, the analogue of Lemma 6 becomes

ch(∧yL[d])

∣∣∣∣
F~d,I

=
∏
j∈[N ]

(
1 +

y

αj

)`+1∏
i∈I

(
1 +

y

zi

)di−(`+1)

.

We substitute these expressions into Hirzebruch-Riemann-Roch and Atiyah-Bott localization:

χ(Quotd,∧yL[d]) =
∑
~d,I

∫
F~d,I

ch(∧yL[d])
Td(Quotd)

eC∗(N~d,I)

∣∣∣∣
F~d,I

.

After substitution, we invoke Lagrange-Bürmann formula, but the change of variables takes a slightly

different form for r > 0. If

P (z) = R(z)− q(z + y)zr−1

and zi are the roots of the above equation, the reader can verify by direct calculation that we arrive at

the following expression

[
qd
]

(−1)(s−1)d

∏N
j=1(αj + y)`+1∏N

j=1 α
`+1
j

·
∑
~d,I

∏
i∈I

(zi + y)−(`+1) z
d+`+N−s+1
i

P ′(zi)

∏
i,j∈I, i6=j

(zi − zj)
∣∣∣∣
ε=0

.

Since P (−y) = R(−y), it follows that

N∏
j=1

(αj + y) =

N∏
j=1

(zj + y),

and thus the previous expression can be further simplified to

(53)
[
qd
] (−1)(s−1)d∏N

j=1 α`+1
j

∑
~d,I

∏
j 6∈I

(zj + y)`+1
∏
i∈I

zd+`+N−s+1
i

P ′(zi)

∏
i,j∈I, i6=j

(zi − zj)
∣∣∣∣
ε=0

.

Compared to Theorem 1, for r > 0 we do not have an additional root, so we finish the argument in

a different way. The key observation is that we can rewrite (53) as the qd-coefficient in the quotient of

two N ×N determinants

(54)
(−1)(s−1)d∏N
j=1 α

`+1
j

1

det(zN−ji )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zd+`+N
1 zd+`+N

2 · · · zd+`+N
N

zd+`+N−1
1 zd+`+N−1

2 · · · zd+`+N−1
N

...
... · · ·

...

zd+`+N−s+1
1 zd+`+N−s+1

2 · · · zd+`+N−s+1
N

zN−s−1
1 (z1 + y)`+1 zN−s−1

2 (z2 + y)`+1 · · · zN−s−1
N (zN + y)`+1

...
... · · ·

...
(z1 + y)`+1 (z2 + y)`+1 · · · (zN + y)`+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This agrees with the prior expression (53). To justify this assertion, we use generalized Laplace ex-

pansion of the determinant in the numerator along the last N − s rows simultaneously. Picking s

columns labeled by the index set I, the corresponding minors of (54) (evaluated using Vandermonde

determinants) contribute exactly the I-term of (53).
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Since the above expression is a symmetric function in the zi’s, it can also be expressed in terms of

the elementary symmetric functions, which are in turn polynomials in αj . Setting ε = 0 corresponds to

setting αj = 1 for all j, or in turn working with the roots of

P (z) = (z − 1)N − q(z + y)zr−1 = 0.

This completes the argument. �

Corollary 15. As in Theorem 3, let C = P1, E is trivial of rank N , degL = ` ≥ −d− 1. Then

χ
(
Quotd(E, r),detL[d]

)
= (−1)(N−r−1)d

[
qd
]
sλ(z1, z2, . . . zN )

for the partition λ = ((d+`+1)N−r). The zi’s are the distinct roots of the equation (z−1)N−qzr−1 = 0.

Proof. The statement follows by running the argument above for the determinant detL[d] instead of

∧yL[d]. (We prefer this route since extracting the top y-coefficient in the determinant (54) requires

some care.) The reader can verify that this results in the following two changes:

(i) the new localization sum requires a new change of variables, so in particular, z1, . . . , zN are

roots of R(z)− zr−1q = 0;

(ii) the analogue of expression (53) is[
qd
] (−1)(s−1)d∏N

j=1 α
`+1
j

∑
~d,I

∏
i∈I

zd+`+N−s+1
i

P ′(zi)

∏
i,j∈I, i6=j

(zi − zj)
∣∣∣∣
ε=0

.

As a result, the counterpart of (54) takes the form

[
ε0qd

] (−1)(s−1)d∏N
j=1 α

`+1
j

1

det(zN−ji )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zd+`+N
1 zd+`+N

2 · · · zd+`+N
N

zd+`+N−1
1 zd+`+N−1

2 · · · zd+`+N−1
N

...
... · · ·

...

zd+`+N−s+1
1 zd+`+N+1−s

2 · · · zd+`+N−s+1
N

zN−s−1
1 zN−s−1

2 · · · zN−s−1
N

...
... · · ·

...
1 1 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The proof is completed setting αj = 1, and noting that when d+`+1 ≥ 0, the last expression is exactly

the Schur polynomial of the partition λ = ((d+ `+ 1)s). �

Example 16. In the simplest case d = 0, the Quot scheme is the Grassmannian G = G(s,N) and

detL[d] = OG(`+ 1). In the corollary, since we are extracting the coefficient of q0, we can set z1 = z2 =

. . . = zN = 1 to obtain the identity

χ(G,OG(`+ 1)) = sλ(1, . . . , 1), λ = ((`+ 1)s).

This is in agreement with the Borel-Weil-Bott theorem.
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Example 17. An interesting specialization of Corollary 15 arises for ` = 0. We show

χ
(
Quotd(E, r), detO[d]

)
=

(
N

r + d

)
.

We have

χ(Quotd,detO[d]) =
[
qd
]

(−1)(s−1)dsλ(z1, . . . , zN )

where λ = ((d+ 1)s). The elementary symmetric functions in z1, . . . zN are

ej =

{(
N
j

)
j 6= s+ 1(

N
j

)
+ (−1)sq j = s+ 1

.

Using Jacobi-Trudi, we have

sλ(z1, . . . , zN ) =

∣∣∣∣∣∣∣∣∣∣∣

es es+1 es+2 · · · es+d−1 es+d
es−1 es es+1 · · · es+d−2 es+d−1

...
...

... · · ·
...

...
es−d+1 es−d+2 es−d+3 · · · es es+1

es−d es−d+1 es−d+2 · · · es−1 es

∣∣∣∣∣∣∣∣∣∣∣
.

In the (d+1)× (d+1) determinant, the only term yielding the power qd is (−1)deds+1es−d, coming from

the lower left corner es−d and the terms es+1 above the diagonal. To conclude, it remains to note that[
qd
]
eds+1es−d = (−1)sd

(
N

s− d

)
.

Example 18. Assume d > s(`+ 1). The Schur polynomial sλ has weighted degree |λ| = s(d+ `+ 1) <

(s + 1)d in the elementary symmetric functions ei, where we set deg ei = i. We noted in Example 17

that only es+1 contains a linear q-term. By degree reasons, es+1 appears in sλ with exponent < d.

Thus, in this case the qd-coefficient vanishes, and

χ
(
Quotd(E, r), detL[d]

)
= 0.

Example 19. Assume d = s(`+1), so that d+`+1 = (s+1)(`+1) and |λ| = d(s+1) for λ = ((d+`+1)s).

With these numerics, we claim that

(55) sλ = (−1)sdeds+1 + lower order terms in es+1.

Using that the only nonzero q-contribution in ej(z1, . . . , zN ) is given by

[q] es+1(z1, . . . , zN ) = (−1)s,

we obtain [
qd
]
sλ(z1, . . . , zN ) = 1, and thus χ

(
Quotd(E, r),detL[d]

)
= 1.

To justify (55), we let

(x1, . . . , xN ) = (1, ζ, ζ2, . . . , ζs, 0, . . . , 0),

where ζ is a primitive (s+ 1)-root of 1. In this case, we have

es+1(x1, . . . , xN ) = (−1)s, ej(x1, . . . , xN ) = 0 for j 6= 0, j 6= s+ 1.
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Thus, to confirm (55) it remains to show that

(56) sλ(x1, . . . , xN ) = 1.

This follows from the (first) Jacobi-Trudi identity

sλ =

∣∣∣∣∣∣∣∣∣∣∣

h(s+1)(`+1) h(s+1)(`+1)+1 · · · h(s+1)(`+1)+(s−1)

h(s+1)(`+1)−1 h(s+1)(`+1) · · · h(s+1)(`+1)+(s−2)

...
... · · ·

...
h(s+1)(`+1)−(s−2) h(s+1)(`+1)−(s−1) · · · h(s+1)(`+1)+1

h(s+1)(`+1)−(s−1) h(s+1)(`+1)−(s−2) · · · h(s+1)(`+1)

∣∣∣∣∣∣∣∣∣∣∣
,

where hj are the homogeneous symmetric functions. In our case, we have

hj(x1, . . . , xN ) = 1 if j ≡ 0 mod s+ 1, hj(x1, . . . , xN ) = 0 otherwise.

Hence the above matrix evaluated at (x1, . . . , xN ) is the identity, yielding (56).

5. Further questions

5.1. Cohomology groups. It is natural to inquire whether Theorem 1 can be refined to yield infor-

mation about all cohomology groups of the tautological bundles ∧kL[d]. We ask:

Question 20. Is it true that

(57) H•
(
Quotd(E),∧kL[d]

)
= ∧kH•(E ⊗ L)⊗ Symd−kH•(OC)?

To explain the notation, if V • = V0 ⊕ V1 is a Z2-graded vector space, we define the graded vector

spaces

∧kV • =
⊕
i+j=k

∧iV0 ⊗ SymjV1, SymkV • =
⊕
i+j=k

SymiV0 ⊗ ∧jV1

where the summands have degree j. With the convention

dim W • =
∑

(−1)j dim W j

for the superdimension of a graded vector space, the usual formulas hold true

dim ∧kV • =

(
dimV •

k

)
, dim SymkV • = (−1)k

(
−dimV •

k

)
.

Thus, taking dimensions in (57), we immediately match the expressions in Theorem 1. There is also a

natural analogue for Theorem 2.

Evidence. Formula (57) is true in the following cases

(i) over the symmetric product of a curve, that is for rank E = 1. This was shown in [K2, Section

3] using the derived category;

(ii) for d = 1 so that Quot1(E) = P(E), the projective bundle of length 1 quotients of E;
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(iii) for k = 0, the formula predicts the Hodge numbers hp,0(Quotd(E)) =
(
g
p

)
for p ≤ d. This follows

from [BFP, R] which give the Hodge polynomials∑
hp,q(Quotd(E))(−u)p(−v)qtd =

rk(E)−1∏
i=0

(1− uivi+1t)g(1− ui+1vit)g

(1− uivit)(1− ui+1vi+1t)
.

We note that (57) has an analogue for the Hilbert scheme of points on smooth projective surfaces

X. In this case, the cohomology groups

H•
(
X [d],∧kL[d]

)
= ∧kH•(L)⊗ Symd−kH•(OX)

were determined in [Sc1, Theorem 5.2.1] using derived category techniques. Answering Question 20 in

full generality may likewise require the study of the derived category of the Quot scheme.

5.2. Rationality. For any line bundles L1, . . . , L` → C and integers k1, . . . , k` ≥ 0, the series of

K-theoretic invariants

ZC,E (L1, . . . , L` | k1, . . . , k`) =
∑
d

qdχ
(
Quotd(E),∧k1L[d]

1 ⊗ · · · ⊗ ∧k`L
[d]
`

)
are given by rational functions with pole at q = 1. This assertion was proved in [AJLOP] in the context

of punctual Quot schemes of surfaces, endowed with the virtual class, but the same argument applies

here as well. (The argument proceeds by localization when E is split, but this is sufficient in light

of the universality statements of Section 2.6.) Keeping with the theme of Section 1.2, we note that a

similar result also holds true for Hilbert schemes of points on surfaces (without virtual classes). This

was conjectured in [AJLOP] and proved in [A2].

Theorem 1 gives the simple expression

ZC,E(L | k) =

(
χ(E ⊗ L)

k

)
qk · (1− q)−χ(OC).

Question 21. What is the structure of the rational functions ZC,E(L1, . . . , L` | k1, . . . , k`)? Do they

admit explicit formulas?

It is natural to inquire whether the results proved here carry over to the Quot schemes Quotd(E, r)

parametrizing quotients of E of any rank r and degree d. The latter possess 2-term perfect obstruction

theories [CFK, MO1].

Question 22. Are the series

Z
(r)
C,E (L1, . . . , L` | k1, . . . , k`) =

∞∑
d=0

qdχvir
(
Quotd(E, r),∧k1L

[d]
1 ⊗ . . .⊗ ∧k`L

[d]
`

)
rational functions with pole only at q = 1? Do they admit explicit expressions?

Here, for a scheme Y with a 2-term perfect obstruction theory and virtual structure sheaf Ovir
Y , and for

V → Y , we set

χvir(Y, V ) = χ(Y, V ⊗Ovir
Y ).
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We have remarked in Section 4 that the factorization (40) of the generating series of invariants fails

in higher rank. In line with the methods of the paper, we can nonetheless ask whether

Z
(r)
C,E (L1, . . . , L`) =

∞∑
d=0

qdχvir
(
Quotd(E, r),∧y1L

[d]
1 ⊗ . . .⊗ ∧y`L

[d]
`

)
can be expressed in terms of universal series.6 We do not pursue this here, but we note that over smooth

projective surfaces and for quotients of dimension at most one, such universality statements are proven

in [AJLOP, Theorem 17]. In turn, this led to rationality results for the surface analogues of the series

in Question 22.

5.3. Higher rank. Extending Theorems 1 to K-theory classes V → C of arbitrary rank is not imme-

diate. In general, a change of variables is likely needed.

Question 23. Find a closed-form expression for the series
∞∑
d=0

qdχ
(
Quotd(E),∧yV [d]

)
.

This may potentially be used to address Question 21 as well. Theorem 5 partially addresses the case

V = −L, for L a line bundle.

Turning to higher rank quotients and Theorem 3, we could ask for the arbitrary genus version:

Question 24. For line bundles L→ C, find a closed-form expression for χvir(Quotd(E, r),∧yL[d]).

For example, in genus 0, for E trivial of rank N , for rank r > 0, degL = `, numerical experiments

suggest that the answer stabilizes to

χ
(
Quotd(E, r),∧yL[d]

)
= (1 + y)N(`+1),

as soon as d ≥ (N − r)(`+ 1).

Analogous questions can be asked about symmetric powers or other Schur functors as well.
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