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Abstract
This article presents an area- and power-efficient hardware architecture for the brain-implantable spiking neural networks

(SNNs). The proposed generalized hardware architecture is parameterizable and reconfigurable such that the maximum

supported number of neurons, the interconnection structure among neurons, and the resolution of the time step can be

readily adjusted for realizing various SNN topologies. The designed SNN hardware architecture is capable of emulating

moderately-sized SNNs with tens of thousands of neurons in real-time with varying degrees of parallelism, while reducing

the resource utilization by 34% for similarly sized SNNs implemented on a single field-programmable gate array (FPGA).

We evaluate the model using the MNIST digit recognition benchmark and show that the network can accurately classify

handwritten digits with 89.8% accuracy. Compared to the other recently implemented SNN emulators based on FPGAs, the

designed and implemented single-FPGA system is able to emulate moderately-sized SNNs instead of using a cluster of

FPGAs or CPUs. The application-specific integrated circuit (ASIC) implementation of a moderately-sized SNN is esti-

mated to occupy 3.6 mm2 of silicon area. Post-layout synthesis and simulation results show that the ASIC will dissipate 3.6

mW of power from a 1.16 V supply while operating at 34.7 MHz in a standard 32-nm CMOS process.

Keywords Spiking-neural networks � Field-programmable gate arrays � Application-specific integrated circuits �
Machine learning

1 Introduction

In the United States alone, over 17000 cases of spinal cord

injury (SCI) or other neuro-degenerative diseases (NDDs) are

reported per year [1]. SCI and NDDs can affect the ability of

biological brains to communicate and/or interface with other

parts of the body. Brain-machine interfaces (BMIs) have

become a viable solution for creating alternative communi-

cation pathways between the human brain and external

devices, such as a prosthetic arm or a computer.

Over the past decade, artificial neural networks (ANNs)

have been employed in a wide range of applications. Feed-

forward neural networks (FNNs) and multi-layer

perceptrons (MLPs) process data in a single direction from

input to output, while recurrent neural networks (RNNs)

utilize feedback connections among artificial neurons

(ANs) to learn about the temporal information within the

input data. Convolutional neural networks (CNNs) are

primarily used in image and video processing. They can

decompose images with a variety of filter kernels and can

be combined with FNNs to perform accurate image clas-

sification, segmentation, and recognition tasks, such as

detecting and segmenting medical images to assist with

disease diagnosis [2]. Temporal convolutional networks

(TCNs) employ causal convolutions and strided dilations to

adapt to sequential data with a receptive field larger than

conventional RNNs [3]. Transformer neural networks [4]

employ a self-attention mechanism to weigh the relevance

of particular points in sequential data. The mechanism of

self-attention has proven invaluable for natural language

processing tasks, such as machine translation [5].

The early study of neural networks led to the develop-

ment of more biologically-plausible neural networks.
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Spiking neural networks (SNNs) [6], often referred to as

the third generation of neural networks, employ more

accurate mathematical models for describing the behavior

of brain neurons. The neurons in SNNs are connected to

one another using synapses, and the weights associated

with the synapses model the impact of one neuron’s spike

on its post-synaptic neighboring neurons. The values of the

synaptic weights are obtained through the training process,

in which weights are fine tuned so that the employed SNN

can mimic desired spiking behaviors, such as responding to

input stimuli at specific times. While neurons in an ANN

communicate by sending discrete values to one another,

spiking neurons communicate with one another via

exhibiting spiking behavior, similar to those of a biological

brain, through the emulation of the membrane potentials of

the neuron.

Due to their biological plausibility, which is not inherent in

the relatively simple mathematical models of neurons in the

conventional ANNs, SNNs have become the prime candidate

for interfacing with living biological brain neurons [7, 8].

Various experiments have shown that interfacing a SNN for

stimulating the main respiratory muscles, such as the dia-

phragm, has helped patients regain ventilatory control [9].

Recently, it has been shown that information transfer from

SNNs to biological neural networks is possible [10], and

hence SNNs can potentially be realized as replacement neural

micro-circuits. For example, in [11], one hundred synthetic

spiking neurons’ parameters are tuned to match the behavior

of biological neurons for restoring communication between

two neuronal populations separated by a focal lesion. Another

effort has shown that SNNs can potentially be used as

replacements for damaged biological networks in the hip-

pocampus of behaving rats to restore and improve memory

functionality [12, 13].

The real-time operation of the SNNs, however, imposes

strict limitations on the feasible computational complexity

of the mathematical models for SNNs and hence, on the

silicon area, power consumption, and latency of the real-

ized hardware circuits. Various neuron models have been

proposed, ranging from the simple integrate and fire (I &F)

model [14] to the relatively complex Hodgkin and Huxley

(HH) model [15]. The Izhikevich neuron model [16],

however, can reproduce the spiking dynamics of cortical

neurons reliably while also being computationally more

efficient than the other state-of-the-art SNN models [17].

This article focuses on the area- and power-efficient design

and implementation of a generalized hardware architecture

for moderately-sized SNNs, in the range of tens of thousands

of neurons, based on the Izhikevich neuron model. While

most of the previously-published work have elaborated on

fixed dedicated hardware architectures, supporting a prede-

fined number of neurons and synaptic interconnect topologies

[18–21], the proposed architecture aims to exploit the

reconfigurable nature of the field-programmable gate arrays

(FPGAs) to support an arbitrary number of spiking neurons

and diverse network interconnect structures, while offering an

adjustable time resolution. In addition to FPGA [18–23] and

programmable processor [24] realizations of SNNs, applica-

tion-specific integrated circuit (ASIC) implementations of

SNNs have also been reported [25–30]. While FPGA and

processor realizations offer greater flexibility in realizing

diverse SNNs, ASIC implementations can consume signifi-

cantly lower power and can be implemented in a smaller form

factor and hence, are practical for the in-vivo brain implan-

tations. In this work, we propose to implement a tightly

integrated SNN core with embedded memory and computa-

tional elements. In contrast to the state-of-the-art ASIC real-

izations, our design’s power consumption and real-time

processing are not affected by the spiking rate of the emulated

SNN. Our design supports various spiking rates based on the

number of neurons and allows an adjustable degree of par-

allelism and time step resolution. State-of-the-art ASIC

implementations, such as Loihi [30], SpiNNaker [24], and

Tianjic [31], aim for high-performance computing by

exploiting massively-parallel architectures or distributing

computations over a large amount of processing cores. While

our approach is that of a generalized real-time SNN, our goal

is to integrate all of the required elements of the SNN core,

such as processing elements and memory, into a single unified

chip. The relatively small silicon area and low power con-

sumption of the implemented generalized SNN hardware

architecture make it suitable for single-chip realizations, while

emulating SNNs with various sizes and interconnect topolo-

gies in real-time. Our proposed design is scalable and addi-

tional cores can be readily utilized at the expense of increased

silicon area.

The rest of this article is organized as follows. Section 2

briefly reviews the main computational requirements of the

Izhikevich-based SNN model. Section 3 provides a

detailed explanation of the designed generalized hardware

architecture for SNNs. A memory partitioning scheme for

parallel computation of the membrane potentials is pre-

sented. Section 4 discusses the limitations of the real-time

SNN realizations, quantifies the implementation charac-

teristics of the proposed design, and provides comparisons

between the FPGA and ASIC implementation results of our

generalized SNN architecture and those of the state-of-the-

art work. Finally, Sect. 5 makes some concluding remarks.

2 A computationally-efficient SNN model

Izhikevich’s neuron model iteratively reproduces the

spiking dynamics of biological neurons using the following

mathematical expressions [16]:
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v0 ¼ðt � ð0:04v2 þ 5vþ 140� uþ IÞÞ þ v; ð1Þ

u0 ¼aðbv0 � uÞ; ð2Þ

if v0 � 35 mV;
v c

u u0 þ d

�
; ð3Þ

where v denotes the membrane potential in terms of mV, u

denotes the recovery variable, I denotes the accumulated

input activity to the neuron, and t denotes the resolution of

the time step. The spiking dynamics of the neurons can be

controlled by the parameters a–d, where a denotes the

decay rate of the recovery variable u, b denotes the cou-

pling between v and u, which can result in sub-spiking

oscillations, c denotes the value of the membrane potential

after a spike, and d denotes the reset of the recovery

variable u after a spike. Given a unit-step input current,

Fig. 1 shows the membrane potential voltages for four

different types of neurons. The regular spiking (RS) neu-

rons exhibit the spiking behavior shown in Fig. 1a with

parameters a ¼ 0:02, b ¼ 0:2, c ¼ �65, and d ¼ 8, and are

the most common type of neurons in the mammalian cortex

[32]. The parameters a ¼ 0:02, b ¼ 0:2, c ¼ �50, and d ¼
2 define the chattering (CH) neurons, which fire bursts of

spikes following an excitation, as shown in Fig. 1b. Fig-

ure 1c shows a low-threshold spiking (LTS) neuron, which

can fire high-frequency spikes with adaptation (i.e., slow-

ing down of firing rate) using a ¼ 0:02, b ¼ 0:25,

c ¼ �65, and d ¼ 2. Figure 1d shows a fast-spiking (FS)

neuron, which can fire rapid spikes without adaptation,

with a ¼ 0:1, b ¼ 0:2, c ¼ �65, and d ¼ 2. Both RS and

CH neurons are examples of excitatory cells, while the

LTS and FS neurons are inhibitory cells.

An iteration of the Izhikevich-based SNNs using the

neuron state Eqs. (1)–(3) can be executed in three steps: (i)

receiving network inputs; (ii) performing synaptic weight

accumulation; and (iii) computing the membrane poten-

tials. In the first step, the network inputs are buffered. The

second step poses the main computational bottleneck for

realizing the SNN model. In traditional ANNs, the neuron’s

communicate by passing discrete values to one another;

however, SNNs operate differently. The output of a spiking

neuron is the excitation or lack thereof and hence, can be

represented as a binary value, denoting whether the neuron

emitted (fired) a spike. A neuron fires a spike if the

membrane potential crosses a predefined threshold of 35

mV, which results in resetting the membrane potential v to

the predefined neuron’s potential value c. After a neuron

fires a spike, the neuron cannot fire another spike for a

period of time, known as the refractory period. When a

neuron fires, the synaptic weights of all pre-synaptic firing

neurons are accumulated and added to the current input

stimuli for every connected post-synaptic neuron. Note that

since Eq. (1) is on the millisecond scale, more precise spike

timings can be modeled using finer temporal resolutions.

This requires more iterative computations of Eq. (1) to

complete one millisecond of emulation. For example, if the

time resolution t ¼ 0:5 ms, the membrane potential v0 has
to be computed twice (with v ¼ v0 for the second iteration).

The third and final step is to update the membrane poten-

tials using the neuron state Eqs. (1)–(3).

The biologically-inspired models attempt to replicate

the behavior of biological neural systems, but not neces-

sarily in a biologically-plausible manner. For example, the

I &F model employs a relatively simple biologically-in-

spired spiking neuron model. Even though this model is

less biologically realistic, it produces enough behavioral

resemblance to the biological neurons to be useful in

spiking neural systems. The leaky I &F model adds a leak

term to the simple I &F model, which causes the potential

on a neuron to decay over time. The leaky I &F model

updates the membrane potential v as:

v0 ¼I þ a� bv;

if v0 � vthresh : v c;

where I denotes the input current to the neuron and a, b, c,

and vthresh are the neuron parameters. Because the I &F

model has only a single variable, it cannot exhibit all 20

neuro-computational features and hence, is not considered

a biologically-plausible neuron model. An alteration to the

I &F model decreases the frequency of spiking and is

referred to as spike-frequency adaption. An extension to

this model was the Adaptive Exponential (AdExp) model

which changes the input current injection to conductance-

based injection. These extensions represent a better

reflection of the changes seen by cortical neurons. The

biologically-plausible models, however, explicitly modelFig. 1 Membrane potential waveforms for a regular spiking, b chat-

tering, c low-threshold spiking, and d fast-spiking neurons
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the types of behavior that are seen in biological neural

systems. The most popular biologically-plausible neuron

model is the HH model, which is relatively computation-

ally-intensive and takes 1200 floating-point operations to

evaluate one millisecond of time, which can be limiting for

real-time SNN emulation. The Izhikevich spiking neuron

model (IZH) was developed to produce similar bursting

and spiking behaviors as can be elicited from the HH

model, but do so with a much simpler computation.

3 A generalized reconfigurable hardware
architecture for SNNs

For network topologies which follow the classical, layer-

based structure, network inputs are only applied to the input

layer. However, for realizing a generalized hardware archi-

tecture, the inputs are given to every neuron in the network.

The designed scalable architecture utilizes the degree of

parallelism parameter PDeg, which controls the number of

input accumulations to be computed in parallel. Utilizing

folding transformations [33], computations can be reduced to

PDeg SNs at a time, resulting in a hybrid sequential-parallel

hardware architecture. By effectively folding the computa-

tions down to PDeg neurons at a time, the overall resource

utilization can be significantly reduced. This in effect allows

more complex systems to be integrated onto a single chip or

logic resources can be allocated for additional neural signal

processing or computational functions.

For example, the brain-computer interface in [34]

employs spike sorting in conjunction with emulated spik-

ing neural networks to manipulate a prosthetic device.

While their system utilizes multiple CPU cores for real-

time SNN emulation, our proposed hardware architecture

can accommodate several neural signal processing modules

onto a single chip for emulation of the real-time moder-

ately-sized SNNs. By updating PDeg SNs at a time, the

hardware architecture can be readily scaled such that a

millisecond of SNN emulation is completed within a pre-

defined number of clock cycles. Compared to the software

realizations, the total number of neurons N, and the degree

of parallelism PDeg, supported by our hardware architec-

ture are limited by the number of reconfigurable resources

available on the target FPGA device or the silicon area and

power consumption of the ASIC implementation.

3.1 SNN core memory

The top-level block diagram of the designed SNN core is

shown in Fig. 2. The SNN architecture consists of several

memory units for storage of: (i) the network’s inputs Input

Mem.; (ii) the neurons’ membrane potential voltage values

Voltage Mem.; (iii) the neurons’ recovery variables

Recovery. Mem., (iv) the SN’s outputs Spiking Mem.; (v)

the synaptic weights Weights Mem.; (vi) and the parameter

memory Parameter Mem. to store the Izhikevich parame-

ters a – d per neuron. In order to support an arbitrary

interconnect structure among the SNs, the Weights Mem.

stores N2 synaptic weights. By changing the synaptic

weights stored in the Weights Mem., various SNN config-

urations can be realized. The memory units shown in Fig. 2

are implemented using the FPGA’s block RAM (BRAM)

resources. The BRAMs are specialized on-chip storage

resources on an FPGA, where their maximum width and

depth varies among different device families. For example,

the Xilinx Artix-7 FPGAs can store up to 36 kB of data in

BRAMs, with the BRAMs’ width being programmable up

to 72 bits.

In order to process PDeg neuron computations per clock

cycle, all memory units are partitioned in such a way that

there are no conflicting data accesses. This avoids imple-

menting a queue for managing memory read/write requests.

Each row of the designed partitioned memory modules stores

the indices of PDeg SNs, and thus, N/PDeg rows are required

to store all neurons’ indices. The neuron’s index stored at row

i and column j of the partitioned memory module is given as

iþ ðj� N= PDeg). The synaptic weight memory has N2=

PDeg rows and each row stores PDeg weights, each of which

is denoted with a unique identifier kq, representing the

synaptic weight from neuron k to neuron q. Moreover, a

bitwise OR operation is performed on the read data from the

SN output memory. When all of the PDeg bits in a row of the

spiking output memory are zeros, unnecessary accumulations

from the neurons represented by that row to all other post-

synaptic neighboring neurons are avoided, which in turn saves

a significant number of clock cycles, memory read operations,

and redundant accumulations.

Fig. 2 The top-level block diagram of the designed and implemented

SNN core
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3.2 Neuron input accumulation

Due to the generalized architecture, each neuron can have a

large fanout of N, where N denotes the number of total

neurons supported by the target device. The synaptic input

accumulation thus poses the largest computational bottle-

neck of the proposed design. Figure 3 shows the datapath

of the Input Accumulator module. The network inputs Net.

Input for the current emulation time are passed to the

accumulation register R through the 2-to-1 multiplexers.

The iRST control signal enables the accumulation registers

to be enabled, thus resetting the accumulated input to the

first Net. Input value. The synaptic weights Syn. Weight and

Spiking Output are read from the Weights Mem. and

Spiking Mem., respectively. If a Spiking Output bit is high,

then the register is enabled, and the synaptic weight from

that source neuron is added to the net input of the neuron.

3.3 Neuron state computation

The module Neuron State Updater performs the main SNN

computations described by the neuron state Eqs. (1) – (3).

Figure 4 shows the high-level block diagram of the neuron

state updater. The datapath consists of two pipelined units,

the membrane voltage updater MVU and the recovery

variable updater RVU, which are responsible for computing

the neuron state Eqs. (1) and (2–3), respectively. The

datapath of the MVU unit, shown in Fig. 5, consists of the

voltage updater units (VUUs), pipeline latency compen-

sation shift registers PLC Shift Registers, and DV scaling

units. The seven-stage pipelined VUUs compute the

changes to the neuron voltage values, denoted as DV.
While accurate representation of 0.04 in the fixed-point

numerical format would require a relatively large number

of fractional bits, we instead utilize a shift-and-add

approximation as 1
32
þ 1

128
þ 1

1024
¼ 0:040039 � 0:04. The

rest of Eq. (1), in which the input value v is added to the

scaled DV, is performed by the DV scaling units. The

inputs to the DV scaling units include the change in voltage

for each neuron, the original voltage input to the neuron,

and the time scale. The original input value v is shifted

through the PLC Shift Registers. The time scale is imple-

mented using the arithmetic right shift of input values by

�1� ðlog2 tÞ bit positions, where t denotes the resolution

of the time step used in Eq. (1). For t ¼ 0:0625 ms, this

corresponds to a 16-bit arithmetic right shift.

The number of iterations used by the VUUs is equal to

the shift position used by the DV scaling units. The mul-

tiplexers at the inputs to the VUUs and the PLC Shift

Registers can select either the input ports to read voltage,

recovery, and network inputs for the VUUs, or to accept

the outputs of the VUUs for subsequent iterations. The

select line feedbackEN asserted by the control unit is

responsible for enabling the feedback into the VUUs. For

cases in which the number of inputs streaming to the VUUs

exceeds the pipeline depth of VUUs, additional output shift

registers are added to the output of the DV scaling units and

to the output of the PLC Shift Registers. The number of

inputs that will propagate through the VUUs is equal to the

number of rows in the voltage, recovery variable, and input

memories, which is N/PDeg.

Figure 6 shows the datapath of the designed RVU

Pipeline module. It consists of the Recovery Voltage Units

(RVUs), pipeline latency compensation shift registers PLC

Shift Registers, a bank of comparators, a bank of reset-

table adders, and output resetting/spiking multiplexers. The

four-stage pipelined RVU computes the output recovery

variable, as given in Equation (2). The outputs Volt. Out-

puts and Rec. Outputs of the MVU are passed to the

Recovery Pipeline unit, shown as MVU Outputs. The

desired spiking dynamics of neurons, denoted by the

Izhikevich parameters a – d, are passed through the input

port Neuron Params.. The PLC Shift Registers are used to

compensate for the latency of the RVU and to propagate

the parameters c and d, and voltage v values. If the shifted

Volt. Inputs values are greater than or equal to the value of

the spike threshold in Eq. (3), a spike is emitted. The output

of the comparators are used as the select lines of the

multiplexers, which will either pass the original Volt.

Inputs values to the output if a spike did not occur, or they

will pass the shifted reset value c, given the occurrence of a

spike. Similarly, the output of the RVUs, the updated

recovery variables, will be passed to the output port Rec.

Outputs if a spike did not occur; otherwise, the updated

recovery variables will be added to the shifted parameters

d for resetting the recovery variables, as given in Eq. (3).Fig. 3 The datapath of the input accumulator module

Fig. 4 The block diagram of the neuron state updater
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The operations of the designed architecture can be

briefly explained by the following example. For simplicity,

assume three RS neurons, each of which has a synaptic

weight of 10 mV to the other two neurons. Also, assume

that the current values for the membrane voltage and the

recovery variables are v ¼ ½�45;�45;�23� and

u ¼ ½�13; 12; 10�, respectively, and t ¼ 0:5. Finally,

assume that the next external inputs to each neuron are

equal to I ¼ ½5; 0; 12�. First, the neuron input accumulation

unit will read input data from the Input Mem.. Initially, the

accumulated network inputs for each neuron are equal to

the values read from the memory, i.e., Iacc ¼ ½5; 0; 12�.
Next, the Spiking Mem. is read and its output value is 100,

which indicates that the first neuron emitted a spike during

the last millisecond of operation. Thus, the synaptic weight

value of 10 mV is added to the accumulated network input

of neurons ‘2’ and ‘3’ and hence, Iacc ¼ ½5; 10; 22�. Once
the external inputs and synaptic weights are accumulated,

the Neuron State Updater computes the updated values of

v0 ¼ ½�25;�52; 98� and u0 ¼ ½0:15;�0:45; 0:19�. Since the
membrane potential of neuron ‘3’ exceeds the threshold of

35 mV, the membrane potential and the recovery variable

for neuron ‘3’ is updated as v0 ¼ ½�25;�52;�65� and
u0 ¼ ½0:15;�0:45; 8:19�. The spiking outputs of the neu-

rons, 001, are then written into the Spiking Mem., which

indicates that neuron ‘3’ has fired a spike. This process is

repeated for each millisecond of the SNN operation.

4 SNN emulation and implementation
results

The brain’s neural activity is recorded using either non-

invasive or invasive techniques, the latter of which gen-

erally provides greater spatial resolutions and decoding

accuracy. The raw recorded signals are then amplified and

digitized using an analog-to-digital converter (ADC), and

filtered to the frequency bands of interest. In order to

provide real-time interfacing between biological neurons

and a SNN, we must verify that the SNN can operate

predefined time constraints.

4.1 Real-time SNN emulation

A typical sampling frequency of 10 kHz [35] requires the

SNN processing to be completed within 0.1 ms for real-

time operation. Therefore, the number of iterations of

Equation (1) must be either 8 (t ¼ 0:125 ms) or 16

(t ¼ 0:0625 ms). Figure 7a shows the maximum clock

cycle latency for the input accumulation when all 1000

neurons in the network have fired. Figure 7b shows the

number of spiking neurons for a SNN with 1000 fully-

connected neurons. One can see that the maximum spiking

rate is only 5.1% of all neurons in the network and hence, it

is unlikely that all neurons of the network will fire simul-

taneously. The average spiking rate is even significantly

Fig. 5 The block diagram of the membrane voltage updater (MVU)

Fig. 6 The block diagram of the Recovery Variable Updater (RVU)
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smaller, at 0.7413%. The accumulation latency can be

given as:

ðð2N=PDegÞ2 þ 20Þ þ SGðN þ ðPDeg2 � PDegÞÞ; ð4Þ

where SG denotes the number of SN groups in which at

least one SN fired. The maximum number of SN groups N/

PDeg gives a maximum latency of 129, 020 clock cycles

for a network with N = 1000 and PDeg = 10.

Figure 8 shows the latency, based on the number of

clock cycles, for updating the neurons’ v and u values, with

the time resolutions t ¼ 0:125 ms and t ¼ 0:0625 ms, for a

SNN with N = 1000 neurons over varying degrees of par-

allelism. The number of clock cycles required to complete

the neuron state updating process can be given as�
N

PDeg
ðVIter þ 1Þ

�
þ 7, where VIter ¼ 1=t denotes the num-

ber of iterations required by the membrane voltage updater

for the desired time resolution t. Because the designed

architecture utilizes shifting operation to implement the

required time scaling in Equation (1), the time resolution t

must be a negative integer power of 2 and hence, the

degree of parallelism PDeg must be an even divisor of N.

According to Fig. 8, FPGAs that can accommodate storage

and computational resources for about one-fifth of the

number of neurons N in a SNN yield approximately two

degrees of magnitude lower accumulation latency than

emulating a SNN with a single processing element (e.g.,

traditional in-order execution with PDeg = 1). This is also

the case for the input accumulation process. To quantify

the time available for the real-time operation (i.e., com-

pleting one iteration of computations within one millisec-

ond), we can determine the number of SN groups to

estimate the maximum clock cycle budget of the input

Fig. 7 a The maximum clock latency of the input accumulation

module for varying degrees of parallelism, and b the number of

spiking neurons for a SNN with 1000 fully-connected neurons over

one second of emulation

Fig. 8 The clock cycle budget for computing the neuron state

equations with varying degrees of parallelism for a network with N =

1000 neurons over 1000 emulation time steps

Fig. 9 The number of SN groups for N = 1000 neurons, PDeg = 10,

over 1000 emulation time steps
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accumulation module for each SN group. As shown in

Fig. 9, for N = 1000 and PDeg = 10, the maximum number

of SN groups is 44, which corresponds to an input accu-

mulation clock cycle budget of 67, 980. This clock cycle

budget can be added to the clock latency of the MVU,

which is 1707 for VIter = 16. As a result, the total clock

cycle budget for the real-time SNN operation is 69, 687.

4.2 Hardware implementation results

We have implemented the designed generalized reconfig-

urable hardware architecture for a SNN with 1000 fully-

connected neurons with PDeg = 10 on a Xilinx Artix-7

XC7A200T FPGA. It utilizes 12700 (9.49%) lookup

tables (LUTs), 11139 (4.16%) flip-flops (FFs), 14.50

(3.97%) block RAMs (BRAMs), and 110 (14.86%) dedi-

cated multiplication units (DSP48s). This network size is

comparable to those of the other single FPGA implemen-

tations, for a fair comparison. The iterative computation of

the membrane potentials via the MVU with the folded

hardware architecture requires a relatively small number of

configurable FPGA resources. The clock cycle budget for

the real-time operation of the implemented SNN can be

determined as 92MHz� 1ms ¼ 92000 cycles, where 92

MHz is the operating frequency of the SNN implemented

on the FPGA and one millisecond is required for com-

pleting the SNN computations before the next set of neural

samples are available based on a 10 kHz sampling rate. The

inference speed of the network depends on the degree of

parallelism, the time step resolution, and the number of

emulated spiking neurons. For example, given an FPGA

operating frequency of 92 MHz, degree of parallelism

PDeg = 10, emulating 1000 spiking neurons with a 0.5 ms

time step resolution, each computation time step takes 0.49

ms. Note that the size of the networks that can be imple-

mented is directly limited by the number of computational

resources and memory elements available on the target

device.

4.3 Design verification

To test the designed and implemented SNN architecture,

we have developed a custom MATLAB-based graphical

user interface (GUI), shown in Fig. 10. The GUI interacts

with the FPGA through a serial port. The baud-rate and the

parameters of the synthesized and implemented SNN on

the FPGA device are specified under the FPGA Settings

panel. The Options panel allows the user to randomly

generate network parameters and synaptic weights, load

previously generated network parameters and synaptic

weights from a file, view the network parameters and

synaptic weights currently loaded onto the FPGA, and

upload the network parameters and synaptic weights onto

the FPGA. The SNN is trained using our custom-developed

scripts in Python. The neuron parameters a – d and the

synaptic matrix values derived by the training are then

loaded onto the SNN hardware through the GUI for func-

tional verification. Once the connection to the FPGA is

established, the GUI displays the Apply Network Stimuli

panel, which allows the user to apply network inputs to the

SNN hardware implemented on the FPGA. The scatter plot

Emulation output then shows the spiking activity of each

neuron for each emulation time step. As shown in Fig. 10,

the emulation output of the implemented SNN utilizing

1000 fully-connected neurons with PDeg ¼ 10. A neuron

has a connection to another neuron in the network through

a randomly initialized weight value. Weight values of zero

imply that there is no connection between a pre- and post-

synaptic pair of neurons. In this specific model, neurons

have no self-recurrent connections. Although the SNs are

randomly coupled and no synaptic training was employed,

the occasional dark vertical lines indicate synchronized

firing events across the majority of neurons. This behavior

is akin to the mammalian neo-cortex behavior during an

awake state and is an indication that the Izhikevich model

reproduces the behavior of biological neurons and their

spiking dynamics.

In order to evaluate the SNN and Izhikevich model for a

practical application, we evaluate our design using the

MNIST digit recognition dataset [36]. The dataset consists

of 28�28 pixel grayscale handwritten digits with values

between 0 and 255. The images are converted into poisson-

firing spike trains following the approach in [37]. The firing

rate of a pixel is proportional to the pixel intensity, with a

maximum firing rate of 350 Hz. Each set of image spike

trains are presented for 50 milliseconds, with another 50

millisecond of no input to allow the network to settle

before presenting the next image. The weights from input

Fig. 10 The developed graphical user interface for emulating and

testing SNNs on FPGAs
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spike trains to spiking neurons are derived through spike-

time dependent plasticity (STDP) using a supervised

training scheme described in [38]. The weight change rule

is given by:

DwijðtÞ ¼ l � njðtÞ
Xt

t̂¼t��
siðt̂Þ; ð5Þ

where wijðtÞ denotes the weight from input i to neuron j, l
denotes the learning rate, njðtÞ denotes the STDP-based

learning rule for neuron j, � denotes the STDP window in

milliseconds, and
Pt

t̂¼t�� siðt̂Þ denotes the number of spikes

fired by input i during the time interval [t � �, t]. The

learning rule njðtÞ is given by:

njðtÞ ¼
þ1 zjðtÞ ¼ 1; rj 6¼ 1 2 ½t � �; t�;
�1 zjðtÞ ¼ 0; rj ¼ 1 2 ½t � �; t�;
0 otherwise;

8><
>:

where zjðtÞ denotes the target spike train for neuron j and rj
denotes whether neuron j has fired a spike within the STDP

window. The above equations can thus be interpreted as

local STDP-based rules, whereby neurons that should fire

have their input weights strengthened and neurons that

should not fire have their weights weakened. If a neuron

fires within the STDP time window �, the neuron is per-

forming as desired and no weight change is required.

While the STDP-based learning rules are suitable for on-

chip learning, our proposed custom architecture is not

intended to support it. On-chip training needs additional

hardware, such as storing a history of spiking activity over

a STDP window. Also, for training the synaptic weights

from external spiking activity, an additional memory unit

would be required to store input spiking history. Combin-

ing STDP-based learning rules with stimuli-dependent

teaching signal requires an additional memory unit to

define which neuron populations should respond to specific

stimuli.

In our network, the 100 spiking neurons are divided into

ten groups of equal size, where each group is assigned to an

input digit class. The target spike trains have a firing rate of

b Hz. The spike trains are active during the first 50 mil-

liseconds of image spike train presentation. Table 1 gives

the neuron model and learning parameters used during our

experiments. We use a subset of the MNIST dataset con-

sisting of 60000 images, with 42000 used for training and

18000 used for testing. The training set is presented to the

network six times and weights are tuned with the learning

rule given in Eq. (5). After training, the network’s pre-

diction is given by the digit group that fires the most spikes.

Even though the input digits are represented using

Poisson-distributed spike trains, the weight values shown

in Fig. 11 demonstrate that the trained synaptic weights

form digit-specific representations of the inputs. For

example, it can be seen that the weights for the digit group

0 and 3 resemble handwritten 0 s and 3 s. The confusion

matrix of the network’s classification is shown in Fig. 12. It

is noted that the network is able to accurately classify the

handwritten digits with the classification accuracy of

89.8%. Several previously published works have used

supervised spike-based methods for training SNNs using

the MNIST dataset. A restricted boltzmann machine

(RBM) was realized using the leaky I &F neurons in [39]

and achieved a classification accuracy of 91.9%. In [40], a

spiking convolutional network was implemented using the

leaky I &F neurons and achieved a 91.3% classification

accuracy. In [41], the Izhikevich neurons were used to

implement two layers of visual system neurons (V1 and

V2) followed by a classification layer. In total, the network

architecture consists of over 71,000 neurons with over 130

million synapses and achieved a classification accuracy of

91.6%. In [42], a two-layer network of stimuli-selective

leaky I &F neurons were used to make predictions

regarding the particular stimulus presented, and achieved a

96.5% classification accuracy. Unfortunately, the state-of-

the-art SNN-based MNIST classifiers offer a lower

Table 1 The neuron model and learning parameters for Izhikevich-

based SNN digit recognition

Neuron parameters Learning parameters

Parameter Value Parameter Value

a 0.02 l 0.0001

b �0.1 � 10 ms

c – 55 b 300 Hz

d 6

Fig. 11 Weight matrices of the trained Izhikevich SNN
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classification accuracy compared to the non-spiking con-

volutional neural network models [43]. The accuracy might

be improved by employing more layers, increasing the

amount of abstract features that can be learned, incorpo-

rating conductance-based dynamics into the synaptic

weights, and employing additional pre-processing layers

that perform edge-detecting [42] and orientation-detecting

[40, 41].

After obtaining input weights, trained weights can be

sent to the network by performing the weighted sums of

spike inputs with their respective weight parameter. For the

MNIST digit recognition task, for a given time step, the

weights from inputs that spike at time t can be accumulated

into a single external input I, based on Eq. (1), thus pro-

viding weighted spike train input to the network.

4.4 Comparison

The implementation of a hardware dedicated to emulating

SNNs has been of interest in recent years. There are two

overarching implementation platforms in use today:

(i) programmable devices, including FPGAs and CPUs;

and (ii) ASICs. Below, we discuss several state of the art

implementations for the two implementation platforms.

4.4.1 Programmable devices

FPGAs offer extensive flexibility to emulate SNNs with

various network topologies and spiking behaviors. Table 2

gives the characteristics and FPGA implementation results

of various state-of-the-art Izhikevich-based SNN hardware

architectures. The SpiNNaker project [24] utilizes general-

purpose processors to implement SNNs using a distributed

computing approach, where a processing node incorporates

18 ARM968 processors and a combination of processing

nodes are used concurrently for simulating SNNs. SNNs

are first simulated in software using the PyNN [44] or

Nengo [45] frameworks, and then mapped to the SpiN-

Naker nodes. The distributed computing approach is ideal

for simulating large-scale SNNs. While utilizing an array

of programmable processors offers a high degree of flexi-

bility, the time resolution scales down to only one ms,

which makes it impractical for real-time operation. More-

over, while up to 1000 SNs can be simulated per node, the

level of connectivity among neurons is not realistic, with a

fan-out of only 100 outputs per neuron. The work in [21]

presents NeuroFlow, a scalable distributed computing SNN

emulation platform using FPGA-based processors.

A NeuroFlow system using six FPGAs can simulate SNNs

of up to 600K neurons. The time resolution of one mil-

lisecond can be achieved for SNNs of up to 400K neurons.

While it is reasonable to compare NeuroFlow and SpiN-

Naker platforms, as both are targeting large-scale SNNs,

our design primarily focuses on a generalized hardware

architecture for moderately-sized SNNs with arbitrary

interconnect structures and with programmable time reso-

lutions for real-time operation.

Dedicated reconfigurable hardware realization of SNNs

has also received interest [18–23], many of which have

focused on accelerating the emulation of large-scale SNNs.

The work in [18] presents an FPGA-based implementation

of an Izhikevich-based SNN, which supports a fully-con-

nected network of 1024 neurons with over one million

synapses. The design uses 16 dedicated synaptic accumu-

lation units, each of which can perform the accumulation of

four synapses. The network operations are performed using

either single- or double-precision floating-point units and

their design operates at 133 MHz with the reported timing

resolution of 10ls. The FPGA implementation of fully-

connected SNNs in [19] supports relatively small networks

with only 117 neurons, operating at 84 MHz, while

achieving a one millisecond time resolution. The work in

[20] presents an Izhikevich-based SNN implementation on

a Kintex-7 FPGA, capable of simulating over 1000 neurons

with a time resolution of 0.1 ms. The work in [22]

implements HH-based neurons in a set of tightly integrated

cores, supporting up to 500 neurons each, on a Kintex-7

FPGA. Unfortunately, the total memory utilization in terms

of number of BRAMs was not reported, which may explain

their relatively low register and LUT usage. The work in

[23] also presents a core-based approach for implementing

HH-based neurons on an Artix-7 FPGA. Rather than sup-

porting a fully-connected network, their work focuses on

randomly connected networks, where the connectivity

among neurons is generated off-line on a workstation and

encoded into an initial seed vector. The seed vector is then

used to generate the connectivity matrix on-the-fly instead

Fig. 12 Confusion matrix for the SNN-based MNIST digit recogni-

tion task
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of storing the full-connectivity on the FPGA. As given in

Table 2, our SNN hardware architecture is among the most

resource efficient designs when implementing similarly

sized SNNs, yet being able to realize a range of time res-

olutions and hence, provides a viable FPGA-based real-

time emulation platform. Utilizing a relatively small per-

centage of on-chip reconfigurable resources along with

scalability of the designed hardware architecture makes it

suitable for emulating moderately-sized SNNs on a single

FPGA.

While the implemented design is more area efficient

than the state-of-the-art FPGA-based SNNs, its general-

purpose architecture also offers several important design

trade-offs. In addition to supporting a ‘‘variable‘‘ number

of neurons (in the order of tens of thousands), it also allows

an efficient realization of an ‘‘arbitrary’’ interconnect

structure between neurons in the network, which normally

requires a relatively large synaptic weight memory. Current

FPGA-based SNNs manage the size of the weight memory

by only realizing a particular subset of interconnections for

a specific application. Another tradeoff is that the designed

and implemented SNN architecture supports a wide range

of temporal resolutions for added flexibility, while current

SNNs designs would support optimized computation of

membrane voltages using a fixed time resolution.

4.4.2 ASIC realizations

ASIC realizations of SNNs include mixed-signal neuro-

morphic chips [25, 46, 47], which mimic biologically-

plausible electrical behavior of neurons [48], and pro-

grammable digital SNN implementations [28–30]. The

former designs generally offer lower power consumption

and require smaller silicon area [49], whereas the latter

designs can leverage the programmability of processors for

increased flexibility. To compare our proposed generalized

SNN hardware architecture with the state-of-the-art ASIC

realizations, our designed SNN architecture is implemented

in a standard 32-nm CMOS technology. The CMOS layout

of the implemented ASIC is shown in Fig. 13, which is

estimated to occupy 3.6 mm2 of silicon area. Post-layout

synthesis and simulation results show that the ASIC chip

will dissipate 3.6 mW from a 1.16 V supply while oper-

ating at 34.7 MHz frequency.

Table 3 gives the characteristics and ASIC implemen-

tation results of various SNN designs. The work in [25]

presents a mixed-signal SNN implementation in a standard

180-nm CMOS technology, supporting up to 256 neurons

with 16K synapses. The spiking neurons are realized based

on the AdExp neuron model [51]. The digital neuron

implementation, often referred to as silicon neurons, mimic

the behavior of the AdExp neuron with analog circuits.

While the AdExp neuron model can exhibit various spiking

Table 2 The characteristics and FPGA implementation results for various SNN realizations

Work Neuron

model

FPGA

device

Number of

neurons

Synapses per

neuron

Time

resolution (ms)

Regs.

(%)

LUTs

(%)

BRAMs

(%)

DSP48s

(%)

Freq. (MHz)

[18] IZH Virtex-5 1024 1024 0.01 32420

(15)

19397

(9)

264

(81.5)

16 (8.3) 133

[19] IZH Virtex-4 117 117 1 970 (2) 1598

(3.3)

8 (2.5) 1 (0.19) 84

[20] IZH Virtex-6 1440 1440 0.1 48502

(16)

55884

(37)

392 (94) 408 (53) –

[22] HH Kintex-7 500 500 0.00002 2360

(0.57)

5551

(2.7)

– 28

(3.33)

100

[23] HH Artix-7 4096 4096 0.0078 25430

(9)

46045

(34)

20 (5.4) 280 (37) 58.8

Ours IZH Artix-7 1000 1000 0.0625 – 0.5 11139

(4.1)

12700

(9.49)

14.5

(3.9)

110

(14.8)

92

Fig. 13 Layout of the implemented SNN hardware architecture in a

standard 32-nm CMOS process
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dynamics, it has not yet been shown to reproduce all of the

20 spiking behaviors modeled by Izhikevich’s description

[52]. The processing units store the address of the post-

synaptic spike in a 10-bit content addressable memory

(CAM) and the parameters for the desired dynamics are

stored in a 2-bit SRAM. The SNN presented in [26] also

implements the AdExp model with silicon neurons in a

standard 180-nm CMOS technology. The synaptic weights

are stored in on-chip capacitors in the array of synapses.

The work in [27] implements a SNN consisting of 256

neurons, based on the I &F neuron model, and 64K

synapses in a standard 45-nm CMOS technology. As

opposed to the previous approaches in which a neuron’s

operations are performed using analog circuits, the com-

putations in [27] are performed digitally. The binary

synaptic weights are stored in an array of SRAM cells

within the cross-bar structure of synapses. The work in [28]

presents a digital 256-neuron, 64K-synapse neuromorphic

processor. It is implemented in a 28-nm CMOS technology

and employs the time-multiplexing technique to emulate

the cross-bar structure of synapses. IBM’s TrueNorth [29]

and Intel’s Loihi [30] are also two digital implementations

of SNNs. TrueNorth is a multi-core programmable pro-

cessor implemented in a 28-nm CMOS technology, where

each core contains 256 spiking neurons and 64K synapses.

Loihi is also a multi-core programmable processor,

implemented in a 14-nm CMOS technology, where each

core supports 1024 neurons with up to one million

synapses.

While commercial SNN processors and distributed

computing solutions in [21] and [24] focus on very large-

scale SNNs, our architecture and those in [25–28] are

single-chip realizations for a moderate network size. Even

though the operating frequency of our design is relatively

slow, it is sufficient for real-time emulation of SNNs. For a

fair comparison, we have scaled the silicon area and power

consumption to a 32�nm CMOS process utilizing a 1.16-V

supply voltage as presented in [50]. We can see that the

digital implementations presented in [28–30] occupy

smaller silicon areas than ours, since our design naturally

requires more storage elements to define the spiking

dynamics on a per-neuron basis. The Izhikevich parameters

a and b are stored in 12-bit SRAM units, the c values are

stored in 32-bit SRAM units, and the d values are stored in

16-bit SRAM units. While the discussed SNN designs

utilize a cross-bar synaptic structure for communication

among neurons, the accumulation of synaptic weights in

our design is performed in a hybrid sequential-parallel

approach with an adjustable degree of parallelism. The

synaptic weights are stored in 16-bit SRAM units and for a

realistic level of interconnection, the synaptic weight

memory may occupy a relatively large silicon area. Note

that while our generalized design allows storing the

Izhikevich parameters for each individual neuron, to sub-

stantially reduce the memory requirement, the Izhikevich

parameters a – d can be constrained to specific values for a

group or all of the neurons in the employed SNN. Simi-

larly, in [16], seven types of neurons are specified, each

with a predefined set of parameter values for a – d. Our

Table 3 The characteristics and ASIC implementation results for various SNN realizations

Work [25] [26] [27] [28] [29] [30] Ours

Circuit Mixed-

Signal

Mixed-

Signal

Digital Digital Digital Digital Digital

CMOS process (nm) 180 180 45 28 28 14 32

No. spiking dynamics 201 201 3 20 11 6 20

Neurons per core 256 256 256 256 256 1024 256

Synapses per core 16K 128K 64K 64K 64K 1 M – 114K 64K

Weight storage 12-bit CAM Capacitor 1-bit

SRAM

3-bit SRAM

?

1-bit

SRAM

(1-9)-bit

SRAM

16-bit SRAM

?

1-bit SRAM Izh. Param.

Voltage (V) 1.3 – 1.8 1.8 0.53 – 1.0 0.55 – 1.0 0.7 – 1.05 0.5 – 1.25 1.16

Die area per core (mm2) 9.6 51.4 4.2 0.086 0.095 0.4 3.6

Power consumption (mW) 0.2 - 2.7 4 0.5 0.4 64 4 3.6

Scaled area per core (mm2)2 0.24 1.28 2.9 0.12 0.13 – 3.6

Scaled power consumption

(mW)

0.17-�0.85 1.25 0.62-�1.88 0.50-�1.95 73–312 – 3.6

1The AdExp neuron has not yet been proven to exhibit all 20 spiking dynamics

2Scaled to a 32-nm CMOS process utilizing a 1.16V supply voltage following the scheme in [50]
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approach differs in that we aim to provide a robust and

flexible platform for emulating diverse SNNs.

While it is shown that our digital SNN architecture

consumes acceptable power, recent analog implementa-

tions offer a potential alternative candidate. As discussed in

Sect. 3, one of the challenges for the efficient realization of

spiking neural networks (SNNs) is the process of accu-

mulating synaptic weights. Neuromorphic architectures

employ crossbar interconnects to accumulate weighted

inputs through current flow. Also, instead of storing weight

parameters in SRAM cells, they utilize memristor-based

memory, which has a higher density and lower power

consumption [53]. They are also suitable passive elements

for modeling neuronal synapses with biological learning

rules, such as spike-time dependent plasticity [54–57].

Therefore, in terms of area, power consumption, as well as

scalability, the neuromorphic architecture could offer a

viable alternative. However, while analog processing pro-

vides higher speed than digital processing, unfortunately,

noise and inaccuracies accumulate in analog systems.

Digital systems can reliably process data and tolerate noise

and inaccuracies during neural signal processing. For

brain-computer interfaces where the speed of neural signal

recording and processing is far less than the speed of digital

integrated circuits, low-power realization of spiking neural

networks in the digital domain is a feasible alternative

candidate.

5 Conclusion

This article presented an area- and power-efficient scalable

reconfigurable hardware architecture for real-time emula-

tion of spiking neural networks (SNNs). We presented the

characteristics and implementation results of our designed

generalized SNN hardware architecture on both field-pro-

grammable gate arrays (FPGAs) and on application-

specific integrated circuit (ASIC). Compared to the simi-

larly-sized SNNs implemented on a single FPGA, our

design is capable of emulating moderately-sized SNNs in

real time while utilizing significantly fewer reconfigurable

resources. We also verified the performance of the pro-

posed SNN on the MNIST digit recognition task and

showed that it can accurately classify handwritten digits

with 89% accuracy. Compared to the state-of-the-art ASIC

realizations of SNNs, our design consumes less power

utilizing a hybrid parallel-sequential scheme. Moreover, as

opposed to the state-of-the-art ASIC realizations, our

design’s power consumption and real-time processing are

not affected by the spiking rate of the emulated SNN. Our

design supports various spiking rates based on the number

of neurons and allows an adjustable degree of parallelism

and time step resolution. The silicon area and low power

consumption of the realized generalized SNN hardware

architecture make it suitable for single-chip SNN realiza-

tions while emulating SNNs of various sizes and inter-

connect topologies in real-time.
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