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Abstract
Objective. The ability to reliably detect neural spikes from a relatively large population of neurons
contaminated with noise is imperative for reliable decoding of recorded neural information.
Approach. This article first analyzes the accuracy and feasibility of various potential spike detection
techniques for in vivo realizations. Then an accurate and computationally-efficient spike detection
module that can autonomously adapt to variations in recording channels’ statistics is presented.
Main results. The accuracy of the chosen candidate spike detection technique is evaluated using
both synthetic and real neural recordings. The designed detector also offers the highest decoding
performance over two animal behavioral datasets among alternative detection methods.
Significance. The implementation results of the designed 128-channel spike detection module in a
standard 180 nm CMOS process is among the most area and power-efficient spike detection ASICs
and operates within the tissue-safe constraints for brain implants, while offering adaptive noise
estimation.

1. Introduction

Damage to the spinal cord can disrupt the pathway
of signals sent between the brain and the body and
may result in partial or complete loss of both motor
and sensory functions. The loss of these functions can
have devastating implications on the quality of one’s
life. Currently, most patients living with paralysis
require around-the-clock assistance to fulfill their
daily tasks, which can be cost-intensive and deprive
their sense of independence. Extraction of motor
intent directly from the brain using brain-machine
interfaces (BMIs) have shown to be promising in gen-
erating control signals for external assistive devices.
However, complex brain processes are reflected by the
activity of large neural populations and that the study
of a few neurons provide relatively limited informa-
tion [1].

Biological neurons communicate information
among each other via electrical pulses, called action
potentials or spikes. Conventional micro-electrode
arrays (MEAs), such as Utah Array, are able to record
from hundreds of electrodes [2]. Each electrode
records spikes from multiple neurons close to the
electrode’s tip. In fact, the neural signal on a record-
ing electrode is the cumulative electrical activity of

various nearby neurons contaminated with noise,
which is referred to as multi-unit activity (MUA),
offering an extracellular recording. In general the
background noise is a non-Gaussian random process
due to various issues including electrode drift during
operation, tissue-electrode interface noise, electron-
ics noise, variation in the spike shape, the presence
of overlapping spikes, and correlations between spikes
and local field potentials (LFPs). Using conventional
MEAs, it is not possible to precisely place electrodes
to individually record from a single neuron. Extra-
cellular electrodes detect changes in electrical poten-
tials from a vicinity of a neuron (about 140micromet-
ers) where generally tens of neurons are present [3].
Researchers, however, often require single-neuron
activity for the study of how neurons are correlated
with each other for specific stimulus [4, 5]. Also,
the algorithms employed for accurate neural decod-
ing typically process spike trains, which represent the
action potentials of individual neurons over time [6].

For detecting the spiking activity of neurons, the
continuous recorded analog signal by the MEA is
first amplified and then converted into a digital sig-
nal. The digitized signal is then passed through a
band-pass filter typically between 300 and 3000 Hz.
Frequencies below 300 Hz are filtered to remove

© 2022 IOP Publishing Ltd

https://doi.org/10.1088/1741-2552/ac8077
https://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ac8077&domain=pdf&date_stamp=2022-7-22
https://orcid.org/0000-0003-4539-8166
mailto:dlvalencia@sdsu.edu


J. Neural Eng. 19 (2022) 046018 D Valencia et al

low-frequency activity and the upper cutoff frequency
is set to diminish the noisy appearance of the spike
shapes [7]. After filtering, spike detection attempts to
separate the high amplitude spike signals from the low
amplitude neural background noise. The background
noise can be either fixed to a specific value or it
can be estimated dynamically. The noise threshold is
often set to a scaled version of the background noise.
Detecting neural spikes is performed in two phases,
the pre-processing to emphasize the spikes from the
background noise and then applying the estimated
threshold to the pre-emphasized signal. Spikes are
interpreted as occurring when the pre-emphasized
signal crosses the noise threshold. The spike detection
process can thus return the spike waveform itself in
addition to the time an action potential occurs.

This article focuses on the development of an
accurate spike detection module toward implantable
in vivo operation that can adapt to changes in chan-
nel statistics autonomously. The rest of this article is
organized as follows. Section 2 presents the impact
of various filtering methods on the performance of
spike detection as well as the commonly employed
signal pre-emphasis algorithms and alternative tech-
niques for noise estimation. The computational com-
plexity and feasibility of the pre-emphasis and noise
estimation techniques for in vivo spike detection are
discussed and compared. Section 3 quantifies the
performance of various combinations of the pre-
emphasis and noise estimation methods for spike
detection using the widely-employed WaveClus syn-
thetic datasets [8]. Section 4 presents the design and
hardware implementation of our designed detection
technique with adaptive noise estimation. Section 5
quantifies the reliability of our designed and imple-
mented spike detection module and its application in
neural decoding. Finally, section 6 makes some con-
cluding remarks.

2. Filtering, pre-processing, and noise
estimation algorithms

After the amplification and analog-to-digital conver-
sion of the recorded neural signals, spike detection,
which consists of filtering, pre-emphasis, noise estim-
ation, and thresholding, is applied. Filtering is used
to remove unwanted frequency components from
the recorded neural signals. For example, low fre-
quency LFP, with the frequency of about 250 Hz,
are removed. Pre-emphasis involves processing of the
filtered neural signals to discern the neural activity
from ambient background noise. The ambient back-
ground noise is estimated dynamically, which is used
to derive a threshold value that the pre-emphasized
neural signal must exceed in order to be detected as
spikes.

From the perspective of in vivo signal pro-
cessing, low-order filters are preferable due to
their lower computational complexity and memory

requirements. Using Matlab’s FilterDesigner toolbox,
we designed five candidate band-pass causal filters,
Equiripple FIR, Butterworth IIR, Chebyshev Types I
and II IIR, and Elliptical IIR filters. Each of the fil-
ters had the following characteristics: sampling rate
of 24 kHz, high-pass frequency of 300 Hz, low-pass
frequency of 3000 Hz, 60 dB of attenuation in both
stop bands, unity gain and 1 dB of ripple in the pass
band, and the filter orders between 4 and 10.

Figures 1(a) and (b) illustrate the impact of
causal and non-causal filtering, respectively, on the
spike waveforms with various sixth-order filters.
Non-causal filtering was realized using MATLAB’s
filtfilt function. It can be seen that the causal fil-
ter realizations reduce the spike amplitude and more
importantly, impose a phase delay to the signal. In the
case of the Cheby2 realization, the signal is severely
attenuated when using a relatively low order of six.
Figure 1(b) shows the benefit of utilizing non-causal
filtering, which ensures zero phase shift. Also, the
amplitudes and shapes of the spike waveforms are
better preserved compared to the causal filtering.
Figures 1(c) and (d) show the bloxplots of the Euc-
lidean distance between actual spike waveforms and
the filtered spikes employing causal and non-causal
filtering, respectively. It is shown that the Equiripple
FIR filter provides the least Euclidean distance among
the various filter realizations.

In this work we consider two of the most com-
monly employed pre-emphasis methods, non-linear
energy operator (NEO) [9], and absolute value (ABS)
[8]. Energy-based signal pre-emphasis methods such
as NEO accentuate the spikes by computing the
energy of the signal. NEO is given as

ψ[n] = x[n]2 − x[n− 1]× x[n+ 1], (1)

whereψ[n] denotes the energy of the signal x[n], and is
commonly employed as it amplifies spikes from back-
ground noise. The ABS pre-emphasis method is given
as

x̂[n] = |x[n]|, (2)

where x̂[n] denotes the ABS of x[n]. Depending on
the type of pre-emphasis method, it may induce
additional phase delay, and in some cases, no pre-
emphasis is applied to the filtered neural signal.
Figures 2(a) and (b) show the impact of causal and
non-causal filtering, respectively, on the NEO pre-
emphasized signal with various sixth order filter real-
izations. Figures 2(c) and (d) show the boxplots of
the Euclidean distance between the actual and filtered
energy waveforms utilizing causal and non-causal fil-
tering, respectively. Note that in the energy domain,
the causal filters perform similarly while the non-
causal FIR filter retains the highest amplitude.

While calculating the ABS and the energy are
trivial, estimation of the threshold is not. The scal-
ing factor is often between 1.5 and 4 and is chosen
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Figure 1. The impact of (a) causal filtering and (b) non-causal filtering on the spike waveform shapes. The boxplots (c) and (d)
show the variations of the Euclidean distance between actual spike waveforms and the filtered spikes employing causal and
non-causal filtering, respectively.

Figure 2. The impact of (a) causal filtering and (b) non-causal filtering on the spike energy waveform shapes. The boxplots (c)
and (d) show the variations of the Euclidean distance between actual and the filtered energy waveforms employing causal and
non-causal filtering, respectively.

empirically. In some applications, reducing the scal-
ing factor to allow more noisy waveforms to be con-
sidered as spikes has resulted in a greater perform-
ance [10]. We used a constant scaling factor of 4, and
the scaling factor was not tuned to optimize the per-
formance of individualmethods for a fair comparison
among detection schemes. Thus, any process follow-
ing the spike detection will interpret threshold cross-
ings as if they were genuinely occurring spikes.

As threshold crossings are interpreted as spikes,
the selection of the threshold is a crucial decision
in the detection process for two main reasons: (i)
the threshold should be set sufficiently high such
that noisy or erratic behavior in the neural signal is
not interpreted as genuine spiking activity; and (ii)

the threshold should be accurate enough so that the
threshold crossings behave similar to genuine spike
trains.

In this article, we consider four alternative noise
estimation methods, Median (MAD) [8], root-mean
square (RMS) [11], Ada-BandFlt (ABF) [12], and
AdaFlt (AF-128) [12]. The Median (MAD) is a com-
monly employed algorithm for estimating the noise
and is given as:

σe =med

(
|x|

0.6745

)
,

where med denotes the median of the signal and
0.6745 denotes the 75th percentile of the standard
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Table 1. The computational complexity of various noise estimation methods over a one second window.

Adds./Mults. Comparisons Update
Method per window per window frequency Ops/s.

MAD 1 f 2s 1 Hz f 2s + 4
RMS fs − 1 0 1 Hz 6fs + 2
ABF fs/500 3f 2s /10e3 4 Hz (3f 2s + 60fs)/2.5e3− 14
AF-128 fs/500 1.28f 2s /10e3 100 Hz (1.28f 2s + 60fs)/100− 580

normal distribution [8]. Themedian of the ABS of the
neural signal reduces the interference of spikes based
on the assumption that spikes seldom appear in the
signal. Themedian is often computed over a relatively
long recording, on the order of one minute. However,
storing relatively long neural recordings is infeas-
ible for in vivo BMIs, in which the area- and energy
dissipation constraints severely limit the amount of
memory storage and the algorithms that can be
realized.

An alternative noise estimation methods is the
RMS [11], where the estimated noise is given as:

σe =

√√√√ 1

M

M∑
i=0

[x2i ], (3)

and M denotes the number of samples of the band-
pass filtered and pre-emphasized signal x. When
estimating the noise using the RMS, it is a common
practice to perform summation over one second. The
spike threshold is typically considered as a scaled ver-
sion of the estimated noise, such as 2σe or 4σe. In
practice, the square root operation can be avoided
by squaring the pre-emphasized neural signal when
compared to the estimated noise as x̂[n]2 > σ2

e , where
x̂[n] denotes the pre-emphasized neural signal.

The BandFlt algorithm [12] is similar to the RMS
algorithm, but rather than a single window of one
second, it utilizes 300 ten millisecond windows. The
RMS is computed for each window and then sorted in
ascending order. An improved version of the BandFlt
algorithm is the Ada-BandFlt, where the input signal
is split into 10 ms sample windows and the RMS is
computed for each window [12]. The RMS values are
then collected for 100 windows and an initial noise
estimation is set as the 25th percentile of the distribu-
tion of RMS values of the 100 windows. After this ini-
tial noise estimation, the estimated noise is updated
every following 250 ms as:

σe(n) = 0.8×σe(n− 1)+ 0.2×M0.25,

where M0.25 denotes the 25th percentile of the RMS
values.

The AdaFlt algorithm [12] works on 128 ten mil-
lisecond windows. Themaximum andminimum val-
ues of each window are found and the 40th percentile
of themaximum andminimum values are computed,
and each of these are taken as initial estimates for

positive and negative thresholds, respectively. Follow-
ing the initial estimation, AdaFlt calculates one set of
maximum and minimum values once for every ten
millisecondwindows. After 128 sets of maximum and
minimum values are calculated, the noise estimates
are given as:

σp,e(n) = 0.9×σp,e(n− 1)+ 0.1×M0.4,

σn,e(n) = 0.9×σn,e(n− 1)+ 0.1×m0.4,

where M0.4 and m0.4 denote the 40th percentile of
maximum and minimum values, respectively.

Table 1 gives the computational complexity of
four different noise estimation methods over a one
second window. For algorithms that require sort-
ing to compute the median, we assumed that sort-
ing M values requires an average of M2 comparis-
ons [13]. To normalize the computational complexity
of different operations, we estimated the complex-
ity of addition and multiplication as 2 and 4 times
the complexity of a comparison [14]. Note that
while the RMS requires the most number of addi-
tion and multiplication operations, the lack of sort-
ing significantly reduces the required number of
operations per second. For example, for a sampling
rate of fs = 10 kHz, the MAD, RMS, ABF, and AF-
128 algorithms require approximately 100e6, 60e3,
120e3, and 1.3e6 operations per second, respect-
ively. However, we can measure the performance
of the noise estimation method as the accuracy of
the threshold crossings. However, the input to
the noise estimation is the pre-emphasized signal.
Thus, there are various combinations of signal
pre-emphasis and noise estimation methods and
we will evaluate their performance in the next
section.

3. Performance of in vivo potential spike
detection techniques

To evaluate the performance of the candidate pre-
emphasis and noise thresholdingmethods, we use the
widely employed WaveClus datasets, which consists
of 20 simulated neural recordings with three single-
units in each recording. There are four difficulty
levels: Easy1, Easy2, Difficult1, and Difficult2, which
refers to the similarity of the three single-unit spike
waveforms present in the recordings. The simulated
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recordings have varying levels of noisewith a standard
deviation between 0.05 and 0.20 (up to 0.40 for Easy1)
relative to the amplitude of the spikes. The record-
ings are first simulated at 96 kHz and then down-
sampled to 24 kHz. These datasets have been widely
used as they also contain annotated spike timings and
the classes of each spike, referred to as ground truth
information.

The performance of the candidate spike detec-
tion methods can thus be given by comparing it is
interpreted detected spike times to those present in
the ground truth dataset. Using the ground truth
information, we can evaluate whether a spike detec-
ted at time ti is a genuine spike (i.e. a true posit-
ive TP), or an errant/noise spike (i.e. a false positive
FP). Also, ground truth spikes that are missed by the
detector can be denoted as missed spikes (i.e. a false
negative FN). For our analysis, a spike is taken as a
true positive if it is detected within two milliseconds
of the ground truth spike time. Some commonly
employed spike detection measures involve comput-
ing the probability of detection Pd, the probability of
missed spikes Pm, and the probability of false alarms
Pfa, which are defined asPd =

TP
TP+FN+FP ,Pfa =

FP
TP+FP ,

and Pm = FN
TP+FN , respectively. Some literature also

uses the sensitivitymetric TP
TP+FP , which quantifies the

ratio of valid spikes given all detected spikes. A sensit-
ivity value close to one represents that a large portion
of the detected spikes are genuine. However, a high
sensitivity value in conjunction with a high number
of false positives may induce an artificially high sens-
itivity value. Another measure is the F-Score met-
ric, defined as F= TP

TP+0.5(FN+FP) , which is a combin-
ation of the recall and precision of detection. For a
fair comparison with the state-of-the-art work, the
F-Score is our chosen metric in this article. For the
first analysis, we employed a relatively-low order a
fourth order Elliptical IIR filter is employed, follow-
ing conventional low-order filtering methods in BMI
systems [15, 16]. If alternative filters have relatively
similar frequency and phase characteristics, then it
follows that the performance differences among the
alternative detection methods is primarily related to
the employed detection methods. Table 2 gives the
mean F-scores of the candidate detection schemes
over the four WaveClus datasets. It is apparent that
the combination of theNEOwith the RMSor the ABF
outperforms other candidate methods. It can also be
seen that the NEO with RMS offers the lowest stand-
ard deviation across the datasets, offering a robust
performance compared to the alternative methods.
While the ABF noise estimation method performs
well, it is requirement of sorting 100 RMS values
makes it infeasible for efficient, real-time in vivo real-
ization.

For the NEO and RMS-based detection, we also
quantify the impact of alternative filters on spike

Table 2. The mean F-scores of the candidate detection methods
over the WaveClus datasets.

Detection method Mean F-score
Standard
deviation

NEO+MAD 0.45 0.012
NEO+ RMS 0.92 0.001
NEO+ ABF 0.94 0.002
ABS+MAD 0.91 0.034
ABS+ RMS 0.89 0.104
ABS+ ABF 0.91 0.075

detection performance by computing the F-Scores
over the WaveClus datasets with ground-truth
information. Figures 3(a)–(d) show the performance
of the NEO and RMS-based spike detection using
different filters over the Easy1, Easy2, Difficult1,
and Difficult2 datasets, respectively. It is shown that
the FIR, Butterworth, Chebyshev Type I, and Ellipt-
ical filters outperform the Chebyshev Type II filter.
Interestingly, all filters other than Chebyshev Type
II do not necessarily see improved performance for
increased filter order.While we found that non-causal
filtering is preferred for retaining waveform shapes,
such details are not relevant for applications that only
require spike timings, such as BMIs that employMUA
threshold crossings rather than single-unit action
potentials. While the NEO pre-emphasis reduces
the amplitude of the spike waveforms, as shown in
figure 2, it was also shown that causal filtering fur-
ther reduces the amplitude of the spike waveforms.
Figures 4(a)–(d) show the F-scores of employing
fourth order causal and non-causal Equiripple FIR
filters for various noise levels over the Easy1, Easy2,
Difficult1, and Difficult2 datasets, respectively. It can
be seen that the difference between the two filter-
ing approaches is insignificant. The appeal of the
low-order causal filtering is due to their relatively
low computational complexity and memory require-
ments. Additionally, from the hardware implement-
ation perspective, the causal realization is applic-
able for real-time processing. Therefore, for the BMI
applications where the integrity of waveform shapes
is not a concert and only threshold crossing rates are
required, using a relatively low-order causal FIR filter
is adequare.

Note that the F-score metric measures the ratio
of true spike detections over all detected spikes and
is dependent on the application for which a value
can be deemed acceptable. For example, in the case
of spike sorting, acceptable values are 0.8 or higher,
i.e. the majority of detected spikes are genuine. How-
ever, for neural decoding, it has been shown that
voltage threshold settings can be tuned to optimize
the encoding of movements’ kinematics [10]. Thus,
detecting more false positives as spikes and hence, a
smaller F-score, may yield a better decoding.
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Figure 3. The F-scores of the NEO and RMS detection with various filters for the (a) Easy1, (b) Easy2, (c) Difficult1, and (d)
Difficult2 datasets, respectively.

Figure 4. The F-Scores of the fourth-order causal and non-causal Equiripple FIR filter over the (a) Easy1, (b) Easy2, (c) Difficult1,
and (d) Difficult2 datasets.

4. Hardware realization of the candidate
detector

Based on the discussed findings, we suggest that using
the NEO pre-emphasis with the RMS thresholding
provides the optimal detection performance.

In vivo spike detection must work with limited
computational resources that are shared among hun-
dreds to thousands of channels. For efficient hard-
ware realization of the RMS thresholding, equation
(3) is simplified to avoid the division and square root

operations. The division is replaced with an arith-
metic shift operation and the square root is avoided
by squaring the thresholding inequality x[n]NEO > σe.
The simplified noise estimation is then given as:

σe =
M∑

(x2NEO)≫
(
log2

(
M

C2

))
, (4)

where M denotes the number of samples to accu-
mulate before computing the estimated noise σe,
C denotes the noise scalar, and x≫ y denotes the
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Figure 5. The F-Score of the NEO and RMS-based spike detector for the (a) Easy1 and (b) Difficult1 datasets over various noise
levels and varying RMS window sizes using the simplified equation (4).

arithmetic right shift of x by y bit positions. To employ
the right shift operation, the values of M and C are
constrained as powers of two. To quantify the impact
of the applied simplification, we computed the F-
Scores for the Easy1 and Difficult1 datasets over val-
ues of M ranging between 8 and 15, with the scalar
C= 4. As shown in figures 5(a) and (b), the perform-
ance difference between the one second RMS win-
dow and the simplified equation (4) is negligible for
values of M⩾ 13. In some cases, the performance of
the simplified computation outperforms that of the
fixed window. To demonstrate the noise adaptation
over a real dataset, a single channel of data from the
‘indy_20 170 131_02’ dataset is passed to the NEO
and RMS-spike detector using the Xilinx Vivado sim-
ulator. Figure 6 shows the continuous update of the
RMS noise threshold values in response to the signal’s
variations. For example, when the signal increases in
amplitude, the noise threshold is increased to avoid
detecting larger noise values as spikes. The noise
threshold, shown as a sample-and-hold line, indicates
that theRMS changes occur in fixed intervals (i.e. over
213 samples). For clarity, a smoothed version of the
noise adaptation using an eight-sample moving aver-
age filter is also shown.

The datapath of the designedmulti-channel NEO
and RMS-based spike detector is shown in figure 7.
The datapath consists of two main components: the
squaring NEO unit and the RMS estimator. The
squaring NEO unit has an input signal shift register
CBuf , radix-2 booth-encoded multipliers B to com-
pute the NEO value, followed by a fixed-point mul-
tiplier to compute the square of the NEO signal.
The depth of the shift register CBuf is equal to 2N,
where N denotes the number of supported chan-
nels. Rather than reusing the datapath by increasing
its operating frequency, we instead choose to real-
ize multiple datapath units that each process a rel-
atively low number of channels. One caveat, how-
ever, is that implementing the squared NEO would
be costly, especially when instantiated several times
across datapath instances. We thus implement two
of the three NEO multiplications with sequential
radix-2 booth-encoded multipliers [17], as shown in
figure 8. The RMS Estimator consists of a set of N
registers for accumulating the squared NEO values
of each channel, as well as a set of N latches for
storing the RMS value once every M input samples,
as per equation (4). A control unit CTRL manages
when the booth-encoded multipliers, accumulator

7
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Figure 6. Adaptive noise threshold estimation.

Figure 7. The datapath of the multi-channel NEO and RMS-based spike detector.

Figure 8. The datapath of the sequential radix-2 booth multiplier.

registers, and RMS value latches are enabled for
writing.

We have designed and implemented the NEO
and RMS-based spike detector in a standard 180 nm
CMOS process with 16 datapaths processing 8

channels each, for a total of 128 channels. The ASIC
layout, shown in figure 9, is estimated to consume
639 µW of power from a 1.8 V supply when operat-
ing at 800 KHz and is estimated to occupy 3.44 mm2

of silicon area. The implemented spike detector thus
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Figure 9. The ASIC layout of the designed 128-channel
NEO and RMS-based spike detector.

consumes 4.9µWper channel and occupies 0.02mm2

of silicon area per channel. Note that the designed and
implemented NEO and RMS-based spike detector
supports arbitrary window sizes of 2B while the
threshold is updatedmore frequently for smaller win-
dow sizes. Synthesis was performed with Synopsys
Design Compiler and the place and route was per-
formedwith Cadence Innovus. After routing, the net-
list is simulated to obtain a realistic switching activ-
ity for estimating the dynamic power consumption.
The NEO and RMS-based spike detector has a power
density of 18.58 mW cm−2, which is within the tissue
safe constraints (i.e. 40 mW cm−2) [18].We have also
implemented an alternate version of the NEO and
RMS spike detector in the same 180 nm CMOS pro-
cess by replacing all multiplications with approximate
log-based multipliers [19]. As opposed to the serial
Booth-encoded multipliers, the log-based multipli-
ers do not require an increased operation frequency
and can operate at only 80 KHz, which signific-
antly reduces the power consumption. The approx-
imatedNEO and RMS-based spike detector only con-
sumes 0.64 µW of power per channel from a 1.8 V
supply and occupies 0.02 mm2 of silicon area. The
power density of the approximated design is only
3.07 mW cm−2, which is well within the tissue safe
constraints.

Various hardware realizations of neural spike
detection have been reported recently [20–22].
Table 3 lists the characteristics and implementation
results of various spike detection ASICs. For a fair
comparison, the implementation results have been
scaled to a 180 nm CMOS process with a 1.8 V sup-
ply voltage, as described in [24]. In [20], the authors
present a 16-channel BMI with a digital implement-
ation of window discriminator-based spike detec-
tion. Window discriminators involve two threshold

values and detect a spike when an action poten-
tial crosses an upper and lower threshold, which
correspond to the de-polarization and re-polarization
of the spike waveform, respectively [25]. Unfortu-
nately, the two threshold values are not adaptive to
changes in the signal during run-time, and are pro-
grammed through a communication interface. In
[21], the authors present an analog implementation
of a NEO-based spike detector. The threshold is con-
sidered as the peak value of the NEO pre-emphasized
signal, and it adapts to the signal if new values of
the NEO signal exceed the current peak value. In
[22], the authors present a 64-channel neural signal
acquisition system-on-chip (SoC). Spikes are detec-
ted using a NEO-based pre-emphasis and a fixed
threshold that is uploaded to the SoC, and unfortu-
nately cannot adapt to real-time changes in channel
statistics.

It can be seen in table 3 that our designs are among
the most power- and area-efficient spike detection
circuits, while supporting adaptive noise estimation.
Compared to the design in [21], which also employs
the NEO pre-emphasis, our digital design naturally
consumes more power, however, our design offers a
slightly lower probability of detecting false positive
spikes over the sameWaveClus datasets. It can be seen
in table 3 that the NEO and RMS detector utilizing
approximated multipliers dissipates less power than
the detector using booth-encoded multipliers, and
also consumes the least energy per channel among the
state of the art spike detection ASICs. While power is
a commonly employed metric for comparing ASICs,
energy consumption is a vitalmetric for in-vivoBMIs,
as it directly impacts the battery life for implant-
able circuits. For example, an in-vivo detector based
on booth-encoded multipliers operating at 800 KHz,
employing the SAFT LS14250 battery with a nominal
capacity of 1200 mAh, would operate for approxim-
ately 433× 103 h, while the approximate-based NEO
and RMS detector would operate for approximately
3.37 × 106 h. The designs in [21–23] would operate
for approximately 1.44 × 106 h, 463 × 103, and 192
× 103–287× 103 h, respectively.

5. Spike detection performance analysis

In a BMI system, the output of the spike detec-
tion is used by the subsequent neural signal pro-
cessing modules. For example, spike sorting groups
individual neurons’ spikes into individual clusters
[25]. Additionally, the dynamics of groups of neur-
ons and behavioral data, such as motor movement
[26], can be explored. Neural decoding translates
spiking information into a quantifiable representa-
tion, such asmovement kinematics for a robotic pros-
thesis [27]. We assess the performance of the can-
didate spike detection methods in a neural decoding
task using trial-based behavioral recordings without
ground truth information.
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Table 3. The characteristics and implementation results of various spike detection ASICs.

Ours Ours
Work Booth Approx. [20] [21] [22] [23]

Technology (nm) 180 180 180 180 65 130
Implementation Digital Digital Analog Analog Analog Digital
Clock frequency (KHz) 800 80 — 24 20 800
Supply voltage (V) 1.8 1.8 — 1.8 0.8 1.2
Channels 128 128 16 1 64 64
Power per Ch. (µW) 4.9 0.64 4 1.5 1.21 3.04–4.54
Area per Ch. (mm2) 0.02 0.02 — 0.03 0.0105 —
Pre-emphasis NEO NEO None NEO NEO None
Thresholding RMS RMS Fixed Peak Fixed Dual-Mean
Adaptive Y Y N Y N Y
Scaled power per Ch. (µW)a 4.9 0.64 4 1.5 4.67 7.53–11.26
Scaled area per Ch.a 0.02 0.02 — 0.03 0.05 —
Scaled energy per Ch. (pJ)a,b 6.24 0.8 — 1.87 5.83 9.4–14
a Scaled to a 180 nm process with a 1.8 V supply voltage, as described in [24].
b Normalized to a clock frequency of 800 kHz.

The advantage of synthetic datasets is that we
can compute the F-Score as a quantitative meas-
ure for assessing the performance of the detection
schemes due to the known times of action poten-
tials, referred to as ‘ground truth’ information. A real
neural recording usually does not offer ground truth
information and hence, it is subjective when compar-
ing the performance among different spike detection
methods. One approach to verify the spikes of real
recordings is to use intra-cellular recordings, which
senses the voltage inside the neuron itself [28]. When
simultaneous intra- and extra-cellular recordings are
available, the spike times detected in the extracellu-
lar recording can thus be verified using the intra-
cellular recording [29]. Unfortunately, intracellular
recording is challenging due to the lack of stability
and long-term reliability of the recordings [30]. One
usefulmethodwhen employing high-densityMEAs is
to exploit the spatio-temporal correlations of spikes
detected at different recording sites [31]. However,
this is not applicable for a low-density clinical record-
ing interface. Another method that can be used to
quantify the performance of a spike detector is to
employ a widely accepted toolset, such as WaveClus
[8], as a ‘gold standard’ [15]. The detected spike times
from such tools could be used as a reference label to
evaluate the probability of detection, missed spikes,
and false alarms of alternative detection methods.
One caveat, however, is that due to the nature of
neural recordings, these tools cannot offer guaran-
teed true labeling of data since users need to set dif-
ferent parameters for different neural datasets. Due
to the use of MUA spike trains for BMI applications,
another method to quantify the performance of vari-
ous spike detectionmethods is tomodel the separabil-
ity and distinctness of spike trains for different source
stimuli. For example, neurons in the motor cortex
modulate their firing rates in response to specific
movement direction [32]. Thus, a spike detection that

can produce spike trains with activity more accur-
ately correlated with the intended stimulus/action is
preferable for BMI applications.

5.1. Spike detection performance analysis over real
neural recordings
A spike train can be considered as a stochastic point
process that consists of binary events in time. The
conditional intensity function (CIF) λ(t|Ht−) of a
point process provides a complete probability model
of the process and describes the instantaneous firing
probability conditioned on its firing history. Follow-
ing the approach in [33], we can compute the CIF for
a channel of neural data over various repeated trials of
a specific stimulus Si. Then,we can compute the prob-
ability P(N(t)|Si) of observing a particular set of spike
times N(t) given the stimulus Si. For this analysis, we
use the raw broadband data recorded from an adult
male Rhesus macaque monkey in the Sabes Lab at
the University of California, San Francisco [34]. The
monkey was trained to perform self-paced reaches by
controlling the position of a cursor on a screen. Data
was recorded from areaM1 of the primarymotor cor-
tex using a chronically implanted 96-channel Utah
Array. Spikes were detected using the candidate spike
detectionmethods described above. Using the relative
starting and ending positions of the cursor target, we
discretized the monkey’s reach into four possible dir-
ections: left and upwards, left and downwards, right
and upwards, and right and downwards. The detec-
ted spike times were also discretized as follows. The
spike times were converted into spike trainsN(t) into
K bins of width ∆= TK−1, where T denotes the
total time of each reach, in our case aligned to the
final 500 ms before the monkey finished its reach.
The spiking activity during a reach is thus given as
N1:k = [∆N1, . . . ,∆Nk], where ∆Nk is one if there is
a spike in the time interval ((k− 1)∆,k∆) and zero
otherwise. The discretized CIF λ(k∆|N1:k−1) is given
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Figure 10. The CH score boxplots of the projected spike trains using various spike detection methods for the macaque monkey’s
reaching tasks.

as the mean of the spike history N1:k−1 divided by∆.
The probability of the observed spike train N(t) con-
ditioned on the presented stimulus Si can be written
as:

P(N(t)|Si) =exp

[
K∑

k=0

log(λ(k∆|N1:k−1)∆)∆Nk

−
K∑

k=0

λ(k∆|N1:k−1)∆

]
.

After computing the mean CIF for all four
reach types, the probability of each trial conditioned
on each of the four mean CIFs, i.e. P(N(t)|S1),
P(N(t)|S2), P(N(t)|S3), and P(N(t)|S4) are com-
puted, where S1–S4 denotes reach types left and
upwards, left and downwards, right and upwards,
and right and downwards, respectively.We then com-
pute a log likelihood feature vector given as YN(t) =
log [P(N(t)|S1), . . . ,P(N(t)|S4)]. YN(t) can thus be
considered as a projection of the spike train N(t)
onto the likelihood space of the four reach types.
Thus, for each reach, there is a feature vector that
represents a point in the likelihood space. A more
useful spike detection yields a well-defined set of
clusters for each type of reach. To quantify the res-
ulting likelihood space clusters of projected spike
trains, we employ the Calinski–Harabasz (CH) met-
ric [35], which is defined as the ratio of the dis-
tances among clusters and the distances within a
cluster. For the spike train analysis, we employed
six spike detection methods using five ‘indy’ data-
sets, 20 161 220_02, 20 170 123_02, 20 170 124_01,
20 170 127_03, 20 170 131_02. The spike trains were
partitioned into sets associated with the respective
reach type for a particular movement. Figure 10
shows the CH score boxplots of the projected spike
trains generated by the candidate detection methods

over the five datasets. It can be seen that the NEO-
based methods outperform the ABS-based methods.
Also, one can note that the combination of the NEO
with RMS yields a highermedian CH score.While the
NEO and ABF method has a smaller variability, the
computational complexity of the RMS is approxim-
ately half of the ABF’s complexity, as given in table 1.
This implies that the projected spike trains gener-
ated by the NEO and RMS detection produce better
defined clusters, which may be preferable for neural
decoding.

5.2. The impact of spike detection on neural
decoding applications
To study the effect of alternative spike detectionmeth-
ods on the performance of neural decoding, we util-
ize the publicly available hc-2 dataset [36]. The data-
set consists of the neural recordings from the CA1
region of the hippocampus of freely moving rodents
over various experiments. The rodents were provided
with water or food as a reward at random locations
throughout a platform. The positions of the rodent
was determined using video footage by tracking the
position of LEDs on the rodents’ heads. The aim of
decoding is to predict the location of the rodent based
on the spiking activity of neurons in the hippocam-
pus. The tip of each recording shank, which are the
channels with the highest signal amplitude, were used
for detecting spikes using the candidate methods. We
designed and trained a gated recurrent unit (GRU)-
based recurrent neural network (RNN) decoder to
map the binned spike counts onto the rodent’s posi-
tions. The training data contained 7772 samples, each
representing 1.92 s of data over 75 bins (i.e. bin size
= 25.6 ms). The training data was partitioned into
80% for training, 10% for validation, and 10% for
testing. The validation data is used to evaluate the
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Table 4. The validation and testing performance of the
GRU-based RNN decoder using various potential in vivo spike
detection methods.

Detection method
Validation
(R2) score

Testing
(R2) score

ABS+MAD 0.73 0.75
ABS+ RMS 0.79 0.76
NEO+MAD 0.73 0.74
NEO+ RMS 0.85 0.86

performance of the model on data not observed dur-
ing training, while the testing data is used to evalu-
ate the performance of the model after training. The
RNNwas trained using the Tensorflow framework for
up to 250 epochs, using early stopping on the R2 met-
ric to avoid over-fitting to the training data. The R2

metric, also known as the coefficient of determina-
tion, quantifies the amount of variance in the dataset
that can be account for by the model, with a score of
1.0 being perfect. Table 4 gives the testing perform-
ance of theGRU-basedRNNover various spike detec-
tion methods. One can see that the combination of
NEO and RMS offers the highest performance for
both the validation and testing sets.

6. Conclusion

This article investigated the efficiency of various
potential spike detection techniques for in vivo
implantation. It was found that the NEO-based pre-
processing in combination with the RMS noise estim-
ation outperforms other state-of-the-art spike detec-
tion methods. It was shown that the combination
of NEO with RMS resulted in the highest F-Score
when evaluated on the commonly employed Wave-
Clus datasets. The design and implementation of a
128-channel NEO and RMS-based spike detector in a
standard 180 nm CMOS process was presented. The
synthesized NEO and RMS spike detector was estim-
ated to occupy 0.2 mm2 of silicon area and consume
4.9 µWof power from a 1.8 V supply while operating
at 800KHz. It was shown that our design is among the
most power, area, and energy-efficient spike detect-
ors. The designed and implemented spike detector
was also employed for neural decoding and it was
found that the NEO and RMS-based detection also
offers the highest decoding performance across two
different animal behavioral datasets.
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[35] Caliński T and Harabasz J 1974 A dendrite method for
cluster analysis Commun. Stat. Theory Methods 3 1–27

[36] Mizuseki K, Sirota A, Pastalkova E and Buzsáki G 2009 Theta
oscillations provide temporal windows for local circuit
computation in the entorhinal-hippocampal loop Neuron
64 267–80

13

https://doi.org/10.1109/TC.2018.2880742
https://doi.org/10.1109/TC.2018.2880742
https://doi.org/10.1109/TBCAS.2016.2622738
https://doi.org/10.1109/TBCAS.2016.2622738
https://doi.org/10.1109/JSSC.2014.2384736
https://doi.org/10.1109/JSSC.2014.2384736
https://doi.org/10.1109/TBCAS.2016.2618319
https://doi.org/10.1109/TBCAS.2016.2618319
https://doi.org/10.1088/0954-898X_9_4_001
https://doi.org/10.1088/0954-898X_9_4_001
https://doi.org/10.1016/j.neuron.2019.05.003
https://doi.org/10.1016/j.neuron.2019.05.003
https://doi.org/10.1088/1741-2560/8/4/045005
https://doi.org/10.1088/1741-2560/8/4/045005
https://doi.org/10.1371/journal.pone.0205031
https://doi.org/10.1371/journal.pone.0205031
https://doi.org/10.1016/j.conb.2011.10.013
https://doi.org/10.1016/j.conb.2011.10.013
https://doi.org/10.1371/journal.pone.0179288
https://doi.org/10.1371/journal.pone.0179288
https://doi.org/10.1371/journal.pone.0021256
https://doi.org/10.1371/journal.pone.0021256
https://doi.org/10.5281/zenodo.583331
https://doi.org/10.5281/zenodo.583331
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1016/j.neuron.2009.08.037
https://doi.org/10.1016/j.neuron.2009.08.037

	In vivo neural spike detection with adaptive noise estimation
	1. Introduction
	2. Filtering, pre-processing, and noise estimation algorithms
	3. Performance of in vivo potential spike detection techniques
	4. Hardware realization of the candidate detector
	5. Spike detection performance analysis
	5.1. Spike detection performance analysis over real neural recordings
	5.2. The impact of spike detection on neural decoding applications

	6. Conclusion
	Acknowledgments
	References


