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Abstract

While brain-implantable neural spike sorting can be realized using efficient algorithms, the presence of noise may make it
difficult to maintain high-peformance sorting using conventional techniques. In this article, we explore the use of partially
binarized neural networks (PBNNs), to the best of our knowledge for the first time, for sorting of neural spike feature vec-
tors. It is shown that compared to the waveform template-based methods, PBNNs offer robust spike sorting over various
datasets and noise levels. The ASIC implementation of the PBNN-based spike sorting system in a standard 180-nm CMOS
process is presented. The post place and route simulations results show that the synthesized PBNN consumes only 0.59 yW
of power from a 1.8 V supply while operating at 24 kHz and occupies 0.15 mm? of silicon area. It is shown that the designed
PBNN-based spike sorting system not only offers comparable accuracy to the state-of-the-art spike sorting systems over
various noise levels and datasets, it also occupies a smaller silicon area and consumes less power and energy. This makes
PBNNSs a viable alternative towards the implementation of brain-implantable spike sorting systems.

Keywords Neural networks - Brain-computer interfaces - Spike sorting - Application-specific integrated circuits - Neural

signal processing

1 Introduction

The ability to efficiently record and decode neural signals
is of vital importance towards the rehabilitation of patients
with various neurodegenerative diseases, including Alzhei-
mer’s and Parkinson’s.

A brain-machine interface (BMI) translates neural activ-
ities into commands for controlling external devices. For
example, in [1] neural activity associated with imagined
handwriting is used to convert the brain’s activity into text.
Also, in [2], neural signals were used to enable patients to
synthesize speech directly from their thoughts. The algo-
rithms employed for accurate neural decoding typically pro-
cess spike trains, which represent the action potentials (or
spikes) of individual neurons over time [3].

For greater spatial resolution and decoding performance,
neural activities are first recorded by a multi-electrode array
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(MEA), which consists of intracortical electrodes capable
of recording neural spikes from a relatively large number
of neurons, in the order of hundreds, simultaneously. The
recorded raw signals are then amplified and filtered into the
frequency bands of interest. While each electrode records
voltage signals fired by a neuron, or single-unit activities
(SUAs), it also records spikes from neighboring neurons,
or multi-unit activities (MUAs). Spike sorting, which is the
process of associating recorded spikes to individual neu-
rons is of prime importance for reliable neural decoding [4].
Spike sorting can be viewed as a clustering process where
action potentials fired from a particular neuron with similar
waveforms are grouped together. Spike sorting is conven-
tionally performed over four steps, as shown in Fig. 1: (i)
spike detection, (ii) spike alignment, (iii) feature extraction,
and (iv) clustering. Spike detection involves detecting the
spiking activity of an ensemble of neurons from the back-
ground noise. Alignment is the process of ensuring that each
detected spike waveform is aligned to a particular metric,
such as the maximum amplitude. Feature extraction (FE) is
optionally used to reduce the dimensionality of spike wave-
forms by describing them using a relatively small set of
features. Finally, clustering involves grouping similar spike
waveforms and creating disjoint clusters of spike features,
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Fig. 1 The block diagram of a BMI system employing spike sorting

which identifies spikes originating from individual neurons.
The clustering process also yields spike timings for each
neuron that are subsequently used by the spike decoder to
translate the generated spike trains into commands for con-
trolling or communication with an external device [5].

While some designs implement spike sorting algorithms
offline on a computer [6], some realizations based on template
matching [7], neural networks [8, 9], and decision trees [10]
employ offline estimation of parameters for in vivo sorting.
Some techniques instead implement unsupervised learning
algorithms in vivo to sort the detected spikes into clusters in
real-time. For example, OSort creates and manages clusters as
new spikes/features are made available [11-15], while k-means
clustering iteratively updates cluster centroids using a set of
training spikes/features. Due to advances in digital signal pro-
cessing, the state-of-the-art brain-implantable spike sorting
systems employ on-chip unsupervised learning, which inevi-
tably leads to increased circuit area and power consumption.
In our earlier work in [9], we reduced the power consumption
and the silicon area of the spike sorting circuitry by designing
a binarized neural network (BNN) for classifying spike wave-
forms using only bit-wise operations and employs an offline
training for weight estimation. Unfortunately, the BNN-sorted
spike waveforms are more susceptible to noise due to their
higher dimension compared to the extracted features of spike
waveforms. In this work, feature extraction is first applied to
spike waveforms to reduce the dimensionality to only a few
fundamental features. To improve classification performance
compared to BNNs, we propose a partially binarized neural
network (PBNN), which is less susceptible to noise while
requiring fewer overall parameters for sorting. To the best of
our knowledge, this is the first work employing a PBNN for
neural network-based classification of feature vectors.

The rest of this article is organized as follows. Section 2
discusses the efficiency of various candidate feature extrac-
tion algorithms for hardware realization. Section 3 reviews the
operation of PBNNS, presents their application in classifying
extracted feature vectors, and discusses the accuracy of the
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proposed PBNN-based spike sorting system. The characteris-
tics and implementation results of the designed spike sorting
system are presented and compared with those of the state-
of-the-art realizations in Sect. 4. Finally, Sect. 5 makes some
concluding remarks.

2 Efficiency of the feature extraction
methods

The principal component analysis (PCA) [4] and inde-
pendent component analysis (ICA) [16] are two commonly
employed feature extraction benchmark algorithms. Usually
the first few principal components are the ones with the high-
est variations and hence, the dimensionality of a spike wave-
form can be reduced significantly. However, PCA has two
fundamental limitations that hinders its feasibility for the
in vivo implementations. Firstly, PCA requires a relatively
large number of detected spikes to find the orthogonal basis
vectors, which prevents its real-time realization. Secondly,
the computational complexity of the PCA makes it imprac-
tical for extremely low-power brain-implantable devices
[17]. Even though ICA outperforms PCA for signals with a
relatively high noise level [18], ICA is also computationally-
intensive and is unrealistic for in vivo implementations.

A number of more computationally-efficient feature
extraction algorithms have been reported. For example, zero-
crossing features (ZCFs) [19] are given as:

K,-1 K,—1
ZC, = Y snl.ZC, = ) slnl,
n=0 n=K,

where s[n] denotes the detected spike waveform, K, and
K, denote the zero-crossing point and number of samples
in the waveform, respectively, and ZC, and ZC, denote the
accumulated energy of the neural signal before and after
the zero-crossing point, respectively. Similar to the zero-
crossing features, the integral transform (IT) algorithm [20]
has found applications in neural spike feature extraction. The
IT features are given as:

1 ny+K,—1 1 np+Kp—1
Iy =— slnl, Iy = — s[nl,

where n, and ny denote the first sample of the positive and
negative phases, respectively, and K, and K denote the
total number of samples in the positive and negative phases,
respectively. One notable weakness of the IT algorithm is
that the indeces n, and ny are not known a priori and find-
ing them requires analysis of the spike waveforms, which
imposes additional latency and is undesirable for real-time
spike sorting. The minimum delimitation (MD) feature
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extraction algorithm [21] is relatively computationally-effi-
cient and is given as:

M K

MD, = ) s[n],MD, = )’ slnl,

n=1 n=M+1

where M denotes the index position of the minimum value
and K denotes the number of samples in the spike waveform.
The ZCF, IT, and MD feature extraction algorithms com-
monly represent the spike waveforms using two features and
hence, significantly reduce the memory requirement of the
subsequent clustering module at the cost of a relatively small
FE hardware. Some realizations may utilize more than only
two features by including more details of the spike itself,
such as the index of the minimum or maximum point.

Another class of the FE algorithms are based on the discrete
derivatives (DD), which can be considered as a simplified dis-
crete wavelet transform [22]. The DD algorithm computes the
slope of the spike waveforms at different scaling factors 6 and
can be written as:

DDg[n] = s[n] — s[n — 6].

Various combinations of different scaling factors can be uti-
lized for constructing the feature space. For different scaling
factors, some key features of the spike waveform, such as the
positive peaks, negative peaks, and peak-to-peak amplitudes
are accentuated. For neural spike sorting, four variations of
the DD algorithm have been studied: the maximum differ-
ence test (DD-MDT) [23], the first and second derivatives
(DD-ES) [24], DD with uniform sampling (DD-US) [6],
and DD with two-extrema sampling (DD-2Ex) [25]. The
DD-MDT, which is considered a simplified version of the
Lillefors Test [26], extracts the multimodal coefficients of
each scaling factor. The DD-FS algorithm computes the first
and second derivatives of the spike waveform to accentuate
its geometric characteristics. Specifically, the first derivative
can be used to interpret the variations of the spike wave-
form’s gradient, while the second derivative emphasizes
its low frequency characteristics. The DD-US algorithm
involves computing the DD with three different scaling fac-
tors and downsampling of the DD waveforms at even inter-
vals. The DD-2Ex algorithm creates the DD waveforms with
two different scaling factors and extracts the minimum and
maximum values for the two DD waveforms, representing
a spike waveform using four features. Among the FE algo-
rithms that are feasible for efficient online implementation,
the notable algorithms are the MD, DD, and ZCF. It has
been shown in [25] that DD-2EXx is a good candidate for fea-
ture extraction due to its immunity to noise and its tolerance
for similar-shaped spike waveforms, the DD-2Ex with scal-
ing factors 6 = 3,7 performs the best based on its computa-
tional complexity, performance, and 16 times dimensionality

reduction from m = 64 spike waveform samples to n = 4
features.

3 Partially binarized neural networks

To map the newly extracted spike’s feature vector to a
particular spike class in real-time, we propose to utilize a
neural network-based classifier. The computation of neural
networks is performed by a set of processing elements,
so-called artificial neurons (ANs), which interact with
one another through weighted connections (synapses).
The synaptic weights control how the network responds
to specific input stimuli. The accumulated weighted input
activities, either from network input or from pre-synaptic
ANs, is passed to a non-linear activation function to pro-
duce the AN’s output [27].

3.1 Partially binarized neural networks

The size of networks and the numerical resolution of the
synaptic weights and activation functions pose a strict
limitation on the types of networks that can be used for
extremely area- and power-constrained brain-implantable
applications. Binarized neural networks (BNNs) have been
introduced to significantly reduce the computational com-
plexity and memory requirements by performing simple
binary operations [28]. The binarization kernel is given
as k;, = sign(k), where k, will be 1 for positive values of k
and —1 otherwise.

It has been shown that using the binarization kernel at
the input and output layers reduce the model’s accuracy
compared to binarizing only the hidden layers [29]. By
performing feature extraction and representing the spike
waveform with only 4 data points, it will be inevitably
more difficult for the network to learn additional informa-
tion from fewer data points. Moreover, as the spikes have
already undergone feature extraction, binarizing the input
layer of the BNN may further reduce the accuracy of the
sorting process. In the proposed PBNN, the input layer’s
synaptic weights remain binarized, however, contrary to a
BNN, the PBNN employs one of four different quantiza-
tion modes: Mode 00, Mode 01, Mode 10, and Mode 11,
which denote where the binarization kernel k, is employed.
Mode 00 does not employ k,, Mode 01 applies it only
to the output layer’s weights, Mode 10 applies it only to
the outputs from the previous layer, and Mode 11, as in a
BNN, applies it to both the previous layer’s outputs and the
output layer’s weights. For modes other than 11, we apply
the sigmoid activation function to the network output. For
hardware implementation, the complexity is reduced by
using a quantized sigmoid function QSigmoid(z, b) that
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Table 1 The classification accuracy of the PBNN over various datasets and quantization modes

Dataset Mode 00 Mode 01 Mode 10 Mode 11  k-Med Dataset Mode 00 Mode 01 Mode 10 Mode 11 k-Med
Easyl 0.05 93.88 93.17 56.54 33.49 93.59  Easy20.15 90.11 60.61 31.039 34.69 88.43
Easyl 0.10  95.46 93.26 63.82 52.69 9546  Easy20.20 82.93 61.1 36.048 32.57 80.31
Easyl 0.15 94.25 67.09 51.79 30.17 93.67  Difficultl 0.05 92.76 85.81 36.041 33.53 92.9
Easyl1 0.20 93.23 76.33 56.90 35.10 93.09  Difficultl 0.10 91.95 72.02 32.318 33.33 91.01
Easyl 0.25 92.04 68.56 56.81 43.71 91.81  Difficultl 0.15 83.38 63.81 36.834 35.97 81.72
Easyl 0.30  87.55 67.69 53.02 40.79 88.77  Difficultl 0.20 72.25 61.93 38.506 31.62 68.81
Easyl 0.35 83.87 72.4 49.08 34.79 85.71  Difficult2 0.05 93.90 67.75 33.135 3491 94.20
Easyl 0.40 81.78 63.71 50.81 35.39 79.0 Difficult2 0.10  90.62 64.93 49.206 34.92 90.04
Easy2 0.05 95.89 62.39 31.96 32.40 95.74  Difficult2 0.15  80.88 64.24 64.82 32.26 78.77
Easy2 0.10  93.11 61.43 36.36 33.87 93.18  Difficult2 0.20  72.10 65.52 57.36 34.7 72.67
will be equal to 1 if the accumulated weighted activity z (a)15 (b) 1 T

is greater than or equal to the neuron’s bias b. Because the __g:zz; i

sigmoid function is symmetrical around the y-axis at input ! - Class 3]

7= 0 with fii0m01a(0) = 0.5, QSigmoid(z, b) can be con- S 05 0.5

sidered as applying a threshold of 0.5 to the output of the 'L:_

sigmoid after adding the bias b. Note that the Qsigmoid s 0 ‘T‘ r

activation function is only applied during the forward 05 :

propagation of signals at the output layer during PBNN u

inference. Employing this approximation during the train- 1 20 o p ) 2 p” p

ing phase makes it challenging to generate useful gradients
for approximating the optimal parameters of the network.

3.2 Evaluation of BNN and PBNN for feature vector
classification

We employ a PBNN as a feature vector classifier in our
designed spike sorting system. In order to evaluate the per-
formance of the spike sorting system, we employ the widely
used WaveClus datasets [30]. The WaveClus datasets con-
sist of 20 simulations of neural recordings with four levels
of difficulty, Easyl, Easy2, Difficultl, and Difficult2. The
difficulty level denotes the similarity of the spike wave-
forms between three single units present in the recording.
The simulated recordings have varying levels of noise with
a standard deviation between 0.05 and 0.40 relative to the
amplitude of the spikes.

Figure 2a and b show the similarity of the spike wave-
forms for different classes in the Easy1 and Difficultl data-
sets, respectively. One can see that the Difficult] classes are
harder to distinguish compared to the Easy1 dataset.

First, DD-2Ex feature vectors are extracted from detected
spike waveforms. The employed network consists of four
input units, one per feature, three hidden layer neurons, and
three output layer neurons, one per spike class. The chosen
network topology of 4-3-3 provided the highest classifica-
tion accuracy over different datasets and noise levels and
increasing the number and size of the hidden layers yielded
a negligible increase in classification accuracy. The 4-3-3
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Fig.2 The mean spike waveforms for the a Easyl and b Difficultl
WaveClus datasets

network topology allows the PBNN to sort the spikes of up
to three neurons using a one-hot encoded output. Clustering
was performed first offline on a subset of the feature vectors
using the k-medoids algorithm. The resulting clusters were
then assigned identifiers 1-3, matching the spike classes pre-
sent in the dataset. The PBNN is then trained to learn the
mapping between feature vectors and spike classes defined
by the k-medoids algorithm. Because the PBNN learns the
mappings produced by the k-medoids algorithms, the perfor-
mance of the clustering algorithm should be verified prior to
training. After the initial clustering, the PBNN was trained
on feature vectors extracted from the spike waveforms given
in the WaveClus dataset using the Python Larq framework
[31] extension for Tensorflow.

For optimizing the weight and bias parameters, we
employ the RMSProp algorithm and a modified version
of L2 regularization [32], which encourages the bina-
rized weights toward values of — 1 and + 1. Layers of
a PBNN that are not fully binarized employ normal L2
regularization rather than the modified L2. We train for
250 epochs, and use early stopping on the validation
loss (mean squared error) to prevent overfitting of the
model to the training set. Additionally, we utilize ten-fold
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cross-validation to estimate the performance of the model
accurately. The data is split in ratios of 80%, 10%, 10%
for training, validation, and testing sets, respectively. For
example, the Easy_0.10 dataset consists of 3522 spike
waveforms, where the training, validation, and testing
subsets are comprised of 2818, 352, and 352 feature vec-
tors, respectively.

Table 1 gives the classification accuracy of the neural
network utilizing the WaveClus datasets and four quantiza-
tion modes. The k-Med column indicates the performance
of the k-medoids algorithm by assigning the test subset
features to the nearest cluster centroid. It is apparent that
Mode 00 consistently outperforms other quantization
modes. Another commonly employed metric for quantify-
ing the performance of a classifier is the F-Score

= %, where TP denotes the number of true posi-
tive classifications, FP denotes the number of false posi-
tive classifications, and FN denotes the number of false
negative classifications. Over all Wave_Clus datasets and
noise levels, our model achieves a median F-Score of 0.91,
ranging from 0.95 to 0.71 with the standard deviation of
0.072. The median F-Score is computed using the testing
data subsets, which the model has not observed during
training, for each of the ten cross-validation sets. Using
the k-medoids clustering and the trained network, the per-
formance of the BNN classifying spike waveforms is veri-
fied over the Wave_Clus datasets. The median classifica-
tion accuracy over the low SNR datasets Easyl 0.30,
Easyl 0.35, and Easyl 0.40 was 0.86, 0.78, and 0.67,
respectively. Based on the results given in Table 1, the
PBNN classification of feature vectors offers more robust
accuracy for low SNR data.

While the weight values for Mode 00 were not con-
strained to + 1 or — 1 with the binarization kernel, we
found that representing the output layer’s weights with
only 4 bits (2 bits for each of the integer and fractional
parts) has a negligible impact of less than 0.9% on the
classification accuracy. This implies the robustness of
the PBNN for classifying feature vectors compared to the
classification of spike waveforms using a BNN. Moreover,
when classifying feature vectors, applying the binariza-
tion kernel to a layer’s output imposes a greater degrada-
tion than binarizing only the weight values. For example,
one can note a significant performance degradation from
Mode 00 to Mode 10. Thus, when sorting feature vectors,
we employ the Mode 00 PBNN over the BNN (Mode 11).
Note that all following analyses are performed using a
PBNN in Mode 00.

While the results in Table 1 show that the PBNN per-
forms well for classifying the activity of three neurons,
it is often not known how many neurons’ spikes are pre-
sent in the neural signal apriori. To study the effect of
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Fig. 3 The classification accuracy of the PBNN over varying number
of neurons

MUAs, the PBNN is trained to sort spikes of up to 20
different neurons [33]. The dataset of synthetic spikes is
generated similarly to the WaveClus dataset, but provides
information about the number of neurons that can be dis-
tinguished. Figure 3 shows the classification accuracy of
the PBNN for increasing number of neurons in the neural
recording. It can be seen that the PBNN can provide rela-
tively accurate sorting for up to 7 units with 73% accuracy.
Beyond this, it may be beneficial to increase the number of
hidden units to allow the network more degrees of freedom
for mapping features to cluster.

3.3 Evaluation of BNN and PBNN-based sorting
over real datasets

The ground truth information of the synthetic datasets offers
a common benchmark for various sorting algorithms. Unfor-
tunately, real neural recordings do not offer such ground
truth information. We employ a two step approach for evalu-
ating the performance of the spike sorting systems using real
recorded data. Following spike detection, DD-2Ex features
are extracted and a subset of them (80%) are clustered using
the k-means algorithm. Since no ground truth information is
available, we use the k-means cluster centroids as reference
clusters, and assess the BNN and PBNN’s performance by
how well these networks classify spikes to match to their ref-
erence clusters. As given in Table 1, the conventional BNN
does not perform well for classifying feature vectors.

To evaluate the BNN- and PBNN-based sorting schemes,
we use a total of four neural recordings from two pigtail
macaques (two each), aliases J and K, at the Washington
National Primate Research Center. For training the BNN
and PBNN, the same approach described in Sect. 3.B is
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Fig.4 a Example cluster waveforms of the J23 macaque recording
and b the classification performance of the BNN and PBNN-based
clustering over four macaque recordings

employed. The performance of the BNN and PBNN was
assessed using the 20% testing subset. Figure 4(a) shows
an example of the mean k-means cluster waveforms and (b)
shows the performance that the classification performance of
the PBNN outperforms that of the BNN over four macaque
recordings.

4 Hardware architecture
and implementation of the PBNN-based
classifier

In our designed and implemented PBNN-based spike sorting
system, the spike waveforms are first detected using the non-
linear energy operator (NEO) algorithm [34] and aligned to
the maximum amplitude, as described in our earlier work
in [7] and [11]. In our design, we implement the NEO unit
using log-based approximate multipliers to conserve circuit
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area and power [35], which we refer to approximated NEO.
To estimate a spike detection threshold, the noise of the
approximated NEO signal is computed using the root-mean
square (RMS) method [36]. The spike detection threshold
is then set to a scaled value of the estimated noise, given as
40,, where o, denotes the RMS of the estimated noise. The
hardware implementation details are given in [37]. Once a
detected spike is aligned, the waveform is sent serially to
the FE module designed based on the DD-2Ex algorithm,
as shown in Fig. 5.

The FE module consists of a 7-word shift register for the
scaling factors 6 = 3 and 6 = 7, and four sets of compara-
tors and registers for finding the minimum and the maxi-
mum samples of DD;_,[n] and DD;_,[n]. The registers R
are updated only when the current value of the spike wave-
form is larger or smaller than the value currently stored in
R for the maximum and the minimum features, respectively.
After 64 clock cycles, the FE module will have computed the
maximum and the minimum values of the DD;_; and DD;_,
waveforms. These values are concatenated and passed on to
the PBNN module via the FVO feature vector output port.

sin]

‘/_\53["]

L, FVO
Ol =yl

R T

S

Fig.5 The block diagram of the DD-2Ex-based FE module
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The top-level block diagram of the designed PBNN is
shown in Fig. 6. The datapath classifies feature vectors into
their corresponding spike IDs. It consists of parallel-input
serial-output PISO shift registers, hidden-layer processing
units HPUs, the output layer processing units OPUs, and
the SRAM-based memory units. The 4-word feature vector
outputs FVOs from the FE module are passed on to the
PBNN datapath, which are then stored in the 4-word PISO
shift registers. Each word in the PISO is passed on to the
HPUs serially to compute the hidden layer outputs. The
Binary Weight SRAM stores the binarized weights of the
hidden layer and consists of four words of three bits, one
word per input feature. The output of the HPUSs is stored
in the 3-word PISO for serial processing by the OPUs.
Because the binarization kernel is not applied to the out-
put layer weights, they are represented in a 10-bit signed
fixed-point format with 4 and 6 bits for the integer and the
fractional parts, respectively.

The HPUs and OPUs shown in Fig. 7(a) and (b), respec-
tively, are similar modules which compute the accumulated
input activity of the previous layer. The HPUs accept the
binarized weight values, which are used as the select lines
of the multiplexers to choose either the sample of the feature
vectors or its negated value in two’s complement format.
Because the binarization kernel is not applied to the out-
put of the hidden layer, the HPUsS accumulate the weighted
input feature vectors using 19-bit accumulators. Each OPU
accepts 10-bit signed weights and computes the product of
the weights and the HPUS’ outputs. To represent the accu-
mulated input activity of the HPUs with sufficient resolu-
tion, the OPUs use 32-bit accumulators. The accumulated
value is then passed on to the Qsigmoid activation function
and is compared against the bias values for each AN stored
in the Output Weight SRAM shown in Fig. 6. The Qsig-
moid function will then generate spike IDs.

We have implemented the PBNN-based spike sorting sys-
tem in a standard 180-nm CMOS process. The chip layout,

(a) [,7
¢ )

Feature Vector

Sample Hidden Layer
11 Output
. nyx19
Weights WLWF = 7.12
ny=3
0
(b) s J:
Hidden Layer ACCRST n
0
Output Sample ~N Spike ID
5| Qsigmoid
na

Weights
ny,x10

Fig.7 The block diagram of a the hidden layer processing units (
HPUSs) and b the output layer processing units ( OPUSs)

shown in Fig. 8, is estimated to consume 2.5 uW of power
from a 1.8-V supply while operating at 24 kHz and to occupy
0.34 mm? of silicon area. The NEO and RMS-based spike
detection unit occupies 0.16 mm? of silicon area and con-
sists of the approximated NEO unit, the adaptive RMS noise
estimation unit, and the spike waveform alignment unit.
The DD-2Ex feature extraction unit occupies 0.02 mm? of
silicon area. The PBNN classifier occupies 0.15 mm? and
consists of the Qsigmoid activation function for the output
layer, an SRAM unit SRAMFP, which stores the output
layer’s weights in the fixed-point format, and the SRAM unit
SRAMB, which stores the binarized weights for the input
layer. The spike sorting system was described using Verilog
HDL and the synthesis was performed using Synopsys DC
Compiler. After synthesis, the placement and routing was
done with Cadence Innovus. For estimating the power con-
sumption, the post place and route synthesized netlist was
used and the switching activity of the ASIC was modeled
using the WaveClus datasets. Table 2 gives the power con-
sumption of the various ASIC modules, assuming a mean
spike firing rate of 10 Hz. The frequency column denotes the

Table 2 The power consumption of each ASIC module

Module Power Frequency (Hz) Energy
(uW) (nJ)
Spike detection 0.68 24000 672
Spike alignment 0.26 ~10 8.77
Feature extraction 0.02 0.52
PBNN classifier 0.57 2.37

06S

> Kum
Fig.8 The layout of the designed PBNN-based spike sorting system
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rate at which the power is dissipated, i.e., for the spike detec-
tion it is dissipated on each input sample and for the sub-
sequent units the power is dissipated on every spike event.
It can be seen that the spike detection and noise estimation
circuitries dissipate the most power and energy. It is also
clear that the DD-2Ex feature extraction provides a very
power and energy efficient operation. The energy shown in
Table 2 is over one second of operation, and the total energy
consumption is approximately 683.66 nJ.

Based on the results given in Table 1, although the per-
formance of the k-medoids clustering is similar to that of the
PBNN in Mode 00, to compare their hardware efficiency,
we consider their computational complexities and their
memory requirements based on three design parameters:
the wordlength of the feature vectors w;, the wordlength
of the PBNN output layer parameters w,, and the number
of clusters N. The computational complexity of the PBNN
and k-medoids can be compared based on the number of
their operations. Given N clusters and four samples per
featur uting the Euclidean distance metric
n= \/' Z?:l [xi - yi] in the k-medoids algorithm, where x
and y denote the template feature vector and the new feature
vector, respectively, requires 7N additions and 4N multipli-
cations, not considering the square root, which is unneces-
sary for comparisons. Comparing N values to one another
would also require N(N — 1)/2 comparisons, not account-
ing for the priority logic required to assign the feature vec-
tors to only one cluster. Assuming that the complexity of an
addition and a multiplication can be estimated as 2 and 4
times of a comparison, respectively [38], the computational
complexity of the k-medoids algorithm is 30N + N(N — 1)/2
operations. For the PBNN, the multiplication with — 1 at the
input layer is realized using a two’s complement operation,
which requires 21 additions. The output layer’s multiplica-
tion of a (1 X 3) vector and a (3 X N) weight matrix requires

3N multiplications and 2N additions. The QSigmoid func-
tion also requires N comparisons. The normalized compu-
tational complexity of the PBNN is thus 17N + 42, which
makes the PBNN algorithm computationally more efficient
N > 3 clusters. The parameter memory stores the cluster
centroids and weight matrices for the k-medoids and the
PBNN algorithms, respectively. For the k-medoids algo-
rithm, N template feature vectors are stored for compari-
son with the newly detected spike feature vectors, requiring
a total of 4Nw, bits. For the PBNN of size 4 X 3 X N, the
binarized input layer requires 12 bits and the output layer in
Mode 00 requires (N + 1)w, bits, a total of (N + )w, + 12
bits. Thus, the k-medoids algorithm will be more memory-
efficient only if w;, < (W,(N + 1) + 12)/4N. Given that the
analog-to-digital converters in BMIs are typically 10 to 16
bits and w, ranges between 4 and 10 bits, the PBNN is also
more memory-efficient than k-medoids.

Table 3 gives the ASIC characteristics and implementa-
tion results of various state-of-the-art spike sorting systems.
In [8] we implemented an ANN-based spike sorting system
composed of one hidden layer neuron and three output layer
neurons utilizing the ReLLU activation function. In [9] we
implemented a BNN-based spike sorting system to classify
spike waveforms in a standard 180-nm CMOS process. In
[11] we designed and implemented an OSort-based spike
sorting system in a standard 32-nm CMOS process. In [7] we
designed and implemented a TM-based spike sorting ASIC
in a 45-nm CMOS process. The work in [6] performs the
NEO-based spike detection, aligns detected spikes to maxi-
mum derivative, and implements FE via discrete deriva-
tives. Their design consists of four 16-channel modules
which produce either aligned spikes or feature vectors, but
does not perform real-time sorting. The work in [15] uses
the absolute value detection scheme and implements the
OSort clustering algorithm for 16 channels. In [12], spikes

Table 3 The ASIC characteristics and implementation results of various spike sorting systems

Design Ours [8] [9] [11] [7] [6] [15] [12] [13] [10] [14] [39] [40]
Algorithm PBNN ANN BNN OSort TM FE OSort  OSort FE FE ™ FE FE
Median accuracy 0.91 0.98 0.91 0.87 0.90 0.77 0.75 0.93 0.84  0.85 0.93 0.86 092
Data rate reduction 2000x  1866x 2000x 1600x  3200x 11x 240x  278x  240x - - 257x -
Adaptive spike detection Y N N N N N Y N Y Y N N N
Supervised Y Y Y N Y Y N N N Y N N N
Technology (nm) 180 32 180 32 45 90 65 45 45 130 40 65 65
Core voltage (V) 1.8 0.7 1.8 1.16 0.25 0.55 0.27 - 1.1 1.2 1.1 0.54 1
Frequency (kHz) 24 20 24 24 24 4000 480 56 960 160 500 3200 30
Norm. area/ch (mm?2)* 0.34 0.36 0.33 102.8 5.7 0.396  0.84 1.33 51.3 0.066 0.473 0.036 1.08
Norm. power/ch(uW)" 2.5 7.81 2.02 4.57 1.35 27.67 1524 - 4133 096 4292 249 054
Norm. energy/ch (pI)" ¥ 104.16 468.6 84.16 19041 5625 11529 6350 - 1722 40 1788  103.7 225

Scaled to a 180-nm process with a 1.8 V supply voltage, as described in [41]

""Normalized to a clock frequency of 24 kHz
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are first detected using a voltage threshold and aligned to
maximum absolute amplitude clustered using OSort. The
work in [13] performs spike sorting using NEO-based detec-
tion, maximum amplitude alignment, and FE using discrete
derivatives. It supports an unsupervised learning process,
similar to the OSort-based systems. The work in [10] pre-
sents a multi-channel spike sorting ASIC based on the Haar
wavelet FE algorithm. The design in [14] presents a multi-
channel TM-based spike sorting ASIC with a built-in OSort
learning system. The work in [39] presents a multi-channel
spike sorting processor based on the integer coefficient FE
and clustering. Since the ASIC designs in [6, 10, 14, 15,
39] are multi-channel systems, for a fair comparison, their
equivalent area and power consumption results for the sin-
gle-channel sorting are given in Table 3. Finally, the work
in [40] presents the ASIC implementation of a dictionary
learning-based FE unit, in which the dictionary values are
constrained to -1, 0, or 1 and no multiplications are used.
However, the ASIC implementation is for the FE module
only. We have also reported the normalized power consump-
tion and area of the designs listed in Table 3 to 180-nm tech-
nology with a 1.8 V supply voltage, following the scheme
presented in [41]. The spike sorting systems, which employ
unsupervised learning, support real-time classification of
detected spike waveforms. However, the TM-based and
the neural network-based spike sorting systems that require
pre-processing of the neural recordings in order to generate
the template waveforms and synaptic weights, respectively,
need a significantly smaller storage with a lower computa-
tional complexity, while providing comparable classification
accuracy. Compared to the TM-based sorting, in which a
distance metric is used to quantify the similarity between
two spike waveforms, the neural network-based schemes can
offer a more robust classification due to the non-linearity
of the network model. Note that the work in [10] presents
the most compact design, however, its median classification
accuracy is relatively low at about 70% for low SNR neural
data, while that of the PBNN-based classifier is 83%. It is
shown that the designed PBNN-based spike sorting system
not only offers similar accuracy to those of the state-of-the-
art systems, also as opposed to the other designs for which
performance degrades with increasing noise levels, it pro-
vides a robust classification accuracy over various noise
levels and datasets.

Among the neural network-based architectures, one can
see the advantage of reducing the computational complex-
ity of the PBNN. Compared to our ANN classifier in [8],
our BNN classifier in [9] reduced the area slightly, from
0.36mm? to 0.33mm?, but reduces the power consumption
by over two-fold. By employing a PBNN classifier, the size
of the network and the number of parameters can be reduced.
At the cost of slightly increased area (only 0.01mm? larger
than our BNN ASIC in [9]), the power of the classifier is

reduced by a factor of 3.42. Assuming a 24 kHz sample rate
with 10 bits per sample, the input rate 240 kbps. With an
average neuron spiking rate of 40 spikes per second [42],
representing the PBNN’s classified outputs with three bits
reduces the data rate to 120 bps. This results in a 99.9%
reduction in the output data rate compared to the input sam-
pling rate. Since the energy required to transmit one bit of
data is approximately 3 nJ [43], the power consumption for
the wireless transmission of the spike IDs is about 360nW.
The total power dissipation of our synthesized ASIC design
is thus 2.8uW with the power density of 8.23pW/mm2,
which satisfies the tissue-safe requirement for the brain
implantable devices [44].

5 Conclusion

This article presented the efficient hardware design and
implementation of a spike sorting system utilizing a par-
tially binarized neural network (PBNN) classifier. Among
various efficient feature extraction algorithms for hardware
realization, the discrete derivatives-based feature extraction
algorithm was chosen and employed to reduce the dimen-
sionality of neural spike waveforms and decrease the mem-
ory requirement of the neural network. It was shown that the
designed spike sorting system not only offers similar accu-
racy to those of the state-of-the-art systems, also as opposed
to the other designs for which performance degrades with
increasing noise levels, it provides a robust classification
accuracy over various noise levels. The implemented PBNN-
based spike sorting system meets the strict power dissipation
constraints of implantable devices, making it applicable in
brain-machine interface systems.
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