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Abstract

This article presents an area- and power-efficient hardware architecture for the brain-implantable spiking neural networks
(SNNs). The proposed generalized hardware architecture is parameterizable and reconfigurable such that the maximum
supported number of neurons, the interconnection structure among neurons, and the resolution of the time step can be
readily adjusted for realizing various SNN topologies. The designed SNN hardware architecture is capable of emulating
moderately-sized SNNs with tens of thousands of neurons in real-time with varying degrees of parallelism, while reducing
the resource utilization by 34% for similarly sized SNNs implemented on a single field-programmable gate array (FPGA).
We evaluate the model using the MNIST digit recognition benchmark and show that the network can accurately classify
handwritten digits with 89.8% accuracy. Compared to the other recently implemented SNN emulators based on FPGAs, the
designed and implemented single-FPGA system is able to emulate moderately-sized SNNs instead of using a cluster of
FPGAs or CPUs. The application-specific integrated circuit (ASIC) implementation of a moderately-sized SNN is esti-
mated to occupy 3.6 mm? of silicon area. Post-layout synthesis and simulation results show that the ASIC will dissipate 3.6
mW of power from a 1.16 V supply while operating at 34.7 MHz in a standard 32-nm CMOS process.

Keywords Spiking-neural networks - Field-programmable gate arrays - Application-specific integrated circuits -
Machine learning

1 Introduction

In the United States alone, over 17000 cases of spinal cord
injury (SCI) or other neuro-degenerative diseases (NDDs) are
reported per year [1]. SCI and NDDs can affect the ability of
biological brains to communicate and/or interface with other
parts of the body. Brain-machine interfaces (BMIs) have
become a viable solution for creating alternative communi-
cation pathways between the human brain and external
devices, such as a prosthetic arm or a computer.

Over the past decade, artificial neural networks (ANNS)
have been employed in a wide range of applications. Feed-
forward neural networks (FNNs) and multi-layer
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perceptrons (MLPs) process data in a single direction from
input to output, while recurrent neural networks (RNNs)
utilize feedback connections among artificial neurons
(ANs) to learn about the temporal information within the
input data. Convolutional neural networks (CNNs) are
primarily used in image and video processing. They can
decompose images with a variety of filter kernels and can
be combined with FNNs to perform accurate image clas-
sification, segmentation, and recognition tasks, such as
detecting and segmenting medical images to assist with
disease diagnosis [2]. Temporal convolutional networks
(TCNs) employ causal convolutions and strided dilations to
adapt to sequential data with a receptive field larger than
conventional RNNs [3]. Transformer neural networks [4]
employ a self-attention mechanism to weigh the relevance
of particular points in sequential data. The mechanism of
self-attention has proven invaluable for natural language
processing tasks, such as machine translation [5].

The early study of neural networks led to the develop-
ment of more biologically-plausible neural networks.
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Spiking neural networks (SNNs) [6], often referred to as
the third generation of neural networks, employ more
accurate mathematical models for describing the behavior
of brain neurons. The neurons in SNNs are connected to
one another using synapses, and the weights associated
with the synapses model the impact of one neuron’s spike
on its post-synaptic neighboring neurons. The values of the
synaptic weights are obtained through the training process,
in which weights are fine tuned so that the employed SNN
can mimic desired spiking behaviors, such as responding to
input stimuli at specific times. While neurons in an ANN
communicate by sending discrete values to one another,
spiking neurons communicate with one another via
exhibiting spiking behavior, similar to those of a biological
brain, through the emulation of the membrane potentials of
the neuron.

Due to their biological plausibility, which is not inherent in
the relatively simple mathematical models of neurons in the
conventional ANNs, SNNs have become the prime candidate
for interfacing with living biological brain neurons [7, 8].
Various experiments have shown that interfacing a SNN for
stimulating the main respiratory muscles, such as the dia-
phragm, has helped patients regain ventilatory control [9].
Recently, it has been shown that information transfer from
SNNs to biological neural networks is possible [10], and
hence SNNs can potentially be realized as replacement neural
micro-circuits. For example, in [11], one hundred synthetic
spiking neurons’ parameters are tuned to match the behavior
of biological neurons for restoring communication between
two neuronal populations separated by a focal lesion. Another
effort has shown that SNNs can potentially be used as
replacements for damaged biological networks in the hip-
pocampus of behaving rats to restore and improve memory
functionality [12, 13].

The real-time operation of the SNNs, however, imposes
strict limitations on the feasible computational complexity
of the mathematical models for SNNs and hence, on the
silicon area, power consumption, and latency of the real-
ized hardware circuits. Various neuron models have been
proposed, ranging from the simple integrate and fire (I &F)
model [14] to the relatively complex Hodgkin and Huxley
(HH) model [15]. The Izhikevich neuron model [16],
however, can reproduce the spiking dynamics of cortical
neurons reliably while also being computationally more
efficient than the other state-of-the-art SNN models [17].

This article focuses on the area- and power-efficient design
and implementation of a generalized hardware architecture
for moderately-sized SNNs, in the range of tens of thousands
of neurons, based on the Izhikevich neuron model. While
most of the previously-published work have elaborated on
fixed dedicated hardware architectures, supporting a prede-
fined number of neurons and synaptic interconnect topologies
[18-21], the proposed architecture aims to exploit the
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reconfigurable nature of the field-programmable gate arrays
(FPGASs) to support an arbitrary number of spiking neurons
and diverse network interconnect structures, while offering an
adjustable time resolution. In addition to FPGA [18-23] and
programmable processor [24] realizations of SNNs, applica-
tion-specific integrated circuit (ASIC) implementations of
SNNs have also been reported [25-30]. While FPGA and
processor realizations offer greater flexibility in realizing
diverse SNNs, ASIC implementations can consume signifi-
cantly lower power and can be implemented in a smaller form
factor and hence, are practical for the in-vivo brain implan-
tations. In this work, we propose to implement a tightly
integrated SNN core with embedded memory and computa-
tional elements. In contrast to the state-of-the-art ASIC real-
izations, our design’s power consumption and real-time
processing are not affected by the spiking rate of the emulated
SNN. Our design supports various spiking rates based on the
number of neurons and allows an adjustable degree of par-
allelism and time step resolution. State-of-the-art ASIC
implementations, such as Loihi [30], SpiNNaker [24], and
Tianjic [31], aim for high-performance computing by
exploiting massively-parallel architectures or distributing
computations over a large amount of processing cores. While
our approach is that of a generalized real-time SNN, our goal
is to integrate all of the required elements of the SNN core,
such as processing elements and memory, into a single unified
chip. The relatively small silicon area and low power con-
sumption of the implemented generalized SNN hardware
architecture make it suitable for single-chip realizations, while
emulating SNNs with various sizes and interconnect topolo-
gies in real-time. Our proposed design is scalable and addi-
tional cores can be readily utilized at the expense of increased
silicon area.

The rest of this article is organized as follows. Section 2
briefly reviews the main computational requirements of the
Izhikevich-based SNN model. Section 3 provides a
detailed explanation of the designed generalized hardware
architecture for SNNs. A memory partitioning scheme for
parallel computation of the membrane potentials is pre-
sented. Section 4 discusses the limitations of the real-time
SNN realizations, quantifies the implementation charac-
teristics of the proposed design, and provides comparisons
between the FPGA and ASIC implementation results of our
generalized SNN architecture and those of the state-of-the-
art work. Finally, Sect. 5 makes some concluding remarks.

2 A computationally-efficient SNN model

Izhikevich’s neuron model iteratively reproduces the
spiking dynamics of biological neurons using the following
mathematical expressions [16]:
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where v denotes the membrane potential in terms of mV, u
denotes the recovery variable, I denotes the accumulated
input activity to the neuron, and ¢ denotes the resolution of
the time step. The spiking dynamics of the neurons can be
controlled by the parameters a—d, where a denotes the
decay rate of the recovery variable u, b denotes the cou-
pling between v and u, which can result in sub-spiking
oscillations, ¢ denotes the value of the membrane potential
after a spike, and d denotes the reset of the recovery
variable u after a spike. Given a unit-step input current,
Fig. 1 shows the membrane potential voltages for four
different types of neurons. The regular spiking (RS) neu-
rons exhibit the spiking behavior shown in Fig. la with
parameters a = 0.02, b = 0.2, c = —65, and d = 8, and are
the most common type of neurons in the mammalian cortex
[32]. The parameters a = 0.02, b = 0.2, c = —50, and d =
2 define the chattering (CH) neurons, which fire bursts of
spikes following an excitation, as shown in Fig. 1b. Fig-
ure lc shows a low-threshold spiking (LTS) neuron, which
can fire high-frequency spikes with adaptation (i.e., slow-
ing down of firing rate) using a=0.02, b=0.25,
¢ = —65, and d = 2. Figure 1d shows a fast-spiking (FS)
neuron, which can fire rapid spikes without adaptation,
with a = 0.1, b = 0.2, ¢ = —65, and d = 2. Both RS and
CH neurons are examples of excitatory cells, while the
LTS and FS neurons are inhibitory cells.

An iteration of the Izhikevich-based SNNs using the
neuron state Egs. (1)—(3) can be executed in three steps: (i)
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Fig. 1 Membrane potential waveforms for a regular spiking, b chat-
tering, ¢ low-threshold spiking, and d fast-spiking neurons

receiving network inputs; (ii) performing synaptic weight
accumulation; and (iii) computing the membrane poten-
tials. In the first step, the network inputs are buffered. The
second step poses the main computational bottleneck for
realizing the SNN model. In traditional ANNS, the neuron’s
communicate by passing discrete values to one another;
however, SNNs operate differently. The output of a spiking
neuron is the excitation or lack thereof and hence, can be
represented as a binary value, denoting whether the neuron
emitted (fired) a spike. A neuron fires a spike if the
membrane potential crosses a predefined threshold of 35
mV, which results in resetting the membrane potential v to
the predefined neuron’s potential value c. After a neuron
fires a spike, the neuron cannot fire another spike for a
period of time, known as the refractory period. When a
neuron fires, the synaptic weights of all pre-synaptic firing
neurons are accumulated and added to the current input
stimuli for every connected post-synaptic neuron. Note that
since Eq. (1) is on the millisecond scale, more precise spike
timings can be modeled using finer temporal resolutions.
This requires more iterative computations of Eq. (1) to
complete one millisecond of emulation. For example, if the
time resolution # = 0.5 ms, the membrane potential v has
to be computed twice (with v = V' for the second iteration).
The third and final step is to update the membrane poten-
tials using the neuron state Egs. (1)-(3).

The biologically-inspired models attempt to replicate
the behavior of biological neural systems, but not neces-
sarily in a biologically-plausible manner. For example, the
I &F model employs a relatively simple biologically-in-
spired spiking neuron model. Even though this model is
less biologically realistic, it produces enough behavioral
resemblance to the biological neurons to be useful in
spiking neural systems. The leaky I &F model adds a leak
term to the simple I &F model, which causes the potential
on a neuron to decay over time. The leaky I &F model
updates the membrane potential v as:

Vi =I+a— by,

if V/ 2 Vihresh * V C,

where I denotes the input current to the neuron and a, b, c,
and vyes, are the neuron parameters. Because the I &F
model has only a single variable, it cannot exhibit all 20
neuro-computational features and hence, is not considered
a biologically-plausible neuron model. An alteration to the
I &F model decreases the frequency of spiking and is
referred to as spike-frequency adaption. An extension to
this model was the Adaptive Exponential (AdExp) model
which changes the input current injection to conductance-
based injection. These extensions represent a better
reflection of the changes seen by cortical neurons. The
biologically-plausible models, however, explicitly model
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the types of behavior that are seen in biological neural
systems. The most popular biologically-plausible neuron
model is the HH model, which is relatively computation-
ally-intensive and takes 1200 floating-point operations to
evaluate one millisecond of time, which can be limiting for
real-time SNN emulation. The Izhikevich spiking neuron
model (IZH) was developed to produce similar bursting
and spiking behaviors as can be elicited from the HH
model, but do so with a much simpler computation.

3 A generalized reconfigurable hardware
architecture for SNNs

For network topologies which follow the classical, layer-
based structure, network inputs are only applied to the input
layer. However, for realizing a generalized hardware archi-
tecture, the inputs are given to every neuron in the network.
The designed scalable architecture utilizes the degree of
parallelism parameter PDeg, which controls the number of
input accumulations to be computed in parallel. Utilizing
folding transformations [33], computations can be reduced to
PDeg SNs at a time, resulting in a hybrid sequential-parallel
hardware architecture. By effectively folding the computa-
tions down to PDeg neurons at a time, the overall resource
utilization can be significantly reduced. This in effect allows
more complex systems to be integrated onto a single chip or
logic resources can be allocated for additional neural signal
processing or computational functions.

For example, the brain-computer interface in [34]
employs spike sorting in conjunction with emulated spik-
ing neural networks to manipulate a prosthetic device.
While their system utilizes multiple CPU cores for real-
time SNN emulation, our proposed hardware architecture
can accommodate several neural signal processing modules
onto a single chip for emulation of the real-time moder-
ately-sized SNNs. By updating PDeg SNs at a time, the
hardware architecture can be readily scaled such that a
millisecond of SNN emulation is completed within a pre-
defined number of clock cycles. Compared to the software
realizations, the total number of neurons N, and the degree
of parallelism PDeg, supported by our hardware architec-
ture are limited by the number of reconfigurable resources
available on the target FPGA device or the silicon area and
power consumption of the ASIC implementation.

3.1 SNN core memory

The top-level block diagram of the designed SNN core is
shown in Fig. 2. The SNN architecture consists of several
memory units for storage of: (i) the network’s inputs Input
Mem.; (ii) the neurons’ membrane potential voltage values
Voltage Mem.; (iii) the neurons’ recovery variables
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Fig. 2 The top-level block diagram of the designed and implemented
SNN core

Recovery. Mem., (iv) the SN’s outputs Spiking Mem.; (v)
the synaptic weights Weights Mem.; (vi) and the parameter
memory Parameter Mem. to store the Izhikevich parame-
ters a — d per neuron. In order to support an arbitrary
interconnect structure among the SNs, the Weights Mem.
stores N? synaptic weights. By changing the synaptic
weights stored in the Weights Mem., various SNN config-
urations can be realized. The memory units shown in Fig. 2
are implemented using the FPGA’s block RAM (BRAM)
resources. The BRAMSs are specialized on-chip storage
resources on an FPGA, where their maximum width and
depth varies among different device families. For example,
the Xilinx Artix-7 FPGAs can store up to 36 kB of data in
BRAMs, with the BRAMs’ width being programmable up
to 72 bits.

In order to process PDeg neuron computations per clock
cycle, all memory units are partitioned in such a way that
there are no conflicting data accesses. This avoids imple-
menting a queue for managing memory read/write requests.
Each row of the designed partitioned memory modules stores
the indices of PDeg SNs, and thus, N/PDeg rows are required
to store all neurons’ indices. The neuron’s index stored at row
i and column j of the partitioned memory module is given as
i+ (j x N/ PDeg). The synaptic weight memory has N?/
PDeg rows and each row stores PDeg weights, each of which
is denoted with a unique identifier Ap, representing the
synaptic weight from neuron A to neuron p. Moreover, a
bitwise OR operation is performed on the read data from the
SN output memory. When all of the PDeg bits in a row of the
spiking output memory are zeros, unnecessary accumulations
from the neurons represented by that row to all other post-
synaptic neighboring neurons are avoided, which in turn saves
a significant number of clock cycles, memory read operations,
and redundant accumulations.
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3.2 Neuron input accumulation

Due to the generalized architecture, each neuron can have a
large fanout of N, where N denotes the number of total
neurons supported by the target device. The synaptic input
accumulation thus poses the largest computational bottle-
neck of the proposed design. Figure 3 shows the datapath
of the Input Accumulator module. The network inputs Net.
Input for the current emulation time are passed to the
accumulation register R through the 2-to-1 multiplexers.
The iRST control signal enables the accumulation registers
to be enabled, thus resetting the accumulated input to the
first Net. Input value. The synaptic weights Syn. Weight and
Spiking Output are read from the Weights Mem. and
Spiking Mem., respectively. If a Spiking Output bit is high,
then the register is enabled, and the synaptic weight from
that source neuron is added to the net input of the neuron.

3.3 Neuron state computation

The module Neuron State Updater performs the main SNN
computations described by the neuron state Egs. (1) — (3).
Figure 4 shows the high-level block diagram of the neuron
state updater. The datapath consists of two pipelined units,
the membrane voltage updater MVU and the recovery
variable updater RVU, which are responsible for computing
the neuron state Eqgs. (1) and (2-3), respectively. The
datapath of the MVU unit, shown in Fig. 5, consists of the
voltage updater units (VUUs), pipeline latency compen-
sation shift registers PLC Shift Registers, and AV scaling
units. The seven-stage pipelined VUUs compute the
changes to the neuron voltage values, denoted as AV.
While accurate representation of 0.04 in the fixed-point
numerical format would require a relatively large number
of fractional bits, we instead utilize a shift-and-add
approximation as 35 + 135 + 1953 = 0.040039 ~ 0.04. The
rest of Eq. (1), in which the input value v is added to the
scaled AV, is performed by the AV scaling units. The
inputs to the AV scaling units include the change in voltage
for each neuron, the original voltage input to the neuron,
and the time scale. The original input value v is shifted
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D ﬂf

Syn. Weight 3 ¢

Fig. 3 The datapath of the input accumulator module

feedbackEN
Volt. Outputs
Volt./Rec./ N >
Net. Inputs . MVU RVU _)Rec. Outputs
Spiking Outputs
Neuron Params. 1T

Fig. 4 The block diagram of the neuron state updater

through the PLC Shift Registers. The time scale is imple-
mented using the arithmetic right shift of input values by
—1 x (log, ) bit positions, where ¢ denotes the resolution
of the time step used in Eq. (1). For r = 0.0625 ms, this
corresponds to a 16-bit arithmetic right shift.

The number of iterations used by the VUUs is equal to
the shift position used by the AV scaling units. The mul-
tiplexers at the inputs to the VUUs and the PLC Shift
Registers can select either the input ports to read voltage,
recovery, and network inputs for the VUUs, or to accept
the outputs of the VUUs for subsequent iterations. The
select line feedbackEN asserted by the control unit is
responsible for enabling the feedback into the VUUs. For
cases in which the number of inputs streaming to the VUUs
exceeds the pipeline depth of VUUs, additional output shift
registers are added to the output of the AV scaling units and
to the output of the PLC Shift Registers. The number of
inputs that will propagate through the VUUs is equal to the
number of rows in the voltage, recovery variable, and input
memories, which is N/PDeg.

Figure 6 shows the datapath of the designed RVU
Pipeline module. It consists of the Recovery Voltage Units
(RVUs), pipeline latency compensation shift registers PLC
Shift Registers, a bank of comparators, a bank of reset-
table adders, and output resetting/spiking multiplexers. The
four-stage pipelined RVU computes the output recovery
variable, as given in Equation (2). The outputs Volt. Out-
puts and Rec. Outputs of the MVU are passed to the
Recovery Pipeline unit, shown as MVU Outputs. The
desired spiking dynamics of neurons, denoted by the
Izhikevich parameters a — d, are passed through the input
port Neuron Params.. The PLC Shift Registers are used to
compensate for the latency of the RVU and to propagate
the parameters ¢ and d, and voltage v values. If the shifted
Volt. Inputs values are greater than or equal to the value of
the spike threshold in Eq. (3), a spike is emitted. The output
of the comparators are used as the select lines of the
multiplexers, which will either pass the original Volt.
Inputs values to the output if a spike did not occur, or they
will pass the shifted reset value ¢, given the occurrence of a
spike. Similarly, the output of the RVUs, the updated
recovery variables, will be passed to the output port Rec.
Outputs if a spike did not occur; otherwise, the updated
recovery variables will be added to the shifted parameters
d for resetting the recovery variables, as given in Eq. (3).
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The operations of the designed architecture can be
briefly explained by the following example. For simplicity,
assume three RS neurons, each of which has a synaptic
weight of 10 mV to the other two neurons. Also, assume
that the current values for the membrane voltage and the
recovery  variables are = [—45,—45,-23] and
u=[—13,12,10], respectively, and = 0.5. Finally,
assume that the next external inputs to each neuron are
equal to I = 5,0, 12]. First, the neuron input accumulation
unit will read input data from the Input Mem.. Initially, the
accumulated network inputs for each neuron are equal to
the values read from the memory, i.e., I = [5,0,12].
Next, the Spiking Mem. is read and its output value is 100,
which indicates that the first neuron emitted a spike during
the last millisecond of operation. Thus, the synaptic weight
value of 10 mV is added to the accumulated network input
of neurons 2’ and ‘3’ and hence, I,.. = [5,10,22]. Once
the external inputs and synaptic weights are accumulated,
the Neuron State Updater computes the updated values of
v =[-25,-52,98] and &' = [0.15,—0.45,0.19]. Since the
membrane potential of neuron ‘3’ exceeds the threshold of
35 mV, the membrane potential and the recovery variable
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for neuron ‘3’ is updated as v = [—25,—52,—65] and
= [0.15,—0.45,8.19]. The spiking outputs of the neu-
rons, 001, are then written into the Spiking Mem., which
indicates that neuron ‘3’ has fired a spike. This process is
repeated for each millisecond of the SNN operation.

4 SNN emulation and implementation
results

The brain’s neural activity is recorded using either non-
invasive or invasive techniques, the latter of which gen-
erally provides greater spatial resolutions and decoding
accuracy. The raw recorded signals are then amplified and
digitized using an analog-to-digital converter (ADC), and
filtered to the frequency bands of interest. In order to
provide real-time interfacing between biological neurons
and a SNN, we must verify that the SNN can operate
predefined time constraints.

4.1 Real-time SNN emulation

A typical sampling frequency of 10 kHz [35] requires the
SNN processing to be completed within 0.1 ms for real-
time operation. Therefore, the number of iterations of
Equation (1) must be either 8 (t=0.125 ms) or 16
(r =0.0625 ms). Figure 7a shows the maximum clock
cycle latency for the input accumulation when all 1000
neurons in the network have fired. Figure 7b shows the
number of spiking neurons for a SNN with 1000 fully-
connected neurons. One can see that the maximum spiking
rate is only 5.1% of all neurons in the network and hence, it
is unlikely that all neurons of the network will fire simul-
taneously. The average spiking rate is even significantly
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Fig. 7 a The maximum clock latency of the input accumulation
module for varying degrees of parallelism, and b the number of
spiking neurons for a SNN with 1000 fully-connected neurons over
one second of emulation

smaller, at 0.7413%. The accumulation latency can be
given as:

((2N/PDeg)* + 20) + SG(N + (PDeg? — PDeg)),  (4)

where SG denotes the number of SN groups in which at
least one SN fired. The maximum number of SN groups N/
PDeg gives a maximum latency of 129, 020 clock cycles
for a network with N = 1000 and PDeg = 10.

Figure 8 shows the latency, based on the number of
clock cycles, for updating the neurons’ v and u values, with
the time resolutions ¢t = 0.125 ms and r = 0.0625 ms, for a
SNN with N = 1000 neurons over varying degrees of par-
allelism. The number of clock cycles required to complete
the neuron state updating process can be given as
(%eg (Vier + 1)) + 7, where Vier = 1/t denotes the num-

ber of iterations required by the membrane voltage updater
for the desired time resolution 7. Because the designed
architecture utilizes shifting operation to implement the

10° ——1=0.1250 ms| |
—0—t=0.0625 ms| |

Latency (clock cycles)
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100 200 300 400 500
Degree of parallelism

o

Fig. 8 The clock cycle budget for computing the neuron state
equations with varying degrees of parallelism for a network with N =
1000 neurons over 1000 emulation time steps
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Fig. 9 The number of SN groups for N = 1000 neurons, PDeg = 10,
over 1000 emulation time steps

required time scaling in Equation (1), the time resolution ¢
must be a negative integer power of 2 and hence, the
degree of parallelism PDeg must be an even divisor of N.
According to Fig. 8, FPGAs that can accommodate storage
and computational resources for about one-fifth of the
number of neurons N in a SNN yield approximately two
degrees of magnitude lower accumulation latency than
emulating a SNN with a single processing element (e.g.,
traditional in-order execution with PDeg = 1). This is also
the case for the input accumulation process. To quantify
the time available for the real-time operation (i.e., com-
pleting one iteration of computations within one millisec-
ond), we can determine the number of SN groups to
estimate the maximum clock cycle budget of the input
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accumulation module for each SN group. As shown in
Fig. 9, for N = 1000 and PDeg = 10, the maximum number
of SN groups is 44, which corresponds to an input accu-
mulation clock cycle budget of 67, 980. This clock cycle
budget can be added to the clock latency of the MVU,
which is 1707 for Vi = 16. As a result, the total clock
cycle budget for the real-time SNN operation is 69, 687.

4.2 Hardware implementation results

We have implemented the designed generalized reconfig-
urable hardware architecture for a SNN with 1000 fully-
connected neurons with PDeg = 10 on a Xilinx Artix-7
XC7A200T FPGA. It utilizes 12700 (9.49%) lookup
tables (LUTs), 11139 (4.16%) flip-flops (FFs), 14.50
(3.97%) block RAMs (BRAMs), and 110 (14.86%) dedi-
cated multiplication units (DSP48s). This network size is
comparable to those of the other single FPGA implemen-
tations, for a fair comparison. The iterative computation of
the membrane potentials via the MVU with the folded
hardware architecture requires a relatively small number of
configurable FPGA resources. The clock cycle budget for
the real-time operation of the implemented SNN can be
determined as 92MHz x 1ms = 92000 cycles, where 92
MHz is the operating frequency of the SNN implemented
on the FPGA and one millisecond is required for com-
pleting the SNN computations before the next set of neural
samples are available based on a 10 kHz sampling rate. The
inference speed of the network depends on the degree of
parallelism, the time step resolution, and the number of
emulated spiking neurons. For example, given an FPGA
operating frequency of 92 MHz, degree of parallelism
PDeg = 10, emulating 1000 spiking neurons with a 0.5 ms
time step resolution, each computation time step takes 0.49
ms. Note that the size of the networks that can be imple-
mented is directly limited by the number of computational
resources and memory elements available on the target
device.

4.3 Design verification

To test the designed and implemented SNN architecture,
we have developed a custom MATLAB-based graphical
user interface (GUI), shown in Fig. 10. The GUI interacts
with the FPGA through a serial port. The baud-rate and the
parameters of the synthesized and implemented SNN on
the FPGA device are specified under the FPGA Settings
panel. The Options panel allows the user to randomly
generate network parameters and synaptic weights, load
previously generated network parameters and synaptic
weights from a file, view the network parameters and
synaptic weights currently loaded onto the FPGA, and
upload the network parameters and synaptic weights onto
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Fig. 10 The developed graphical user interface for emulating and
testing SNNs on FPGAs

the FPGA. The SNN is trained using our custom-developed
scripts in Python. The neuron parameters ¢ — d and the
synaptic matrix values derived by the training are then
loaded onto the SNN hardware through the GUI for func-
tional verification. Once the connection to the FPGA is
established, the GUI displays the Apply Network Stimuli
panel, which allows the user to apply network inputs to the
SNN hardware implemented on the FPGA. The scatter plot
Emulation output then shows the spiking activity of each
neuron for each emulation time step. As shown in Fig. 10,
the emulation output of the implemented SNN utilizing
1000 fully-connected neurons with PDeg = 10. A neuron
has a connection to another neuron in the network through
a randomly initialized weight value. Weight values of zero
imply that there is no connection between a pre- and post-
synaptic pair of neurons. In this specific model, neurons
have no self-recurrent connections. Although the SNs are
randomly coupled and no synaptic training was employed,
the occasional dark vertical lines indicate synchronized
firing events across the majority of neurons. This behavior
is akin to the mammalian neo-cortex behavior during an
awake state and is an indication that the Izhikevich model
reproduces the behavior of biological neurons and their
spiking dynamics.

In order to evaluate the SNN and Izhikevich model for a
practical application, we evaluate our design using the
MNIST digit recognition dataset [36]. The dataset consists
of 28x28 pixel grayscale handwritten digits with values
between 0 and 255. The images are converted into poisson-
firing spike trains following the approach in [37]. The firing
rate of a pixel is proportional to the pixel intensity, with a
maximum firing rate of 350 Hz. Each set of image spike
trains are presented for 50 milliseconds, with another 50
millisecond of no input to allow the network to settle
before presenting the next image. The weights from input
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spike trains to spiking neurons are derived through spike-
time dependent plasticity (STDP) using a supervised
training scheme described in [38]. The weight change rule
is given by:

1

Awi(t) = - &() Y si(d), (5)

f=t—e

where w;;() denotes the weight from input i to neuron j,
denotes the learning rate, ;(f) denotes the STDP-based
learning rule for neuron j, € denotes the STDP window in
milliseconds, and Y- , _ s;(f) denotes the number of spikes
fired by input i during the time interval [t — ¢, f]. The
learning rule ¢;(1) is given by:

+1 z(t)=1,r#1€ [t —e1,
L) =49 -1 z(1)=0,=1€[t—¢€1],
0 otherwise,

where z;(¢) denotes the target spike train for neuron j and r;
denotes whether neuron j has fired a spike within the STDP
window. The above equations can thus be interpreted as
local STDP-based rules, whereby neurons that should fire
have their input weights strengthened and neurons that
should not fire have their weights weakened. If a neuron
fires within the STDP time window ¢, the neuron is per-
forming as desired and no weight change is required.

While the STDP-based learning rules are suitable for on-
chip learning, our proposed custom architecture is not
intended to support it. On-chip training needs additional
hardware, such as storing a history of spiking activity over
a STDP window. Also, for training the synaptic weights
from external spiking activity, an additional memory unit
would be required to store input spiking history. Combin-
ing STDP-based learning rules with stimuli-dependent
teaching signal requires an additional memory unit to
define which neuron populations should respond to specific
stimuli.

In our network, the 100 spiking neurons are divided into
ten groups of equal size, where each group is assigned to an
input digit class. The target spike trains have a firing rate of
f Hz. The spike trains are active during the first 50 mil-
liseconds of image spike train presentation. Table 1 gives
the neuron model and learning parameters used during our
experiments. We use a subset of the MNIST dataset con-
sisting of 60000 images, with 42000 used for training and
18000 used for testing. The training set is presented to the
network six times and weights are tuned with the learning
rule given in Eq. (5). After training, the network’s pre-
diction is given by the digit group that fires the most spikes.

Even though the input digits are represented using
Poisson-distributed spike trains, the weight values shown
in Fig. 11 demonstrate that the trained synaptic weights

Table 1 The neuron model and learning parameters for Izhikevich-
based SNN digit recognition

Neuron parameters Learning parameters

Parameter Value Parameter Value
a 0.02 u 0.0001
b —0.1 € 10 ms
c - 55 p 300 Hz
d 6

form digit-specific representations of the inputs. For
example, it can be seen that the weights for the digit group
0 and 3 resemble handwritten 0 s and 3 s. The confusion
matrix of the network’s classification is shown in Fig. 12. It
is noted that the network is able to accurately classify the
handwritten digits with the classification accuracy of
89.8%. Several previously published works have used
supervised spike-based methods for training SNNs using
the MNIST dataset. A restricted boltzmann machine
(RBM) was realized using the leaky I &F neurons in [39]
and achieved a classification accuracy of 91.9%. In [40], a
spiking convolutional network was implemented using the
leaky I &F neurons and achieved a 91.3% classification
accuracy. In [41], the Izhikevich neurons were used to
implement two layers of visual system neurons (V1 and
V2) followed by a classification layer. In total, the network
architecture consists of over 71,000 neurons with over 130
million synapses and achieved a classification accuracy of
91.6%. In [42], a two-layer network of stimuli-selective
leaky I &F neurons were used to make predictions
regarding the particular stimulus presented, and achieved a
96.5% classification accuracy. Unfortunately, the state-of-
the-art SNN-based MNIST classifiers offer a lower

£

Digit group
(5]

Weight value

Neuron index

Fig. 11 Weight matrices of the trained Izhikevich SNN

@ Springer



Neural Computing and Applications

[S)

EN

Actual digit
(3]

Classification rate

[~

©

0.9
1

0.8
2

0.7
3

0.6

0.5

04
6

0.3
7

0.2

0.1

0

0 1 2 3 4 5 6 7 8 9

Predicted digit

Fig. 12 Confusion matrix for the SNN-based MNIST digit recogni-
tion task

classification accuracy compared to the non-spiking con-
volutional neural network models [43]. The accuracy might
be improved by employing more layers, increasing the
amount of abstract features that can be learned, incorpo-
rating conductance-based dynamics into the synaptic
weights, and employing additional pre-processing layers
that perform edge-detecting [42] and orientation-detecting
[40, 41].

After obtaining input weights, trained weights can be
sent to the network by performing the weighted sums of
spike inputs with their respective weight parameter. For the
MNIST digit recognition task, for a given time step, the
weights from inputs that spike at time ¢ can be accumulated
into a single external input /, based on Eq. (1), thus pro-
viding weighted spike train input to the network.

4.4 Comparison

The implementation of a hardware dedicated to emulating
SNNs has been of interest in recent years. There are two
overarching implementation platforms in use today:
(i) programmable devices, including FPGAs and CPUs;
and (ii) ASICs. Below, we discuss several state of the art
implementations for the two implementation platforms.

4.4.1 Programmable devices

FPGAs offer extensive flexibility to emulate SNNs with
various network topologies and spiking behaviors. Table 2
gives the characteristics and FPGA implementation results
of various state-of-the-art Izhikevich-based SNN hardware
architectures. The SpiNNaker project [24] utilizes general-
purpose processors to implement SNNs using a distributed
computing approach, where a processing node incorporates
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18 ARM968 processors and a combination of processing
nodes are used concurrently for simulating SNNs. SNNs
are first simulated in software using the PyNN [44] or
Nengo [45] frameworks, and then mapped to the SpiN-
Naker nodes. The distributed computing approach is ideal
for simulating large-scale SNNs. While utilizing an array
of programmable processors offers a high degree of flexi-
bility, the time resolution scales down to only one ms,
which makes it impractical for real-time operation. More-
over, while up to 1000 SNs can be simulated per node, the
level of connectivity among neurons is not realistic, with a
fan-out of only 100 outputs per neuron. The work in [21]
presents NeuroFlow, a scalable distributed computing SNN
emulation platform using FPGA-based processors.
A NeuroFlow system using six FPGAs can simulate SNNs
of up to 600K neurons. The time resolution of one mil-
lisecond can be achieved for SNNs of up to 400K neurons.
While it is reasonable to compare NeuroFlow and SpiN-
Naker platforms, as both are targeting large-scale SNNs,
our design primarily focuses on a generalized hardware
architecture for moderately-sized SNNs with arbitrary
interconnect structures and with programmable time reso-
lutions for real-time operation.

Dedicated reconfigurable hardware realization of SNNs
has also received interest [18-23], many of which have
focused on accelerating the emulation of large-scale SNNs.
The work in [18] presents an FPGA-based implementation
of an Izhikevich-based SNN, which supports a fully-con-
nected network of 1024 neurons with over one million
synapses. The design uses 16 dedicated synaptic accumu-
lation units, each of which can perform the accumulation of
four synapses. The network operations are performed using
either single- or double-precision floating-point units and
their design operates at 133 MHz with the reported timing
resolution of 10us. The FPGA implementation of fully-
connected SNNs in [19] supports relatively small networks
with only 117 neurons, operating at 84 MHz, while
achieving a one millisecond time resolution. The work in
[20] presents an Izhikevich-based SNN implementation on
a Kintex-7 FPGA, capable of simulating over 1000 neurons
with a time resolution of 0.1 ms. The work in [22]
implements HH-based neurons in a set of tightly integrated
cores, supporting up to 500 neurons each, on a Kintex-7
FPGA. Unfortunately, the total memory utilization in terms
of number of BRAMs was not reported, which may explain
their relatively low register and LUT usage. The work in
[23] also presents a core-based approach for implementing
HH-based neurons on an Artix-7 FPGA. Rather than sup-
porting a fully-connected network, their work focuses on
randomly connected networks, where the connectivity
among neurons is generated off-line on a workstation and
encoded into an initial seed vector. The seed vector is then
used to generate the connectivity matrix on-the-fly instead
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Table 2 The characteristics and FPGA implementation results for various SNN realizations

Work Neuron FPGA Number of Synapses per ~ Time Regs. LUTs BRAMs DSP48s  Freq. (MHz)
model device neurons neuron resolution (ms) (%) (%) (%) (%)

[18] 1ZH Virtex-5 1024 1024 0.01 32420 19397 264 16 (8.3) 133
(15) ) (81.5)

[19] 1ZH Virtex-4 117 117 1 970 (2) 1598 8 (2.5) 1(0.19) 84

(3.3

[20] 1ZH Virtex-6 1440 1440 0.1 48502 55884 392 (94) 408 (53) -
(16) (37

[22] HH Kintex-7 500 500 0.00002 2360 5551 - 28 100
(0.57) 2.7) (3.33)

[23] HH Artix-7 4096 4096 0.0078 25430 46045 20 (5.4) 280 (37) 58.8
(C) (34)

Ours IZH Artix-7 1000 1000 0.0625 - 0.5 11139 12700 14.5 110 92
4.1 (9.49) 3.9 (14.8)

of storing the full-connectivity on the FPGA. As given in
Table 2, our SNN hardware architecture is among the most
resource efficient designs when implementing similarly
sized SNNs, yet being able to realize a range of time res-
olutions and hence, provides a viable FPGA-based real-
time emulation platform. Utilizing a relatively small per-
centage of on-chip reconfigurable resources along with
scalability of the designed hardware architecture makes it
suitable for emulating moderately-sized SNNs on a single
FPGA.

While the implemented design is more area efficient
than the state-of-the-art FPGA-based SNNs, its general-
purpose architecture also offers several important design
trade-offs. In addition to supporting a “variable” number
of neurons (in the order of tens of thousands), it also allows
an efficient realization of an “arbitrary” interconnect
structure between neurons in the network, which normally
requires a relatively large synaptic weight memory. Current
FPGA-based SNNs manage the size of the weight memory
by only realizing a particular subset of interconnections for
a specific application. Another tradeoff is that the designed
and implemented SNN architecture supports a wide range
of temporal resolutions for added flexibility, while current
SNNs designs would support optimized computation of
membrane voltages using a fixed time resolution.

4.4.2 ASIC realizations

ASIC realizations of SNNs include mixed-signal neuro-
morphic chips [25, 46, 47], which mimic biologically-
plausible electrical behavior of neurons [48], and pro-
grammable digital SNN implementations [28-30]. The
former designs generally offer lower power consumption
and require smaller silicon area [49], whereas the latter
designs can leverage the programmability of processors for

increased flexibility. To compare our proposed generalized
SNN hardware architecture with the state-of-the-art ASIC
realizations, our designed SNN architecture is implemented
in a standard 32-nm CMOS technology. The CMOS layout
of the implemented ASIC is shown in Fig. 13, which is
estimated to occupy 3.6 mm? of silicon area. Post-layout
synthesis and simulation results show that the ASIC chip
will dissipate 3.6 mW from a 1.16 V supply while oper-
ating at 34.7 MHz frequency.

Table 3 gives the characteristics and ASIC implemen-
tation results of various SNN designs. The work in [25]
presents a mixed-signal SNN implementation in a standard
180-nm CMOS technology, supporting up to 256 neurons
with 16K synapses. The spiking neurons are realized based
on the AdExp neuron model [51]. The digital neuron
implementation, often referred to as silicon neurons, mimic
the behavior of the AdExp neuron with analog circuits.
While the AdExp neuron model can exhibit various spiking

Synaptic
Weights

State Updater 53,
& -
Routing Logic
Synaptic
Weights
.89 mm

Fig. 13 Layout of the implemented SNN hardware architecture in a
standard 32-nm CMOS process
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Table 3 The characteristics and ASIC implementation results for various SNN realizations

Work [25] [26] [27] [28] [29] [30] Ours
Circuit Mixed- Mixed- Digital Digital Digital Digital Digital
Signal Signal

CMOS process (nm) 180 180 45 28 28 14 32
No. spiking dynamics 20! 20! 3 20 11 6 20
Neurons per core 256 256 256 256 256 1024 256
Synapses per core 16K 128K 64K 64K 64K I M- 114K 64K
Weight storage 12-bit CAM  Capacitor 1-bit 3-bit SRAM 1-bit (1-9)-bit 16-bit SRAM

SRAM + SRAM SRAM +

1-bit SRAM Izh. Param.

Voltage (V) 1.3-138 1.8 053-10 055-1.0 07-105 05-1.25 1.16
Die area per core (mm?) 9.6 514 4.2 0.086 0.095 0.4 3.6
Power consumption (mW) 02-27 4 0.5 0.4 64 4 3.6
Scaled area per core (mm?)? 0.24 1.28 2.9 0.12 0.13 - 3.6
Scaled power consumption 0.17-—-0.85 1.25 0.62-—1.88 0.50-—1.95 73-312 - 3.6

(mW)

'The AdExp neuron has not yet been proven to exhibit all 20 spiking dynamics

2Scaled to a 32-nm CMOS process utilizing a 1.16V supply voltage following the scheme in [50]

dynamics, it has not yet been shown to reproduce all of the
20 spiking behaviors modeled by Izhikevich’s description
[52]. The processing units store the address of the post-
synaptic spike in a 10-bit content addressable memory
(CAM) and the parameters for the desired dynamics are
stored in a 2-bit SRAM. The SNN presented in [26] also
implements the AdExp model with silicon neurons in a
standard 180-nm CMOS technology. The synaptic weights
are stored in on-chip capacitors in the array of synapses.
The work in [27] implements a SNN consisting of 256
neurons, based on the I &F neuron model, and 64K
synapses in a standard 45-nm CMOS technology. As
opposed to the previous approaches in which a neuron’s
operations are performed using analog circuits, the com-
putations in [27] are performed digitally. The binary
synaptic weights are stored in an array of SRAM cells
within the cross-bar structure of synapses. The work in [28]
presents a digital 256-neuron, 64K-synapse neuromorphic
processor. It is implemented in a 28-nm CMOS technology
and employs the time-multiplexing technique to emulate
the cross-bar structure of synapses. IBM’s TrueNorth [29]
and Intel’s Loihi [30] are also two digital implementations
of SNNs. TrueNorth is a multi-core programmable pro-
cessor implemented in a 28-nm CMOS technology, where
each core contains 256 spiking neurons and 64K synapses.
Loihi is also a multi-core programmable processor,
implemented in a 14-nm CMOS technology, where each
core supports 1024 neurons with up to one million
synapses.

@ Springer

While commercial SNN processors and distributed
computing solutions in [21] and [24] focus on very large-
scale SNNs, our architecture and those in [25-28] are
single-chip realizations for a moderate network size. Even
though the operating frequency of our design is relatively
slow, it is sufficient for real-time emulation of SNNs. For a
fair comparison, we have scaled the silicon area and power
consumption to a 32—nm CMOS process utilizing a 1.16-V
supply voltage as presented in [50]. We can see that the
digital implementations presented in [28-30] occupy
smaller silicon areas than ours, since our design naturally
requires more storage elements to define the spiking
dynamics on a per-neuron basis. The Izhikevich parameters
a and b are stored in 12-bit SRAM units, the ¢ values are
stored in 32-bit SRAM units, and the d values are stored in
16-bit SRAM units. While the discussed SNN designs
utilize a cross-bar synaptic structure for communication
among neurons, the accumulation of synaptic weights in
our design is performed in a hybrid sequential-parallel
approach with an adjustable degree of parallelism. The
synaptic weights are stored in 16-bit SRAM units and for a
realistic level of interconnection, the synaptic weight
memory may occupy a relatively large silicon area. Note
that while our generalized design allows storing the
Izhikevich parameters for each individual neuron, to sub-
stantially reduce the memory requirement, the Izhikevich
parameters a — d can be constrained to specific values for a
group or all of the neurons in the employed SNN. Simi-
larly, in [16], seven types of neurons are specified, each
with a predefined set of parameter values for a — d. Our
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approach differs in that we aim to provide a robust and
flexible platform for emulating diverse SNNs.

While it is shown that our digital SNN architecture
consumes acceptable power, recent analog implementa-
tions offer a potential alternative candidate. As discussed in
Sect. 3, one of the challenges for the efficient realization of
spiking neural networks (SNNs) is the process of accu-
mulating synaptic weights. Neuromorphic architectures
employ crossbar interconnects to accumulate weighted
inputs through current flow. Also, instead of storing weight
parameters in SRAM cells, they utilize memristor-based
memory, which has a higher density and lower power
consumption [53]. They are also suitable passive elements
for modeling neuronal synapses with biological learning
rules, such as spike-time dependent plasticity [54-57].
Therefore, in terms of area, power consumption, as well as
scalability, the neuromorphic architecture could offer a
viable alternative. However, while analog processing pro-
vides higher speed than digital processing, unfortunately,
noise and inaccuracies accumulate in analog systems.
Digital systems can reliably process data and tolerate noise
and inaccuracies during neural signal processing. For
brain-computer interfaces where the speed of neural signal
recording and processing is far less than the speed of digital
integrated circuits, low-power realization of spiking neural
networks in the digital domain is a feasible alternative
candidate.

5 Conclusion

This article presented an area- and power-efficient scalable
reconfigurable hardware architecture for real-time emula-
tion of spiking neural networks (SNNs). We presented the
characteristics and implementation results of our designed
generalized SNN hardware architecture on both field-pro-
grammable gate arrays (FPGAs) and on application-
specific integrated circuit (ASIC). Compared to the simi-
larly-sized SNNs implemented on a single FPGA, our
design is capable of emulating moderately-sized SNNs in
real time while utilizing significantly fewer reconfigurable
resources. We also verified the performance of the pro-
posed SNN on the MNIST digit recognition task and
showed that it can accurately classify handwritten digits
with 89% accuracy. Compared to the state-of-the-art ASIC
realizations of SNNs, our design consumes less power
utilizing a hybrid parallel-sequential scheme. Moreover, as
opposed to the state-of-the-art ASIC realizations, our
design’s power consumption and real-time processing are
not affected by the spiking rate of the emulated SNN. Our
design supports various spiking rates based on the number
of neurons and allows an adjustable degree of parallelism
and time step resolution. The silicon area and low power

consumption of the realized generalized SNN hardware
architecture make it suitable for single-chip SNN realiza-
tions while emulating SNNs of various sizes and inter-
connect topologies in real-time.
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