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Abstract

Conventional spike sorting and motor intention decoding algorithms are mostly implemented on an external computing
device, such as a personal computer. The innovation of high-resolution and high-density electrodes to record the brain’s
activity at the single neuron level may eliminate the need for spike sorting altogether while potentially enabling in vivo neural
decoding. This article explores the feasibility and efficient realization of in vivo decoding, with and without spike sorting. The
efficiency of neural network-based models for reliable motor decoding is presented and the performance of candidate neural
decoding schemes on sorted single-unit activity and unsorted multi-unit activity are evaluated. A programmable processor
with a custom instruction set architecture, for the first time to the best of our knowledge, is designed and implemented for
executing neural network operations in a standard 180-nm CMOS process. The processor’s layout is estimated to occupy
49 mm? of silicon area and to dissipate 12 mW of power from a 1.8 V supply, which is within the tissue-safe operation of

the brain.

Keywords Neural decoding - Brain-machine interfaces - Application-specific integrated circuits

1 Introduction

Patients suffering from various neurological disorders
and amputations may lose their ability to control some of
their normal bodily functions or to take care of themselves
entirely. A brain—machine interface (BMI) creates a link
between the brain’s neural activity and the control of an
external assistive device by bypassing dysfunctional neu-
ral pathways. Invasive BMIs record neural signals directly
from the motor cortex using brain-implanted electrodes. By
understanding how brain activity relates to behavior, the
encoded motor intentions in the recorded neural signals can
potentially be decoded into meaningful control commands to
restore a patients’ ability to interact with their surroundings,
via improved communication or actuating an assistive device
such as computers and prostheses.

Conventional acquisition systems employ multi-elec-
trode arrays (MEAs), which allow simultaneous record-
ing of hundreds of channels. The wireless transmission of
a large amount of recorded data can impose high power
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consumption and long delays, which restricts real-time and
in vivo operation of BMIs. For example, the data rate for
a Utah Array [1] with 100 recording channels sampled at
20 kHz with a 10-bit resolution is 20 Mbps. For this trans-
mission rate, an implantable chip requires several hours of
continuous operation and a few hours for recharging the bat-
tery [2]. The commonly employed acquisition systems are
unable to precisely place electrodes to individually record
from a single neuron. Hence, each electrode records the neu-
ronal activities of a region, where generally tens of neurons
are present and thus, providing the acquisition of multi-
unit activity (MUA). Moreover, the fixed geometry of the
conventional MEAs, such as the Utah Array, constrains the
populations of neurons that can be accessed. They are made
from rigid metals or semiconductors, which can limit their
application and longevity.

It has been shown that complex brain processes are
reflected by the activity of large neural populations and
that the study of a few neurons provide relatively limited
information. Therefore, advances in BMI systems rely on
the ability to record from large populations of neurons in
the order of thousands. Recent high-density micro-electrode
array (HD-MEA) technology developed by Neuralink [3] use
flexible polymer probes to provide greater bio-compatibility
and longevity, as well as an unprecedented high-bandwidth
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and spatio-temporal resolution for long-term intra-cellular
neural recording. An array of up to 3072 electrodes can be
implanted individually by a neurosurgical robot offering sin-
gle-neuron (single unit) resolution. Neural recording MEAs
with neuron-level precision open a fascinating opportunity
to investigate how large cell populations encode sensory
behavior and motor function. Biological neurons communi-
cate by means of firing electric pulses, called action poten-
tials (APs) or spikes. Neural activity is usually sparse, and
since the firing rates of neurons, which is the number of
spikes emitted by a neuron over a given time interval, rarely
exceeds 10 Hz, the data transmission rate will be reduced
drastically by detecting spikes on an implanted chip and only
transmitting the spiking information. For example, employ-
ing a MEA with 100 channels sampling at 20 kHz with a
resolution of 10 bits per sample, would require 20 Mbps for
transmitting raw signals. If only spiking activity is transmit-
ted, the data transmission rate can be reduced to only 2 to
3 kbps, assuming that each electrode records the activity of
two to three neurons firing at an average rate of 10 Hz.
Researchers often require single-neuron activity for the
study of how neurons are correlated with each other for spe-
cific stimulus or for decoding motor intentions. Since in a
conventional extracellular recording an implanted electrode
can record the neural activity of neurons from a distance of
up to about 140 micrometers [4], the neural signal recorded
by an electrode consists of the cumulative neural activities
of multiple adjacent neurons and the neural activity of rela-
tively far away neurons contaminated by noise and technical
artifacts, such as electrode drift, tissue-electrode noise, and
electronics noise. Neurons in a local area often fire spikes of
similar shape and amplitude, however, relative to the dis-
tance of an electrode to a neuron, the shape of spike wave-
forms will differ for various neurons [5]. This key fact allows
the spiking activity of individual neurons to be distinguished
and separated through a process, called spike sorting [6],
which may assist neural decoding for certain applications.
Spike sorting is the process of grouping detected spikes into
clusters based on the similarity of their shapes. The resulting
clusters thus correspond to the spiking activity of different
putative neurons. Transmitting detected spike waveform
shapes, assuming a spike waveform is represented by only
48 samples and that the recording channel detects two to
three neurons firing at a rate of 10 Hz, would require data
rates between 960 Kbps and 1.44 Mbps. Increases in channel
counts, spiking frequency, or the number of neurons in the
vicinity of the electrode can raise this data rate dramatically.
An alternative approach is to perform neural signal process-
ing in vivo and only transmitting decoded neural activity
directly to an external assistive device. Neural decoding aims
to translate the neural activity of the brain into quantifiable
commands for controlling or communicating with an exter-
nal device. When decoding neural activity into a discrete set
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of commands, the output data rate of decoding can be given

as R, = %, where [-] denotes the ceiling operator, N,

denotes the number of discrete commands, At denotes the
time bin size over which spikes are counted, and N, denotes
the number of time bins collected prior to performing decod-
ing. For example, simple cursor control can be decomposed
into a discrete set of movements {left, right, up, down,
none}. If detected spikes are binned every 10 ms and 10 bins
are collected prior to decoding, the output data rate is
R; =30 bps. Controlling a prosthetic arm with multiple
degrees of freedom (DOF) increases the data rate due to the
numerical resolution of kine{]natic variables. The output data
b

. V,N,
rate can be given as R ; = R where V, denotes the number
A

of variables and N, denotes the total number of variables.
For example, consider a robotic arm with seven DOF (i.e.,
a, f, and y endpoint; x, y, and z angles; and grip velocity)
with 8 bits of resolution per variable. If spikes are binned
every 10 ms and 10 bins are collected prior to decoding, the
output data rate is R; = 560 bps. Note that this is consider-
ably less than that for transmitting raw data, spike events
only, or spike waveform outputs [7]. Moreover, in vivo
decoding decreases the time required to transmit data and
the offline processing time. Minimizing the processing
latency between biological signal generation and intended
motor function is important. It has been shown that in non-
human primate trials, a maximum latency of about 150 ms
between signal generation and the robotic arm movement
results in natural-looking and smooth motion [8].

In this article, we discuss the feasibility of realizing
in vivo neural decoding with and without spike sorting.
More specifically, in Sect. 2, we first discuss how much
information is contained in the two alternative spike train
analysis methods. Section 3 discusses the impact of spike
sorting on decoding performance. The design and training
of a temporal convolutional neural network decoder is pre-
sented. Section 4 presents the design and implementation of
a programmable neural network-based decoding processor.
Various challenges for realizing in vivo neural decoding are
discussed. Section 5 makes some concluding remarks.

2 Estimating information in neural spike
trains

Cortical neurons use spike trains to communicate with other
neurons. The output spike train of each neuron is a stochastic
function of its input signals from other neurons. Understand-
ing what information is encoded in its output spike train and
what information is discarded, as well as quantifying how
much information a single neuron transfers (or loses) from
the input it receives (i.e., a sensory stimuli) to the activity
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of neuron (i.e., the neural code), are important for efficient
decoding of the brain activity.

It is generally assumed that all the information contained
in the spike train can be represented by the spike times. The
simplest representation of a neuron’s response can be given
by its firing rate. In addition to the firing rate of neurons,
the relative timing between spikes also encodes information,
which may be useful for decoding. Rate coding and temporal
coding are two techniques for quantifying the information
encoded in a neural spike train [9, 10]. Rate coding implies
that the firing rate of a neuron represents the information
encoded in the spike train, while temporal coding implies
that the information is not only based on the firing rate, but
also the relative timing of spikes. Rate coding can be divided
into two categories: neuron rate coding and population rate
coding. Population or ensemble rate coding is a measure of
the firing rate of an ensemble of neurons rather than indi-
vidual neurons.

A visual representation of the two rate coding methods
over a two second snippet of a neural spike train is shown in
Fig. 1a and b. Figure 1a shows the grey boxes horizontally,
which represents the firing rate over the time interval T as
a temporal average. Figure 1b shows the grey boxes verti-
cally, representing the firing rate as a spatial average over
all neurons over a time window 7. Neuron firing rates are
computed by counting the number of spike events occurring
during a time window 7, while ensemble firing rates are
computed by counting the number of spike events occur-
ring across an ensemble of neurons during a time window
T. Both measures are then normalized by T, which results in
units of Hz. It has been shown that the ensemble rate coding
more closely resembles the brain’s natural coding scheme,
by which ensembles of neurons communicate their accu-
mulated activity with other neural populations [11]. This
can be considered as a spatial average of the neural activity,
whereas the neuron firing rates represent a temporal average
over a longer time.
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Fig. 1 a Neuron rate coding and b ensemble rate coding

The entropy S = -, [Pi10g2Pi], where P; denotes the
probability of a particular pattern of spike events, such as
firing rate, denotes the average amount of “information”
or “uncertainty” inherent to the random variable. Random
variables with a more uniform distribution have a higher
entropy, while distributions with a more localized peak have
lower entropy. In other words, if a probability distribution
is more biased toward specific outcomes, then there is less
information encoded in the random variable compared to the
one with higher entropy [12]. A coding scheme with a higher
entropy can be interpreted as having a more uniform distri-
bution and hence, a greater amount of information regarding
the stimulus that caused the neural response.

For a spike train, we employ an estimation of entropy, in
which the random variable is represented by the spike counts
over small bins of Az seconds over time windows of size T
[13]. An intuitive interpretation of spike train entropy is that
if a spike train is completely deterministic, it will have low
variability in the time between spike events and by implica-
tion, its firing rates. This implies that a deterministic neuron
encodes less information than a randomly firing neuron. To
compare the entropy between the two rate coding schemes, we
utilize the publicly available hc-2 dataset from the collabora-
tive research on computational neuroscience [14]. The dataset
consists of neural recordings from the CA1 region of the hip-
pocampus of freely moving rodents over various experiments.
The rodents were provided with water or food as a reward
at random locations throughout a platform. For the recording
session ec013.527, the entropy of the spike train and the cal-
culated ensemble rate are given in Table 1. One can see that
some neurons have low entropy, while others have relatively
high entropy compared to the ensemble rate. The ensemble
rate has a relatively high entropy and is not far from the mean
entropy of all the neurons, (i.e., 33.93 bits/sec). Therefore, it
can be assumed that using single unit firing rates would yield
more information for decoding. In order to test this hypothesis,

Table 1 The entropy rates for different neurons

Neuron index Entropy rate Neuron index Entropy
(bits/sec) rate (bits/
sec)

1 18.17 10 17.12

2 10.97 11 27.01

3 45.41 12 42.98

4 44.92 13 41.01

5 33.32 14 3541

6 30.96 15 42.83

7 35.51 16 43.68

8 34.69 Ensemble

9 38.94 Rate 38.25
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we divide the data into 125 ms intervals, which is equivalent
to 5 samples of video frames to align the rodent positions to
the physiology. A feed-forward neural network (FNN)-based
decoder is trained to map firing rates (rate and ensemble cod-
ing) to rodent positions. The testing dataset contains 7797 sam-
ples, 80% of which are utilized for training, while the remain-
ing 20% are used for validation and testing. Each sample in
the dataset consists of binned neural data over 1.28 seconds
with bins of size 25.6 ms, i.e., 50 time steps. The employed
FNN has three hidden layers with tanh activation functions.
The input dimension for the neuron-rate coding was 16, while
the input dimension for the population-rate coding was one.
The FNN was trained using the TensorFlow machine learning
framework for Python for up to 1000 epochs, using early stop-
ping to avoid overfitting to training data. The Adam optimizer
with default parameters Ir = 0.001, g, = 0.9, #, = 0.999, and
€ = le — 07 was used for training. The input to the neural
network was scaled (z-scored) as x, = (x — ¥)/(x,,), where x
denotes the training data and X and x, denote the mean and
standard deviation of the training data, respectively, to have
a zero-mean and unit variance distribution, which is useful
for training. Additional statistical enhancements can be made
by applying temporal smoothing of the input spike firing
rates. One of the commonly employed methods is the Gauss-
ian smoothing kernel [15], which convolves the input spike
counts with a Gaussian curve of a pre-defined width. Applying
Gaussian smoothing makes the distribution of the input data
resemble a normal distribution more closely, which makes it
easier to apply machine-learning algorithms to the data. The
training dataset denotes the subset of the data used for optimiz-
ing the parameters of the network, while the validation dataset
is used to assess the performance of the model during training.
The testing dataset is used to evaluate the performance of the
network, as it contains examples not observed during training.

Figure 2 shows the training and validation losses for the
neuron and ensemble rate coding schemes. The testing loss
for the neuron rate coding was 42.8 while the population rate
loss was 43.29. The y-axis is plotted on a log scale to view the
differences between the two rate coding schemes more eas-
ily. One can see that the neuron rate coding outperforms the
ensemble rate decoding slightly due to the higher entropy for
certain neurons and also due to the higher dimensional space
to learn from compared to the single dimensional input of the
ensemble rate coding scheme. Thus, we conclude that in the
context of neural decoding, neuron-rate coding may outper-
form the population-rate coding.
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Fig.2 The training and validation loss for neuron rate coding and
ensemble rate coding over various training epochs

3 Neural decoding and spike sorting

3.1 Investigating sorted and unsorted decoding
paradigms

Spike sorting has been employed to extract the activity of
individual single units influencing an electrode from the
recorded MUA. Conventionally, spike sorting consists of
several processing steps. First, spikes are detected from the
background noise. Common detection techniques involve
estimating the noise in the recorded and filtered signal and
comparing it with a threshold. From detected spike wave-
forms, specific features are then extracted. These extracted
features are then clustered into distinct groups, in which sim-
ilar features and thus, similar spikes, are grouped together. A
commonly employed clustering algorithm is k-means clus-
tering [16], in which the feature vectors are clustered into &
distinct groups, indicating up to k different single units found
in the neural recording.

A desirable approach toward in vivo decoding could be
avoiding spike sorting altogether, thus reducing the amount
of in vivo computation and/or wireless data transmission.
Without spike sorting, all threshold crossings of the volt-
age waveform on an electrode are treated as firing from one
putative neuron. While this approach ignores the kinematic
information provided by individual neurons recorded on the
same electrode, this loss of information can potentially be
avoided due to the significant enhancement in the recording
technologies at the single neuron level [3]. We thus explore
two possible decoding paradigms: (i) unsorted decoding and
(ii) sorted decoding, as shown in Fig. 3. First, spikes are
detected from the neural signals recorded by an implanted
MEA. The unsorted decoding paradigm will consider
detected spikes from all neurons recorded by each of the



Biomedical Engineering Letters (2022) 12:185-195 189
""l‘lnsorted Decoding
i ~eres B : " Decoded
{|® Electrode TOLUL L 11l . . . . ivi
I'a Neuron Lo Multi-unit Spike Trains ML-based 19)""31 Activity
i A@ i RO I N R Decoding
: A ©® wo_
' Al Time
Electrode' .
Array % ® a /'Sorted Decoding
he ! A1l 1 111
c A Single-unit Decodet_:l .
Spike .8 Spike Trains | ML-based 13:"’3’ Activity
Detection 3 A 1 1 Decoding
2 A | -
Al 111
- s
Time

Fig.3 The in vivo neural decoding paradigms

electrodes to create a multi-unit spike train (MUST). The
sorted decoding paradigm employs spike sorting to cluster
the activities of individual neurons detected by the spike
detection unit and create a single-unit spike train (SUST).
The raster plots in Fig. 3 are created based on the detected
spikes from each electrode and sorted spikes, respectively,
where the x and y axes represent time and the spiking activ-
ity of different neurons, respectively. The spike train in the
unsorted decoding paradigm shows the spikes detected on
each of the N recording electrodes. The spike train in the
sorted decoding paradigm shows the sorted spiking activity
of M single units. The MUST or SUST is then passed to
the decoding unit, which can employ a variety of decoding
algorithms. Traditionally, the decoding models of interest
are FNNs and recurrent neural networks (RNNs). RNNs
can encode temporal information in their hidden layers [17]
while FNNs cannot due to the lack of temporal memory. We
propose to use the temporal convolutional network (TCN)
[18]. The TCN, shown in Fig. 4a, encodes temporal infor-
mation in the input sequence with dilated convolutions at
deeper layers and thus spanning the entire input sequence.
The distinct network architecture of the TCN addresses
many of the limitations of RNNs with learning temporal fea-
tures, as the TCN does not propagate gradients over time, but
rather through convolutional layers. The output of the TCN
is connected to a layer to linearly map TCN outputs to the
rodent positions. The convolutions are causal, which means
that the TCN is appropriate for real-time neural decoding.
Accurate spike sorting to retrieve the individual neuronal
activities from multi-unit activity involves computationally-
and memory-intensive algorithms and is often performed
offline. Moreover, the requirement to sort spikes becomes
more imposing with increasing the number of implanted
recording electrodes, especially for spike sorting in vivo.
Interestingly, some earlier work reported that decoding the
spike detector’s outputs directly will make the system more
robust for long-term use [19]. Also, several studies have
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Fig.4 a The block diagram of a TCN layer and b the TCN-based
decoder

suggested recently that spike sorting might not be critical
for estimating intended movements in the motor BMI appli-
cations [20, 21]. In those ensemble decoding studies, the
rate at which the filtered neural electrical signals crossed a
pre-determined voltage threshold provided nearly an equiv-
alent amount of information about the discrete direction
of intended movements as did the spike rates of isolated,
single neurons, irrespective of whether the threshold cross-
ings detected on each electrode came from one or multiple
neurons. Threshold crossing rates have successfully been
used for real-time neural control in animals and humans,
even years after the implantation of micro electrode arrays.
Finally, the application of HD-MEA with neuron-level pre-
cision may eliminate the need for spike sorting altogether.
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To study the effect of spike sorting on the performance
of neural decoding, we utilize the publicly available hc-2
dataset [14]. The aim is to predict the location of the rodent
based on the spiking activity of neurons in the hippocam-
pus, which is the region of the brain responsible for cog-
nitive processes related to spatial navigation and memory.
For recording neural signals, four and eight channel tetrodes
were used to improve spike sorting performance. The tip
of each recording shank, which are the channels with the
highest signal amplitude, were used for detecting spikes. A
32-sample waveform was created from each same-shank tet-
rode and hence, each spike is represented by an 8X32 dimen-
sional matrix. Dimensionality reduction was performed with
discrete derivatives [22] to reduce the dimensionality to
8 X 3 = 24 samples per waveform. k-means clustering was
then performed to group feature vectors into 16 clusters, as
done in [14].

Figure 5a shows the mean absolute error of the train-
ing of the unsorted and sorted TCN-based decoding para-
digms using the training and validation sets over 100 train-
ing epochs. An important observation is that the sorted
decoding paradigm has the advantage of a relatively faster
convergence. However, as shown in Fig. 5b, both models
converge to close R? scores for the validation set. Moreo-
ver, both paradigm perform well for the testing set, with
the mean R?> = 0.9 and R? = 0.9 for the sorted and unsorted

(a) 60 : : ; :
—&— Sorted paradigm - training loss
- W - Sorted paradigm - validation loss
50 —&— Unsorted paradigm - training loss
S - @ - Unsorted paradigm - validation loss
s 40 P ™ - : P
e
S 30 +
[~}
3
®© 20 +
g
S 10

04 L 0.96 | . ]

0.94
0.2 1
80 85 % 95 100

—— Sorted paradigm - training score

- W - Sorted paradigm - validation score

-0.2 —&— Unsorted paradigm - training score

- @ - Unsorted paradigm - validation score
I i n

0 20 40 60 80 100
Epochs

Fig.5 a The training performance and b the R? score of the TCN-
based decoder for both decoding paradigms
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paradigms, respectively. The unsorted paradigm reduces the
dimension of the model’s input from the number of neurons
to the number of recording shanks. While increasing the
input’s dimension may increase the amount of information
provided to the model, it has been shown that constraining
the overall number of parameters in a model reduces over-
fitting [23]. We found that the TCN-based decoder offers
robust decoding performance across a variety of spike detec-
tion algorithms, with the mean R? = 0.97 for both sorted and
unsorted paradigms. Similarly, for this particular decoding
task, it was found that a temporal sequence length of 75 time
steps was optimal for time-series neural decoding with the
mean R? = 0.98, compared to the feed-forward network with
50 time steps. Therefore, we employ the unsorted decoding
paradigm for the real-time in vivo BMI realization.

3.2 Training and calibration

The training and calibration time of the neural decoder must
be reasonable for a satisfying user experience. For exam-
ple, it has been shown that for motor decoding applica-
tions, individual neurons often encode a preferred direction
or movement [8]. Additionally, for single unit recordings,
the same single units may not be present in the recorded
neural signals across different sessions over multiple days
or weeks. The process of re-training, or calibrating, neural
network-based algorithms involves re-training a pre-trained
model on a subset of the original training data in addition
to the new data [24]. A common problem in network cali-
bration, so called catastrophic forgetting [25], is that the
model forgets data observations from earlier training ses-
sions. In addition to retaining some of the previous data
used for training, specific layers of the model may fix their
weight values, similar to a transfer learning approach [26].
While the size of the updated training dataset or the total
number of weight updates may be significantly smaller than
the first training session, the time it takes to train the model
remains relevant. A decoder for neural-controlled robotic
arms reported in [27] has a calibration phase performed as
follows. First, the subject is asked to carefully observe the
automated movement of the arm for a given task. This is due
to the modulation of neural firing patterns given the obser-
vation of the intended motion. The spike trains recorded
during this process are then used to train the decoder. The
observation-based decoder is then calibrated by allowing
the subject to control the robotic arm with some amount of
automated movement aid. The aid is intended to reinforce
the subject to modulate their neural firing patterns that best
correspond to the desired movement. Over several training
sessions, the amount of automated movement aid is reduced
and the subject learns to control the robotic arm on their
own. The TCN-based decoder, for example, is better suited
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for real-time decoding and calibration due to the fact that
there is no internal hidden state to compute over time. This
allows TCNs to be trained significantly faster than RNN-
based models of similar size. In our tests on a Desktop PC
with an 8-core processor and 16 GB of RAM, we found that
the TCN-based decoder took 25 min to train, while RNN
models took over three hours to train. The training and cali-
bration process could take longer if they are performed on
a mobile device, which has considerably more processing
limitations compared to a high-performance computer.

4 Towards an implantable decoding
processor

While relatively small decoding architectures and algorithms
can be employed for high levels of decoding performance,
conventional BMISs still require an external device for pro-
cessing neural signals. This imposes some major limitations:
(1) for wireless BMIs, the amount and speed of data transfer
are limited by the bandwidth of the communication medium;
(ii) for wired BMIs, cables may limit the patient’s mobility
and cause a poor user experience; (iii) the requirement of
an external computing device means that the user must rely
on additional devices for proper decoding operation. These
limitations motivate the design and implementation of an
in vivo machine learning-based decoding processor.

Figure 6a shows the conventional approach for wireless
BMIs. Neural signals are recorded and processed by a spike
count unit, which detects spikes from ambient noise and
stores the spike count over a predefined amount of time
before transmitting it to an external computing device. For
example, the NeuraLink BMI transmits spike counts to a
mobile device or a computer in 25 millisecond time bins
for cursor control tasks [28]. Figure 6b shows the proposed
approach for a fully-implantable wireless BMI. An in vivo
processor would be able to directly process input spike trains
and perform a variety of decoding tasks, such as control-
ling a prosthetic limb. An implantable processor is first pro-
grammed using a computer or mobile device. The processor
is then able to interact directly with the external assistive
device by performing neural decoding in vivo.

Due to the rapid advances in the field of machine learn-
ing, the processor would need to be programmable such that
alternative decoding algorithms can be readily deployed
using the same hardware. To this end, we have designed
and implemented a custom neural network processor archi-
tecture for implementing arbitrary network operations. Our
previously designed embedded processor architecture in [29]
is enhanced to support arbitrary network operations, such as
matrix multiplication, convolution, as well as the instruc-
tions required for implementing both feed-forward and tem-
poral neural network architectures. The top-level datapath of
the processor is shown in Fig. 7. The processor is a single-
cycle reduced instruction-set computer (RISC) that executes
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Fig.7 The top-level block diagram of the designed and implemented neural network processor

an instruction over one clock cycle. Note that the relatively
slow speed of biological signal generation and processing
alleviates the need for high-speed and large-scale vector pro-
cessing units that are typically found in conventional neu-
ral network accelerators. The designed processor has three
memory units: the instruction memory /nstr. Mem. used
to store the program to execute; the register file Reg. File
used to store program variables and memory addresses; and
the data memory Data Mem., which is used to store neural
network input data, weight parameters, and any necessary
intermediate network computation results. The /nstr. Mem.
has a single address port that supports asynchronous read
and synchronous write. The Reg. File is a dual-port memory
unit with asynchronous read and synchronous write. The two
outputs of the Reg. File, rf_rd1 and rf_rd2, are used to
address the Data Mem., which is also a two-port memory
unit with asynchronous read and synchronous write. Since
the Data Mem. is addressed by values stored in the Reg.
File, the write address of the Data Mem. is also addressed
by r£_rd1l. The computations of a decoding algorithm are
performed in a sequential manner by the arithmetic logic
unit ALU, which supports integer computations, as well as
fixed-point operations. The ALU also has a dedicated activa-
tion function unit that implements the sigmoid, hyperbolic
tangent (tanh), and rectified linear (ReLU) functions for hid-
den units of a neural network. The detailed implementation
of the activation function unit is given in [29].

The instruction set for the designed neural network pro-
cessor is given in Table 2. Each instruction is 29 bits long,
with an instruction operation code (opcode) of 5 bits, and
the remaining 24 bits are dedicated for defining register
addresses or immediate values. For example, for the add_r
instruction, three 8-bit fields denote the register source for
the two ALU inputs as well as the write address to store
the result in the register file. The instruction set consists of
four types of instructions: integer computation, fixed-point
computations, setup, and control instructions. The integer
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computations are mainly used to define program variables,
such as loop counters. The fixed-point computations are used
to perform neural network computations, such as matrix
multiplication, element-wise addition/multiplication, and
convolution. The fixed-point format consists of 16 bits for
the integer part and 16 bits for the fractional part. Note that
due to the relatively large amount of data required for neu-
ral networks, the Data Mem. is addressed by values stored
within the register file. For example, the mult_e instruction
performs the fixed-point multiplication of the value stored in
the Data Mem. as indexed by the value stored in the register
file at address $s1. For immediate instructions, the second-
ary input source to the ALU is either an 8-bit sign-extended
immediate (SignExt[imm]) for integer computations, or a
sign-extended and zero-padded 8-bit immediate, denoted as
FPSignExt[imm]. The ALU has an internal accumulation
unit that is enabled during fixed-point operations, which is
useful for performing matrix multiplication, dot products,
and convolutions. The setup instructions are used for miscel-
laneous operations, such as defining which activation func-
tion to use, swapping the order of ALU inputs, asserting the
processor’s flag done, and reading values from Data Mem.
to the processor’s output port. The control instructions are
used for implementing loop constructs. Figure 8 shows the
program snippet for computing the dilated convolution. This

2DCompLoop: beq 0x80 @0xle @x@c //branch to 2D_CompDone

mult_e 0x20 0x22 0x00 // .x

addi_r 0x80 0x80 0x01 //Increment compCounter

addi_r 0x20 0x20 0x01 //Increment filter read address

addi_r 0x22 0x22 0x01 //Increment data_read_address

beq 0x81 0x31 0x03 //Branch to dilation increment

addi_r 0x81 0x81 0x01 //Increment input dim counter

jump 0x00 0x0093 //Jump to 2DCompLoop

inputDilationOffset: addi_r 0x00 0x81 0x01

add_r 0x22 0x30 0x22 //Increment data_read_address by dilation offset
jump 0x00 0x0093 //Jump to 2DCompLoop

2D_CompDone: jump_return 0x00 0x00 0x00 //jumps to return address

Fig.8 The program snippet for computing the dilated convolution
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Table 2 The instruction set of the designed neural network processor

Instruction type Instruction

Function

add_r $s1 $s2 $dst
sub_r $s1 $s2 $dst
mult_r $s1 $s2 $dst
addi_r $s1 Simm $dst
subi_r $s1 Simm $dst
muli_r $sl Simm $dst
add_e $s1 $s2

sub_e $s1 $s2

mult_e $s1 $s2
addi_e $s1 $s2
subi_e $s1 $s2
muli_e $s1 $s2
wr_alu$sl

wr_acfl $sl $s2
wr_acf2 $s1 $s2

wr_acc $s1 $s2

Integer computation

Fixed-point computation

rst_acc
Setup iset_acf code
Sw_imm
done
rd_dm$sl
beq$sl $s2 offset
bneq $s1 $s2 offset

Jjump jump_address

Control

jump_reg $s1
jump_return

nop

RF[$dst] = RF[$s1] + RF[$s52]

RF[$dst] = RF[$s1] - RF[$s2]

RE[$dst] = RF[$s1] X RF[$s2]

RE[$dst] =RF[$s1] + SignExt[imm]
RE[$dst] =RF[$s1] - SignExt[imm]
RE[$dst] =RF[$s1] X SignExt[imm]
DM[$s1] + DM[$s2]

DM[$s1] - DM[$52]

DM[$s1] X DM[$s2]

DM[$s1] + FPSignExt[imm]

DM[$s1] - FPSignExt[imm]

DM[$s1] X FPSignExt[imm]
DM[$s1l]=alu_result

DM[$s1] = DM[$s1] = ACF(alu_result, DM[$s2])
DM[$s1] = DM[$s1] = ACF(acc_result, DM[$s2])
DM[$s1]=DM[$sl] = acc_result

Reset ALU accumulator to zero

Set activation function to sigmoid, tanh, or ReLU
Swap ALU inputs

Assert processor done flag for 1 clock cycle
Read DM[$s1] and write to processor output port
Branch to PC+offset if RF[$s1] == RF[$s52]
Branch to PC+offset if RF[$s1] != RF[$s2]
PC = jump_address

RA = PC+1; PC = RF[$s1]

PC=RA

No operation

code segment is used iteratively for implementing the filter
convolution operations.

The synthesized ASIC layout of the designed neural
network processor in a standard 180-nm CMOS process is
shown in Fig. 9. Synthesis was performed with Synopsys
Design Compiler, while place-and-route was performed
with Cadence Innovus. The ASIC was synthesized with
a maximum data memory depth of 4096 elements. The
ASIC is estimated to occupy 49 mm? of silicon area and
consumes 12 mW of power while operating at 500 kHz.
The power density of the ASIC is 24.4 ﬂ;’, which is
within the tissue-safe limitation of about 40 % [30]. The
operating speed of the ASIC and the spike count bin size
directly limit the size and complexity of models that can
be implemented for real-time decoding. Consider the pro-
cessor operating at f Hz, and the spike counts are accu-
mulated over time bins of size At seconds. The number
of clock cycles 4 for which to complete one time step of
the real-time decoding can be given as A < At X f. For
example, given At = 25 ms, the model should complete
computations within 12,500 clock cycles with an ASIC

A
v

Fig.9 The ASIC layout of the designed and implemented neural net-
work processor
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Table3 The estimated number of instructions for various network
operations

Number of
instructions

Operation Matrix 1 size Matrix 2 size

Matrix Mults. M, XN, N, XN, (M|N,)x
(3N, +2)

Convolutions M XN 4(MN) + 1

Element-wise +/ — /X M XN 6MN

operating at 500 kHz. Table 3 gives an estimated num-
ber of clock cycles required for different types of network
operations. As an example, consider that spike counts are
generated for 96 input channels and the decoded output
dimension is 2 (e.g., x and y coordinates of a computer
cursor). For a TCN model with 3 layers, 8 filters per layer,
and a temporal filter length of 3, the TCN requires 16,408
instructions. One can note that the constraint A < Az X f
may not be needed for non-continuous decoding schemes
for which processing time is not vital. For example, if an
output is only required after the entire temporal sequence
is given, the processor can begin operating only when the
final input spike counts are received. Alternatively, meet-
ing the constraint for A will result in significantly faster
inference time, as each temporal iteration of the decoder
is computed immediately after the set of spike counts for
the current time step is received.

5 Conclusion

This article explored the feasibility of the in vivo neural
decoding with and without employing spike sorting. It was
found that the neuron-rate coding outperforms the popu-
lation-rate coding, both in terms of the amount of entropy
inherent to the coding scheme as well as the decoding per-
formance. It was shown that the temporal convolutional
network (TCN)-based decoder provides relatively accurate
decoding while being trained and calibrated faster than alter-
native machine learning-based models. Moreover, it was also
found that the TCN-based decoder provides robust decoding
without the need for spike sorting, thus reducing the com-
putational and memory requirements for the in vivo pro-
cessing. The design and implementation of a programmable
decoder processor with a custom instruction set architecture
for executing neural network operations in a standard 180-
nm CMOS process was presented. The ASIC layout was
estimated to consume 49 mm? of silicon area and to dissipate
12 mW of power from a 1.8 V supply, which is within the
tissue-safe limitation of 40 mW/cm?.
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