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Abstract
While brain-implantable neural spike sorting can be realized using efficient algorithms, the presence of noise may make it 
difficult to maintain high-peformance sorting using conventional techniques. In this article, we explore the use of partially 
binarized neural networks (PBNNs), to the best of our knowledge for the first time, for sorting of neural spike feature vec-
tors. It is shown that compared to the waveform template-based methods, PBNNs offer robust spike sorting over various 
datasets and noise levels. The ASIC implementation of the PBNN-based spike sorting system in a standard 180-nm CMOS 
process is presented. The post place and route simulations results show that the synthesized PBNN consumes only 0.59 � W 
of power from a 1.8 V supply while operating at 24 kHz and occupies 0.15 mm2 of silicon area. It is shown that the designed 
PBNN-based spike sorting system not only offers comparable accuracy to the state-of-the-art spike sorting systems over 
various noise levels and datasets, it also occupies a smaller silicon area and consumes less power and energy. This makes 
PBNNs a viable alternative towards the implementation of brain-implantable spike sorting systems.

Keywords  Neural networks · Brain-computer interfaces · Spike sorting · Application-specific integrated circuits · Neural 
signal processing

1  Introduction

The ability to efficiently record and decode neural signals 
is of vital importance towards the rehabilitation of patients 
with various neurodegenerative diseases, including Alzhei-
mer’s and Parkinson’s.

A brain-machine interface (BMI) translates neural activ-
ities into commands for controlling external devices. For 
example, in [1] neural activity associated with imagined 
handwriting is used to convert the brain’s activity into text. 
Also, in [2], neural signals were used to enable patients to 
synthesize speech directly from their thoughts. The algo-
rithms employed for accurate neural decoding typically pro-
cess spike trains, which represent the action potentials (or 
spikes) of individual neurons over time [3].

For greater spatial resolution and decoding performance, 
neural activities are first recorded by a multi-electrode array 

(MEA), which consists of intracortical electrodes capable 
of recording neural spikes from a relatively large number 
of neurons, in the order of hundreds, simultaneously. The 
recorded raw signals are then amplified and filtered into the 
frequency bands of interest. While each electrode records 
voltage signals fired by a neuron, or single-unit activities 
(SUAs), it also records spikes from neighboring neurons, 
or multi-unit activities (MUAs). Spike sorting, which is the 
process of associating recorded spikes to individual neu-
rons is of prime importance for reliable neural decoding [4]. 
Spike sorting can be viewed as a clustering process where 
action potentials fired from a particular neuron with similar 
waveforms are grouped together. Spike sorting is conven-
tionally performed over four steps, as shown in Fig. 1: (i) 
spike detection, (ii) spike alignment, (iii) feature extraction, 
and (iv) clustering. Spike detection involves detecting the 
spiking activity of an ensemble of neurons from the back-
ground noise. Alignment is the process of ensuring that each 
detected spike waveform is aligned to a particular metric, 
such as the maximum amplitude. Feature extraction (FE) is 
optionally used to reduce the dimensionality of spike wave-
forms by describing them using a relatively small set of 
features. Finally, clustering involves grouping similar spike 
waveforms and creating disjoint clusters of spike features, 
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which identifies spikes originating from individual neurons. 
The clustering process also yields spike timings for each 
neuron that are subsequently used by the spike decoder to 
translate the generated spike trains into commands for con-
trolling or communication with an external device [5].

While some designs implement spike sorting algorithms 
offline on a computer [6], some realizations based on template 
matching [7], neural networks [8, 9], and decision trees [10] 
employ offline estimation of parameters for in vivo sorting. 
Some techniques instead implement unsupervised learning 
algorithms in vivo to sort the detected spikes into clusters in 
real-time. For example, OSort creates and manages clusters as 
new spikes/features are made available [11–15], while k-means 
clustering iteratively updates cluster centroids using a set of 
training spikes/features. Due to advances in digital signal pro-
cessing, the state-of-the-art brain-implantable spike sorting 
systems employ on-chip unsupervised learning, which inevi-
tably leads to increased circuit area and power consumption. 
In our earlier work in [9], we reduced the power consumption 
and the silicon area of the spike sorting circuitry by designing 
a binarized neural network (BNN) for classifying spike wave-
forms using only bit-wise operations and employs an offline 
training for weight estimation. Unfortunately, the BNN-sorted 
spike waveforms are more susceptible to noise due to their 
higher dimension compared to the extracted features of spike 
waveforms. In this work, feature extraction is first applied to 
spike waveforms to reduce the dimensionality to only a few 
fundamental features. To improve classification performance 
compared to BNNs, we propose a partially binarized neural 
network (PBNN), which is less susceptible to noise while 
requiring fewer overall parameters for sorting. To the best of 
our knowledge, this is the first work employing a PBNN for 
neural network-based classification of feature vectors.

The rest of this article is organized as follows. Section 2 
discusses the efficiency of various candidate feature extrac-
tion algorithms for hardware realization. Section 3 reviews the 
operation of PBNNs, presents their application in classifying 
extracted feature vectors, and discusses the accuracy of the 

proposed PBNN-based spike sorting system. The characteris-
tics and implementation results of the designed spike sorting 
system are presented and compared with those of the state-
of-the-art realizations in Sect. 4. Finally, Sect. 5 makes some 
concluding remarks.

2 � Efficiency of the feature extraction 
methods

The principal component analysis (PCA) [4] and inde-
pendent component analysis (ICA) [16] are two commonly 
employed feature extraction benchmark algorithms. Usually 
the first few principal components are the ones with the high-
est variations and hence, the dimensionality of a spike wave-
form can be reduced significantly. However, PCA has two 
fundamental limitations that hinders its feasibility for the 
in vivo implementations. Firstly, PCA requires a relatively 
large number of detected spikes to find the orthogonal basis 
vectors, which prevents its real-time realization. Secondly, 
the computational complexity of the PCA makes it imprac-
tical for extremely low-power brain-implantable devices 
[17]. Even though ICA outperforms PCA for signals with a 
relatively high noise level [18], ICA is also computationally-
intensive and is unrealistic for in vivo implementations.

A number of more computationally-efficient feature 
extraction algorithms have been reported. For example, zero-
crossing features (ZCFs) [19] are given as:

where s[n] denotes the detected spike waveform, K
1
 and 

K
2
 denote the zero-crossing point and number of samples 

in the waveform, respectively, and ZC
1
 and ZC

2
 denote the 

accumulated energy of the neural signal before and after 
the zero-crossing point, respectively. Similar to the zero-
crossing features, the integral transform (IT) algorithm [20] 
has found applications in neural spike feature extraction. The 
IT features are given as:

where nA and nB denote the first sample of the positive and 
negative phases, respectively, and KA and KB denote the 
total number of samples in the positive and negative phases, 
respectively. One notable weakness of the IT algorithm is 
that the indeces nA and nB are not known a priori and find-
ing them requires analysis of the spike waveforms, which 
imposes additional latency and is undesirable for real-time 
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Fig. 1   The block diagram of a BMI system employing spike sorting
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extraction algorithm [21] is relatively computationally-effi-
cient and is given as:

where M denotes the index position of the minimum value 
and K denotes the number of samples in the spike waveform. 
The ZCF, IT, and MD feature extraction algorithms com-
monly represent the spike waveforms using two features and 
hence, significantly reduce the memory requirement of the 
subsequent clustering module at the cost of a relatively small 
FE hardware. Some realizations may utilize more than only 
two features by including more details of the spike itself, 
such as the index of the minimum or maximum point.

Another class of the FE algorithms are based on the discrete 
derivatives (DD), which can be considered as a simplified dis-
crete wavelet transform [22]. The DD algorithm computes the 
slope of the spike waveforms at different scaling factors � and 
can be written as:

Various combinations of different scaling factors can be uti-
lized for constructing the feature space. For different scaling 
factors, some key features of the spike waveform, such as the 
positive peaks, negative peaks, and peak-to-peak amplitudes 
are accentuated. For neural spike sorting, four variations of 
the DD algorithm have been studied: the maximum differ-
ence test (DD-MDT) [23], the first and second derivatives 
(DD-FS) [24], DD with uniform sampling (DD-US) [6], 
and DD with two-extrema sampling (DD-2Ex) [25]. The 
DD-MDT, which is considered a simplified version of the 
Lillefors Test [26], extracts the multimodal coefficients of 
each scaling factor. The DD-FS algorithm computes the first 
and second derivatives of the spike waveform to accentuate 
its geometric characteristics. Specifically, the first derivative 
can be used to interpret the variations of the spike wave-
form’s gradient, while the second derivative emphasizes 
its low frequency characteristics. The DD-US algorithm 
involves computing the DD with three different scaling fac-
tors and downsampling of the DD waveforms at even inter-
vals. The DD-2Ex algorithm creates the DD waveforms with 
two different scaling factors and extracts the minimum and 
maximum values for the two DD waveforms, representing 
a spike waveform using four features. Among the FE algo-
rithms that are feasible for efficient online implementation, 
the notable algorithms are the MD, DD, and ZCF. It has 
been shown in [25] that DD-2Ex is a good candidate for fea-
ture extraction due to its immunity to noise and its tolerance 
for similar-shaped spike waveforms, the DD-2Ex with scal-
ing factors � = 3, 7 performs the best based on its computa-
tional complexity, performance, and 16 times dimensionality 
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reduction from m = 64 spike waveform samples to n = 4 
features.

3 � Partially binarized neural networks

To map the newly extracted spike’s feature vector to a 
particular spike class in real-time, we propose to utilize a 
neural network-based classifier. The computation of neural 
networks is performed by a set of processing elements, 
so-called artificial neurons (ANs), which interact with 
one another through weighted connections (synapses). 
The synaptic weights control how the network responds 
to specific input stimuli. The accumulated weighted input 
activities, either from network input or from pre-synaptic 
ANs, is passed to a non-linear activation function to pro-
duce the AN’s output [27].

3.1 � Partially binarized neural networks

The size of networks and the numerical resolution of the 
synaptic weights and activation functions pose a strict 
limitation on the types of networks that can be used for 
extremely area- and power-constrained brain-implantable 
applications. Binarized neural networks (BNNs) have been 
introduced to significantly reduce the computational com-
plexity and memory requirements by performing simple 
binary operations [28]. The binarization kernel is given 
as kb = sign(k) , where kb will be 1 for positive values of k 
and −1 otherwise.

It has been shown that using the binarization kernel at 
the input and output layers reduce the model’s accuracy 
compared to binarizing only the hidden layers [29]. By 
performing feature extraction and representing the spike 
waveform with only 4 data points, it will be inevitably 
more difficult for the network to learn additional informa-
tion from fewer data points. Moreover, as the spikes have 
already undergone feature extraction, binarizing the input 
layer of the BNN may further reduce the accuracy of the 
sorting process. In the proposed PBNN, the input layer’s 
synaptic weights remain binarized, however, contrary to a 
BNN, the PBNN employs one of four different quantiza-
tion modes: Mode 00, Mode 01, Mode 10, and Mode 11, 
which denote where the binarization kernel kb is employed. 
Mode 00 does not employ kb , Mode 01 applies it only 
to the output layer’s weights, Mode 10 applies it only to 
the outputs from the previous layer, and Mode 11, as in a 
BNN, applies it to both the previous layer’s outputs and the 
output layer’s weights. For modes other than 11, we apply 
the sigmoid activation function to the network output. For 
hardware implementation, the complexity is reduced by 
using a quantized sigmoid function QSigmoid(z, b) that 
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will be equal to 1 if the accumulated weighted activity z 
is greater than or equal to the neuron’s bias b. Because the 
sigmoid function is symmetrical around the y-axis at input 
z = 0 with fsigmoid(0) = 0.5 , QSigmoid(z, b) can be con-
sidered as applying a threshold of 0.5 to the output of the 
sigmoid after adding the bias b. Note that the Qsigmoid 
activation function is only applied during the forward 
propagation of signals at the output layer during PBNN 
inference. Employing this approximation during the train-
ing phase makes it challenging to generate useful gradients 
for approximating the optimal parameters of the network.

3.2 � Evaluation of BNN and PBNN for feature vector 
classification

We employ a PBNN as a feature vector classifier in our 
designed spike sorting system. In order to evaluate the per-
formance of the spike sorting system, we employ the widely 
used WaveClus datasets [30]. The WaveClus datasets con-
sist of 20 simulations of neural recordings with four levels 
of difficulty, Easy1, Easy2, Difficult1, and Difficult2. The 
difficulty level denotes the similarity of the spike wave-
forms between three single units present in the recording. 
The simulated recordings have varying levels of noise with 
a standard deviation between 0.05 and 0.40 relative to the 
amplitude of the spikes.

Figure 2a and b show the similarity of the spike wave-
forms for different classes in the Easy1 and Difficult1 data-
sets, respectively. One can see that the Difficult1 classes are 
harder to distinguish compared to the Easy1 dataset.

First, DD-2Ex feature vectors are extracted from detected 
spike waveforms. The employed network consists of four 
input units, one per feature, three hidden layer neurons, and 
three output layer neurons, one per spike class. The chosen 
network topology of 4–3–3 provided the highest classifica-
tion accuracy over different datasets and noise levels and 
increasing the number and size of the hidden layers yielded 
a negligible increase in classification accuracy. The 4–3–3 

network topology allows the PBNN to sort the spikes of up 
to three neurons using a one-hot encoded output. Clustering 
was performed first offline on a subset of the feature vectors 
using the k-medoids algorithm. The resulting clusters were 
then assigned identifiers 1–3, matching the spike classes pre-
sent in the dataset. The PBNN is then trained to learn the 
mapping between feature vectors and spike classes defined 
by the k-medoids algorithm. Because the PBNN learns the 
mappings produced by the k-medoids algorithms, the perfor-
mance of the clustering algorithm should be verified prior to 
training. After the initial clustering, the PBNN was trained 
on feature vectors extracted from the spike waveforms given 
in the WaveClus dataset using the Python Larq framework 
[31] extension for Tensorflow.

For optimizing the weight and bias parameters, we 
employ the RMSProp algorithm and a modified version 
of L2 regularization [32], which encourages the bina-
rized weights toward values of − 1 and + 1. Layers of 
a PBNN that are not fully binarized employ normal L2 
regularization rather than the modified L2. We train for 
250 epochs, and use early stopping on the validation 
loss (mean squared error) to prevent overfitting of the 
model to the training set. Additionally, we utilize ten-fold 

Table 1   The classification accuracy of the PBNN over various datasets and quantization modes

Dataset Mode 00 Mode 01 Mode 10 Mode 11 k-Med Dataset Mode 00 Mode 01 Mode 10 Mode 11 k-Med

Easy1 0.05 93.88 93.17 56.54 33.49 93.59 Easy2 0.15 90.11 60.61 31.039 34.69 88.43
Easy1 0.10 95.46 93.26 63.82 52.69 95.46 Easy2 0.20 82.93 61.1 36.048 32.57 80.31
Easy1 0.15 94.25 67.09 51.79 30.17 93.67 Difficult1 0.05 92.76 85.81 36.041 33.53 92.9
Easy1 0.20 93.23 76.33 56.90 35.10 93.09 Difficult1 0.10 91.95 72.02 32.318 33.33 91.01
Easy1 0.25 92.04 68.56 56.81 43.71 91.81 Difficult1 0.15 83.38 63.81 36.834 35.97 81.72
Easy1 0.30 87.55 67.69 53.02 40.79 88.77 Difficult1 0.20 72.25 61.93 38.506 31.62 68.81
Easy1 0.35 83.87 72.4 49.08 34.79 85.71 Difficult2 0.05 93.90 67.75 33.135 34.91 94.20
Easy1 0.40 81.78 63.71 50.81 35.39 79.0 Difficult2 0.10 90.62 64.93 49.206 34.92 90.04
Easy2 0.05 95.89 62.39 31.96 32.40 95.74 Difficult2 0.15 80.88 64.24 64.82 32.26 78.77
Easy2 0.10 93.11 61.43 36.36 33.87 93.18 Difficult2 0.20 72.10 65.52 57.36 34.7 72.67

Fig. 2   The mean spike waveforms for the a Easy1 and b Difficult1 
WaveClus datasets
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cross-validation to estimate the performance of the model 
accurately. The data is split in ratios of 80%, 10%, 10% 
for training, validation, and testing sets, respectively. For 
example, the Easy_0.10 dataset consists of 3522 spike 
waveforms, where the training, validation, and testing 
subsets are comprised of 2818, 352, and 352 feature vec-
tors, respectively.

Table 1 gives the classification accuracy of the neural 
network utilizing the WaveClus datasets and four quantiza-
tion modes. The k-Med column indicates the performance 
of the k-medoids algorithm by assigning the test subset 
features to the nearest cluster centroid. It is apparent that 
Mode 00 consistently outperforms other quantization 
modes. Another commonly employed metric for quantify-
ing the performance of a classifier is the F-Score 
F =

2TP

2TP+FP+FN
 , where TP denotes the number of true posi-

tive classifications, FP denotes the number of false posi-
tive classifications, and FN denotes the number of false 
negative classifications. Over all Wave_Clus datasets and 
noise levels, our model achieves a median F-Score of 0.91, 
ranging from 0.95 to 0.71 with the standard deviation of 
0.072. The median F-Score is computed using the testing 
data subsets, which the model has not observed during 
training, for each of the ten cross-validation sets. Using 
the k-medoids clustering and the trained network, the per-
formance of the BNN classifying spike waveforms is veri-
fied over the Wave_Clus datasets. The median classifica-
tion accuracy over the low SNR datasets Easy1 0.30, 
Easy1 0.35, and Easy1 0.40 was 0.86, 0.78, and 0.67, 
respectively. Based on the results given in Table 1, the 
PBNN classification of feature vectors offers more robust 
accuracy for low SNR data.

While the weight values for Mode 00 were not con-
strained to + 1 or − 1 with the binarization kernel, we 
found that representing the output layer’s weights with 
only 4 bits (2 bits for each of the integer and fractional 
parts) has a negligible impact of less than 0.9% on the 
classification accuracy. This implies the robustness of 
the PBNN for classifying feature vectors compared to the 
classification of spike waveforms using a BNN. Moreover, 
when classifying feature vectors, applying the binariza-
tion kernel to a layer’s output imposes a greater degrada-
tion than binarizing only the weight values. For example, 
one can note a significant performance degradation from 
Mode 00 to Mode 10. Thus, when sorting feature vectors, 
we employ the Mode 00 PBNN over the BNN (Mode 11). 
Note that all following analyses are performed using a 
PBNN in Mode 00.

While the results in Table 1 show that the PBNN per-
forms well for classifying the activity of three neurons, 
it is often not known how many neurons’ spikes are pre-
sent in the neural signal apriori. To study the effect of 

MUAs, the PBNN is trained to sort spikes of up to 20 
different neurons [33]. The dataset of synthetic spikes is 
generated similarly to the WaveClus dataset, but provides 
information about the number of neurons that can be dis-
tinguished. Figure 3 shows the classification accuracy of 
the PBNN for increasing number of neurons in the neural 
recording. It can be seen that the PBNN can provide rela-
tively accurate sorting for up to 7 units with 73% accuracy. 
Beyond this, it may be beneficial to increase the number of 
hidden units to allow the network more degrees of freedom 
for mapping features to cluster.

3.3 � Evaluation of BNN and PBNN‑based sorting 
over real datasets

The ground truth information of the synthetic datasets offers 
a common benchmark for various sorting algorithms. Unfor-
tunately, real neural recordings do not offer such ground 
truth information. We employ a two step approach for evalu-
ating the performance of the spike sorting systems using real 
recorded data. Following spike detection, DD-2Ex features 
are extracted and a subset of them (80%) are clustered using 
the k-means algorithm. Since no ground truth information is 
available, we use the k-means cluster centroids as reference 
clusters, and assess the BNN and PBNN’s performance by 
how well these networks classify spikes to match to their ref-
erence clusters. As given in Table 1, the conventional BNN 
does not perform well for classifying feature vectors.

To evaluate the BNN- and PBNN-based sorting schemes, 
we use a total of four neural recordings from two pigtail 
macaques (two each), aliases J and K, at the Washington 
National Primate Research Center. For training the BNN 
and PBNN, the same approach described in Sect. 3.B is 

Fig. 3   The classification accuracy of the PBNN over varying number 
of neurons
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employed. The performance of the BNN and PBNN was 
assessed using the 20% testing subset. Figure 4(a) shows 
an example of the mean k-means cluster waveforms and (b) 
shows the performance that the classification performance of 
the PBNN outperforms that of the BNN over four macaque 
recordings.

4 � Hardware architecture 
and implementation of the PBNN‑based 
classifier

In our designed and implemented PBNN-based spike sorting 
system, the spike waveforms are first detected using the non-
linear energy operator (NEO) algorithm [34] and aligned to 
the maximum amplitude, as described in our earlier work 
in [7] and [11]. In our design, we implement the NEO unit 
using log-based approximate multipliers to conserve circuit 

area and power [35], which we refer to approximated NEO. 
To estimate a spike detection threshold, the noise of the 
approximated NEO signal is computed using the root-mean 
square (RMS) method [36]. The spike detection threshold 
is then set to a scaled value of the estimated noise, given as 
4�e , where �e denotes the RMS of the estimated noise. The 
hardware implementation details are given in [37]. Once a 
detected spike is aligned, the waveform is sent serially to 
the FE module designed based on the DD-2Ex algorithm, 
as shown in Fig. 5.

The FE module consists of a 7-word shift register for the 
scaling factors � = 3 and � = 7 , and four sets of compara-
tors and registers for finding the minimum and the maxi-
mum samples of DD

�=3[n] and DD
�=7[n] . The registers R 

are updated only when the current value of the spike wave-
form is larger or smaller than the value currently stored in 
R for the maximum and the minimum features, respectively. 
After 64 clock cycles, the FE module will have computed the 
maximum and the minimum values of the DD

�=3 and DD
�=7 

waveforms. These values are concatenated and passed on to 
the PBNN module via the FVO feature vector output port.

Fig. 4   a Example cluster waveforms of the J23 macaque recording 
and b the classification performance of the BNN and PBNN-based 
clustering over four macaque recordings Fig. 5   The block diagram of the DD-2Ex-based FE module

Fig. 6   The block diagram of the PBNN
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The top-level block diagram of the designed PBNN is 
shown in Fig. 6. The datapath classifies feature vectors into 
their corresponding spike IDs. It consists of parallel-input 
serial-output PISO shift registers, hidden-layer processing 
units HPUs, the output layer processing units OPUs, and 
the SRAM-based memory units. The 4-word feature vector 
outputs FVOs from the FE module are passed on to the 
PBNN datapath, which are then stored in the 4-word PISO 
shift registers. Each word in the PISO is passed on to the 
HPUs serially to compute the hidden layer outputs. The 
Binary Weight SRAM stores the binarized weights of the 
hidden layer and consists of four words of three bits, one 
word per input feature. The output of the HPUs is stored 
in the 3-word PISO for serial processing by the OPUs. 
Because the binarization kernel is not applied to the out-
put layer weights, they are represented in a 10-bit signed 
fixed-point format with 4 and 6 bits for the integer and the 
fractional parts, respectively.

The HPUs and OPUs shown in Fig. 7(a) and (b), respec-
tively, are similar modules which compute the accumulated 
input activity of the previous layer. The HPUs accept the 
binarized weight values, which are used as the select lines 
of the multiplexers to choose either the sample of the feature 
vectors or its negated value in two’s complement format. 
Because the binarization kernel is not applied to the out-
put of the hidden layer, the HPUs accumulate the weighted 
input feature vectors using 19-bit accumulators. Each OPU 
accepts 10-bit signed weights and computes the product of 
the weights and the HPUs’ outputs. To represent the accu-
mulated input activity of the HPUs with sufficient resolu-
tion, the OPUs use 32-bit accumulators. The accumulated 
value is then passed on to the Qsigmoid activation function 
and is compared against the bias values for each AN stored 
in the Output Weight SRAM shown in Fig. 6. The Qsig-
moid function will then generate spike IDs.

We have implemented the PBNN-based spike sorting sys-
tem in a standard 180-nm CMOS process. The chip layout, 

shown in Fig. 8, is estimated to consume 2.5 � W of power 
from a 1.8-V supply while operating at 24 kHz and to occupy 
0.34 mm2 of silicon area. The NEO and RMS-based spike 
detection unit occupies 0.16 mm2 of silicon area and con-
sists of the approximated NEO unit, the adaptive RMS noise 
estimation unit, and the spike waveform alignment unit. 
The DD-2Ex feature extraction unit occupies 0.02 mm2 of 
silicon area. The PBNN classifier occupies 0.15 mm2 and 
consists of the Qsigmoid activation function for the output 
layer, an SRAM unit SRAMFP, which stores the output 
layer’s weights in the fixed-point format, and the SRAM unit 
SRAMB, which stores the binarized weights for the input 
layer. The spike sorting system was described using Verilog 
HDL and the synthesis was performed using Synopsys DC 
Compiler. After synthesis, the placement and routing was 
done with Cadence Innovus. For estimating the power con-
sumption, the post place and route synthesized netlist was 
used and the switching activity of the ASIC was modeled 
using the WaveClus datasets. Table 2 gives the power con-
sumption of the various ASIC modules, assuming a mean 
spike firing rate of 10 Hz. The frequency column denotes the 

Fig. 7   The block diagram of a the hidden layer processing units ( 
HPUs) and b the output layer processing units ( OPUs)

Table 2   The power consumption of each ASIC module

Module Power Frequency (Hz) Energy
(�W) (nJ)

Spike detection 0.68 24000 672
Spike alignment 0.26 ∼10 8.77
Feature extraction 0.02 0.52
PBNN classifier 0.57 2.37

Fig. 8   The layout of the designed PBNN-based spike sorting system
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rate at which the power is dissipated, i.e., for the spike detec-
tion it is dissipated on each input sample and for the sub-
sequent units the power is dissipated on every spike event. 
It can be seen that the spike detection and noise estimation 
circuitries dissipate the most power and energy. It is also 
clear that the DD-2Ex feature extraction provides a very 
power and energy efficient operation. The energy shown in 
Table 2 is over one second of operation, and the total energy 
consumption is approximately 683.66 nJ.

Based on the results given in Table 1, although the per-
formance of the k-medoids clustering is similar to that of the 
PBNN in Mode 00, to compare their hardware efficiency, 
we consider their computational complexities and their 
memory requirements based on three design parameters: 
the wordlength of the feature vectors wk , the wordlength 
of the PBNN output layer parameters wo , and the number 
of clusters N. The computational complexity of the PBNN 
and k-medoids can be compared based on the number of 
their operations. Given N clusters and four samples per 
feature vector, computing the Euclidean distance metric 
� =

�

∑4

i=1

�

xi − yi
�2 in the k-medoids algorithm, where x 

and y denote the template feature vector and the new feature 
vector, respectively, requires 7N additions and 4N multipli-
cations, not considering the square root, which is unneces-
sary for comparisons. Comparing N values to one another 
would also require N(N − 1)∕2 comparisons, not account-
ing for the priority logic required to assign the feature vec-
tors to only one cluster. Assuming that the complexity of an 
addition and a multiplication can be estimated as 2 and 4 
times of a comparison, respectively [38], the computational 
complexity of the k-medoids algorithm is 30N + N(N − 1)∕2 
operations. For the PBNN, the multiplication with − 1 at the 
input layer is realized using a two’s complement operation, 
which requires 21 additions. The output layer’s multiplica-
tion of a (1 × 3) vector and a (3 × N) weight matrix requires 

3N multiplications and 2N additions. The QSigmoid func-
tion also requires N comparisons. The normalized compu-
tational complexity of the PBNN is thus 17N + 42 , which 
makes the PBNN algorithm computationally more efficient 
N > 3 clusters. The parameter memory stores the cluster 
centroids and weight matrices for the k-medoids and the 
PBNN algorithms, respectively. For the k-medoids algo-
rithm, N template feature vectors are stored for compari-
son with the newly detected spike feature vectors, requiring 
a total of 4Nwk bits. For the PBNN of size 4 × 3 × N , the 
binarized input layer requires 12 bits and the output layer in 
Mode 00 requires (N + 1)wo bits, a total of (N + 1)wo + 12 
bits. Thus, the k-medoids algorithm will be more memory-
efficient only if wk < (wo(N + 1) + 12)∕4N . Given that the 
analog-to-digital converters in BMIs are typically 10 to 16 
bits and wo ranges between 4 and 10 bits, the PBNN is also 
more memory-efficient than k-medoids.

Table 3 gives the ASIC characteristics and implementa-
tion results of various state-of-the-art spike sorting systems. 
In [8] we implemented an ANN-based spike sorting system 
composed of one hidden layer neuron and three output layer 
neurons utilizing the ReLU activation function. In [9] we 
implemented a BNN-based spike sorting system to classify 
spike waveforms in a standard 180-nm CMOS process. In 
[11] we designed and implemented an OSort-based spike 
sorting system in a standard 32-nm CMOS process. In [7] we 
designed and implemented a TM-based spike sorting ASIC 
in a 45-nm CMOS process. The work in [6] performs the 
NEO-based spike detection, aligns detected spikes to maxi-
mum derivative, and implements FE via discrete deriva-
tives. Their design consists of four 16-channel modules 
which produce either aligned spikes or feature vectors, but 
does not perform real-time sorting. The work in [15] uses 
the absolute value detection scheme and implements the 
OSort clustering algorithm for 16 channels. In [12], spikes 

Table 3   The ASIC characteristics and implementation results of various spike sorting systems

† Scaled to a 180-nm process with a 1.8 V supply voltage, as described in [41]
†† Normalized to a clock frequency of 24 kHz

Design Ours [8] [9] [11] [7] [6] [15] [12] [13] [10] [14] [39] [40]

Algorithm PBNN ANN BNN OSort TM FE OSort OSort FE FE TM FE FE
Median accuracy 0.91 0.98 0.91 0.87 0.90 0.77 0.75 0.93 0.84 0.85 0.93 0.86 0.92
Data rate reduction 2000× 1866× 2000× 1600× 3200× 11× 240× 278× 240× – – 257× –
Adaptive spike detection Y N N N N N Y N Y Y N N N
Supervised Y Y Y N Y Y N N N Y N N N
Technology (nm) 180 32 180 32 45 90 65 45 45 130 40 65 65
Core voltage (V) 1.8 0.7 1.8 1.16 0.25 0.55 0.27 – 1.1 1.2 1.1 0.54 1
Frequency (kHz) 24 20 24 24 24 4000 480 56 960 160 500 3200 30
Norm. area/ch (mm2)† 0.34 0.36 0.33 102.8 5.7 0.396 0.84 1.33 51.3 0.066 0.473 0.036 1.08
Norm. power/ch(�W)† 2.5 7.81 2.02 4.57 1.35 27.67 152.4 – 41.33 0.96 42.92 2.49 0.54
Norm. energy/ch (pJ)† ‡ 104.16 468.6 84.16 190.41 56.25 1152.9 6350 – 1722 40 1788 103.7 22.5
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are first detected using a voltage threshold and aligned to 
maximum absolute amplitude clustered using OSort. The 
work in [13] performs spike sorting using NEO-based detec-
tion, maximum amplitude alignment, and FE using discrete 
derivatives. It supports an unsupervised learning process, 
similar to the OSort-based systems. The work in [10] pre-
sents a multi-channel spike sorting ASIC based on the Haar 
wavelet FE algorithm. The design in [14] presents a multi-
channel TM-based spike sorting ASIC with a built-in OSort 
learning system. The work in [39] presents a multi-channel 
spike sorting processor based on the integer coefficient FE 
and clustering. Since the ASIC designs in [6, 10, 14, 15, 
39] are multi-channel systems, for a fair comparison, their 
equivalent area and power consumption results for the sin-
gle-channel sorting are given in Table 3. Finally, the work 
in [40] presents the ASIC implementation of a dictionary 
learning-based FE unit, in which the dictionary values are 
constrained to -1, 0, or 1 and no multiplications are used. 
However, the ASIC implementation is for the FE module 
only. We have also reported the normalized power consump-
tion and area of the designs listed in Table 3 to 180-nm tech-
nology with a 1.8 V supply voltage, following the scheme 
presented in [41]. The spike sorting systems, which employ 
unsupervised learning, support real-time classification of 
detected spike waveforms. However, the TM-based and 
the neural network-based spike sorting systems that require 
pre-processing of the neural recordings in order to generate 
the template waveforms and synaptic weights, respectively, 
need a significantly smaller storage with a lower computa-
tional complexity, while providing comparable classification 
accuracy. Compared to the TM-based sorting, in which a 
distance metric is used to quantify the similarity between 
two spike waveforms, the neural network-based schemes can 
offer a more robust classification due to the non-linearity 
of the network model. Note that the work in [10] presents 
the most compact design, however, its median classification 
accuracy is relatively low at about 70% for low SNR neural 
data, while that of the PBNN-based classifier is 83%. It is 
shown that the designed PBNN-based spike sorting system 
not only offers similar accuracy to those of the state-of-the-
art systems, also as opposed to the other designs for which 
performance degrades with increasing noise levels, it pro-
vides a robust classification accuracy over various noise 
levels and datasets.

Among the neural network-based architectures, one can 
see the advantage of reducing the computational complex-
ity of the PBNN. Compared to our ANN classifier in [8], 
our BNN classifier in [9] reduced the area slightly, from 
0.36mm2 to 0.33mm2 , but reduces the power consumption 
by over two-fold. By employing a PBNN classifier, the size 
of the network and the number of parameters can be reduced. 
At the cost of slightly increased area (only 0.01mm2 larger 
than our BNN ASIC in [9]), the power of the classifier is 

reduced by a factor of 3.42. Assuming a 24 kHz sample rate 
with 10 bits per sample, the input rate 240 kbps. With an 
average neuron spiking rate of 40 spikes per second [42], 
representing the PBNN’s classified outputs with three bits 
reduces the data rate to 120 bps. This results in a 99.9% 
reduction in the output data rate compared to the input sam-
pling rate. Since the energy required to transmit one bit of 
data is approximately 3 nJ [43], the power consumption for 
the wireless transmission of the spike IDs is about 360nW . 
The total power dissipation of our synthesized ASIC design 
is thus 2.8μW with the power density of 8.23μW∕mm2 , 
which satisfies the tissue-safe requirement for the brain 
implantable devices [44].

5 � Conclusion

This article presented the efficient hardware design and 
implementation of a spike sorting system utilizing a par-
tially binarized neural network (PBNN) classifier. Among 
various efficient feature extraction algorithms for hardware 
realization, the discrete derivatives-based feature extraction 
algorithm was chosen and employed to reduce the dimen-
sionality of neural spike waveforms and decrease the mem-
ory requirement of the neural network. It was shown that the 
designed spike sorting system not only offers similar accu-
racy to those of the state-of-the-art systems, also as opposed 
to the other designs for which performance degrades with 
increasing noise levels, it provides a robust classification 
accuracy over various noise levels. The implemented PBNN-
based spike sorting system meets the strict power dissipation 
constraints of implantable devices, making it applicable in 
brain-machine interface systems.
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