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Abstract
Conventional spike sorting and motor intention decoding algorithms are mostly implemented on an external computing 
device, such as a personal computer. The innovation of high-resolution and high-density electrodes to record the brain’s 
activity at the single neuron level may eliminate the need for spike sorting altogether while potentially enabling in vivo neural 
decoding. This article explores the feasibility and efficient realization of in vivo decoding, with and without spike sorting. The 
efficiency of neural network-based models for reliable motor decoding is presented and the performance of candidate neural 
decoding schemes on sorted single-unit activity and unsorted multi-unit activity are evaluated. A programmable processor 
with a custom instruction set architecture, for the first time to the best of our knowledge, is designed and implemented for 
executing neural network operations in a standard 180-nm CMOS process. The processor’s layout is estimated to occupy 
49 mm2 of silicon area and to dissipate 12 mW of power from a 1.8 V supply, which is within the tissue-safe operation of 
the brain.
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1  Introduction

Patients suffering from various neurological disorders 
and amputations may lose their ability to control some of 
their normal bodily functions or to take care of themselves 
entirely. A brain–machine interface (BMI) creates a link 
between the brain’s neural activity and the control of an 
external assistive device by bypassing dysfunctional neu-
ral pathways. Invasive BMIs record neural signals directly 
from the motor cortex using brain-implanted electrodes. By 
understanding how brain activity relates to behavior, the 
encoded motor intentions in the recorded neural signals can 
potentially be decoded into meaningful control commands to 
restore a patients’ ability to interact with their surroundings, 
via improved communication or actuating an assistive device 
such as computers and prostheses.

Conventional acquisition systems employ multi-elec-
trode arrays (MEAs), which allow simultaneous record-
ing of hundreds of channels. The wireless transmission of 
a large amount of recorded data can impose high power 

consumption and long delays, which restricts real-time and 
in vivo operation of BMIs. For example, the data rate for 
a Utah Array [1] with 100 recording channels sampled at 
20 kHz with a 10-bit resolution is 20 Mbps. For this trans-
mission rate, an implantable chip requires several hours of 
continuous operation and a few hours for recharging the bat-
tery [2]. The commonly employed acquisition systems are 
unable to precisely place electrodes to individually record 
from a single neuron. Hence, each electrode records the neu-
ronal activities of a region, where generally tens of neurons 
are present and thus, providing the acquisition of multi-
unit activity (MUA). Moreover, the fixed geometry of the 
conventional MEAs, such as the Utah Array, constrains the 
populations of neurons that can be accessed. They are made 
from rigid metals or semiconductors, which can limit their 
application and longevity.

It has been shown that complex brain processes are 
reflected by the activity of large neural populations and 
that the study of a few neurons provide relatively limited 
information. Therefore, advances in BMI systems rely on 
the ability to record from large populations of neurons in 
the order of thousands. Recent high-density micro-electrode 
array (HD-MEA) technology developed by Neuralink [3] use 
flexible polymer probes to provide greater bio-compatibility 
and longevity, as well as an unprecedented high-bandwidth 
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and spatio-temporal resolution for long-term intra-cellular 
neural recording. An array of up to 3072 electrodes can be 
implanted individually by a neurosurgical robot offering sin-
gle-neuron (single unit) resolution. Neural recording MEAs 
with neuron-level precision open a fascinating opportunity 
to investigate how large cell populations encode sensory 
behavior and motor function. Biological neurons communi-
cate by means of firing electric pulses, called action poten-
tials (APs) or spikes. Neural activity is usually sparse, and 
since the firing rates of neurons, which is the number of 
spikes emitted by a neuron over a given time interval, rarely 
exceeds 10 Hz, the data transmission rate will be reduced 
drastically by detecting spikes on an implanted chip and only 
transmitting the spiking information. For example, employ-
ing a MEA with 100 channels sampling at 20 kHz with a 
resolution of 10 bits per sample, would require 20 Mbps for 
transmitting raw signals. If only spiking activity is transmit-
ted, the data transmission rate can be reduced to only 2 to 
3 kbps, assuming that each electrode records the activity of 
two to three neurons firing at an average rate of 10 Hz.

Researchers often require single-neuron activity for the 
study of how neurons are correlated with each other for spe-
cific stimulus or for decoding motor intentions. Since in a 
conventional extracellular recording an implanted electrode 
can record the neural activity of neurons from a distance of 
up to about 140 micrometers [4], the neural signal recorded 
by an electrode consists of the cumulative neural activities 
of multiple adjacent neurons and the neural activity of rela-
tively far away neurons contaminated by noise and technical 
artifacts, such as electrode drift, tissue-electrode noise, and 
electronics noise. Neurons in a local area often fire spikes of 
similar shape and amplitude, however, relative to the dis-
tance of an electrode to a neuron, the shape of spike wave-
forms will differ for various neurons [5]. This key fact allows 
the spiking activity of individual neurons to be distinguished 
and separated through a process, called spike sorting [6], 
which may assist neural decoding for certain applications. 
Spike sorting is the process of grouping detected spikes into 
clusters based on the similarity of their shapes. The resulting 
clusters thus correspond to the spiking activity of different 
putative neurons. Transmitting detected spike waveform 
shapes, assuming a spike waveform is represented by only 
48 samples and that the recording channel detects two to 
three neurons firing at a rate of 10 Hz, would require data 
rates between 960 Kbps and 1.44 Mbps. Increases in channel 
counts, spiking frequency, or the number of neurons in the 
vicinity of the electrode can raise this data rate dramatically. 
An alternative approach is to perform neural signal process-
ing in vivo and only transmitting decoded neural activity 
directly to an external assistive device. Neural decoding aims 
to translate the neural activity of the brain into quantifiable 
commands for controlling or communicating with an exter-
nal device. When decoding neural activity into a discrete set 

of commands, the output data rate of decoding can be given 
as Rd =

⌈log2(Nc)⌉
ΔtNΔ

 , where ⌈⋅⌉ denotes the ceiling operator, Nc 
denotes the number of discrete commands, Δt denotes the 
time bin size over which spikes are counted, and NΔ denotes 
the number of time bins collected prior to performing decod-
ing. For example, simple cursor control can be decomposed 
into a discrete set of movements {left, right, up, down, 
none}. If detected spikes are binned every 10 ms and 10 bins 
are collected prior to decoding, the output data rate is 
Rd = 30 bps. Controlling a prosthetic arm with multiple 
degrees of freedom (DOF) increases the data rate due to the 
numerical resolution of kinematic variables. The output data 
rate can be given as Rd =

VbNv

ΔtNΔ

 , where Vb denotes the number 
of variables and Nv denotes the total number of variables. 
For example, consider a robotic arm with seven DOF (i.e., 
� , � , and � endpoint; x, y, and z angles; and grip velocity) 
with 8 bits of resolution per variable. If spikes are binned 
every 10 ms and 10 bins are collected prior to decoding, the 
output data rate is Rd = 560 bps. Note that this is consider-
ably less than that for transmitting raw data, spike events 
only, or spike waveform outputs [7]. Moreover, in vivo 
decoding decreases the time required to transmit data and 
the offline processing time. Minimizing the processing 
latency between biological signal generation and intended 
motor function is important. It has been shown that in non-
human primate trials, a maximum latency of about 150 ms 
between signal generation and the robotic arm movement 
results in natural-looking and smooth motion [8].

In this article, we discuss the feasibility of realizing 
in vivo neural decoding with and without spike sorting. 
More specifically, in Sect. 2, we first discuss how much 
information is contained in the two alternative spike train 
analysis methods. Section 3 discusses the impact of spike 
sorting on decoding performance. The design and training 
of a temporal convolutional neural network decoder is pre-
sented. Section 4 presents the design and implementation of 
a programmable neural network-based decoding processor. 
Various challenges for realizing in vivo neural decoding are 
discussed. Section 5 makes some concluding remarks.

2 � Estimating information in neural spike 
trains

Cortical neurons use spike trains to communicate with other 
neurons. The output spike train of each neuron is a stochastic 
function of its input signals from other neurons. Understand-
ing what information is encoded in its output spike train and 
what information is discarded, as well as quantifying how 
much information a single neuron transfers (or loses) from 
the input it receives (i.e., a sensory stimuli) to the activity 
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of neuron (i.e., the neural code), are important for efficient 
decoding of the brain activity.

It is generally assumed that all the information contained 
in the spike train can be represented by the spike times. The 
simplest representation of a neuron’s response can be given 
by its firing rate. In addition to the firing rate of neurons, 
the relative timing between spikes also encodes information, 
which may be useful for decoding. Rate coding and temporal 
coding are two techniques for quantifying the information 
encoded in a neural spike train [9, 10]. Rate coding implies 
that the firing rate of a neuron represents the information 
encoded in the spike train, while temporal coding implies 
that the information is not only based on the firing rate, but 
also the relative timing of spikes. Rate coding can be divided 
into two categories: neuron rate coding and population rate 
coding. Population or ensemble rate coding is a measure of 
the firing rate of an ensemble of neurons rather than indi-
vidual neurons.

A visual representation of the two rate coding methods 
over a two second snippet of a neural spike train is shown in 
Fig. 1a and b. Figure 1a shows the grey boxes horizontally, 
which represents the firing rate over the time interval T as 
a temporal average. Figure 1b shows the grey boxes verti-
cally, representing the firing rate as a spatial average over 
all neurons over a time window T. Neuron firing rates are 
computed by counting the number of spike events occurring 
during a time window T, while ensemble firing rates are 
computed by counting the number of spike events occur-
ring across an ensemble of neurons during a time window 
T. Both measures are then normalized by T, which results in 
units of Hz. It has been shown that the ensemble rate coding 
more closely resembles the brain’s natural coding scheme, 
by which ensembles of neurons communicate their accu-
mulated activity with other neural populations [11]. This 
can be considered as a spatial average of the neural activity, 
whereas the neuron firing rates represent a temporal average 
over a longer time.

The entropy S = −
∑

i

�
Pilog2Pi

�
 , where Pi denotes the 

probability of a particular pattern of spike events, such as 
firing rate, denotes the average amount of “information” 
or “uncertainty” inherent to the random variable. Random 
variables with a more uniform distribution have a higher 
entropy, while distributions with a more localized peak have 
lower entropy. In other words, if a probability distribution 
is more biased toward specific outcomes, then there is less 
information encoded in the random variable compared to the 
one with higher entropy [12]. A coding scheme with a higher 
entropy can be interpreted as having a more uniform distri-
bution and hence, a greater amount of information regarding 
the stimulus that caused the neural response.

For a spike train, we employ an estimation of entropy, in 
which the random variable is represented by the spike counts 
over small bins of Δ� seconds over time windows of size T 
[13]. An intuitive interpretation of spike train entropy is that 
if a spike train is completely deterministic, it will have low 
variability in the time between spike events and by implica-
tion, its firing rates. This implies that a deterministic neuron 
encodes less information than a randomly firing neuron. To 
compare the entropy between the two rate coding schemes, we 
utilize the publicly available hc-2 dataset from the collabora-
tive research on computational neuroscience [14]. The dataset 
consists of neural recordings from the CA1 region of the hip-
pocampus of freely moving rodents over various experiments. 
The rodents were provided with water or food as a reward 
at random locations throughout a platform. For the recording 
session ec013.527, the entropy of the spike train and the cal-
culated ensemble rate are given in Table 1. One can see that 
some neurons have low entropy, while others have relatively 
high entropy compared to the ensemble rate. The ensemble 
rate has a relatively high entropy and is not far from the mean 
entropy of all the neurons, (i.e., 33.93 bits/sec). Therefore, it 
can be assumed that using single unit firing rates would yield 
more information for decoding. In order to test this hypothesis, 

T T

(a) (b)

Fig. 1   a Neuron rate coding and b ensemble rate coding

Table 1   The entropy rates for different neurons

Neuron index Entropy rate 
(bits/sec)

Neuron index Entropy 
rate (bits/
sec)

1 18.17 10 17.12
2 10.97 11 27.01
3 45.41 12 42.98
4 44.92 13 41.01
5 33.32 14 35.41
6 30.96 15 42.83
7 35.51 16 43.68
8 34.69 Ensemble
9 38.94 Rate 38.25
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we divide the data into 125 ms intervals, which is equivalent 
to 5 samples of video frames to align the rodent positions to 
the physiology. A feed-forward neural network (FNN)-based 
decoder is trained to map firing rates (rate and ensemble cod-
ing) to rodent positions. The testing dataset contains 7797 sam-
ples, 80% of which are utilized for training, while the remain-
ing 20% are used for validation and testing. Each sample in 
the dataset consists of binned neural data over 1.28 seconds 
with bins of size 25.6 ms, i.e., 50 time steps. The employed 
FNN has three hidden layers with tanh activation functions. 
The input dimension for the neuron-rate coding was 16, while 
the input dimension for the population-rate coding was one. 
The FNN was trained using the TensorFlow machine learning 
framework for Python for up to 1000 epochs, using early stop-
ping to avoid overfitting to training data. The Adam optimizer 
with default parameters lr = 0.001 , �1 = 0.9 , �2 = 0.999 , and 
� = 1e − 07 was used for training. The input to the neural 
network was scaled (z-scored) as xz = (x − x̃)∕(x𝜎) , where x 
denotes the training data and x̃ and x� denote the mean and 
standard deviation of the training data, respectively, to have 
a zero-mean and unit variance distribution, which is useful 
for training. Additional statistical enhancements can be made 
by applying temporal smoothing of the input spike firing 
rates. One of the commonly employed methods is the Gauss-
ian smoothing kernel [15], which convolves the input spike 
counts with a Gaussian curve of a pre-defined width. Applying 
Gaussian smoothing makes the distribution of the input data 
resemble a normal distribution more closely, which makes it 
easier to apply machine-learning algorithms to the data. The 
training dataset denotes the subset of the data used for optimiz-
ing the parameters of the network, while the validation dataset 
is used to assess the performance of the model during training. 
The testing dataset is used to evaluate the performance of the 
network, as it contains examples not observed during training.

Figure 2 shows the training and validation losses for the 
neuron and ensemble rate coding schemes. The testing loss 
for the neuron rate coding was 42.8 while the population rate 
loss was 43.29. The y-axis is plotted on a log scale to view the 
differences between the two rate coding schemes more eas-
ily. One can see that the neuron rate coding outperforms the 
ensemble rate decoding slightly due to the higher entropy for 
certain neurons and also due to the higher dimensional space 
to learn from compared to the single dimensional input of the 
ensemble rate coding scheme. Thus, we conclude that in the 
context of neural decoding, neuron-rate coding may outper-
form the population-rate coding.

3 � Neural decoding and spike sorting

3.1 � Investigating sorted and unsorted decoding 
paradigms

Spike sorting has been employed to extract the activity of 
individual single units influencing an electrode from the 
recorded MUA. Conventionally, spike sorting consists of 
several processing steps. First, spikes are detected from the 
background noise. Common detection techniques involve 
estimating the noise in the recorded and filtered signal and 
comparing it with a threshold. From detected spike wave-
forms, specific features are then extracted. These extracted 
features are then clustered into distinct groups, in which sim-
ilar features and thus, similar spikes, are grouped together. A 
commonly employed clustering algorithm is k-means clus-
tering [16], in which the feature vectors are clustered into k 
distinct groups, indicating up to k different single units found 
in the neural recording.

A desirable approach toward in vivo decoding could be 
avoiding spike sorting altogether, thus reducing the amount 
of in vivo computation and/or wireless data transmission. 
Without spike sorting, all threshold crossings of the volt-
age waveform on an electrode are treated as firing from one 
putative neuron. While this approach ignores the kinematic 
information provided by individual neurons recorded on the 
same electrode, this loss of information can potentially be 
avoided due to the significant enhancement in the recording 
technologies at the single neuron level [3]. We thus explore 
two possible decoding paradigms: (i) unsorted decoding and 
(ii) sorted decoding, as shown in Fig. 3. First, spikes are 
detected from the neural signals recorded by an implanted 
MEA. The unsorted decoding paradigm will consider 
detected spikes from all neurons recorded by each of the 

Fig. 2   The training and validation loss for neuron rate coding and 
ensemble rate coding over various training epochs
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electrodes to create a multi-unit spike train (MUST). The 
sorted decoding paradigm employs spike sorting to cluster 
the activities of individual neurons detected by the spike 
detection unit and create a single-unit spike train (SUST). 
The raster plots in Fig. 3 are created based on the detected 
spikes from each electrode and sorted spikes, respectively, 
where the x and y axes represent time and the spiking activ-
ity of different neurons, respectively. The spike train in the 
unsorted decoding paradigm shows the spikes detected on 
each of the N recording electrodes. The spike train in the 
sorted decoding paradigm shows the sorted spiking activity 
of M single units. The MUST or SUST is then passed to 
the decoding unit, which can employ a variety of decoding 
algorithms. Traditionally, the decoding models of interest 
are FNNs and recurrent neural networks (RNNs). RNNs 
can encode temporal information in their hidden layers [17] 
while FNNs cannot due to the lack of temporal memory. We 
propose to use the temporal convolutional network (TCN) 
[18]. The TCN, shown in Fig. 4a, encodes temporal infor-
mation in the input sequence with dilated convolutions at 
deeper layers and thus spanning the entire input sequence. 
The distinct network architecture of the TCN addresses 
many of the limitations of RNNs with learning temporal fea-
tures, as the TCN does not propagate gradients over time, but 
rather through convolutional layers. The output of the TCN 
is connected to a layer to linearly map TCN outputs to the 
rodent positions. The convolutions are causal, which means 
that the TCN is appropriate for real-time neural decoding.

Accurate spike sorting to retrieve the individual neuronal 
activities from multi-unit activity involves computationally- 
and memory-intensive algorithms and is often performed 
offline. Moreover, the requirement to sort spikes becomes 
more imposing with increasing the number of implanted 
recording electrodes, especially for spike sorting in vivo. 
Interestingly, some earlier work reported that decoding the 
spike detector’s outputs directly will make the system more 
robust for long-term use [19]. Also, several studies have 

suggested recently that spike sorting might not be critical 
for estimating intended movements in the motor BMI appli-
cations [20, 21]. In those ensemble decoding studies, the 
rate at which the filtered neural electrical signals crossed a 
pre-determined voltage threshold provided nearly an equiv-
alent amount of information about the discrete direction 
of intended movements as did the spike rates of isolated, 
single neurons, irrespective of whether the threshold cross-
ings detected on each electrode came from one or multiple 
neurons. Threshold crossing rates have successfully been 
used for real-time neural control in animals and humans, 
even years after the implantation of micro electrode arrays. 
Finally, the application of HD-MEA with neuron-level pre-
cision may eliminate the need for spike sorting altogether.

Fig. 3   The in vivo neural decoding paradigms

Temporal
Conv. Layer

Input Spike 
Train

Output
Layer

Decoded
Output

d = 1

d = 2

d = 4

(a)

(b)

Fig. 4   a The block diagram of a TCN layer and b the TCN-based 
decoder
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To study the effect of spike sorting on the performance 
of neural decoding, we utilize the publicly available hc-2 
dataset [14]. The aim is to predict the location of the rodent 
based on the spiking activity of neurons in the hippocam-
pus, which is the region of the brain responsible for cog-
nitive processes related to spatial navigation and memory. 
For recording neural signals, four and eight channel tetrodes 
were used to improve spike sorting performance. The tip 
of each recording shank, which are the channels with the 
highest signal amplitude, were used for detecting spikes. A 
32-sample waveform was created from each same-shank tet-
rode and hence, each spike is represented by an 8 × 32 dimen-
sional matrix. Dimensionality reduction was performed with 
discrete derivatives [22] to reduce the dimensionality to 
8 × 3 = 24 samples per waveform. k-means clustering was 
then performed to group feature vectors into 16 clusters, as 
done in [14].

Figure 5a shows the mean absolute error of the train-
ing of the unsorted and sorted TCN-based decoding para-
digms using the training and validation sets over 100 train-
ing epochs. An important observation is that the sorted 
decoding paradigm has the advantage of a relatively faster 
convergence. However, as shown in Fig. 5b, both models 
converge to close R2 scores for the validation set. Moreo-
ver, both paradigm perform well for the testing set, with 
the mean R2 = 0.9 and R2 = 0.9 for the sorted and unsorted 

paradigms, respectively. The unsorted paradigm reduces the 
dimension of the model’s input from the number of neurons 
to the number of recording shanks. While increasing the 
input’s dimension may increase the amount of information 
provided to the model, it has been shown that constraining 
the overall number of parameters in a model reduces over-
fitting [23]. We found that the TCN-based decoder offers 
robust decoding performance across a variety of spike detec-
tion algorithms, with the mean R2 = 0.97 for both sorted and 
unsorted paradigms. Similarly, for this particular decoding 
task, it was found that a temporal sequence length of 75 time 
steps was optimal for time-series neural decoding with the 
mean R2 = 0.98 , compared to the feed-forward network with 
50 time steps. Therefore, we employ the unsorted decoding 
paradigm for the real-time in vivo BMI realization.

3.2 � Training and calibration

The training and calibration time of the neural decoder must 
be reasonable for a satisfying user experience. For exam-
ple, it has been shown that for motor decoding applica-
tions, individual neurons often encode a preferred direction 
or movement [8]. Additionally, for single unit recordings, 
the same single units may not be present in the recorded 
neural signals across different sessions over multiple days 
or weeks. The process of re-training, or calibrating, neural 
network-based algorithms involves re-training a pre-trained 
model on a subset of the original training data in addition 
to the new data [24]. A common problem in network cali-
bration, so called catastrophic forgetting [25], is that the 
model forgets data observations from earlier training ses-
sions. In addition to retaining some of the previous data 
used for training, specific layers of the model may fix their 
weight values, similar to a transfer learning approach [26]. 
While the size of the updated training dataset or the total 
number of weight updates may be significantly smaller than 
the first training session, the time it takes to train the model 
remains relevant. A decoder for neural-controlled robotic 
arms reported in [27] has a calibration phase performed as 
follows. First, the subject is asked to carefully observe the 
automated movement of the arm for a given task. This is due 
to the modulation of neural firing patterns given the obser-
vation of the intended motion. The spike trains recorded 
during this process are then used to train the decoder. The 
observation-based decoder is then calibrated by allowing 
the subject to control the robotic arm with some amount of 
automated movement aid. The aid is intended to reinforce 
the subject to modulate their neural firing patterns that best 
correspond to the desired movement. Over several training 
sessions, the amount of automated movement aid is reduced 
and the subject learns to control the robotic arm on their 
own. The TCN-based decoder, for example, is better suited 

Fig. 5   a The training performance and b the R2 score of the TCN-
based decoder for both decoding paradigms
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for real-time decoding and calibration due to the fact that 
there is no internal hidden state to compute over time. This 
allows TCNs to be trained significantly faster than RNN-
based models of similar size. In our tests on a Desktop PC 
with an 8-core processor and 16 GB of RAM, we found that 
the TCN-based decoder took 25 min to train, while RNN 
models took over three hours to train. The training and cali-
bration process could take longer if they are performed on 
a mobile device, which has considerably more processing 
limitations compared to a high-performance computer.

4 � Towards an implantable decoding 
processor

While relatively small decoding architectures and algorithms 
can be employed for high levels of decoding performance, 
conventional BMIs still require an external device for pro-
cessing neural signals. This imposes some major limitations: 
(i) for wireless BMIs, the amount and speed of data transfer 
are limited by the bandwidth of the communication medium; 
(ii) for wired BMIs, cables may limit the patient’s mobility 
and cause a poor user experience; (iii) the requirement of 
an external computing device means that the user must rely 
on additional devices for proper decoding operation. These 
limitations motivate the design and implementation of an 
in vivo machine learning-based decoding processor.

Figure 6a shows the conventional approach for wireless 
BMIs. Neural signals are recorded and processed by a spike 
count unit, which detects spikes from ambient noise and 
stores the spike count over a predefined amount of time 
before transmitting it to an external computing device. For 
example, the NeuraLink BMI transmits spike counts to a 
mobile device or a computer in 25 millisecond time bins 
for cursor control tasks [28]. Figure 6b shows the proposed 
approach for a fully-implantable wireless BMI. An in vivo 
processor would be able to directly process input spike trains 
and perform a variety of decoding tasks, such as control-
ling a prosthetic limb. An implantable processor is first pro-
grammed using a computer or mobile device. The processor 
is then able to interact directly with the external assistive 
device by performing neural decoding in vivo.

Due to the rapid advances in the field of machine learn-
ing, the processor would need to be programmable such that 
alternative decoding algorithms can be readily deployed 
using the same hardware. To this end, we have designed 
and implemented a custom neural network processor archi-
tecture for implementing arbitrary network operations. Our 
previously designed embedded processor architecture in [29] 
is enhanced to support arbitrary network operations, such as 
matrix multiplication, convolution, as well as the instruc-
tions required for implementing both feed-forward and tem-
poral neural network architectures. The top-level datapath of 
the processor is shown in Fig. 7. The processor is a single-
cycle reduced instruction-set computer (RISC) that executes 

Fig. 6   The system-level dia-
grams of a conventional and b 
the fully-implantable wireless 
BMIs
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an instruction over one clock cycle. Note that the relatively 
slow speed of biological signal generation and processing 
alleviates the need for high-speed and large-scale vector pro-
cessing units that are typically found in conventional neu-
ral network accelerators. The designed processor has three 
memory units: the instruction memory Instr. Mem. used 
to store the program to execute; the register file Reg. File 
used to store program variables and memory addresses; and 
the data memory Data Mem., which is used to store neural 
network input data, weight parameters, and any necessary 
intermediate network computation results. The Instr. Mem. 
has a single address port that supports asynchronous read 
and synchronous write. The Reg. File is a dual-port memory 
unit with asynchronous read and synchronous write. The two 
outputs of the Reg. File, rf_rd1 and rf_rd2, are used to 
address the Data Mem., which is also a two-port memory 
unit with asynchronous read and synchronous write. Since 
the Data Mem. is addressed by values stored in the Reg. 
File, the write address of the Data Mem. is also addressed 
by rf_rd1. The computations of a decoding algorithm are 
performed in a sequential manner by the arithmetic logic 
unit ALU, which supports integer computations, as well as 
fixed-point operations. The ALU also has a dedicated activa-
tion function unit that implements the sigmoid, hyperbolic 
tangent (tanh), and rectified linear (ReLU) functions for hid-
den units of a neural network. The detailed implementation 
of the activation function unit is given in [29].

The instruction set for the designed neural network pro-
cessor is given in Table 2. Each instruction is 29 bits long, 
with an instruction operation code (opcode) of 5 bits, and 
the remaining 24 bits are dedicated for defining register 
addresses or immediate values. For example, for the add_r 
instruction, three 8-bit fields denote the register source for 
the two ALU inputs as well as the write address to store 
the result in the register file. The instruction set consists of 
four types of instructions: integer computation, fixed-point 
computations, setup, and control instructions. The integer 

computations are mainly used to define program variables, 
such as loop counters. The fixed-point computations are used 
to perform neural network computations, such as matrix 
multiplication, element-wise addition/multiplication, and 
convolution. The fixed-point format consists of 16 bits for 
the integer part and 16 bits for the fractional part. Note that 
due to the relatively large amount of data required for neu-
ral networks, the Data Mem. is addressed by values stored 
within the register file. For example, the mult_e instruction 
performs the fixed-point multiplication of the value stored in 
the Data Mem. as indexed by the value stored in the register 
file at address $s1. For immediate instructions, the second-
ary input source to the ALU is either an 8-bit sign-extended 
immediate (SignExt[imm]) for integer computations, or a 
sign-extended and zero-padded 8-bit immediate, denoted as 
FPSignExt[imm]. The ALU has an internal accumulation 
unit that is enabled during fixed-point operations, which is 
useful for performing matrix multiplication, dot products, 
and convolutions. The setup instructions are used for miscel-
laneous operations, such as defining which activation func-
tion to use, swapping the order of ALU inputs, asserting the 
processor’s flag done, and reading values from Data Mem. 
to the processor’s output port. The control instructions are 
used for implementing loop constructs. Figure 8 shows the 
program snippet for computing the dilated convolution. This 

Instr.
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RA +

1

PC
0

1
0
1
2

jump_addr
rf_rd1

0 1
offset

Reg.
File

Data
Mem.

rf_rd1
rf_rd2

dm_rd1
dm_rd2

ALU_out
ACF_out

Equal

in1

in2
op

SignFPImm

SignImm

ALU
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eq
branchEN

jctrl
branchEN

Fig. 7   The top-level block diagram of the designed and implemented neural network processor

Fig. 8   The program snippet for computing the dilated convolution
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code segment is used iteratively for implementing the filter 
convolution operations.

The synthesized ASIC layout of the designed neural 
network processor in a standard 180-nm CMOS process is 
shown in Fig. 9. Synthesis was performed with Synopsys 
Design Compiler, while place-and-route was performed 
with Cadence Innovus. The ASIC was synthesized with 
a maximum data memory depth of 4096 elements. The 
ASIC is estimated to occupy 49 mm2 of silicon area and 
consumes 12 mW of power while operating at 500 kHz. 
The power density of the ASIC is 24.4 mW

cm2
 , which is 

within the tissue-safe limitation of about 40 mW

cm2
 [30]. The 

operating speed of the ASIC and the spike count bin size 
directly limit the size and complexity of models that can 
be implemented for real-time decoding. Consider the pro-
cessor operating at f Hz, and the spike counts are accu-
mulated over time bins of size Δt seconds. The number 
of clock cycles � for which to complete one time step of 
the real-time decoding can be given as 𝜆 < Δt × f  . For 
example, given Δt = 25 ms, the model should complete 
computations within 12,500 clock cycles with an ASIC 

Table 2   The instruction set of the designed neural network processor

Instruction type Instruction Function

Integer computation add_r $s1 $s2 $dst RF[$dst] = RF[$s1] + RF[$s2]
sub_r $s1 $s2 $dst RF[$dst] = RF[$s1] - RF[$s2]
mult_r $s1 $s2 $dst RF[$dst] = RF[$s1] × RF[$s2]
addi_r $s1 Simm $dst RF[$dst] = RF[$s1] + SignExt[imm]
subi_r $s1 Simm $dst RF[$dst] = RF[$s1] - SignExt[imm]
muli_r $s1 Simm $dst RF[$dst] = RF[$s1] × SignExt[imm]

Fixed-point computation add_e $s1 $s2 DM[$s1] + DM[$s2]
sub_e $s1 $s2 DM[$s1] - DM[$s2]
mult_e $s1 $s2 DM[$s1] × DM[$s2]
addi_e $s1 $s2 DM[$s1] + FPSignExt[imm]
subi_e $s1 $s2 DM[$s1] - FPSignExt[imm]
muli_e $s1 $s2 DM[$s1] × FPSignExt[imm]
wr_alu $s1 DM[$s1] = alu_result
wr_acf1 $s1 $s2 DM[$s1] = DM[$s1] = ACF(alu_result, DM[$s2])
wr_acf2 $s1 $s2 DM[$s1] = DM[$s1] = ACF(acc_result, DM[$s2])
wr_acc $s1 $s2 DM[$s1] = DM[$s1] = acc_result
rst_acc Reset ALU accumulator to zero

Setup iset_acf code Set activation function to sigmoid, tanh, or ReLU
sw_imm Swap ALU inputs
done Assert processor done flag for 1 clock cycle
rd_dm $s1 Read DM[$s1] and write to processor output port

Control beq $s1 $s2 offset Branch to PC+offset if RF[$s1] == RF[$s2]
bneq $s1 $s2 offset Branch to PC+offset if RF[$s1] != RF[$s2]
jump jump_address PC = jump_address
jump_reg $s1 RA = PC+1; PC = RF[$s1]
jump_return PC = RA
nop No operation

Data Memory

Instr.
Memory

Re
g.

 F
ileALU

Decoder

mm
7

7

Fig. 9   The ASIC layout of the designed and implemented neural net-
work processor
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operating at 500 kHz. Table 3 gives an estimated num-
ber of clock cycles required for different types of network 
operations. As an example, consider that spike counts are 
generated for 96 input channels and the decoded output 
dimension is 2 (e.g., x and y coordinates of a computer 
cursor). For a TCN model with 3 layers, 8 filters per layer, 
and a temporal filter length of 3, the TCN requires 16,408 
instructions. One can note that the constraint 𝜆 < Δt × f  
may not be needed for non-continuous decoding schemes 
for which processing time is not vital. For example, if an 
output is only required after the entire temporal sequence 
is given, the processor can begin operating only when the 
final input spike counts are received. Alternatively, meet-
ing the constraint for � will result in significantly faster 
inference time, as each temporal iteration of the decoder 
is computed immediately after the set of spike counts for 
the current time step is received.

5 � Conclusion

This article explored the feasibility of the in vivo neural 
decoding with and without employing spike sorting. It was 
found that the neuron-rate coding outperforms the popu-
lation-rate coding, both in terms of the amount of entropy 
inherent to the coding scheme as well as the decoding per-
formance. It was shown that the temporal convolutional 
network (TCN)-based decoder provides relatively accurate 
decoding while being trained and calibrated faster than alter-
native machine learning-based models. Moreover, it was also 
found that the TCN-based decoder provides robust decoding 
without the need for spike sorting, thus reducing the com-
putational and memory requirements for the in vivo pro-
cessing. The design and implementation of a programmable 
decoder processor with a custom instruction set architecture 
for executing neural network operations in a standard 180-
nm CMOS process was presented. The ASIC layout was 
estimated to consume 49 mm2 of silicon area and to dissipate 
12 mW of power from a 1.8 V supply, which is within the 
tissue-safe limitation of 40 mW/cm2.
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